© University of Southampton IT Innovation Centre and KTH

P5.4.5
Design and implementation of dynamic security
components
Workpackage: | 5 Grid Dynamics
Author(s): Thomas Leonard IT Innovation
Mark McArdle
Mike Surridge
Mehran Ahsant KTH
Authorized by | Mike Surridge IT Innovation
Doc Ref: P5.4.5
Reviewer Stefano Beco DATAMAT
Reviewer Peer Hasselmeyer NEC
Dissemination | Public: equivalent to PU in DoW
Level
Date Author Comments Version | Status
2006-02-17 | Thomas Leonard | Initial Outline 0.1 Draft
2006-02-26 | Mehran Ahsant Completing the STS contributions 0.2 Draft
2006-03-06 | Mike Surridge High level review of content and 0.2ms | Draft
readability, added comments and
some changes
2006-03-06 | Mark McArdle Implemented changes from MS 0.3 Draft
Thomas Leonard
2006-03-07 | Mark McArdle Many changes including introduction, | 0.4 Draft
Thomas Leonard | questions, WS-Addressing, account
service implementation and
conclusions.
2006-03-08 | Thomas Leonard | Integrated changes from Mehran 0.5 Draft
2006-03-15 | TAL, MM Updated for Peer’s Comments 1.0 Draft

NextGRID Project Output P5.4.5 v0.5

Page i of v

© University of Southampton IT Innovation Centre and KTH

NextGRID Project Output P5.4.5 v0.5 Page ii of v

© University of Southampton IT Innovation Centre and KTH

Executive Summary

This document describes project outputs P5.4.5a and P5.4.5b from NextGRID WP5,
comprising dynamic security core components of NextGRID for dynamic policy and dynamic
token services respectively.

Task 5.4 is concerned with federated security and trust. Basic Grid security is based on long-
established mechanisms drawing from a wealth of off-the-shelf technology and standards.
Work in NextGRID during the first year therefore focused on “higher-level” security
federation issues, including dynamic distributed authorisation and authorisation policy, trust
and accountability and their relationship with higher-level Web Service specifications such as
WS-Trust and WS-Federation.

In this period, the focus has been in two main areas: development of a NextGRID security
reference implementation, and validation of the NextGRID dynamic security component
model. These components will enable continued exploration of virtual organisations and
distributed enterprise models in relation to the bipartite SLA-based architectural principles of
NextGRID.

The work is comprised of two parts: an implementation of a WS-Trust dynamic security token
service, led by KTH, and an implementation of a dynamic security policy framework, led by
IT Innovation.

The component model and the reference implementation have been evaluated using an
experiment on an accounting scenario based on an application from NextGRID partner KINO.
The experiment involved the development of two accounting services; one to issue tokens to
users within a client organisation, and one to validate the tokens at each service provider. The
tokens themselves are signed SAML assertions, and the policy for accepting them is set
dynamically at the remote service by the client organisation when a federation between them
is established.

Having the client organisation specify the policy for validation of the tokens it issues removes
the need to pre-agree role ontologies between organisations. Issuing SAML tokens in a client
domain and validating them in the service provider domain allows for simple and robust
access control management, improving on earlier implementations where the access control
lists are maintained at multiple remote sites. The experiment shows that the NextGRID
architecture enables rapid bipartite federation using the “fast VO” model.

NextGRID Project Output P5.4.5 v0.5 Page iii of v

© University of Southampton IT Innovation Centre and KTH

Table of Contents

1
2

LT 18T (o] 4 TSSO PR PRPR 1
(@] o] =0t L= USSP OPURPRORN 1
2 R O T | 1= - o I RSP P TPV PRPRRPROR 2
2.2 SErVICE PrOVIUEI SCENAIIOcueiviiiiiitieiieiesiie sttt et sre et sbeeae s 3
2.3 NextGRID Architectural Questions AddreSSedccccvvvviveeiieeieeiie e 4
SEATING POINTS ...t ettt bttt e esbeesbe e e e sbeene s 4
B L BRI A bbbt 4
B2 KXB09 ettt b be e neanes 5
3.3 APACNE WSS ...ttt et ns 6
34 APACNE AXIS oot e e rs 6
3D A S bbbt 6
3.6 Standards and SPeCITICALIONS.c.coiiriiiiiiieiie e 6
3.6.1 WV S=SEOUNILY ...vvevretieceie sttt te sttt e ettt et e e te e ee e e s ae e teenaesraenseaneesneenneas 6
3.6.2 WVS-TIUSE ..ttt e e ne e 6
3.6.3 WS-FEUBTALION ...ttt 7
3.6.4 SAML ..ottt re et reereenes 7
EXPErIMENTAl SELUPD ...vveciieeee ettt nneeae s 7
O R @ V=T VRS PTPRT 7
4.2 Client Kerberos SYSEMSccviiieiieiiiie et ste et sa e e e naesneenns 9
4.3 ClENE ACCOUNT SEIVICE. ... eiitieiieiieiieeitieie st ettt sttt sttt st sbe e sbe et sneesneenne s 10
O O [=T o1 AN o] o] [oF: L4 o] o SO SSSSPSRN 11
45 Service Provider ACCOUNT SEIVICE.ccuiiiiiiiieiiesieaiesiee e seesieesie e sreestesneesseenaeas 13
4.6 Service Provider ReNering SEIVICEcccevveieiieeiieie s eseeee s e sie et see e snae e 14
SECUILY COMPONENTS ...ttt ettt sb ettt b e sbe e e e sreenbeenee e 14
5.1 THE ACCOUNT SEIVICES.....ecuiiiiiiieieieite sttt sttt sttt sb ettt reeneas 15
5.2 Dynamic POliCYy COMPONENTS........ccuiiiiiiiie et 15
521 POLICY DECISION POINL.......cviiiieiicicciesie et 16
5.2.2 ACCESS CONLIOL RUIES ... s 17
5.2.3 Policy ENfOrcement POINt.........ccoovviieiiee e 17
5.3 WS-AdAressing Profilecoooiiiiiiiieiieiie e 17
54 Kerberos — X509 Security TOKEN SEIVICE.......cccciveveiiiiiieie e 18
54.1 DESIGN DIAGIAM....c.tiiiiiiieiiieie ettt sttt b sreenee e e 19
5.4.2 SeCUrity TOKEN ISSUBNCE..........oiuiiiiiiiiieiieiieie ettt 19
54.3 SOAP MESSAGING ...vveveeveenieitieite e sieesteetesteesteeeesteesteaseessaesteassesreesreassesseenses 21
544 Identity Mapping Token Service Implementationcccocoeveniniennnnnnnn. 21
5.5 Cryptographic Attribute ASSEITIONSccceiviiieiieie e 22
551 SAML Attribute Support in Dynamic POlICIESccovviiiiiiiiiicesi 22
55.2 Consistency of SAML Assertions with X.509 Certificates...........c.ccceeveivennnne 23
5.5.3 Sending ToKenS Via SOAP ..o s 23
554 TOKEN LITELIME ..t 23
Conclusions and ReCOMMENUALIONS.ccuirieieiieieeie e sre e see e 24
6.1 Dynamic Policy COMPONENTS.......cccouiiieiieiie e 24
6.2 Trust Federation and MapPingccocereriririeieiese st 24
6.3 Answers to Architectural QUESTIONS...........ccveiiiiiiieiic e 25
Appendix A: WS-Addressing Profile...........coooiiiiecesee s 27
% A B =T od 1o oo I USSR 27
7.2 ISSUBS .ttt b e b e e nne e nnne e e 28
7.3 Profiling OPLIONScoveiieie e e 29
7.4 RECOMMENUALIONS .. .oiuieiiieiieiie et et te e e s e beeneenreenreenee e 30

NextGRID Project Output P5.4.5 v0.5 Page iv of v

© University of Southampton IT Innovation Centre and KTH

8 Appendix B: Example SAML tOKENccooiiiieii e 30
D REIBIBNCES ...ttt 31

NextGRID Project Output P5.4.5 v0.5 Page v of v

© University of Southampton IT Innovation Centre and KTH

1 Introduction

NextGRID WP5 is concerned with dynamic aspects of Grid systems: how Grid services and
clients interact to enable agile federation of resources, services and users between disparate
domains. Its goal is to investigate these issues using experimental software.

Task 5.4 is concerned with federated security and trust. Basic Grid security is based on long-
established mechanisms drawing from a wealth of off-the-shelf technology and standards.
Work in NextGRID during the first year therefore focused on “higher-level” security
federation issues, including dynamic distributed authorisation and authorisation policy, trust
and accountability and their relationship with higher-level Web Service specifications such as
WS-Trust and WS-Federation.

An initial experiment at M06 showed that design patterns using WS-Trust and WS-Federation
in conjunction with a dynamic authorisation policy facility would enable implementation of a
wide range of dynamic trust and security federation models. Subsequent work has focused on
accountability, manageability and standards compliant reference components to implement
these patterns.

In this period, the focus has been in two main areas: reference implementation and validation
of NextGRID dynamic security components, and continued exploration of virtual
organisations and distributed enterprise models in relation to the bipartite SLA-based
architectural principles of NextGRID.

Related work is ongoing in WP4, which is developing service endpoint security mechanisms,
including access policy decision and enforcement points and policy-driven encryption.

This report describes the software components implemented for experiments [1] to explore
issues relating to token issuance, exchange and validation in dynamic grids. This work is
comprised of two parts:

¢ Implementation of a WS-Trust dynamic security token service as part of the
NextGRID dynamic security core, led by KTH.

e Implementation of a dynamic security policy framework as part of the NextGRID
dynamic security core, led by IT Innovation.

The experiment is based around an accounting scenario (described in the next section) and has
included the development of two accounting services (client and service-side). These
accounting services will also be used in M24 experiments focussing on how they can be used
to provide interoperable accounting mechanisms in different infrastructures.

2 Objectives

The objective of this experiment was to evaluate and validate the NextGRID dynamic security
architecture and components developed in Task 5.4. To provide a focus for the work, we
adopted a simple test scenario from a NextGRID end user (KINO’s Digital Media Use Cases).
This is similar to the scenario used in the initial experiment at M06, but incorporates new
capabilities provided by the NextGRID security components.

