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Abstract. AuUTOBAYES s a fully automatic program synthesis system for the data analysis domain.
Its input is a declarative problem description in form of a statistical model; its output is documented
and optimized C/C++ code. The synthesis process relies on the combination of three key techniques.
Bayesian networkare used as a compact internal representation mechanism which enables problem
decompositions and guides the algorithm derivatPrmgram schemaare used as independently
composable building blocks for the algorithm construction; they can encapsulate advanced algo-
rithms and data structures. gymbolic-algebraic systeis used to find closed-form solutions for
problems and emerging subproblems.

In this paper, we describe the application af POBAYES to the analysis of planetary nebulae
images taken by the Hubble Space Telescope. We explain the system architecture, and present in
detail the automatic derivation of the scientists’ original analysis [1] as well as a refined analysis
using clustering models. This study demonstrates thatoBAYES is now mature enough so that
it can be applied to realistic scientific data analysis tasks.

INTRODUCTION

Planetary nebulae are remnants of dying stars. Scientists try to understand their physics
by collecting and analyzing data, for example images taken by the Hubble Space Tele-
scope (HST). The analysis follows a general pattern in science: formulate an initial un-
derstanding of the underlying physical processes, formalize it as a statistical model,
fit the model to the collected data, interpret the results, and refine the model as long
as necessary. However, the large data volumes collected by modern instruments make
computer support indispensable. Consequently, development and refinement of the nec-
essary data analysis programs have become a bottleneck, and tapes of unanalyzed data
often sit in warehouses, waiting for the software to be completed.

AUTOBAYES [2, 3] is a fully automatic program synthesis system for data analy-
sis problems which increases the speed with which reliable data analysis software can
be developed and thus eliminates this bottleneck. Its input is a declarative problem de-
scription in form of a statistical model; its output is documented and optimized C/C++
code. Externally, it thus looks like a compiler; internally, however, it is quite different.
AUTOBAYES first derives a customizedlgorithm implementing the model and then
transforms it intacodeimplementing the algorithm. The algorithm derivatiorsgnthe-
sis process—which distinguishesuAOBAYES from traditional compilers—relies on
the intricate interplay of three key techniqua3 AUTOBAYES usesBayesian networks



(BNs) [4, 5] as a compact internal representation of the statistical models. BNs provide
an efficient encoding of the joint probability distribution over all variables and thus en-
able replacing expensive probabilistic reasoning by faster graphical reasoning. In partic-
ular, they speed up the decomposition of a problem into statistically independent simpler
subproblems.i{) AUTOBAYES usesprogram schemaas the basic building blocks for

the algorithm derivation. Schemas consist of a parameterized code fragment (i.e., tem-
plate) and a set of constraints which are formulated as conditions on BNs. The templates
can encapsulate advanced algorithms and data structures, which lifts the abstraction level
of the algorithm derivation. The constraints allow the network structure to guide the ap-
plication of the schemas, which prevents a combinatorial explosion of the search space.
(i) AUTOBAYES contains a specializesiymbolic-algebraic subsystewhich allows it

to find closed-form solutions for many problems and emerging subproblems. The com-
bination of these techniques results in fast turnaround times comparable to compilation
times, supporting the iterative development style typical for the domaimoOBAYES

thus enables the scientists to think and to program in models instead of code.

In this paper, we take one typical scientific data analysis problem—the analysis of
planetary nebulae images taken by the HST—and show thabBAYES can be used to
automate the implementation of the necessary programs. We initially follow the analysis
by Knuth and Hajian [1] and uselAOBAYES to derive code for the published models.

We show how concisely these models can be specified and how the code is derived; in
particular, we show how the interaction between graphical reasoning, code instantiation,
and symbolic computation is crucial for a fully automatic code derivation. We then go
beyond the original analysis and us@POBAYES to derive code for a simple mixture
model which can be used as an image segmentation procedure, automating a previously
manual preprocessing step. Finally, we show hawwrdBAYES derives customized code

for modifications of the standard model, which yield a more detailed analysis. The main
contribution of this paper is to demonstrate thaiT®BAYES has reached a level of
maturity which makes it applicable to realistic scientific data analysis applications.

AUTOBAYES

AUTOBAYES is implemented in SWI-Prolog [6] and currently comprises about 75,000
lines of documented code. Figure 1 shows the system architecture; in the following
paragraphs we explain the major components.

Statistical Models and Specification LanguageA statistical modeldescribes the
expected properties of the data in a fully declarative fashion: for each problem variable
of interest (i.e., observation or parameter), properties and dependencies are specified
via probability distributions and constraints. Figure 2 shows how the Gaussian model
discussed later in more detail is represented UTABAYES’s specification language.

