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Abstract However in order to apply CF within this domain, we
need to extend the current state of the art. Specifically, to
date, much of the research within this area has assumed non-
overlapping coalitions in which agents are members of at
most one coalition (see section Related Work for more de-
tails). Now, in the multi-sensor networks that we consider,
this assumption no longer holds. Since, the sensors cda trac
multiple targets simultaneously, multiple overlappingi¢o
tions can be formed. Thus, against this background, this
paper advances the state of the art in the following ways:

e We cast the problem of sensor coordination for wide-

This paper develops new algorithms for coalition formation
within multi-sensor networks tasked with performing wide-
area surveillance. Specifically, we cast this application as
an instance of coalition formation, with overlapping coali-
tions. We show that within this application area sub-additive
coalition valuations are typical, and we thus use this struc-
tural property of the problem to derive two novel algorithms
(an approximate greedy one that operates in polynomial time
and has a calculated bound to the optimum, and an optimal
branch-and-bound one) to find the optimal coalition structure
in this instance. We empirically evaluate the performance of

these algorithms within a generic model of a multi-sensor net-
work performing wide area surveillance. These results show
that the polynomial algorithm typically generated solutions
much closer to the optimal than the theoretical bound, and
prove the effectiveness of our pruning procedure.

Introduction

Coalition formation (CF) is the coming together of a num-
ber of distinct, autonomous agents in order to increase thei
individual gains by collaborating. This is an importantrfor

of interaction in multi-agent systems because many appli-
cations require independent agents to come together for a
short while to solve a specific task and disband once it is
complete. As such, it has recently been advocated for task
allocation scenarios where groups of agents derive a nertai
value (and/or cost) from tasks being performed in the coali-
tion (Shehory & Kraus 1998). Building on this, in this pa-
per, we apply CF to one such scenario, namely wide-area

area surveillance as a coalition formation process, and
show that, in general, this results in a coalition formation
problem in which multiple coalitions may overlap and in
which the coalition’s values are typically sub-additive.

We develop two novel algorithms to calculate the optimal
coalition structure when faced with overlapping coalifon
and sub-additive coalitional values. The first is a polyno-
mial time approximate algorithm that uses a greedy tech-
nigue and has a calculated bound from the optimum (Cor-
men, Leiserson, & Rivest 1990). The second is an op-
timal algorithm based on a branch-and-bound technique
(Land & Doig 1960). We evaluate the performance of
these algorithms in a generic setting, and show that the
typical performance of the polynomial algorithm is typi-
cally much better then the calculated bound. In addition,
we show that the optimal branch-and-bound algorithm is
able to effectively prune the search space.

The rest of the paper is organised as follows. In the next

surveillance by autonomous sensor networks (e.g. perform- section we describe the wide-area sensing scenario that mo-
ing monitoring and intruder detection in areas of high se- tivates this work. Following this, we present our two al-
curity). This is an important application that has received gorithms for finding the optimal coalition structure in our
renewed interest in recent years, and a key question within overlapping coalition scenario. We empirically assess the
this field, is how to coordinate multiple sensors in order to performance of these algorithms in the following section,

focus their attention onto areas of interest, whilst baltamnc
the need for both coverage and precision. Thus the problem
can naturally be modelled as one of CF since a number of
groups of sensors need to be formed to focus on particular
targets of interest, these groupings combine their ressurc
for the group’s benefit and then they disband when the target
is no longer present or a more important one appears.
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and finally, we conclude and discuss future work.