Figure 1 shows a model of the NextGRID security components used to enable cross-domain
federations. The following sections describe how each of these components is used.

NextGRID Project Output P5.4.5 V0.5 Page 1 of 32

© University of Southampton IT Innovation Centre and KTH

Token Issuer P Token Yalidator
R
Access Control

Access Control

&

WS-Trust [ssuance

@
WS-Trust Yalidation

Client Target Service
(it
s

Target Interface

Figure 1 NextGRID security architecture component model

NextGRID leverages SOAP Message Security for authenticating and encrypting SOAP
messages. The X.509 token profile is the default security token format, which works well in
static setups, i.e., where the participating services are known beforehand and trust
relationships are in place. For dynamic setups (where new service nodes in untrusted domains
can appear), other token profiles may be more suitable.

2.1 Client Scenario

In the course of their business, KINO has a need to perform high-definition 3D digital video
rendering calculations, taking virtual 3D scenes and characters and generating high-quality
video sequences from them. This is computationally expensive, and not needed every day, so
it is desirable to use externally-provided (i.e. Grid) computational resources. How can KINO
quickly establish a business relationship with a new Grid supplier, and how can they control
access to it by users within their own organisation?

We assume that the client organisation already uses its own local authentication system, based
on Kerberos. When users log in to their desktop machines with their password they get a
Kerberos Ticket Granting Ticket. They should not have to provide any further authentication
to access Grid resources; authentication across domains can be federated automatically by the
NextGRID security systems.

The Use Case diagram below shows the actors involved. In order to submit a job, the
animator at KINO needs there to be an approved KINO trade account open at the service
provider, and they need a security token proving to the service provider that they are
permitted to use it.

NextGRID Project Output P5.4.5 V0.5 Page 2 of 32

© University of Southampton IT Innovation Centre and KTH

Request account Approve account %
KING manager
7

Service admin

Enable access s
e
' /!
. e
requires / requires
/s
\ /
requwes
A

KING animator

Figure 2. KINO Use Cases

The manager at KINO requests a trade account at the service provider once they have decided
to do business with them, and waits for it to be approved

Internally, KINO runs a client accounting service (corresponding to the generic token issuer
component in Figure 1) which records which members of staff are permitted to spend money
on KINQO’s various trade accounts. The manager enables access to the new trade account not
by setting the access control policy of the remote trade account directly (as in the P5.4.1
experiment), but by altering the policy of this local service. Users invoke an operation on this
service to get the security tokens they require to charge to the remote account. This allows the
animators to use remote services in order to complete jobs quicker than they could internally,
and the budget holder can monitor their activities and regulate access to security tokens
through the client accounting service, to prevent them spending too much money on each
project.

2.2 Service Provider Scenario

The service provider has a number of services that it wants to allow other companies to use
and be billed for the time spent using them. In this scenario the service provider has a number
of 3D video rendering services.

The service provider sets up an account service for clients to request trade accounts, which
can then be used by users in the client organisation to run jobs. This corresponds to the token
validator in Figure 1. When the service provider receives a request for a new trade account
from the client organisation the service administrator checks that the credit details are valid
and approves or declines the account.

The service provider wants to make it as quick and easy as possible for new clients to sign up.
At the same time, the service provider must ensure the security of their services and protect
their existing clients. A weakness of the P5.4.1-5.4.2 experiment was that setting up a new
account required the service provider to trust the client’s certificate authority globally, which
requires long and careful checks of new clients. The new security components developed in
task 5.4 remove this limitation.

NextGRID Project Output P5.4.5 V0.5 Page 3 of 32

© University of Southampton IT Innovation Centre and KTH

2.3 NextGRID Architectural Questions Addressed

The NextGRID Architecture Straw Man document [13] lists a number of architectural questions
which NextGRID needs to address. Since then, additional questions have been raised; these
are tracked in the P1.4.x series of documents. The questions addressed by this experiment are:
Addressing

e 5.1) Does WS-Addressing address security considerations of all parties (for e.g.
intermediaries) involved in the SOAP processing chain?

Authentication

¢ 33) What other authentication mechanisms (e.g. username-password) should be
supported by the NextGRID architecture?

¢ 34) What mechanisms should be used for identity federation/trust federation
(federated token issuance and verification)? How is this related to emerging
standards capable of dealing with identity such as WS-Trust, WS-Federation, etc?
e 35.1) Is a digital signature over the message body only sufficient?

Authorisation

e 36.5) What is the model for dynamic authorization? Are there base specs that we can
work from or use here (WS-Policy?)

e 37) How do dynamic authorisation models relate to dynamic resource management
and virtual organisation management?

e 38) Do we need a process role vocabulary coming out of NextGRID?
Trust

e 53.2) How should trust be represented and analysed in (business) processes; can the
methodology used by GRIA be developed to address this?

e 54) How can trust be managed in a dynamic business context, including VO
lifecycles, and delegation mechanisms?

3 Starting Points

3.1 GRIA

GRIA is a Web Service grid middleware created by the University of Southampton and
NTUA in the GRIA project, based on components developed by them in GRIA and also in the
EC GEMSS and UK e-Science Comb-e-Chem projects. The GRIA middleware was tested
using two industrial applications, one of which was KINO’s high-definition video rendering
application.

NextGRID Project Output P5.4.5 V0.5 Page 4 of 32

© University of Southampton IT Innovation Centre and KTH
GRIA has the following key characteristics:

e it uses secure "off the shelf" web services technology;

e itisdesigned for business users: supporting B2B functions and easy-to-use APIs;

e it can easily support legacy applications: all the applications used in the GRIA
project are legacy applications;

e itis ready today: the current release is GRIA 4.3.1, available via the GRIA website

[2]

Unlike more “traditional” grids, GRIA was designed from the outset to support commercial
service provision between businesses, by supporting conventional B2B procurement
processes. The security infrastructure of GRIA is designed to support and enforce these
processes, so that nobody can use GRIA services without first agreeing to pay the service
provider. The procedure for using GRIA services was summarised in Section 2.2 of
NextGRID Project Output P5.4.1/P5.4.2 [3].

The GRIA middleware was a convenient starting point for these experiments because (a) it
already has a dynamic authorisation mechanism, and (b) applications needed for KINO’s
scenario are already available as GRIA services from the original GRIA project.

The wholly distributed management and policy enforcement model used in the current GRIA
release makes it easy to deploy and operate, and provides resilience against security breaches
in other sites. However, it also makes it hard for service consumers to manage access and
monitor usage across large numbers of service providers. GRIA also uses a conventional PKI
authentication model, which prevents rapid formation of relationships with new service
providers, even though the decentralised authorisation mechanisms would allow this. The
work described in this report shows how a next generation security architecture can overcome
these shortcomings.

3.2 KX.509

The P5.4.1-P5.4.2 experiment used the KX.509 protocol to map trust (actually identity
tokens) between Kerberos [4] and X.509 [5]. The KX.509 protocol was developed at
University of Michigan [6] and provides a mechanism for obtaining X.509 identity certificates
based on a Kerberos domain log-in identity. There are two principal components:

1. The KCA is a Kerberised service, running inside a Kerberos domain, which provides
the functionality of an X.509 certification authority.

2. KX509 is a standalone client program that acquires a short-lived X.509 certificate from
the KCA for an authenticated Kerberos user.

The protocol between the client and the KCA is called KX.509. The normal mode of
operation is for the KCA to sign short-lived X.509 certificates for applicants that it can
authenticate through Kerberos. The lifetime of the certificate is equal to the lifetime of the
Kerberos ticket used for the Kerberos authentication, while the distinguished name (DN) is
based on an LDAP catalogue of users and organisational units.

Although KX.509 does not support the standards proposed in the NextGRID Straw Man
architecture, it provided a convenient starting point for the experiment.

NextGRID Project Output P5.4.5 V0.5 Page 5 of 32

© University of Southampton IT Innovation Centre and KTH

3.3 Apache WSS4J

Apache WSS4] is an implementation of the OASIS Web Services Security (WS-Security)
from the OASIS Web Services Security TC. WSS4J is a Java library that can be used to sign
and verify SOAP Messages with WS-Security information. WSS4J will use Apache Axis and
Apache XML-Security projects and is interoperable with JAX-RPC based server/clients and
NET server/clients.

3.4 Apache Axis

Axis is an implementation of the SOAP protocol. It shields the developer from the details of
dealing with SOAP and WSDL. This experiment uses Axis within the web services (each
deployed as a Tomcat webapp), and also on the client side to invoke the services.

3.5 JAAS

The Java™ Authentication and Authorization Service (JAAS) is used for authentication of
users to diverse security domains. JAAS authentication is performed in a pluggable fashion.
This permits applications to remain independent from underlying authentication technologies.
Then new or updated technologies can be plugged in without requiring modifications to the
application itself. An implementation for a particular authentication technology to be used is
determined at runtime. The implementation is specified in a login configuration file which
should be configured as we describe later in this document. For this experiment, we use JAAS
authentication technology for Kerberos technology.

3.6 Standards and Specifications

3.6.1 WS-Security

WS-Security [7] is a set of SOAP extensions to provide message-level integrity,
confidentiality and authentication. WS-Security enables collaboration between other Web
service security standards and protocols. It does not dictate one specific security technology
and allows organizations to use heterogeneous security models and encryption technologies
for multiple security tokens, multiple trust domains, multiple signature formats, and multiple
encryption technologies. Message digests of selected parts of the message (for example, the
SOAP body) can be given in a security SOAP header block, and signed using various
methods.

3.6.2 WS-Trust

WS-Trust [8] defines a protocol by which web services in different trust domains can
exchange security tokens for use in the WS-Security header of SOAP messages. Clients use
the WS-Trust protocols to obtain security tokens from Security Token Services. WS-Trust is
highly relevant to the question of how to obtain an X.509 certificate for accessing a web
service based on a Kerberos-authenticated identity — indeed this is a scenario commonly used
to illustrate how WS-Trust works.

The main limitation of WS-Trust is that it doesn’t actually provide any mechanisms to
manage trust, only token exchange between entities that already trust each other. Normally,
services can trust each other only when they are in a single security domain. If services are in
different security domains then some other method must be used so that one service can verify
tokens issued by the other. The only solution provided by WS-Trust if this is not the case is to
have an additional security token service within the service's realm, but this only moves the
problem from the web service to the new token service.