Line 1 identifies the model. Lines 2 and 4 introduce symbolic constants whose values are
left unspecified but constrained by théaere -clauses in lines 3 and 5, respectively. In
general, constraints can be complex boolean formulae tying together multiple variables
(cf. line 11). Lines 6-15 introduce the parameters, again constrainetiéne -clauses.
Variables can be annotated widls -clauses; these textual annotations are propagated



const nat n.
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FIGURE 1. AUTOBAYES system architecture.

into the generated code to improve its legibility. Line 16 declares the observation (de-
noted by thedata -modifier) as a matrix; its expected properties are specified in the
distribution clause in line 17. Distributions can be both discrete (e.g., binomial) or con-
tinuous (e.g., Gaussian, Poisson, ...) but have to be univariate; support for multivariate
distributions is currently under development. Distributions are chosen from a predefined
list; adding more distributions is straightforward and requires only the definitions of the
density functions. The final line in the model is the task clause. It specifies the anal-
ysis problem the synthesized program has to solve. SinCBOBAYES only supports
parameter learnindi.e., the estimation of the parameter values best explaining the ob-
served data, given a model) but retucture learning(i.e., the estimation of the best
model itself), tasks have the form to maximize a conditional probability w.r.t. a set of
goal variables. In this case, the task imaximum likelihood estimatidrecause all goal
variables occur to the right of the conditioning bar in the conditional probability and
there are no priors on the parameters. Howeverr@BAYES can also solvenaximum

a posteriori estimatioffMAP) problems.

Bayesian Networks.A Bayesian networkcf. Figure 3) is a directed, acyclic graph
whose nodes represent random variables and whose edges define probabilistic depen-
dencies between the random variables. TABAYES uses a variant ofiybrid BNs to
represent the statistical models internally. Here, nodes can represent discrete as well



1 model gauss as '2D Gauss-Model for Nebulae Analysis'.

% Image size

const nat nx as ’'number of pixels, x-dimension’.
where 0 < nx.

const nat ny as ’'number of pixels, y-dimension’.
where 0 < ny.

% Center; assume center is on the image

double x0 as ’center position, x-dimension’.
where 1 =< x0 && x0 =< nx.

double y0 as ’center position, y-dimension'.
where 1 =< y0 && y0 =< ny.

% Extent; assume full nebula is on the image

10 double r as ‘’radius of the nebula’.

u where 0 < r && r < nx/2 && r < ny/2.

% Intensity; upper bound determined by instrument
12 double i0 as ‘’overall intensity of the nebula'.
13 where 0 < i0 && 0 =< 255.

% Noise; upper bound arbitrary, for initialization
1« double sigma as ’noise’.
15 where 0 < sigma && sigma < 100000.

% Data and Distribution
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1s data double pixel(1..nx, 1..ny) as _'image’.
v pixel(1,d) ~ gauss(i0*exp(-((I-x0)**2+(J-y0)**2)/(2*r**2)),
sigma).
% Task
18 max pr(pixel|{i0,x0,y0,r,sigma}) for _ {i0,x0,y0,r,sigma}.

FIGURE 2. Complete AITOBAYES-specification for Gaussian model. Keywords have been underlined
and line numbers have been added for reference; comments start with a % and extend to the end of the
line.

as continuous random variables; these are rendered as boxes and ellipses, respectively.
However, in Figure 3 all variables are continuous. Shaded nodes represent known vari-
ables, i.e., input data. Shaded boxes enclosing a set of nodes rejplesesi4], i.e.,
collections of independent, co-indexed random variables. Distribution information for
the random variables is attached to the respective nodes. pigedjs a nxxny ma-

trix of independent and identically distributedi.fl.) Gaussian random variables with
observed values.

Bayesian networks combine probability theory and graph theory. They are a common
representation method in machine learning because they provide an efficient encoding
of the joint probability distribution over all variables and thus allow to replace expensive
probabilistic reasoning by faster graphical reasoning [4, 5].

Schemas and Schema LibraryProgram synthesis from first principles is notoriously
difficult to scale up (cf. [8, 9]). ATOBAYES thus follows a schema-based approach.