The Coalition Model

We now present our model of coalitions within a sensor net-
work applied to wide-area surveillance. Thus, our model
consists of a set of sensors] = {1, 2, ...n}, and a set ofn
targets,I’ = {t1, t2, ...t;» }, Within an area environment that
the sensors are tasked with monitoring. Each sehéars

K; possible states, and € {0,...,k,... K; — 1} denotes
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Figure 1. An example sensor network in which three sensors
(1,2 and 3) track the position of two targets &ndt.,) that
pass through their field of view (indicated in bold).

the state itis in. Whegr; = 0, the sensoris the ‘sleep’ state
(i.e. a state in which it is not sensing). The remainiig- 1
states are sensing states that indicate the directionabdap
ity of the sensor (i.e. an individual sensor can orientate it
focus of attention into a number of distinct regions). Thus,

performance, especially in cooperative environmentssThu
the optimal coalition structure generation problem is td fin
a set of coalitiong”S* = {(C1,t1),...,(Cm,tm)} such
that the system welfare is maximised:

Z U(Cj,tj) - ZCZ'

;€T iel

CS* = arg (1)

max
CSer(I,T)

whereT'(1,T) is the set of all possible coalition structures
given the targets and the agents. Note that unlike the stan-
dard coalition model, in our formalism we can not simply in-
corporate the costs into the coalition values. Doing so doul
incur multiple counting of the costs, since whilst there may
bem coalitions representing each target, thererasensors
(and these sensors incur costs depending on their sensing
state rather than the number of coalitions of which they are
members).

Coalition Values
Now, since wide-area sensing is concerned with informa-

depending on the sensing state that each sensor adopts, théion gathering, it is natural to consider a coalition valua-

sensor network as a whole may focus the attention of differ-
ent combinations of sensors on to different targets. Figure

tion function based on the information content of observa-
tions. In this case, the goal of the sensor network when co-

shows a simple instantiation of such a sensor network. Here ordinating the focus of individual sensors, is to obtain the

there are three sensos= {1, 2,3} that are tracking two
targets,I’ = {1, t2}, within their field of view. The sensors
can either sleep or orientate their sensing in one of four di-

maximum information from the environment. A common
way to measure information in target tracking scenarios is
to use Fisher information; a measure of the uncertainty of

rections. Since they have a fixed range, they can thus focus the estimated position of each target (Dash, Rogers, Reece,

their attention within one of four sectors centered on thme se
sor itself (the active sector is shown in bold in the diagram)
Now, a coalition in this scenario, is a group of sen-
sors tracking a particular target (e.g. sensors 1 and 2
tracking targett; in the example shown in figure 1). Let
visibility(i, s, t;) be a binary logical variable such that it
is true if targett; can be observed by sensawvhen in state
si, and false otherwise. Then we can define a coalition as:

Definition 1 Coalition. A coalition is a tuple (C,t;)
wherebyC' C [ is a group of sensors such thei € C,
sensot; is in states; such thawisibility(i, s;, t;) = true.

Roberts and Jennings 2005). Such a measure is attractive
because when a number of sensors observe the same tar-
get and then fuse their individual estimates, the inforamati
content of the fused estimate is simply given by the sum
of the information content of the individual un-fused esti-
mates. Thus, when the coalition value is represented as the
information content of position estimates, the coalitiat v
ues are additive. For example, in figure 1 where both sensors
1 and 2 observe and fuse information about target 1, then
U({lv 2}7 tl) = U({l}, tl) + ’U({2}, tl)'

However, this additivity only applies when the individual
estimates are independent. A more likely scenario within

Note that from the above definition, when an agent chooses sensor networks is that these individual estimates are cor-

to be in a particular state, it becomes a member of those
coalitions that are responsible for tracking all the tesgleat

are visible in that state, and thus, the sensor may be a mem-

ber of several overlapping coalitions (this would occur in
our example if another target fell within the active sensing
sectors of both sensor 1 and 2).

Definition 2 Overlapping Coalitions.  Two coalitions
(C,t;) and (D, t;) are overlapping ifC' N D # ()

Now, each coalition{C, t;) has a value/(C, t;) that rep-

related to some degree. This will typically occur either
through the exchange and fusion of earlier position esti-
mates, or alternatively, by sensors using shared assumsptio
(such as a common model of the target's motion). Now,
when these estimates are correlated, the coalition vakies b
come sub-additive (Reece and Roberts 2005). That is, due
to the correlation, the fused estimate contains less irderm
tion than the sum of the individual estimates, and thus, in
our examplep({1,2},t1) < v({1},t1) + v({2}, t1).