NextGRID Project Output P5.4.5 V0.5 Page 6 of 32

© University of Southampton IT Innovation Centre and KTH

3.6.3 WS-Federation

WS-Federation [9] describes how to use WS-Trust, WS-Security and WS-Policy together to
provide federation between security domains. However, WS-Federation does not define any
standard way to establish this trust relationship dynamically. According to the specification:

“The following topics are outside the scope of this document:
o Definition of message security or trust establishment/verification protocols...”

The specification defines a number of variations on the exchange of tokens between domains.
For example, the user can send the web service a message signed by one token service,
leaving the web service to call its own token service to convert the token into one it can
understand and respect. Alternatively, the user can call the remote token service to get a token
the web service can understand. WS-Federation can also be used to implement a “delegation”
model, in which the user provides a security token to their delegate using the mechanism
described in WS-Trust. The delegate then includes this token in any messages they send to the
service, allowing the service to understand for whom the delegate is working.

Thus, trust relationships must already exist between the WS-Trust token services in a WS-
Federation exchange. Although these two specifications describe the message exchanges
needed, they do not solve the problem of dynamic trust and security federation.

3.6.4 SAML

SAMLJ[10,11] (the Security Assertion Markup Language) is a specification from OASIS
based on assertions. SAML assertions include authentication information (such as that the
user logged in at a particular time) and attributes, such as asserting that a user has a particular
role. Although SAML has its own protocol which overlaps with WS-Trust, it is still possible
to use SAML purely to represent tokens, and there is a WS-Security profile for doing this
[12].

4 Experimental Setup

4.1 Overview
Figure 3 shows the services used to evaluate the security components:

NextGRID Project Output P5.4.5 V0.5 Page 7 of 32

© University of Southampton IT Innovation Centre and KTH

. Client Service Provider
Kerberised Account Service Account Service
X509 STS
Kerberos PEP PEP
KDC $usesTto get 4
temporary Check SAML and
X.5009 certificate X.509 certificates
Use TGT to get Use X.509 certificate and record usage

ST for X509 5TS to get SAML billing token

Invoke Rendering Service I'4
o

using SAML and X.509 certificates Bep Rendering

Client CRRGE

Figure 3. System Architecture
The client organisation (KINO) runs three services for use by their own employees:

e The Kerberos KDC (Key Distribution Center) is used by the animator when logging
in. The animator uses their password to get a Kerberos Ticket Granting Ticket
(TGT). This ticket is presented to the KDC to get a Service Ticket (ST) for each
Kerberised service in the Kerberos domain that the client needs to use.

e The Kerberised STS is a WS-Trust Security Token Service. It authenticates an
animator using their Service Ticket (ST) and generates signed short-lived X.509
certificates for them.

e The client account service authenticates the animator using the X.509 certificate and
generates a SAML assertion asserting that they may use the remote trade account.

A Security Token Service (STS) is a Web Service that issues or validates security tokens.
This is achieved either by converting a security token that a user currently has to one which is
suitable for accessing a desired service, or by creating a new security token such as a SAML
attribute assertion. All of the client services above are security token services, through which
the client application user can get a SAML assertion required to use the remote rendering
service. Currently, only the Kerberised STS uses the standard WS-Trust interface.

There are two services run by the service provider:

e The service provider’s account service keeps track of money owed by customers, by
allowing other services to record charges on a customer’s trading account. The
billing service must send a SAML token with each charge request, obtained from its
client, which must match a policy agreed with the customer for the trading account.

e The rendering service takes a scene description from a client and renders video from
it. Before doing so it checks the SAML token the client provided by using it to
record a charge on the customer’s trade account using the service provider’s account
service. Only if the token is sufficient will the charge be accepted, whereupon the
rendering service can start rendering the video..

The first of these is also a security token service, since it validates the SAML tokens. The two

account services also support a distributed management processes needed to control access to
the rendering application service. These services (along with the rendering service) are all

NextGRID Project Output P5.4.5 V0.5 Page 8 of 32

© University of Southampton IT Innovation Centre and KTH

protected using the dynamic authorisation system, which enables and enforces conformance
to these management processes, thus allowing trust between the manager and the service
provider to be used as a basis for dynamically federated security. The operation of the Policy
Enforcement Point (PEP) component is described in detail in section 5.2.3. The dynamic
security token services together with the dynamic authorisation systems form the core
components of the NextGRID dynamic security architecture.

To enable individual animators to use the remote trade account the manager could update the
remote account’s access policy to give specific users access (as in P5.4.1-P5.4.2). However,
this creates a management problem as potentially long access control lists must be maintained
at multiple remote sites. Instead, KINO updates the remote policy once to specify a single
SAML assertion, signed by their own domain (actually their client accounting service), which
anybody from that domain could use to charge services to the account. Access to signed
SAML assertions is then managed locally via the client accounting service, thus allowing the
manager to regulate access to services at an arbitrary number of remote sites via a single

policy.

It would be possible to replace the two account services with more generic “federation
services” which simply issued tokens and permitted policy updates. However, combining the
token issuing with the accounting functionality makes the system more manageable. For
example, a manager can ask their client accounting service to aggregate statements from all
their trade accounts. If the token issuance and accounting functions were separate, it would be
necessary to keep the list of remote trade accounts synchronised between the two.

The following sections describe each of the components in more detail.

4.2 Client Kerberos Systems

If the user holds a Kerberos ticket asserting their identity, but a service the user wishes to
invoke needs an X.509 certificate, the Kerberos ticket can be presented to an STS, and the
STS issues an equivalent X.509 certificate asserting the same identity of the requester.

The two account services and the rendering service are all protected using the PBAC system.
When a manager or an animator at KINO needs to invoke one of these services they must get
an X.5009 certificate. As illustrated in Figure 4, this certificate can be requested from the client
token service by the GRIA client for each authenticated Kerberos user (an animator or

manager).
Client
Token Service (TS)

A

Request for an Respunse with
%509 certificate for a short-lived X509 PC

an authenticated
kerberos user

=

Figure 4 Client Kerberos System Architecture

NextGRID Project Output P5.4.5 V0.5 Page 9 of 32

© University of Southampton IT Innovation Centre and KTH

The details of issuing tokens are described in the implementation description in section 5.4.

4.3 Client Account Service

The KINO manager wants to quickly set up a relationship with a new supplier of rendering
services and effectively manage this and control access to it within the organisation. The
SOAP message request to open the remote trade account is signed using the manager’s X.509
certificate, obtained using the local Kerberos systems, as described above. The manager tells
the service provider’s account service to trust KINO’s Kerberised STS to identify budget-
holders. This trust is only within the context of this one trade account.

When opening a new trade account the manager sends their own X.509 distinguished name
and the public key of the client Kerberised STS. This allows the service provider to recognise
the manager when they later try to use the account. The manager also grants their local client
account service the “budget-holder” role so that it can act on their behalf. Again, this is done
by specifying the X.509 distinguished name of the client account service and the Kerberised
STS’s public key.

The KINO managers typically create new local project accounts for each project KINO is
involved with using the local client account service. They use the access control interface of
the local account service to add animators to different projects. An animator can be working
on multiple projects.

The manager “peers” these project accounts with open trade accounts at each service
provider. This is a many-to-many mapping; several client project accounts may use the same
service provider trade account, and each client project account may use trade accounts at
several different service providers. Establishing the peering relationship involves the client
account service contacting the service provider’s account service and updating its policy to
allow any user access if authorised by the client account service (by checking for an attribute
chosen by the client account service).

Subject Issuer Process role
EMAILADDRESS=manager@kino.gr, CN=Manager, | EMAILADDRESS=kca@kino.gr, O=KINO, L=Athens, C=GR, budget-holder
O=KINO, L=Athens, C=GR CN="Kerberised X.509 STS" 9
can-charge-to-account = EMAILADDRESS=clientaccountservice@kino.gr, O=KINO, user
40894e26-09b545e6-0109-b547c28a-0001 L=Athens, C=GR, CN="KINO Client Account Service"

Crilnimm b ki

Figure 5. Access Control Rules

In Figure 5 we can see the access rules as they appear on the service provider’s administration
page. The Subject column gives an attribute or identity that someone must have to get the role
shown in the Process role column. The Issuer is a party trusted to assert the attribute or
identity. Access control rules are explained in more detail in section 5.2.2.

The rule for the “user” process role grants the “user” role to anyone who has the attribute
shown in the subject column (“can-charge-to-account”). The attribute is chosen by the client
account service and does not have any special meaning to the service provider’s account
service. In this case the attribute’s value is the resource context identifier of the client account.
The attribute must be asserted by the owner of the issuer certificate (i.e., the client account
service).

NextGRID Project Output P5.4.5 V0.5 Page 10 of 32

© University of Southampton IT Innovation Centre and KTH

The rule for the “budget-holder” process role requires the subject to have the manager’s
X.509 Distinguished Name as asserted by the client’s Kerberised X.509 STS.

When an animator wants to bill a service to a project which they are working on, they must
produce an appropriate token that will be recognised by their manager’s trading account with
the service provider. This billing token must prove they are allowed to use the project account
by asserting the attribute previously specified when the project account was peered with the
trading account. They get the token from their local client account service, which they can do
if and only if the access control policy set by the manager for the project account allows it.

The billing tokens issued by the local account service take the form of a SAML assertion that
asserts:

“The subject identified by <some X.509 certificate> has the attribute ‘can-
charge-to-account™ — signed by ““the client account service™.

See section 5.4 for more details about the format of the billing tokens.

Finally, the client account service can retrieve the list of charges from each trade account it is
peered with, and get an overall summary of the money being spent on each project across the
consumer organisation. This allows the manager to see which animators are spending what
amount of money with each service provider, and how much money is being spent on each
project.

When a new animator joins, the manager need only update the internal client account service
and add the new user to the project. The manager no longer needs to inform each service
provider of the change. So long as the new animator can get access to the security token they
can bill the client account.