A schemeconsists of a parameterized code fragment (i.e., template) and a set of con-

straints. The parameters are instantiated W @BAYES, either directly or by calling

itself recursively with a modified problem. The constraints determine whether a schema

is applicable and how the parameters can be instantiated. Constraints are formulated
as conditions on the Bayesian network or directly on the specified model; they include
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FIGURE 3. Bayesian net for Gaussian model, automatically extracted from the Gaussian model speci-
fication and drawn using thdot graph layouting package [7].

the task clause as special case. This allows the network structure to guide the applica-
tion of the schemas and thus to constrain combinatorial explosion of the search space,
even if a large number of schemas is available. Schemas are implemented as Prolog-
clauses and search control is thus simply relegated to the Prolog-interpreter: schemas
are tried in their textual order. This simple approach has not caused problems so far,
mainly because the domain admits a natural layering which can be used to organize
the schema library. The top layer comprises network decomposition schemas which
try to break down the network into independent subnets, based on independence the-
orems for Bayesian networks. These are domain-specific divide-and-conquer schemas:
the emerging subnets are fed back into the synthesis process and the resulting programs
are composed to achieve a program for the original probleoTOBAYES is thus able

to automatically synthesize larger programs by composition of different schemas. The
next layer comprises more localized decomposition schemas which work on products of
I.i.d. variables. Their application is also guided by the network structure but they require
more substantial symbolic computations. The core layer of the library contains statistical
algorithm schemas as for exampbgectation maximizatiaficM) [10, 11] and k-Means

(i.e., nearest neighbor clustering); these generate the skeleton of the program. The final
layer contains standard numeric optimization methods as for example the Nelder-Mead
simplex method or different conjugate gradient methods. These are applied after the sta-
tistical problem has been transformed into an ordinary numeric optimization problem
and if AUTOBAYES failed to find a symbolic solution for the problem. Currently, the
library consists of 28 top-level schemas, with a number of additional variations (e.g.,
different initializations).

Symbolic SubsystemAUTOBAYES relies significantly on symbolic computations to
support schema instantiation and code optimization. The core part of the symbolic sub-
system implements symbolic-algebraic computations, similar to those in Mathematica
[12]. It is based on the concept of term rewriting [13] and uses a small but reason-
ably efficient rewrite engine. Expression simplification and symbolic differentiation are
implemented as sets of rewrite rules for this rewrite engine. The basic rules are straight-
forward; however, the presence of vectors and matrices introduce a few complications
and require a careful formalization. In additionyPOBAYES contains a rewrite system
which implements a domain-specific refinement of the standard sign abstraction where
numbers are not only abstracted imosandnegbut also intosmall(i.e., | x| < 1) and
large. AUTOBAYES then uses a relatively simple symbolic equation solver built on top
of these rewrite systems. This handles only low-order polynomials (i.e., linear, quadratic,
and simple cubic). However, it also shifts and normalizes exponents, recognizes multiple



FIGURE 4. Planetary nebula IC 418 or Spirograph Nebula (a) Composite false-color image taken by
the HST (Sahai et al., NASA and The Hubble Heritage Team). The different colors (resp. gray-scales)
indicate the different chemicals prevalent in the different regions of the nebula; the origin of the visible
texture is still unknown. The central white dwarf is discernible as a white dot in the center of the nebula.
(b) Manually masked original image. (c) Original image with estimated Gaussian model parameters
superimposed. (d) Sample data generated using estimated Gaussian model parameters.

roots and bi-quadratic forms, and tries to find polynomial factors, and handles expres-
sions inx and(1 —x) which are common in statistical applications.

A smaller part of the symbolic subsystem implements the graphical reasoning rou-
tines necessary for Bayesian networks with plates, for example, computing the parents,
children, or Markov blanket [5] of a node.

Backend. The code constructed by schema instantiation and composition is repre-
sented in an imperative intermediate language. This is essentially a “sanitized” subset
of C (e.g., no pointers), which is extended by a number of domain-specific constructs
like vector/matrix operations, finite sums, and convergence-loops. Since straightforward
schema application can produce suboptimal codeT@BAYES interleaves synthesis
and code optimization (cf. [14] for an overview of advanced optimization techniques).
Schemas can explicitly trigger aggressive large-scale optimizations like code motion,
common sub-expression elimination, and memoization which can take advantage of in-
formation from the synthesis process. Traditional low-level optimizations like constant
propagation or loop fusion, however, are left to the compiler. In a final StepORAYES
translates the intermediate code into code tailored for a specific run-time environment.
Currently, AUTOBAYES includes code generators for the Octave and Matlab environ-
ments; it can also produce stand-alone C and Modula-2 code. Each code generator is
implemented as a rewrite system which eliminates the intermediate language constructs
not supported by the target environment; most rules are shared between the different
code generators.

Test-Data Generation.Statistical models also allow to generate problem-specific test
data (i.e.,sampling, if the the edges of the extracted network are followed forward
from the sources and random numbers are generated along the WayBAYES uses
this interpretation to generate model-specific sampling programs which can be used to
validate the models and solutions.