The same sub-additive valuation also occurs in other more

resents the value of having a number of sensors tracking a general models of sensor networks. For example, in (Lesser,

target (we discuss in the next section how this value is cal-

Ortiz & Tambe 2003), the authors explicitly impose such

culated). In addition, each sensor incurs costs depending sub-additivity when the number of sensors observing a sin-
on the sensing state that it has adopted. For example, thegle target increases. Indeed, within our overlapping eoali
cost maybe zero when the sensor is turned on and non-zerotion setting, such sub-additive coalition values are veimc

otherwise. Moreover, in this paper, we are interested in the
system welfare as it is an effective indication of the sysem

mon, and occur whenever there are diminishing returns as
more resources are applied to a task.



Thus, in this paper, we focus on coalition values that obey
the following two conditions:

e Monotonicity: v(C,t;) < v(D,t;)if C C D
This ensures that adding new members to a coalition can
never reduce its value. In our case, this implies that ob-
taining observations from more sensors about a target can-
not decrease the coalition value.

Sub-additivity:v(C U D, t;) < v(C,t;) 4+ v(D,t;)

This implies that if two different groups of sensors track
a certain target;, then the sum of the value each derives
is never less than if the union of the two groups perform
it. In our scenario, suppose a group of sengditsacks a
targett;. Now suppose another group of sensbrsrack

the same target. Then the sum of the value of these two
exclusive events cannot be less than if all the members of
C and D joined to track the same target. Sub-additivity
intuitively occurs wherC' N D # {) or due to the dimin-
ishing returns each new member brings to a coalition.

Sensor Costs

As described above, the costs of the sensors are calculated
separately from the coalition value. In the case of simple
sensors that incur a fixed cost dependent on their state

we can model the cost as:

C; =

cost; otherwise
In more complex settings, the sensor cost may also reflect
the additional costs incurred when changing from one sens-
ing state to another (e.g. the cost of changing its orienta-
tion to track another set of targets), or reflect the fact that
in battery power devices the cost of sensing may depend on
the state of charge of the battery. However, in this paper,
we consider the simple cost structure since this issue has no
impact on the performance of our coalition formation algo-
rithms, which we now describe.

Coalition Formation Algorithms

In this section, we present our two coalition formation al-
gorithms. Specifically, we describe a fast polynomial, ap-
proximate algorithm (that can produce a solution within a
finite bound of the optimal), and then an optimal branch-
and-bound algorithm.

The Polynomial Algorithm

Algorithm 1 is a polynomial time algorithm that produces an
approximation of the optimal solution (see figure 2). Basi-
cally, it operates in a greedy manner. It first chooses the bes
action by a sensor (e.g. the action that brings the biggest

Algorithm 1

1. Each agent chooses its best state taking only itself i
consideration and calculates this best outcome. That
each agent chooses its state; such that:

nto
S,

m

2.

Jj=1
visibility(i,s;,t;)=true

v({i},t;) — ¢; is maximised

and calculates this best personal outcome (dengted

The agents then choose agéntvith the best outcome:
Piy = T0AXD;

Agenti; switches to its best state if not in that state ye

. Each agent, except, chooses its best state taking on
itself andi; into consideration and calculates this be
outcome. That is, each agenthooses its best state
such that:

D

NE

’U(Cj,tj) —Ci; — G is maximised
=1
11,4}

~ |

IN<

Cj

and calculate its best outcomg. The agents then
choose agent, with the best outcome:

/
p;, = max 9
2 yeliti "

—

Agenti, switches to its best state if not in that state ye
3. Repeat the above step until we reach the last agent.