4.4 Client Application

The client used by both the animator and the manager is a slightly modified version of the
GRIA client. The client has been modified to contact the local account service to gain billing
tokens and to pass them to the remote services. The client interface has also been extended to
provide operations related to peering of accounts.

The KINO manager can manage the peered accounts of each client account via the
customised GRIA client application, as shown in Figure 6.

NextGRID Project Output P5.4.5 V0.5 Page 11 of 32

© University of Southampton IT Innovation Centre and KTH

=0 x|
=]
Account service at htkps: finieto. it-innovation, sokon, ac, uk: 844 3/GRIA services AccountService
@) TRADE Accourt: 1
&) TRADE Account 2
: Account service at hktps:/inieto, it-innovation, soton. ac.uk: 3443/ account/services/ AccountService
(&) Project account 2
Peers for Account 'Project account 1' o] x|
rPeered Accounts 05}
= Description Address I ConversationID
TRADE Account 2 |https:/fnieto.it-innovation, sokon, ac.uk:8443/G. ., [40654e26-09b54621-01 09-bS ad4dsd-0006
TRADE Account 1 |https://nieta.it-innavation.sobon.ac.uk:8443/G. . [40894e26-09b54621-0109-b54 7 a4d0-0001
Close |
=
Right-click. for a menu
Refresh I Close

Figure 6. Client Application — Peered Accounts

Each animator has a short lived X509 Certificate they acquire from the Client Kerberos
System. When the animator tries to submit a rendering job to the remote job service, the client
performs these steps:

1.

2.

3.

4.

The client software queries the remote job service for its policy, and discovers that an
account at the service provider is needed.

The client sends a request to the local KINO account service (authenticating using its
short-lived X.509 certificate), listing these account services and gets back a WS-
Addressing Endpoint Reference for a trade account, and a SAML assertion stating that
the animator has the required attribute to charge to it.

The client sends the rendering job to the rendering service, quoting the trade account
endpoint reference and including the SAML assertion.

The job runs, and the trade account is billed for the usage.

The animator will have a different local project account for each project they are working on.
Before submitting any jobs, the animator selects the appropriate project account, as shown in
Figure 7.

NextGRID Project Output P5.4.5 V0.5 Page 12 of 32

© University of Southampton IT Innovation Centre and KTH

£ Conversations - |EI|£|
(=4 Setvices ;I
E| Account service at https: |/ fnieto.it-innovation, soton, ac, uk: 8443/ accountfservices/ Account Service
: @ Project acoc. Geb skakus
EIE Daka service at | Gel skatement 1afservices/Dataservice
) (https://niet ls,l'DataService#40894826-09b54621-0109-b55b3t20-0005)

EE Job service at bl

Elq) paink
ol ‘ Tnput st Disable access bo account

Ll ' Qukput List allovwed users

Wiservices) lobService

Enable access to account

Elﬂ> stitl add service provider peer account
b ‘ Input st))
Remove service provider peer account
s ' Cukput

‘Wigw peered accounts

Clase account
Farget item

Rename

Right-click For a menu

Refresh I Close

Figure 7. Client Application — Default Account

45 Service Provider Account Service

When a new trade account is requested, the client’s budget holder provides details of the
client organisation and the method of payment, as in GRIA 4, and a security policy for
identifying budget holders in future.

The security policy argument was added as a NextGRID upgrade of the original GRIA
account service to allow this experiment, and takes advantage of the more flexible NextGRID
security components. Typically this initial policy will contain only a rule stating that the
KINO manager can act as a budget holder. This rule contains the X.509 distinguished name of
the KINO manager and the public key of the client's Kerberised STS which issued it. This
allows for the use of short-lived X.509 certificates; the manager will get a new key-pair and
certificate each day when logging in, but as long as the issuer (STS) key remains the same the
manager will still have access to the account.

The service provider need not trust the client’s internal X.509 STS globally, as the security
software developed for this scenario now supports per-rule roots of trust. That is, the
Kerberised STS is trusted only within the context of this single policy fragment.

The service provider checks the method of payment and approves the trade account. The
manager can now update the trade account’s policy to grant others the budget holder role too.
In this scenario, they will grant their client side account service this role so that it can act on
their behalf (to set up peering and to aggregate statements from multiple accounts).

The service provider requires another policy to be associated with the new account so that it
knows who should be able to spend money using it. The manager at KINO gets their client
account service to send a policy stating that anyone bearing a particular attribute (*‘can-
charge-to-account=<client account>"") can use the account, and then controls the issuing
policy for this attribute locally.

NextGRID Project Output P5.4.5 V0.5 Page 13 of 32

© University of Southampton IT Innovation Centre and KTH

Table 1 shows what the access control rules for a trade account would look like in GRIA 4.
Table 2 shows the simpler rules allowed by the new security components. Note that in the
GRIA 4 case, the service provider must know and trust the issuer globally, whereas in the
NextGRID scenario each rule includes the authority trusted to make the required assertion.

Process Role Security Policy

Budget Holder Manager X.509 Distinguished Names (Subject and Issuer)
User Animator 1 X.509 Distinguished Names (Subject and Issuer)
User Animator 2 X.509 Distinguished Names (Subject and Issuer)
User Animator N X.509 Distinguished Names (Subject and Issuer)

Table 1 Example GRIA 4 security policy

Process Role Security Policy

Budget Holder X.509 Distinguished Name,

Client Kerberised STS X.509 certificate, including public key.
User Has attribute can-charge-to-account = <client project account>
Client account service X.509 certificate, including public key.

Table 2 Example NextGRID security policy

In GRIA 4 the policy requires a separate rule for each animator (1 to N) who is permitted to
use the account, and this list would have to be maintained separately by the budget holder at
each service provider where they wanted to use services. With the NextGRID version, there is
one rule to cover all permitted animators, allowing access to be regulated via a single point of
control for a token service on the client side (actually the client account service). See section
5.5 for information about how the policy is enforced.

4.6 Service Provider Rendering Service

The rendering service renders a scene description sent by the client into a video, if the client
can prove that they are authorised to pay for it. The rendering service verifies that the account
specified by the client is at an account service that it trusts and then checks that the user is
authorised to use it.

It performs this check using a SOAP operation on the service provider’s account service,
passing in the X.509 certificate of the client (used to sign the client’s SOAP message) and any
SAML tokens provided by the client, which the rendering service does not need to
understand.

The account service checks that the subject of the SAML assertion is the subject of the
certificate and that the owner of the X.509 certificate has the “user” role within the account.

If these checks pass, the rendering service renders the film and bills the usage to the account.
It may also charge the user for uploading and downloading any large data files.

5 Security Components

The NextGRID component model, shown in Figure 8, contains a Policy Enforcement Point
(PEP) within the service, a Policy Decision Point (PDP), and a token validation service. In our

NextGRID Project Output P5.4.5 V0.5 Page 14 of 32

© University of Southampton IT Innovation Centre and KTH

experiment, the token validation service is the service provider’s account service, which
evaluates the SAML token provided by the client.

The Kerberos components developed for NextGRID by KTH follow the standard pattern for a
local WS-Trust service, exchanging one token type (Kerberos tickets) for another (X.509
certificates).

5.1 The Account Services

A service provider account service was developed for the GRIA project [2]. This provided
features for requesting and approving accounts, recording client’s debts and generating
statements. It was protected using the PBAC system, allowing clients to update the access
control policies for accounts to grant and deny users access to them.

For NextGRID the account service was modified so that it could also be deployed within a
client organisation and used to manage access to other accounts rather than having charges
recorded against it directly. This involved the following changes:

e Each client account maintains a list of trade accounts with which it is peered. When
adding a peer to a client account, the account service contacts the remote service and
updates the trade account’s policy to permit anyone with a particular attribute to
charge actions to the account.

e An operation allowing users to obtain an assertion stating that they have the required
attribute was added. The user’s software queries the target service (the rendering
service in our example) to get a list of account services trusted by the target service.
This list is passed to the client account service so that it can select the appropriate peer
account.

e Access to the token issuance operation is protected using PBAC, which enforces the
policy set by the client account’s manager.

e Statement aggregation allows a client account’s manager to collect together charges
from all the peered trade accounts for a particular project account. The combined
statement shows the charges to the project by each animator.

Only one change to the service was required to support its use at the service provider:

e The operation for checking whether a user should be permitted to use the account was
extended to allow a SAML assertion to be passed in. The account service passes the
assertion to PBAC for checking.

5.2 Dynamic Policy Components

The PEP and PDP components used in the experiment are based on the PBAC system
developed for the ARTEMIS project by IT Innovation.

The original PBAC system was modified to provide the initial NextGRID dynamic Policy

Decision Point (PDP) and Policy Enforcement Point (PEP) components. In the NextGRID
component model, the PEP is considered to be embedded in the target service (see Figure 8).

NextGRID Project Output P5.4.5 V0.5 Page 15 of 32

Target interface

© University of Southampton IT Innovation Centre and KTH

Oi Token Yalidator
Access control

@

WS-Trust tolen validation

@ Policy Decision Point O
Check

/ Configure

Q Q2

Updateklicy Queaty policy

Policy Enf t Point
: % olicy Enforcement Poinl @ E!:l Target Service

Target interface

Figure 8. NextGRID security component model

The following sections detail how these components were modified to support the NextGRID
security architecture. To test these new features, the GRIA client and services have also been
modified to use the new components and to use WS-Addressing Endpoint References and
headers to identify contextualised resources.

521
A new

Policy Decision Point
dynamic authorisation Policy Decision Point component (the PBAC PDP) has been

developed by IT Innovation as part of the ARTEMIS project:

The PDP will grant or deny access to a protected resource based on the set of
process roles the client has. Whether a particular process role is permitted to perform
the operation given the current state of the resource depends on the service policy
(set by the service administrator using an XML configuration file).

Whether a user has a particular process role depends on the resource's dynamic
policy, which is updated by the service.

Updates to the dynamic policy are performed by the service, typically at the request
of a user or the service administrator. Access to all service operations, including
those which update the policy, is controlled by the PDP.

The PDP has been extended to provide greater support for the highly dynamic federation
scenarios required by NextGRID, which follow the pattern shown in Figure 8:

The PDP provides support for new methods of federation using SAML assertions.
This has been tested using an accounting scenario, as described above.