PLANETARY NEBULAE

Stars with initial masses between roughly 0.8 and 8 solar masses turn into swollen red
giants when they run out of hydrogen to support their primary fusion process. In a sec-
ondary fusion process, these giants then burn the helium produced by the hydrogen



fusion, resulting in a carbon-oxygen core roughly the size of the earth. Eventually, the
secondary fusion runs out of fuel as well and the red giants begin to collapse into ex-
tremely hot white dwarfs. During this collapse, most of the material is expelled, forming
blown-out gaseous shells which are called planetary nebulae. The shells continue to ex-
pand and after 10,000 to 50,000 years their density becomes too small for the nebulae to
be visible. Figure 4(a) shows an image of the planetary nebula IC 418.

Planetary nebulae occupy an important position in the stellar life cycle and are the
major sources of interstellar carbon and oxygen but their physics and dynamics are
not yet well understood. The characterization and analysis of their properties is thus
an important task in astronomy.

A HIERARCHICAL SET OF MODELS

Knuth and Hajian [1] present a hierarchical set of three models they use to analyze im-
ages of the planetary nebula 1C418 (cf. Figure 4(a)). Each model estimates a parameter
set which is then refined by the subsequent models. Their common idgdhat(the

light intensity which is expected at a given pixel positioly) on the image can be de-
scribed by a functiomr of this position, the (unknown) nebula centgy,y,), and some
additional parameters, anil)(that the measured intensities can be fitted ag&inss-

ing a maximum likelihood estimation of the parameters, which results in a simple mean
square error minimization due to the Gaussian likelihood. The only difference between
the models is the form df.

Here we sketch how these models are representedumoBAYES’ specification
language, and how the code is derived. In particular, we show how the interaction
between graphical reasoning, code instantiation, and symbolic computation is crucial
for a fully automatic code derivation.

Gaussian Model

The most simple model describes the nebula as a blurred two-dimensional Gaussian
cloud. The functior- thus describes the shape of a bell whose apex(igay;) which
can be formalized by a two-dimensional Gaussian curve:

. (Xo_x)2+(yO_y)2
F(xy)=iy-e 22 (1)
The additional parametergandr capture the overall intensity and extent of the nebula
(i.e., the height and diameter of the bell).

Model Specification.The AUTOBAYES specification shown in Figure 2 is a direct
transcription of the underlying mathematics. The distribution clause for the image pixels
in line 17 formalizes the idea that the expected value of the pixgl can be described
by the functiorF (x,y) from Equation (1) since the expected value of a Gaussian random
variable is given by the mean of the distribution. The variance of the distribution repre-
sents the error of the fit. In combination with the Gaussian distribution, the task clause
in line 18 thus specifies a mean square error minimization. The constraints formalize



additional assumptions on the structure of the image or the output of the instrument (cf.
line 13).

Mathematical Derivation. For the Gaussian model, the program derivation can
neatly be separated into two phases such that the first phase is a purely mathematical
derivation and the second phase only instantiates code templates. In general, however,
this is not the case and symbolic computation and template instantiation are interleaved.

The first step is to unfold the entipgxelmatrix element by element, using a decom-
position schema based on the conditionalized version of the general product rule for
probabilities:

pr(pixel |ig, %y, Yo, 1, 0) = M1 177, Pr(pixeli, j) 1o, %y, Yo: T, 0)

The precondition for this step is that the pixels are pairwise independent, given the
remaining variables, i.e., that

pl‘(pixe|(i, J) ’ pixel(il7 j/)7i07X07y07r7 G) = pr(pixel(i7 J) ‘ iO7X07y07r76)

holds for alli, j,i’,j’ such that # i’ or j # j. Instead of proving this from first princi-
ples, using the distribution information given in the model specificatiasm@BAYES

can easily check it on the Bayesian network: there is no edge going fropixiienode

into itself and, hence, by definition of Bayesian networks, the pixels are pairwise inde-
pendent.