Figure 2: The polynomial coalition formation algorithm.

PROOF Ateach step, it requires to get throu@lin) sensors

to find the best action of a sensor. For each sensor, we have
to calculate the outcome for each state by sumndiig:)
coalition values together. As there arsteps, the complex-

ity is O(n*m). O

Theorem 1.2 The solution of algorithm 1 is within a bound
n of the optimal. That is, given th&f is the system welfare
of the solution of algorithm 1 ant™* the optimal solution:

*

<n

Wi

PROOF Let (sf)? , be the optimaktate vecto(that is, the
vector contains the states of all sensor agents). 1Fetf

J < m, letC? be the coalition of sensors that track target
associated with the optimal solution. The optimal solugion

value) (see step 1). In the second step, it chooses the bestSystem welfard’* then is:

action of another sensor taking the first sensor into consid-
eration. Then, in the third step, it chooses the best action
of another sensor taking the first two sensors into consider-
ation. The process then repeats until there is no sensor left
We can now analyse the algorithm to assess its properties.

Theorem 1.1 The complexity of algorithm 1 8 (n2m).
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Figure 3: An example search tree with= 3 andk; = 2,

foralll <i<n.

The Optimal Algorithm

The optimal algorithm is a branch-and-bound algorithm that
finds the optimal solution. First, however, we define the con-
cept of aweak statas it will be used in the algorithm.

Definition 3 A states; of agent: is called a weak state iff
agent; in states; does not see any target in its range.

Proposition 1 A state vectorsy, ss, ..., $,,) is not optimal
if there exists an such thats; is a weak state.

PROOF This is trivial due to the fact that (sy, so, ..., sp,) IS
always less tha# (s, ..., $i—1,0, Si+1, -.., Sn) (0 means the
sleeping state).]

We present the branch-and-bound algorithm in figure 4. This
basically searches through the search space in a depth-first
search manner, then uses a branch-and-bound technique tq
prune a subtree whenever possible. Specifically, if we reach
a node and the upper bound value of all nodes that branch
under that node is less than or equals the current best so-
lution, we can prune the whole subtree under the node. The
original best solution is the solution of the greedy aldorit
while the upper bound of the subtree is derived from the

Algorithm 2

1. Search alksy, s2, ..., s,,) In @ depth-first search mannetr.

2. Suppose the current best system welfanéiginitially
V' would be the system welfare generated by the gre
algorithm). If V! > v V* is the upper bound of the
value of any solution in the subtrée, as, ..., ay) (i.e.
(s1 = a1, 82 = a, ..., 8§ = ag)), prune the whole sub-
tree (a1, ag, ..., ax). The upper bound is derived fron
sub-additivity property of the valuation function as fo
lows: for everysg.i1, Sk12, -, Sn

[4%]

Sn)
n
>

i=k+1

Thus if we have/! > V(ay, g, ..., ax,0,0,...,0) +
> i1 Pir the whole sub-treéas, as, ..., a;) can be
pruned safely.

. Ifwe reach a leaf node in the tree, calculate its valuati
and update the current best solution.

V(Oél, Q25 ey Oy Skt15 Sk425 -5

<V(ay,as,...,ax,0,0,....,0) +

DN

sub-additivity as detailed in figure 4. Also see figure 3 for
an example search tree in case= 3 andk; = 2, for all
1<i<n.

Now one of the main issues that affects the performance
of Branch-and-Bound algorithms is choosing the tree struc-

Figure 4: The optimal coalition formation algorithm.