Roots of trust are now per-policy fragment, reducing the amount of due diligence
required from service providers when establishing new federations. For example,
credit-worthiness must still be checked when approving a new account, but it is not
necessary to establish a high level of trust in the client's CA, because the CA now
only controls access to that single account. This allows for better support of “fast
VOs”.

NextGRID Project Output P5.4.5 V0.5 Page 16 of 32

© University of Southampton IT Innovation Centre and KTH

5.2.2 Access Control Rules

Each PBAC rule has four parts:

The distinguished name of the subject to whom the rule applies.
The distinguished name of the issuer of the subject’s certificate.
Whether matching the rule grants or denies the role.

Which process role is to be granted (or denied).

These policy rules have been extended in two ways for NextGRID:

e Each rule includes the X.509 certificate of a party trusted to assert that the user has
some identity or attribute, instead of containing only the issuer’s Distinguished Name
(DN). The public key within the certificate is used to validate any certificate or
assertion provided by the client cryptographically.

e Arrule can now specify a SAML attribute (name, value) pair that the user must have.
Previously, a rule could only give the distinguished name of the subject.

5.2.3 Policy Enforcement Point

The PBAC Policy Enforcement Point (PEP) asks the PDP for a decision based on the resource
context, the requested SOAP operation and the user's security tokens, all of which it extracts
from the SOAP message. The PEP also uses the PDP to enforce transactional semantics
between authorisation decisions and subsequent policy updates.

For NextGRID, the standard Axis security handler (WSS4J) has been modified so that it no
longer checks roots of trust itself, but simply passes them to the PEP for verification. The PEP
has been modified to pass the security tokens themselves to the PDP, rather than just passing
the distinguished names within the X.509 certificate.

The PEP currently only extracts X.509 tokens, not SAML tokens, from the WS-Security
header. PEP SAML support was not necessary for this experiment as no SOAP operation
requires a SAML token to be presented before being invoked:

e The rendering service allows anyone to invoke the operation to start a new job.
Checking of the provided tokens is done within the operation via the attempt to bill
for the requested job via the service provider’s account service.

e The PEP for the account service only checks that the rendering service is permitted to
invoke the operation to check a token; the tokens themselves are checked inside the
account service’s check operation.

In future, it is likely that the mechanisms used here to submit new jobs will also be used to
control access to operations which are accessed directly. For example, access to the operation
to generate an account’s statement may be granted to anyone with the “KINO manager”
attribute. In this case, the PEP will need to extract the SAML tokens and pass them to the
PDP when the operation is called.

5.3 WS-Addressing Profile

The WS-Addressing[14] specification defines an EndpointReferenceType (EPR) as
containing:

NextGRID Project Output P5.4.5 V0.5 Page 17 of 32

© University of Southampton IT Innovation Centre and KTH

e A URL for the endpoint of a service.
e A number of reference parameters.
e A number of meta-data elements.

It suggests that when accessing the resource named in the EPR, the service should promote
each reference parameter to be a top-level SOAP header element. There are obvious risks
here, which we detail in Appendix A along with our guidelines for the safe use of WS-
Addressing. We applied these general guidelines to this experiment as follows:

e Each service has a white-list of account service endpoints which it can use (typically
there will only be one). Any other endpoint address will be rejected.

e The only reference parameter that is forwarded is the resource context identifier,
which cannot cause confusion since the account service knows that this is a reference
parameter and will treat it appropriately.

e ReplyTo and FaultTo elements are ignored.

5.4 Kerberos — X509 Security Token Service

A Security Token Service (STS) is a Web Service that issues and validates security tokens as
defined by the WS-Trust specification.

This is achieved either by converting a security token that a user currently has with the one
which is needed to access a desired service or by creating a new security token such as a
SAML attribute assertion. For example, if the user holds a Kerberos ticket asserting their
identity, but the target service needs an X.509 certificate, the Kerberos ticket can be presented
to an STS, and the service issues an equivalent X.509 certificate asserting the same identity of
requester.

The development of the token service for this phase of the experiment was specifically
focused on Kerberos-PKI interoperability, converting identity tokens only. However, the
token service design is architecturally open and able to handle attributes other than identity
and other token formats such as SAML attribute assertions. The STS implementation is based
on a Kerberized Certification Authority (KCA), introduced in the PM06 P5.4.1 experiments
which issues short-lived user certificates based on the user’s Kerberos identity.

The KCA has its own certificate signing key, and a long-lived, self-signed CA certificate,
which is not widely known. A relying party must trust the KCA’s own certificate in order to
verify user certificates issued by it. Thus, the KCA does not directly address the problem of
establishing trust between domains, but it does provide a good starting point for experiments
involving identity mapping and trust federation between domains including a translation
between different authentication mechanisms.

An STS should also be able to validate security tokens, enabling Grid entities to perform
cross-organizational interactions when they:

e Do not trust to the issuer of security tokens directly (lack of direct trust relationship
between different organizations).

o Use different security technologies and different attribute definitions.

e Use the same security technologies but with different attribute definitions.

NextGRID Project Output P5.4.5 V0.5 Page 18 of 32

© University of Southampton IT Innovation Centre and KTH

In our development process, we encountered several limitations in both the proposed
standards (WS-Trust specification) and its trivial WSS4J implementation. The current
implementation of the token service components has been done based on some extensions to
the WS-Trust specification and some modification and extensions to the WSS4J
implementation of WS-Trust.

In the following, we describe the general design of the STS for both issuing security tokens in
different formats and for issuing attribute assertions.

5.4.1 Design Diagram

Figure 9 illustrates how a STS can be used to obtain an attribute assertion or an identity
security token for a Kerberized user. The ultimate goal of this approach would be using the
WS-Trust specification for obtaining security tokens at any level of interoperability, even at
the local Kerberos layer, as the Kerberos KDC conceptually implements what the WS-Trust
specification calls a Security Token Service: It generates security tokens (e.g., Kerberos TGT)
in exchange for other tokens (e.g., a user-name and password). This implies that a fully WS-
Trust compliant model can be achieved by leveraging the web service security specification
and the mechanisms described by the WS-trust specification even at local Kerberos
interoperability level. However, in this experiment in order to simplify the implementation we
use the traditional Kerberos mechanism for obtaining Kerberos tickets instead of using the
WS-Trust specification.

Local Kerberas interoperability
TGT and ST can be obtained through the traditiona | Kerberes mechanisms or WS-Trust spacificatior

KDC _
[(AS + TGS)]—L[Kerberos Client JT[STS J

#5009 certificates, SAML attribute assartions or delegation takens obained by WS-* specifications

Figure 9 General Kerberos-PKI interoperability protocol

The following section describes in detail the functionality of a STS for issuing and validating
identity tokens in different formats.

5.4.2 Security Token Issuance

In the case that a security token is not in a format or syntax understandable by a recipient, the
STS should be able to convert it into a comprehensible security token for the recipient (for
example, the STS converts a security token in form of a Kerberos ticket into an X.509
certificate). One important consideration is that the recipient should be able to build a chain-
of-trust from its own trust anchors (e.g. its X.509 Certificate Authority, a local Kerberos
KDC, or a SAML Authority) to the issuer or signer of a token. Then the signature of STS
should be verifiable for the ultimate recipient of security token. It implies that the recipient
and the STS need an established trust relationship directly or through the intermediaries.

In Figure 10 we illustrate a use case which leverages a STS for issuing security tokens in a
different format. We particularly consider a Kerberos-based requester who needs to
communicate with a PKI-based server. For this identity token mapping to take part the
requester needs to identify a security token service that it trusts for converting his security
token (e.g., the one which is closely tied to his home organization’s KDC).

NextGRID Project Output P5.4.5 V0.5 Page 19 of 32

© University of Southampton IT Innovation Centre and KTH

‘ 5TS |
3. Kerberos TGT

1. Obtain TGT / 6. RST PKCS#10
4. Kerberos ST 7. RSTR (X509 PC)
Client)

5. Store RSA Public/Private Key Pair
8. X509 PC Private Key 2. Store Kerberos TGT

KDC
(AS + TGS)

KeyStore Local Cache

Figure 10 Client Kerberos System Architecture

The requester then communicates with the STS as follows:

=

The requester, through the “Kerberos login” obtains a TGT.

The TGT is stored in the local cache of user’s home directory. This should be done
using the traditional Kerberos mechanisms.

The client fetches the TGT from the cache and sends that to the Ticket Granting
Service part of KDC to obtain a Service Token (ST) for further communication and
authentication with the STS. This ST token is obtained from the KDC using the
traditional Kerberos mechanisms.

The ST allows authentication to the STS and can be used as a proof-of-possession
token which contains the session key encrypted for the client. Now using the shared
secret in ST, all the messages between the requester and the STS can be signed and
encrypted as described in the WS-Security specification.

The client generates an RSA public/private key-pair and stores it in the local cache
on the local machine.

The client obtains the public half of generated key and generates a PKCS#10
certificate request. It further generates a request message (RequestSecurityToken
message) for an X509 security token using the mechanisms based on the WS-Trust
specification and sends the message to the STS. The client attaches the generated
PKCS#10 as the “claims” part of this request according to WS-Trust specification.
The client encrypts the message and provides a signature on the request using the
session key obtained from the ST. The STS receives the request message, uses the
ST session key to verifying the integrity of the incoming request and decrypting the
message. STS detaches the claims provided by the requester from the request
message and generates a short-lived X.509 proxy certificate from the PKCS#10
certificate request.

The STS then generates a response message (RequestSecurity TokenResponse) and
attaches the short-lived X509 certificate to it, as described by the WS-Trust

NextGRID Project Output P5.4.5 V0.5 Page 20 of 32

© University of Southampton IT Innovation Centre and KTH

specification. The STS also uses its private key to sign and encrypt the RSTR
message. It finally sends the response to the client.

8. The client receives the message from the STS, verifies the signature, decrypts the
message and stores the X509 proxy certificate along with its associated private key
to a configured Keystore on client side.

5.4.3 SOAP Messaging

The SOAP messaging for issuing and validating tokens between clients and the Kerberos STS
is fully compliant with the WS-Trust specification. The detailed description can be obtained
from the “issuance binding” and “validation binding” of the WS-Trust specification released
February 2005 [8].