The probability is now elementary in the sense that on the left of the conditioning bar
we have only a single variabfgxel(i, j) which depends exactly on all the variables to
the right of the conditioning bar. Hence, the probability expression can be replaced by
the distribution function. ATOBAYES’s domain theory contains rewrite rules for the
most common probability density functions; additional density functions can easily be
added. This rewrite yields the likelihood-function

. Jmmh%aﬂz
pixeli,j)—i,e 22
nx ny 1 o
|_|I:1 I_Ij:]_ /271:62 €
which must be maximized w.r.t. goal variablgs X, ¥y, r, ando. In general it is
easier to work with the log-likelihood function which yields the same solutions during
maximization since the logarithm is strictly monotone. After simplification using the
symbolic subsystem, &ToBAYES thus derives the following log-likelihood function:

262

1 N = b
L = —nx-ny-log(27) — nx-ny-log(c) — 552" i”;‘lz?il pixel(i, j)—iy- € 22

A solution can now be attempted in two different ways, numerically or symbolically. By
default, AUTOBAYES tries to find symbolic solutions first. In this case, it computes the
partial differentials
P .Y i Ve ) _(i=x%9)*+(i-¥0)?)
g—t = % Sz 3, pixeli, ) -e 2r? — 6—02 Tt y,e 2

T = it ) O
%:%zglzj‘il plxel(|,1)_|o.e oz _Ty



and solves the equatiort_/di, <0 and dL/do < 0 which are essentially simple
polynomials inij; ando. These can easily be handled by the built-in equation solver;
however, attempts to solve for the remaining three variabjeg, andr fail.

Code Derivation. At this point, the symbolic computations have been exhausted with-
out leading to a complete symbolic (i.e., closed-form) solutionTABAYES thus de-
rives code for a numeric solution, incorporating the computed partial symbolic solution.
This is done in two steps, which correspond to schemas in the schema library.

In the first step, ATOBAYES converts the symbolic solutions into assignment state-
ments. Then it identifies their order and position relative to the remaining code which
Is still to be synthesized. Since both solutions contain at least one (in fact all) of the
remaining variables, they must follow that code. Similarly, since the solutioo fmn-
tainsi, its assignment must in turn follow that igf AUTOBAYES then eliminates both
variables from the formula by applying the substitution corresponding to the solution.
Variables whose solutions do not depend on any unsolved variable can be considered as
symbolic constants and need not be eliminated; their corresponding assignments must
precede the missing code block. Since this reasoning is done on the expression level,
and expression evaluation is free of side-effects, a dataflow analysis is not required.

In the second step, WWOBAYES instantiates a numeric optimization routine, in this
case the Fletcher-Reeves conjugate gradient method. The schema’s template actually
contains a wrapper to the implementation provided by the GNU Scientific Library (GSL)
[15]. However, the schema itself contains not just boilerplate code but also constructs
specific initialization code and a number of auxiliary functions to evaluate the goal
function and the derivatives. WOBAYES contains different heuristics to derive ini-
tialization code from specification information; here, the initial values are taken as the
midpoints of the specified rangesuRAOBAYES also generates the auxiliary functions;
since a straightforward translation from the goal expression would be prohibitively inef-
ficient, AUTOBAYES aggressively optimizes the auxiliary functions. The optimizations
applied here include common subexpression elimination, memoization (i.e., caching of
expressions which depend art -variables), and code motion. They are applied both
intra- and inter-procedural, although the latter is restricted to the generated auxiliary
functions. The optimizations can also take into account locally constant variables, since
AUTOBAYES knows the set of goal variables. Again, a dataflow analysis is not required
since the reasoning is done on the expression-level.

Program Results.We have applied the generated program to the manually masked
image of IC418 shown in the second panel of Figure 4. The third panel shows the results.
The program roughly approximates the center but its estimate of the overall extent is
predictably off the mark. The last panel shows sample data generated using the estimated
Gaussian model parameters.

Sigmoidal Models
The Gaussian model hard-codes a number of assumptions about the structure of the

image, in particular that it is circular, with a pronounced intensity peak and a gradual
intensity falloff at the edges. However, a quick look at Figure 4 shows that the image is



clearly elliptic, with a broad intensity plateau and a pronounced falloff at the edges.

Simple Sigmoidal Model.Knuth and Hajian thus refine their initial model and re-
place the two-dimensional Gaussian by a two-dimensional sigmoidal function of the
form

F(xy) = o- [1— ! ] @)

14+ e aV/rxy-1
with the auxiliary functiorr (x,y)

F(%,Y) = Cxx (Xg—X)? + 265y (X —X) (Yo—Y) + Cpy (Yo—Y)?
and constantsyy, Cyy, andcyy

sinf 6 _ sirfo
= S8

Cx==2"1+"7 Gy cos6
r rx

__sinf -cosf
r2 -
X

+
re-ry

Cxy
wherery andry are the extent of the nebula along the major and minor axis, r@ss.,
its orientation, ané the intensity falloff.

The specification for this modified model can easily be derived from the one for
the Gaussian model shown in Figure 2, essentially by replacing the mean value in
the distribution clause (cf. line 17) with the new versionFoaind adding declarations
for the new model variables. The auxiliary constants and functions are represented as
deterministic nodes in the Bayesian network, which are expanded like C-style macro
definitions during the program definition. The program for this model is then derived
using the same steps as before; the only difference is that the symbolic expressions
become much more complicated.