Experimental Results

ture. To this end, we present a process for selecting the This section outlines the experimental evaluation of our al
tree structure (which in this case is equivalent to an order- gorithms to see how they perform in reality. This is neces-
ing of the agents) with which the algorithm will likely prune  sary because, for our polynomial algorithm, the theorktica
the subtrees quickly (see figure 5). Basically, it contains 2 analysis is in terms of worst-case, however, by doing an ex-
phases. In the first one, all agents with weak states are cho- perimental analysis we can have a clearer idea of the typi-
sen first and ordered decreasingly according to the number cal performance; and for our optimal one, it is difficult to
of their weak states. The idea is to maximise the number measure its effectiveness theoretically. Specifically tte

of pruned subtrees early on (due to proposition 1). In the polynomial algorithm, we want to assess how close a typical
second phase, the remaining agents are ordered in a simi-solution is to the optimal compared to the worst-case bound,
lar way to the greedy algorithm (but in reverse). That is, and for the optimal algorithm, we want to assess how effec-
it first chooses the worst action by a sensor. In the sec- tively the search space is pruned. To this end, we next de-
ond step, it chooses the worst action of another sensor tak- scribe the experimental setup in subsection, and thenmirese
ing the first sensor into consideration. Then, in the third the evaluation results for the polynomial and optimal algo-
step, it chooses the worst action of another sensor takang th rithms separately.

first two sensors into consideration. The process then re-
peats until there is no sensor left. In this way, the inequati
V(S") > V(ar, ag,...,ar) + > 711 V(si) is more likely

to happen a¥ (a1, as, ..., ax) is likely to be small.

)

Experimental Setup

In order to generate generic problems on which to compare
the performance of our two algorithms, we model the sensor



Algorithm 3 100

1. Choose an agent with the biggest number of weak states.
2. Repeat step 1 until no agent with weak states is left. 80
3. For the remaining agents, carry out the following steps:
e Each agent chooses its worst state taking only itself into % 601
consideration and calculates this worst outcome. That <
is, each agent chooses its state; such that: o
m & 407
> w({i}, t;) — ci is minimised
j=1 20t
and calculates its worst outcomeg. The agents then
choose ggentl with the worst outcome: 0 5 T 16 20
Ppiy, = Miie1 Pi Number of Agent$n)

e Each agent, except, chooses its worst state taking
only itself andi, into consideration and calculates this  Figure 6: Percentage of searches that return the optimal
worst outcome. That is, each agenthooses its worst  yalue in the case of the polynomial algorithm.
states; such that:

m Number of Sensor$
> v(Cyity) = ey — c;is minimised and Targets || ean Bound | Std Dev
Jj=1 4 1.0028 0.024
CiCtini} 8 1.0062 0.022
and calculates its worst outcomgé. The agents then 12 1.0071 0.023
choose agent, with the worst outcome: 16 1.0054 0.013

e Repeat the above step until we reach the last agent.

Table 1: Polynomial algorithm — bound from the optimal.

Figure 5: The tree structure selection process for the @btim
coalition formation algorithm. The Polynomial Algorithm

The result for the polynomial algorithm is presented in ta-
network described in figure 1. That is, we havéranging ble 1 and figure 6. As we can see from the table, all of the
from 4 to 20 in the experiment) sensors, each with a fixed bounds are very close to 1. Specifically, the bound mean is
range and four distinct sensing states, randomly diseibut  always less than 1.01 and the standard deviation is always
within a unit area. Within this area are (that has the same  less than 0.03. This is close to the optimal and significantly
value asn in the experiment) targets, again randomly dis- lower than the theoretically proved bound whichi§i.e., 4
tributed. We assign a random sensing cost on the interval to 20 in this experiment). This suggests that in many prac-
[0,1) to each sensor, and a random coalition value, again tical cases, our algorithm performs significantly bettemth
on the intervall0, 1), to each coalition that contains a sin-  the theoretical proved worst-case analysis. Moreovem fro
gle sensor. We then use an iterative process to randomly figure 6, we see that when the number of sensors and targets
assign the coalition values of all the larger coalition, lathi is small, the greedy algorithm generates the optimal swiuti
ensuring that these values satisfy our monotonicity and sub a significant percentage of the time (i.e. greater than 80%
additivity constraints. In this way, we calculate problem i whenn = m = 8). However, as the number of sensors and
stances that are as general as possible, and thus, do not biaargets increase, the problem instances become more diffi-
our results to a specific scenario. cult to solve, and thus, this percentage decreases.