In brief, the general approach described by the WS-Trust specification for issuance and
validation of security tokens is based on a simple request/response message pair between the
requester and a STS. The requester makes a “RequestSecurityToken” message which includes
a <RequestType> element with a proper content (Issue/Validate) and a <TokenType> element
to specify the type of requested security token (“wsse:Kerberosv5ST”, SAML or
“wsse: X509V3”). The requestor sends this request to the STS. In response, the STS sends
back a “RequestSecurityTokenResponse” SOAP message that contains the requested security
token or the results of the validation process (Valid/Invalid). Each request message should
also include all security tokens and claims that can be used as proof-of-possession for the
requester.

5.4.4 ldentity Mapping Token Service Implementation

The STS implementation is built on several open standards including SOAP, WS-Security
and WS-Trust. In general, the STS will be implemented to perform the above functionalities
by exchanging a set of secure request/response SOAP messages as described by the WS-Trust
and WS-Security specification.

The STS components are a set of Java API’s which can be leveraged for implementing a
stand-alone service to be invoked by clients for issuing and validating security tokens. These
API’s can also be used as ready-to-use libraries for developers as well. In the following we
describe some of the key components of STS component:

e STS Manager: The STS manager is a set of Java API’s for handling SOAP
messages. This facilitates generating and handling request/response messages that
clients send to the STS for when issuing and validating security tokens.

e Proxy certificate generator: The Proxy certificate generator is a set of Java methods,
which facilitate generation of X509 proxy certificates. Proxy generation has support
for generating limited and restricted proxy certificates from a certificate request or a
key pair.

e X509 certificate manager: The X509 certificate manager provides a set of Java
libraries for generating, validating and signing X509 certificates. It also provides a
set of functions to generate user certificate requests, and key pairs in different
formats such as PEM encoded format.

e Configuration manager: The configuration manager provides an API to support
customized configuration of parameters for issuing and validating security tokens. It
provides configuration parameters through property files for both sides of the
interaction.

NextGRID Project Output P5.4.5 V0.5 Page 21 of 32

© University of Southampton IT Innovation Centre and KTH

5.5 Cryptographic Attribute Assertions

The tokens issued by the client account service take the form of signed SAML assertions. In
this section, we describe the parts of each token and the rules used to validate them.

An example of a SAML token issued by the client account service can be found in Appendix
B: Example SAML token.

5.5.1 SAML Attribute Support in Dynamic Policies
When a trade account is added to a project account’s list of peers, the project account service

contacts the trade account service and adds a match rule saying that anyone with a given
attribute may use the account. The full match rule contains these fields:

The attribute name (“can-charge-to-account”).

The attribute value (the resource ID of the client’s project account).

The process role affected (“user”).

Whether the role is to be granted or denied on a successful match.

The X.509 certificate of the issuer of the assertions (the client account service).

The attribute is specified by the client and could be anything. For example, the client might
not wish the service provider to see their internal account identifier. In that cause, they could
use some randomly generated string instead.

Notice that the rule has only one trusted authority (the client account service). It would be
possible to specify that both the account service and the client’s Kerberised STS are to be
trusted. The client account service could issue assertions of the form:

Subject “name” can-charge-to-account *““account™

By trusting the Kerberised STS to associate the public key with a name, and the account
service to associate the name with the attribute, the service provider’s account service could
deduce that the user should be trusted. However, for this experiment we decided to keep the
match rules simple by having only one issuer.

Having only one authority means that the user’s public key must appear in the SAML
assertion, otherwise there is no way to know whether the sender of the message really is the
subject. However, having the public key alone is not sufficient, since the account service
would only be able to record that “someone authorised to use this account” was spending
money. This does not provide the client manager with sufficient information if someone is
abusing the account.

Therefore, the SAML assertions issued by the client account service use the client’s full
X.509 certificate as the subject:

Subject <X.509 certificate> can-charge-to-account ““account”.
The account service is asserting that the holder of the public key is permitted to use the

account and that they have the given distinguished name. The SAML assertion is signed using
the client account service’s key.

NextGRID Project Output P5.4.5 V0.5 Page 22 of 32

© University of Southampton IT Innovation Centre and KTH

5.5.2 Consistency of SAML Assertions with X.509 Certificates

There is a further problem, which is that the client software and the rendering service
shouldn’t have to understand SAML tokens. Only the issuer and the validator of the tokens
should have to understand them at all. Therefore, the account service also checks that the
certificate in the SAML assertion is identical to the one used to sign the SOAP message
(which is forwarded to it by the rendering service). This allows the rendering service to
process only X.509 tokens, which it already understands, while still ensuring that the audit
trail written by the rendering service is using the correct name.

Without this check, a user authorised to spend money on the account could get a SAML
assertion for themselves and then generate an X.509 certificate claiming they were someone
else. The job service would correctly deduce that they could use the account from the SAML
token, but the use would appear to be from someone else.

Note that as at the service provider’s account service, the access control rules on the client
account service must also ensure that not only do only authorised users gain access, but that
they do so with a valid X.509 certificate (so that it can be included in the assertion).

For example, if the manager set the policy to issue billing tokens to any user at all (and relied
on the fact that only users within the organisation could reach the server), then users would be
able to have any name appear on the final account statement as the user performing the work.
However, any reasonable access control policy for billing token issuance would include the
Kerberised STS issuer certificate, so this isn’t generally a problem.

5.5.3 Sending Tokens via SOAP

The SAML tokens are digitally signed, but when serialising the XML extra whitespace can
easily get added, invalidating the signature. For this experiment we avoided the problem by
sending the whole SAML document as an encoded string argument. In future, we hope to be
able to send it in the WS-Security header in a way that still prevents it from being accidentally
modified.

5.5.4 Token Lifetime

Both the SAML tokens issued by the client account service and the X.509 tokens issued by
the Kerberised STS have expiry dates set just a few hours in the future. The expiry date of the
X.509 token is checked by the security handler of the rendering service (WSS4J), while the
expiry date of the SAML assertion is checked by the OpenSAML library used by the PDP.

The Kerberised STS and client account service certificates are used as issuers in the PDP’s
match rules and so should normally be long-lived. When these services generate a new key-
pair additional match rules containing the new certificates must be uploaded. After a while,
the old match rules can be removed. The PDP does not currently check for expired issuer
certificates in match rules.

It is a general principle of digital security systems that the strength of security depends on the
lifetime of a token or a trust anchor. For high security, tokens and/or revocation lists should
have short lifetimes, so that an intruder that manages to compromise a token or issuing system
will only have a short time in which to work. The price for this is a performance overhead, as
users have to get new tokens every time they want to use a secure service, and the service may
have to check frequently with the token issuer to validate tokens or obtain revocation lists.

NextGRID Project Output P5.4.5 V0.5 Page 23 of 32

© University of Southampton IT Innovation Centre and KTH

At this stage, the lifetime of tokens is based on the underlying Kerberos tokens. However, in
one of the NextGRID WP7 applications (Option Pricing led by NEC), an experiment is
planned to test the trade-off between security and performance for low-latency services. This
is likely to involve adjusting the token lifetime, so tokens can be pre-fetched and cached,
rather than weakening security in more brutal ways by reducing key-lengths, for example.

6 Conclusions and Recommendations

In this report we have described the NextGRID security components that were developed in
the third six months of the project in Task 5.4 to explore issues relating to token issuance,
exchange and validation in dynamic grids. We have performed an experiment to validate
these components, based on a simple test scenario from a NextGRID end user (KINO’s
Digital Media Use Cases).

6.1 Dynamic Policy Components

IT Innovation has extended the PBAC security system to support the NextGRID security
model. This involved adding support for issuing and validating SAML assertions and for per-
policy trust anchors.

To test these new dynamic policy features, the GRIA client and services have been modified
to use the new components and to use WS-Addressing Endpoint References and headers to
identify contextualised resources. A new client-side accounting service has been developed
which issues SAML assertions to users asserting that they can use an account. These
assertions are checked by the PDP in the service provider's accounting service, using a
matching policy uploaded dynamically by the client organisation. Access to the client
accounting service is also protected using the new security components, including access to
the token issuing operation.

We have shown how these components improve the manageability of federations within the
grid, by permitting authorisations to be managed centrally within each client organisation.

The two accounting services developed in this work will also be used in M24 experiments
focussing on how they can be used to provide interoperable accounting mechanisms in
different infrastructures.

Support for “fast VOs” has been improved by specifying the full X.509 certificate of a trusted
issuer in each policy rule, including the issuer’s public key. This removes the need for service
providers to trust new certificate authorities globally, allowing new federations to be
established more quickly by reducing the amount of due diligence required from service
providers when establishing new federations. For example, credit-worthiness must still be
checked when approving a new account, but it is not necessary to establish a high level of
trust in the client's CA, because the CA now only controls access to that single account.

Work on profiling WS-Addressing to avoid certain security problems has led to a simple
initial policy of only promoting white-listed reference properties to SOAP headers and only
using trusted addresses.

6.2 Trust Federation and Mapping

Development of standardized versions of the security components from the PMO06 experiment
has been the main focus of KTH’s work in this period. The result has been a Security Token
Service (STS) developed for issuing and validating security tokens, which is mostly achieved

NextGRID Project Output P5.4.5 V0.5 Page 24 of 32

© University of Southampton IT Innovation Centre and KTH

along the lines of WP4 / WP5 joint security experiment plan, and standardization of PM06
security components.

The STS components are a set of Java APIs which can be leveraged to implement a stand-
alone service to be invoked by clients for issuing and validating security tokens. These APIs
can also be used as ready-to-use libraries for developers as well. Development of the STS has
aimed at providing two main functionalities: Issuance and Validation of security tokens in a
cross organisational interaction based on the WS-Trust specification.

In our current development the “issuance” is mainly achieved by converting a security token
that a user currently has (e.g. a Kerberos ticket) to one which is needed to access a desired
service (e.g. an X.509 certificate) in a standard fashion proposed by the WS-Trust
specification.