Axis-aligned Sigmoidal Model.The derivation and resulting program can be simpli-
fied and sped up, if the nebula image is assumed to be axis-aligned. This can be modeled
by changing the random variabeinto a constant with known value, i.e.,

const double theta := 0 as___ ’orientation’.

AUTOBAYES can then propagate this constant value already on the specification level
and derive code from the simplified model.

Dual Sigmoidal Model. In a final refinement step, Knuth and Hajian try to estimate
the thickness of the shell as well. Since projecting the three-dimensional ellipsoidal shell
of gas onto a two-dimensional image produces an ellipsoidal blob surrounded by a ring
of higher intensity, the image can be modeled as the difference of two sigmoidal func-
tions with the same center and orientation but different extents, intensities, and falloffs.
Re-using the auxiliary definitions from the simple sigmoidal model, this refinement can
also be specified easily forlAOBAYES.

IMAGE SEGMENTATION MODELS

In their original analysis, Knuth and Hajian manually masked the central star and the
diffraction spikes (cf. Figure 4(b)). This prevents their analysis from misinterpreting the
comparatively bright star as the center of the nebula. A simple segmentation of the image



1 model segment as ’'Image segmentation via Clustering'.
... (see Figure 3) ...

% Class parameters and relative frequencies

const nat n_classes as  'number of classes’.
where 0 < n_classes.

double  mu(l..n_classes), sigma(l..n_classes).
where 0O<sigma( ).

10 double phi(1..n_classes).

1 where sum(l:=1..n_classes, phi(l))=1.

% Classes and Distribution
» output nat c(l.nx, 1.ny) as __ ’class’.
13 where 1 =< c¢(_, ) && c(_,) =< n_classes.
1 ¢(_,_) ~ discrete(phi).

% Data and Distribution

© © N o

1s data double pixel(1..nx, 1..ny) as ___image’.
s pixel(1,d) ~ gauss(mu(c(l,d)), sigma(c(l,J))).
% Task
17 max pr(pixel|{phi,mu,sigma}) for _ {phi,mu,sigma}.

FIGURE 5. AuTOBAYES-specification for image segmentation model.

into different conceptual classes (e.g., central star, nebula, and background) can replace
the generic mask. In this section we show howtABAYES can be used to derive code
for this and further refined segmentation models.

Segmentation via Clustering.The simplest segmentation model is the straightfor-
ward Gaussian mixture model shown Figure 5. At its core is the latent vacgaloke
lines 12—14) which represents the unknown class each pixel belongs to and which de-
termines the mean and variance (cf. line 16); its values are independently drawn from a
discrete distribution with relative frequenciesi.e., pr(c;; = k) = ¢,. The constraint on
the probability vectow (cf. line 11) is required to make this model well-formed. Since
we need the class-assignments for the segmentatisileclared asutput . Note that
the model assumes that the number of classes is known.

AUTOBAYES solves this model by an application of the EM-schema which is trig-
gered by the latent variable structure of the corresponding Bayesian network. After in-
stantiation of the EM-schema, all emerging sub-problems (for the E- and M-step) can
eventually be solved symbolically (for the detailed derivation cf. [2, 3]).

Figure 6 shows the result of segmenting the IC418 image according to the identified
different classes. In particular, a segmentation into three classes already isolates the
central star, the nebula, and the background from each other. It can thus be used as
a precise, image-specific mask (cf. Figures 4(b) and 6(a)). More classes reveal more
details, e.g., identify the nebula’s shell and separate the halo from the background, but
too many classes bear the usual risk of overfitting the image.

Model modifications. Code implementing this standard model can be found in many
libraries. AUTOBAYES, however, can also derive customized code for model modifica-
tions. For example, a uniform variance for all classes can be enforced by simply chang-
ing the distribution clause into

pixel(1,J) ~ gauss(mu(c(l,J)), sigma).



FIGURE 6. Segmentations of IC418 image: (a) three-class segmentation (b) ditto, white class used as

mask load to original image (c) five-class segmentation, and (d) sample data from geometrically refined

segmentation model; class 1 (white) corresponds to the hull, class 2 (gray) to the core, and class 3 (not
shown) to the background.

and adapting the declaration@faccordingly. AITOBAYES still solves this model by an
application of the EM-schema as before, but the structure of the M-step changes. In the
standard model, it contains a loop over all classes which computes the current estimates
of u; ando;. In the modified model, only the, are computed inside the loop, while the
singlec is computed separately. This modification cannot be achieved by simple code
parametrization—it requires an actual code adaptation.