Now, due to the demands of space, here wensetual
to m. Then for values of 4, 8, 12, 16 and 20 targets and The Optimal Algorithm
sensors, we run the algorithms 200 tirhesd record the
bound from the optimal (for the polynomial algorithm) and
the percentage of pruned space (for the optimal algorithm).

The result for the optimal algorithm is presented in figure 7.
This logarithmic plot shows the degree to which the branch-
and-bound algorithm is able to exploit the known structure
of the problem (i.e. monotonicity and sub-additivity) ir or
1An ANOVA test showed that 200 iterations is sufficient for der to be able to prune the search space. Note that when
statistically significant results. Far = 0.05, the p-value for the n = m = 20, the algorithm needs to typically only search
null hypothesis is> 0.05 in all the experiments with 5 samples. ~ 10~° of the entire search space in order to calculate the op-

This shows that there is not a significant difference between the timal solution. As such, our algorithm hugely outperforms a
mean values and thus validates the null hypothesis. nave brute force approach.
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Figure 7: Comparison of various search spaces in the opti-
mal algorithm.

Related Work

A number of algorithms have been developed for coalition
formation, but in general these have not considered overlap
ping coalitions (Sandholret al. 1999; Dang & Jennings
2004). However, the notion of overlapping coalitions was
introduced by Shehory and Kraus in their seminal work on
coalition formation for task allocation (Shehory & Kraus
1998; 1996). Here they developed a greedy algorithm for
finding a solution to the overlapping coalitions problenttha
exhibited logarithmic bound. However, in contrast to our
problem, they considered a specific block-world scenario in

which the tasks had a precedence ordering and the agents

had a capability vector (denoting the ability of the ageats t
perform tasks). As a result, the algorithm they develop is
dissimilar to our polynomial algorithm. Moreover, they do
not develop an optimal algorithm for the overlapping coali-
tion formation process.

The application of coalition formation techniques to dis-
tributed sensor networks has also been investigated by a
number of researchers. In (Sims, Goldman & Lesser 2003),
a vehicle-tracking sensor network is modelled using digjoi
coalitions formed via a negotiation process that results in
self-organising system. Similarly, in (Soh, Tsatsoulis & S
vay 2003), negotiation techniques are employed in order to
form coalitions that track a target. However, these works fo
cus on identifying and negotiating with potential coalitio
members since they operate in an incomplete information

scenario where they are not aware about the existence and

capabilities of other sensors. Our work on the other hand
focuses on providing algorithms for the coalition formatio
process in a complete information environment.

Conclusions and Future Work

In this paper, we considered coalition formation for multi-
sensor networks applied to wide-area surveillance. Specif
ically, we showed how this application leads to overlap-
ping coalitions which exhibit sub-additivity and monotoni

ity, and we designed two novel coalition formation algo-
rithms that exploit this particular structure. The first was

an approximate and polynomial algorithm, with complexity
O(n?m), that exhibited a calculated bound from the optimal
of n. The second, which was optimal and based on a branch-
and-bound heuristic, used a novel pruning procedure in or-
der to reduce the number of searches required. We used em-
pirical evaluations on randomly generated data-sets to sho
that the polynomial algorithm typically generated soloto
much closer to the optimal than the theoretical bound, and
to prove the effectiveness of our pruning procedure.

Future work will focus on employing these algorithms
within dynamic environments where the values of the coali-
tions change with time, thereby causing the optimal coali-
tion structure to vary. This will occur in our scenario as
targets move in and out of the sensors’ range of observa-
tion. We also plan to test these algorithms on real data from
multi-sensor networks in order to further evaluate their pe
formance in real-life scenarios.
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