For this implementation we have followed our previous approach in Trust federation and
identity mapping with the focus on Kerberos-PKI identity mapping mechanisms. The STS
implementation is based on a Kerberised Certification Authority (KCA) and the kx509
protocol, introduced in the PM06 P5.4.1-P5.4.2 experiments. However the implementation in
this phase is fully compliant with the specification proposed by WS-Trust for issuing security
tokens.

It should be noted that although for this phase we only provide an interoperable identity
mapping mechanism from Kerberos identity into X509 certificates in a standard fashion, the
design and implementation of STS, are architecturally open to handle other token formats
such as SAML and even attributes rather than only identities.

6.3 Answers to Architectural Questions

Based on the results of this experiment, we can provide the following answers to the questions
posed in section 2.3.

Addressing

e 5.1) Does WS-Addressing address security considerations of all parties (for e.g.
intermediaries) involved in the SOAP processing chain?

0 WS-Addressing alone does not provide the required level of security. It is
necessary to profile the specification so that only certain addresses and
reference parameters are passed on to third parties.

Authentication

¢ 33) What other authentication mechanisms (e.g. username-password) should be
supported by the NextGRID architecture?

0 We need to support existing local authentication mechanisms such as
Kerberos. This can be done using WS-Trust Security Token Services.

e 34) What mechanisms should be used for identity federation/trust federation

(federated token issuance and verification)? How is this related to emerging
standards capable of dealing with identity such as WS-Trust, WS-Federation, etc?

NextGRID Project Output P5.4.5 V0.5 Page 25 of 32

© University of Southampton IT Innovation Centre and KTH

o0 This report describes a federation mechanism which uses services in both
client and service provider organisations to federate identity and trust. While
WS-Trust and WS-Federation can be used for token issuance and validation,
additional interfaces are still required to update the issuance and validation
policies. In the current experiment this was dealt with by using scenario-
specific (accounting) management interfaces. Future experiments with WP4
will continue to investigate how this can be done in a generic and standard way
(for example, by profiling or extending WS-Trust).

e 35.1) Is a digital signature over the message body only sufficient?

o No. Any headers which affect the interpretation of the message (such as a WS-
Addressing resource context identifier header) must be signed together with
the body, by a single signature. Otherwise, an attacker can modify an
invocation to target a different resource of their choosing. For example, the
attacker could destroy any resource owned by the client when the client tries to
destroy some particular resource.

Authorisation

e 36.5) What is the model for dynamic authorization? Are their base specs that we can
work from or use here (WS-Policy?)

0 Services can provide a SOAP interface to allow dynamic updates to the
service’s policy. These interfaces should themselves be protected by the
policy. WS-Policy has not been investigated by this experiment.

e 37) How do dynamic authorisation models relate to dynamic resource management
and virtual organisation management?

0 Authorisations can be made in the context of individual resources (granting
access to a particular job, for example), or they can be done in some larger
context, such as an account which represents a federation between two
organisations. This experiment used the PBAC system for access control; a
follow-up experiment involving WP4 as well will see how well this fits with
WS-Policy/Generic AAA. [15]

e 38) Do we need a process role vocabulary coming out of NextGRID?
0 No. The client can specify the mapping from their internal roles to process
roles at the service provider. For example, a policy may state that anyone with
the attribute “animator at KINO” has the process role “user” in the context of a

particular remote account. The service provider does not need to understand
the original meaning of “animator at KINO” to enforce this policy.

Trust

e 53.2) How should trust be represented and analysed in (business) processes; can the
methodology used by GRIA be developed to address this?

NextGRID Project Output P5.4.5 V0.5 Page 26 of 32

© University of Southampton IT Innovation Centre and KTH

o In this experiment, credit worthiness is the normal basis for a service provider
to trust a client. The business models developed by GRIA have been
successfully extended to support this scenario.

e 54) How can trust be managed in a dynamic business context, including VO
lifecycles, and delegation mechanisms?

o0 Trust is established using traditional business processes, based on existing
mechanisms such as credit checks. Once a root of trust is established it is
linked to cryptographic key material allowing delegation operations to be
performed without further intervention by the service provider. During the
lifetime of the bipartite relationship, standard business accounting practices
such as regular billing, auditing and the enforcement of credit limits are used to
manage trust. VOs could be established quickly using similar mechanisms, and
this will be explored further in a later experiment.

7 Appendix A: WS-Addressing Profile

WS-Addressing provides a standard way to encode context identifiers. However, WS-
Addressing also allows a sender to induce a recipient to transmit a (signed) message to a third
party, and to include SOAP headers of the sender’s choosing under the signature of the
intermediary. This is unacceptable in an industrial Grid environment, and it is proposed that
NextGRID should recognise WS-Addressing specifications for constructing and addressing
messages only for a white-list of addresses and context identifier elements.

7.1 Description

WS-Addressing was originally designed as a way to convey connection state or context in
SOAP messages, emulating the contextualisation mechanism provided by HTTP headers in
conjunction with stored cookies. This makes it possible to contextualise message exchanges
in a similar way, independently of the transport used.

To support this, WS-Addressing provides a schema for an “endpoint reference” (EPR), which
can be used to specify where the response should be sent, and the context headers that should
be attached (specified within the endpoint reference through “reference parameters™). The
endpoint reference can thus convey a fully qualified and contextualised message destination,
and is starting to be used not only to specify the headers needed in a reply, but also to specify
onward routing destinations and headers. In this case, the reference parameters are supposed
to be treated as opaque by the initial recipient, who is obliged to simply transcribe any
reference parameters into the SOAP header of the forwarded message.

<Header <Header
To:B To:C
ReplyTo:C{v:14} v:14
Counter:27 Status: Off
> >
<Body1> <Body2>
Sender Service Service
A B C

Figure 11. WS-Addressing using ReplyTo with reference parameters

NextGRID Project Output P5.4.5 V0.5 Page 27 of 32

© University of Southampton IT Innovation Centre and KTH

Thus in Figure 11 the ReplyTo header in the message from A means B should insert the
header “<v>14</v>" into its response (abbreviated to “v:14” in the diagram), and send this
response to C (not A). Note that B can insert their own headers (e.g. “<Status>Off</Status>")
if desired, but C cannot tell that this header was chosen by B while the other was not.

Several contributors objected to this behaviour, pointing out that this mechanism can force a
recipient of a SOAP message to send a message to an arbitrary destination with arbitrary
headers. See for example the objection submitted by Anish Karmarkar and others on 19 May
2005, which describes a number of unwanted consequences of opaque header generation in
the SOAP binding of WS-Addressing reference parameters. Suppose C in Figure 11 was a
service provided by your bank, B was one of your trusted suppliers and A is some other client
of B. If A sent a message to B including reference parameters “<Account>Your
Account</Account><Debit>£150<Debit/>", would you want B to construct the WS-
Addressing mandated response, sign it, and send it to your bank (Figure 12)?

<Header <Header
To:B To:C
ReplyTo: account:6
C{account:6, debit:14
debit:14} Status: Off
Counter:27 >
> <Body2>
<Body1l>
A B . C
(Not Trusted) (Trusted) (Bank)

Figure 12 Malicious use of WS-Addressing

Several solutions were proposed, but the one adopted in the Candidate Recommendation of
Aug’05 simply mandated that a WS-Addressing type attribute be used to indicate header
elements generated from an EPR, and that the “must understand” attribute never be set for
such headers. The specification also allows a service to refuse to process an EPR fully if it is
not satisfied that to do so would be safe. For example, the specification suggests that this
might be determined by authenticating the issuer of the EPR, and processing it only if it
comes from a trusted source.

Finally, note that WS-Addressing only forces services to construct a response from an EPR
when it is included in a WS-Addressing ReplyTo or FaultTo header element. EPR can also be
conveyed to or from a service by other means, in which case the recipient may (but is not
required) to use them for contextualised addressing of responses or subsequent messages as
though they were sent in the WS-Addressing headers. In practice, this is how WS-Addressing
is most often used in Grids. Of course, it doesn’t matter how the EPR is transmitted, the
problems described here arise whenever an EPR is used to generate context headers for an
outgoing signed SOAP message.

7.2 Issues

Our analysis has shown that the solution from the August 2005 specification is not
satisfactory. Firstly, allowing recipients to ignore WS-Addressing obligations at will means
the specification cannot guarantee interoperability. Furthermore, the above attack using
reference parameters can also be committed using Address elements in an EPR. For example,
the address for C in Figure 12 could be set (by A) to
“https://yourbank.com/debit?amount=14", causing B to send a message that achieves the
same effect. A may even be able to gain access to protected information by specifying
C="http://yourbank.com”, causing B to send a message to C without transport-layer security.

NextGRID Project Output P5.4.5 V0.5 Page 28 of 32

© University of Southampton IT Innovation Centre and KTH

Unfortunately, signing over messages and headers does not really solve the problem. If A
signs its message to B, this would allow B to tell it came from A, including the ReplyTo
header. B may then decide to go ahead and construct a response as specified by A’s ReplyTo
header, converting reference parameters into full SOAP header elements and sending the
resulting message to C. Only B can then bind this header to the message by signing over it, so
C can only tell that the response came from B. C cannot tell if B understood the header
elements, nor who originally specified them. Thus B’s signature can no longer be taken to
mean B intended the meaning implied by all parts of its message, but only that B constructed
the message to C, including some headers specified by a third party whose identity cannot be
verified by C.

If C wanted to know which headers B really did understand, B could insert more attributes,
but this assumes that C recognises the attributes. The attacker can simply specify the address
of a service which does know about this new convention.

B could insert a second message-level signature covering only the headers it inserted, but this
would conflict with the WS-Interoperability Basic Security Profile, which says there should
only be one signature to identify the sender of a message. (Multiple signatures would in any
case create a semantic interoperability problem, as applications would have to decide the
meaning of each signature). B could of course apply a single signature covering only the
headers it originated or understands. However, this would leave the remaining “opaque”
headers from A open to tampering en-route between B and C.

7.3 Profiling Options

Given this, there seems to be only two “reasonable” policies to take regarding the use of WS-
Addressing:

¢ Recipients (B in Figure 12) can constrain where a response generated from an EPR
can be sent (e.g. only back to the original sender) so that those who trust them (e.g. C)
cannot be induced to act on messages specified by a possibly less trusted third party

(e.g. A).

e Recipients can constrain which reference parameters or HTTP arguments from an EPR
they are willing to handle, e.g. by using a blacklist of “unsafe” opaque element names,
or a whitelist of “understood” element and argument names.