Similarly, the standard model can be refined by adding priors (e.g., on the class means)
to capture additional background knowledge. lnT®BAYES, these priors are simply
added to the specification as distribution clauses for the parameters. For example, a
conjugate prior on each individual mean can be specified by

mu(l) ~ gauss(muO(l), sqrt(sigma_sq(l)) * kappaO(l)).

AUTOBAYES again solves the model by an application of the EM-schema, and again
the structure of the M-step changes, now to reflect the MAP estimate. More model
modifications can be specified easily: a conjugate prior using the same parameters for
all class means, non-conjugate priors, a mixture of different distributions (e.g., a single
Cauchy and multiple Gaussians), and many more. In each case)BXYES derives

an appropriate version of the EM-algorithm, instantiating and composing schemas as
required. This makes it much more flexible than a simple code library.

Multivariate approximation. Images of planetary nebulae are taken at different
wavelengths, usually in the infrared and visible bands. Such data sets can be analyzed by
AUTOBAYES if the covariance matrix is (assumed to be) diagonal, even thouwgtoA
BAYES cannot yet properly handle multivariate distributions. In the specification shown
in Figure 5, only the declaration (line 15) and distribution (line 16) of the input data
need to be modified as shown below. AgainyT®BAYES generates an appropriately
instantiated EM algorithm.

data double pixel(1..nc,1..nx, 1..ny) as ___’data cube’.
pixel(C,1,J) ~ gauss(mu(C,c(1,J)), sigma(C,c(1,J))).

Segmentation with geometric information.A further refinement of the basic model
can be obtained by adding spatial information, e.g., the geometric knowledge about
the elliptic shape of the nebula. InUKOBAYES, we can model such a refinement, for
example, by making the mean values of the mixed Gaussian distributions depend on the
location(i, j) of the pixel. Here, the pixels in each class are located on an elliptical ring



around the centex,(c;;),Yo(C;;) with radii ry(c;;) andry(c;;), and a thicknessl(c;; ).
Each of these unknown parameters depend on the glagSeach pixel at position j.
In the AUTOBAYES specification of Fig 5, we only need to replace the simple mean
H(Ci,-) of the Gaussian distribution (cf. line 16) by the expression
(WD) =12 (el Py (6)?)
Io(;j) e ey (3)

wherer (i, j) = (i —rx(ci;))2/rx(c;; )2+ (j — ry(c;j))?/ry(c;j)?. AUTOBAYES again syn-
thesizes an EM-algorithm, this time with a numerical optimization routine (e.g., a
Nelder-Mead simplex method) nested within the M-step. Figure 6(d) shows sampling
data generated with the parameters estimated by this model.

EVALUATION

Table 1 summarizes the results; it shows thatTABAYES’s specification language
allows a compact problem representation: none of the models discussed here required
more than 35 lines of specification. The major difficulty in writing the specifications was

to understand and then to express the core idea of the original models. After that, each
specification took only a few minutes to write and in general one or two iterations to
debug and complete (e.g., adding constraints).

The table also shows the overall feasibility of the approaahr@BAYES was able
to derive code for each of the models; scale-up factors from the model specification
to the generated code are generally around 1:30. Synthesis times are generally only a
few seconds and comparable to compilation times of the derived code. However, for
the gauss andsigmoid models, AITOBAYES spends almost all time simplifying
the partial differentials and then optimizing the auxiliary functions evaluating them; in
the sigmoid -case, this even exhausts the available memory. With the command line
options-nosolve  and-nolib , AUTOBAYES can be forced to stay away from these
expensive calculations and code is derived much faster, using the Nelder-Mead simplex
method which requires no differentials.

Search space explosion is a common problem in program synthesis. In our case, it is
mitigated by the deterministic nature of the symbolic-algebraic computations, the higher
level of abstraction inherent to the schemas, and the inherent structure of the schema
library. Still, search spaces are large since schemas can be functionally equivalent and
solve the same class of problems. For gaiss -model, AUTOBAYES derives 224
programs, many of them identical, in 35 minutes total synthesis time. Parts of the search
space can be pruned away manually by command line optionsililselve , but more
implicit control is required, especially when the schema library grows further.