It is also possible to apply both policies at the same time, constraining both the destination
and the header content of any response messages dictated by WS-Addressing.

The second policy would allow A to specify some information in the message from B to C,
but B would be able to filter out elements B thought unsafe (using a blacklist) or that B did
not understand (using a white list). Clearly, a blacklist provides greater interoperability, as
services and clients can use any elements not on the blacklist. However, a blacklist is less
secure as it depends on the service operator identifying and blacklisting ALL unsafe elements,
or else weakening the guarantees implied by their signature over responses. With a white list,
B could sign over the whole response message and signify by this that they understand and
vouch for its entire content. It may be significant that in HTTP a white list is used restricting
HTTP context headers to a small number of cookie types.

Clearly, if an EPR is sent by some other means (not in a WS-Addressing ReplyTo or FaultTo
header), the recipient is not obliged by WS-Addressing to do anything with it. However, the

NextGRID Project Output P5.4.5 V0.5 Page 29 of 32

© University of Southampton IT Innovation Centre and KTH

above policies can also be used if such an EPR were used to generate new messages in the
conventional fashion.

7.4 Recommendations

It is recommended that where NextGRID adopts WS-Addressing, using EPRs to encapsulate
resource context identifiers, we should avoid using the ReplyTo and FaultTo headers, and
impose a white list defining EPR reference parameters that are understood and can be
elevated to full headers in messages addressed using EPR.

Addresses containing query strings (“scheme://host/resource?query’) should be rejected.
Ideally, only white-listed addresses should be permitted. For example, when starting a
rendering job the client specifies the address of the service provider’s account service with an
EPR, and this address is checked against the service’s white-list of trusted account services.

However, this is not possible for all uses of EPRs. When the client runs the job they must also
give an EPR with the address of the job’s input data. The input data can be at a data service
not known to or controlled by the rendering service’s organisation, and therefore its address
cannot be checked against a white-list.

8 Appendix B: Example SAML token

This appendix shows the format of the SAML tokens issued by the client account service. The
assertion contains a condition (the expiry date), an attribute statement, and a signature over
the assertion.

The attribute statement contains:

e The subject’s X.509 certificate, containing the public key used to check that the
sender of a SOAP message really is the subject of the assertion, and the distinguished
name of the subject (which appears on the account statement and in the service logs).

e The attribute which the account service is asserting the user has (authorisation to
charge to this account).

e The “Nameldentifier” is not used; it exists only to work around a minor bug in the
OpenSAML library we use.

<?xml version="1.0" encoding="UTF-8"?>

<Assertion
AssertionlD="c814e3493913f3267c36f21b695a212a"
Issuelnstant="2006-03-08T13:11:29.760Z"
Issuer="https://banyuls.it-innovation.soton.ac.uk/account/services/AccountService"
xmIns=""urn:oasis:names:tc:SAML:1.0:assertion"
xmIns:saml=""urn:oasis:names:tc:SAML:1.0:assertion"
xmIns:samlp=""urn:oasis:names:tc:SAML:1.0:protocol"
xmIns:ds=""http://www.w3.0rg/2000/09/xmldsig#"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"*
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance'>

<Conditions NotOnOrAfter="2006-03-08T15:58:09.760Z2"/>

<AttributeStatement>
<Subject>
<Nameldentifier NameQualifier="-">-</Nameldentifier>
<SubjectConfirmation>
<ConfirmationMethod>urn:oasis:names:tc:SAML:2.0:cm:holder-of-key</ConfirmationMethod>
<ds:KeylInfo>
<ds:X509Data>
<ds:X509Certificate>
M1 1DLJCCApegAwlBAgIBAjANBgkghk i GOwOBAQQFADBNMQ8WDQYDVQQDEWZXZWFrQOExXCzAJBgNV
[-1
bd1pndURPexeigPpLTSrOr2YgTBANd76j4z7ZGxtCOQAQNg/NT 194Gv53LppCU9ELSsOqGi r1M256
eTQtxIr IGF4t29e3mVvV3ZY 1z0axg=

NextGRID Project Output P5.4.5 V0.5 Page 30 of 32

© University of Southampton IT Innovation Centre and KTH

</ds:X509Certificate>
</ds:X509Data>
</ds:Keylnfo>
</SubjectConfirmation>
</Subject>

<Attribute
AttributeNamespace="http://www. it-innovation.soton.ac.uk/2006/grid/account"
AttributeName="can-charge-to-account"
xmIns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance'>
<AttributeValue xsi:type="xsd:string">40894e38-09b14ccl1-0109-5..a-0001</AttributevValue>
</Attribute>
</AttributeStatement>

<ds:Signature>
<ds:SignedInfo>
<ds:CanonicalizationMethod Algorithm="http://www.w3.0rg/2001/10/xml-exc-cl4n#"/>
<ds:SignatureMethod Algorithm=""http://www.w3.0rg/2000/09/xmldsig#dsa-shal"/>
<ds:Reference URI="#c814e3493913f3267c36f21b695a212a"">
<ds:Transforms>
<ds:Transform Algorithm="http://www.w3.0rg/2000/09/xmldsig#enveloped-signature'/>
<ds:Transform Algorithm=""http://www.w3.0rg/2001/10/xml-exc-cl4n#">
<ec: InclusiveNamespaces
PrefixList=""code ds kind rw saml samlp typens #default"
xmlns:ec="http://www.w3.0rg/2001/10/xml-exc-cl4n#""/>
</ds:Transform>
</ds:Transforms>
<ds:DigestMethod Algorithm="http://www.w3.0rg/2000/09/xmldsig#shal"/>
<ds:DigestValue>IXa6YviQGR1loyZZVhW3yMszQwlE=</ds:DigestValue>
</ds:Reference>
</ds:SignedInfo>
<ds:SignatureValue>PmhRcebZmw/dBs85XapX..VRi isKOX5/ipR1zDZFWOg==</ds:SignatureValue>
</ds:Signature>
</Assertion>

9 References
For more information, see:

1. M. Ahsant, J. Claessens, T. Leonard, M. Surridge and F. Wan, NextGRID Dynamic Security
Experiment Plan, Appendix to T4.6, T4.7, and T5.4 outputs.

2. See the GRIA project website at http://www.gria.org.

3. M. Ahsant, S. Hafeez, A. Krishna, T. Leonard, M. Surridge and S. Tsasakou, NextGRID Project
Output P5.4.1/P5.4.2; Dynamic Trust Federation and Access Control v1.1, 04 July 2005.

4. Heimdal Kerberos 5 Derrick J Brashear, Ken Hornstein, Johan lhren, et al,
http://www.pdc.kth.se/heimdal/heimdal.html

5. R. Housley, RFC 3280: Internet X.509 Public Key Infrastructure Certificate and Certificate
Revocation List (CRL) Profile, April 2002.

6. The KX.509 protocol William Doster, Marcus Wyde and Dan Hyde, February 2001.
http://www.citi.umich.edu/projects/kerb_pki/

7. Web Services Security (WS-Security) v1.0, Chris Kaler, April 2002.
http://www-106.ibm.com/developerworks/webservices/library/ws-secure/

8. Web Services Trust Language (WS-Trust) v1.1, Steve Anderson, Jeff Bohren, et al, May 2004.
http://www-106.ibm.com/developerworks/library/specification/ws-trust/

9. Web Services Federation Language (WS-Federation), Chris Kaler and Anthony Nadalin, July
2003. http://www-106.ibm.com/developerworks/webservices/library/ws-fed/

10. Executive Overview of the Security Assertions Markup Language (SAML) v2.0, Paul Madsen,
OASIS, Working Draft 02, November 2004.
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=security

NextGRID Project Output P5.4.5 V0.5 Page 31 of 32

http://www.gria.org/
http://www.pdc.kth.se/heimdal/heimdal.html
http://www.citi.umich.edu/projects/kerb_pki/

© University of Southampton IT Innovation Centre and KTH

11. Debunking SAML myths and misunderstandings, Frank Cohen, IBM developerWorks, 08 July
2003.
http://www-106.ibm.com/developerworks/xml/library/x-samImyth.htmI?Open&ca=daw-se-news

12. WSS Message Security with SAML tokens profile Chris Kaler, et al, 1 December 2004.
http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.0.pdf.

13. The NextGRID Architecture Straw Man. Available from NextGRID WP1.

14. Web Services Addressing (WS-Addressing) 1.0, W3C Candidate Recommendation 17 August
2005. http://www.w3.0rg/TR/2005/CR-ws-addr-core-20050817/

15. Web Services Policy Framework (WS-Policy), Siddharth Bajaj, Don Box, et al, September 2004.
http://www-128.ibm.com/developerworks/library/specification/ws-polfram/

NextGRID Project Output P5.4.5 V0.5 Page 32 of 32

http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.0.pdf

	Introduction
	Objectives
	Client Scenario
	Service Provider Scenario
	NextGRID Architectural Questions Addressed

	Starting Points
	GRIA
	KX.509
	Apache WSS4J
	Apache Axis
	JAAS
	Standards and Specifications
	WS-Security
	WS-Trust
	WS-Federation
	SAML

	Experimental Setup
	Overview
	Client Kerberos Systems
	Client Account Service
	Client Application
	Service Provider Account Service
	Service Provider Rendering Service

	Security Components
	The Account Services
	Dynamic Policy Components
	Policy Decision Point
	Access Control Rules
	Policy Enforcement Point

	WS-Addressing Profile
	Kerberos – X509 Security Token Service
	Design Diagram
	Security Token Issuance
	SOAP Messaging
	Identity Mapping Token Service Implementation

	Cryptographic Attribute Assertions
	SAML Attribute Support in Dynamic Policies
	Consistency of SAML Assertions with X.509 Certificates
	Sending Tokens via SOAP
	Token Lifetime

	Conclusions and Recommendations
	Dynamic Policy Components
	Trust Federation and Mapping
	Answers to Architectural Questions

	Appendix A: WS-Addressing Profile
	Description
	Issues
	Profiling Options
	Recommendations

	Appendix B: Example SAML token
	References