The original Matlab code written by the Knuth [1] uses a gradient descent method;
it computes the differentials in a single iteration over all pixels while the synthesized
code iterates once for each differential but reuses memoized subexpressions. This de-
composition requires domain knowledge not yet formalized for@BAYES. For the
gauss -model, the (interpreted) original Matlab-code is approximately 70 lines, mainly



TABLE 1. Summary of Results. For each model, the size of the specifice®iped and the generated
program (including generated comment€pde|, and the synthesis tinik,,, (measured on an unloaded
2GHz/4GB LinuxPC) are givertnosolve and-nolib  are AUTOBAYES command line options

which suppress the application of the schemas using partial symbolic solutions and library components.
The entries forsigmoid-0 , sigmoid-2 , andsegment-geom refer to the-nolib -nosolve

variants.

| Model | ISped | [Codel | Ty |
gauss 18 1045 36.4s
-nosolve 703 2.4s
-nolib 764 4.9s
-nolib -nosolve 494 1.1s
sigmoid 28 - -
-nosolve 12650| 39m42.9s
-nolib -nosolve 872 3.2s
| sigmoid-0 | 27 | 581] 1.3s|
| sigmoid-2 | 35 | 1202| 6.7s|
| segment | 17 | 518 1.2s ]
| segment-multi | 18 | 602 | 1.4s |
| segment-geom | 30 | 1765] 40.6s|

for the computation of the gradient. It requires on average 174 seconds to converge,
while the synthesized C++-code only requires 11 seconds.

RELATED WORK

Scientific computing is a (relatively) popular application domain for program synthesis;
due to its complexity, most related work also follows a schema-based approach. How-
ever, most work focuses on wrapping solvers for partial differential equations (PDES).
SciNapse [16] is a general “problem-solving environment” for PDES; it supports code
generation for a variety of features in the PDE-domain, as for example coordinate trans-
formation or grid generation. Ellmaat al.[17] describe a system to generate simulation
programs from PDEs. Both systems use Mathematica as underlying symbolic engine.
Ctadel [18] is PDE-based synthesis system for the weather forecasting domain. Like
AUTOBAYES, it is implemented in SWI-Prolog and contains its own symbolic engine.
Other domains than PDEs have been tackled less often. Amphion [19] is a purely
deductive synthesis system which has been used to synthesize astronomical software
using library components. Amphion/NAV [20] applies the same technology to the state
estimation domain. The scale-up difficulties encountered there led to a switch to a
schema-based approach and the development of RLTER-System [21] as a
domain-specific extension of WOBAYES. It provides its own specification language
and schemas but reuses the core system. Planware [22] deductively synthesizes high-
performance schedulers. It uses concepts from higher-order logic and category theory to



structure the domain theory and thus to reduce the required proof effort.

Schema-based program synthesis is also related to generative programming [23],
since schemas (more precisely, the code fragments) correspterdptatesThe major
differences are that)(the almost completely syntax-directed template instantiation is
less powerful and less secure than schema instantiationiiaridg users still have to
write the core algorithm.

Code libraries are common in scientific computing and data analysis, but they lack
the level of automation achievable by program synthesis. For example, the Bayes Net
Toolbox [24] is a Matlab library which allows program development on the model
level, but it does not derive algorithms or generate code. BUGS [25] is a statistical
model interpreter based on Gibbs-sampling, a more general but less efficient Bayesian
inference technique; it could be integrated intoBAYES as an additional schema.

CONCLUSIONS

We presented BTOBAYES, a fully automatic program synthesis system for the data
analysis domain and demonstrated how it can be used to support a realistic scientific task,
the analysis of planetary nebulae images taken by the HST. We specified the hierarchy of
models presented in [1]. WWOBAYES was able to automatically generate code for these
models; in tests, the synthesized code gave the same results as the scientists’ Matlab
code. We also usedWOBAYES to refine the analysis, combining cluster-based image
segmentation with geometric constraints.

Key elements to achieve these results are the schema-based synthesis approach, an ef-
ficient problem representation via Bayesian networks, and a strong symbolic-algebraic
subsystem. This combination is unique toPOBAYES and allows us to solve realistic
data analysis problems. In this particular case study the recently completed integration
of the GSL and the aggressive optimization of the goal expressions proved to be instru-
mental to derive efficient code.

However, AITOBAYES must still be improved before it can be delivered to the work-
ing data analyst. In particular, the domain coverage must be extended and schemas must
be added to enable solutions for new classes of models (e.g., multivariate distributions).
Synthesis from large models requires support for hierarchical specifications and more
powerful optimizations to generate faster code. Finally, numeric optimization schemas
must be extended with numeric constraint handling to produce more versatile and robust
code. Yet, AITOBAYES already demonstrates that program synthesis technology has
become a viable and versatile technology that enables scientists to think and to program
in models rather than in code.

Availability. A web-based interface to WWOBAYES and links to other papers are available at
http://ase.arc.nasa.gov/autobayes .
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