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Abstract. Grids are becoming economically viable and productive tools. Grids 
provide a way of utilizing a vast array of linked resources such as computing 
systems, databases and services online within Virtual Organizations (VO). 
However, today’s Grid architectures are not capable of supporting dynamic, ag-
ile federation across multiple administrative domains and the main barrier, 
which hinders dynamic federation over short time scales is security. Federating 
security and trust is one of the most significant architectural issues in Grids. 
Existing relevant standards and specifications can be used to federate security 
services, but do not directly address the dynamic extension of business trust re-
lationships into the digital domain. In this paper we describe an experiment in 
which we highlight those challenging architectural issues and we will further 
describe how the approach that combines dynamic trust federation and dynamic 
authorization mechanism can address dynamic security trust federation in 
Grids. The experiment made with the prototype described in this paper is used 
in the NextGRID project for the definition of requirements for next generation 
Grid architectures adapted to business application needs. 

1 Introduction 

A Grid is a form of distributed computing infrastructure that involves coordinating 
and sharing resources across Virtual Organizations that may be dynamic and geo-
graphically distributed [21]. The long-term future of the Grid will be to provide dy-
namic aggregations of resources, provided as services between businesses, which can 
be exploited by end-users and application developers to solve complex, multi-faceted 
problems across virtual organizations and business communities. To fulfill this vision, 
we need architectures and detailed mechanisms for bringing together arbitrary Grid-
based resources, along with other resources such as conventional web-services, web-
based information sources and people, in a highly dynamic yet manageable way. At 
present, this is not possible: it takes a lot of time and effort to implement such a col-
laboration using current technology.  The NextGRID project [2] aims to define the 
architecture for next generation Grids, and addressing this need for highly dynamic 
federation is one of its main design goals. 



Federating security and trust is one of the most significant architectural issues in 
Grids. Basic Grid security is based on well-developed mechanisms drawing from a 
wealth of off-the-shelf technology and standards, and work is now underway to ad-
dress Grid scalability issues and support policy-based access control.  However, trust 
(i.e. dependency) relationships may be expressed in different ways by each service, 
and the infrastructure may itself impose additional dependencies (e.g. through certifi-
cate proxy mechanisms).  

In this paper, we focus on the architectural needs of Grid security to support dy-
namic federation of trust between Grid services running under different Grid (or non-
Grid) infrastructure according to different binding models and policies. We examine 
relevant off-the-shelf components, standards and specifications including WS-Trust 
and WS-Federation to federate security services in a usage scenario in the Grid. We 
describe an experiment to test their use to federate trust between heterogeneous secu-
rity mechanisms in a business relationship. We analyses this experiment to show that 
available standards cannot directly address the dynamic extension of business trust 
relationships into the digital domain. We show that it is possible by combining a trust 
federation mechanism and dynamic authorization to enable dynamic federation of 
resources based on a short-term, rapidly formed business relationship. We ultimately 
provide an experimental prototype to evaluate our approach by using a real example 
scenario based on rapid outsourcing of computation to a service provider in order to 
meet a deadline, based only on commonplace business-to-business trust mechanisms. 
In the following of this paper, in section 2 we describe the shortcomings of support-
ing dynamic Federation in Grids and we will mention why security and trust are the 
main barriers in this regard. In section 3, we give a Grid usage scenario that allows us 
to focus on dynamic aspects of Federation in Grids for our experiment. Section 4 
introduces off-the-shelf components: GRIA and STS that we use as the starting point 
for our experiment. Based on these components, an experimental design will be pro-
vided in section 5. In section 6, we give an overview of WS-trust and WS-Federation 
as the current existing relevant specifications and in section 7, we analyse the archi-
tectural and standardisation challenges for addressing dynamic trust federation. Sec-
tion 8 describes our approach to tackle architectural issues. Conclusion and future 
work are described in section 9.  

2 Dynamic Trust Federation and Grids 

Today’s Grid architectures are not capable of supporting dynamic, agile federation 
across multiple administrative domains.  Federation is possible if all parties use the 
same software, but to set it up is expensive and time consuming, and thus it is only 
occasionally cost-beneficial.  It is reasonable to ask the question: why has the Grid so 
far failed to deliver the ability to federate resources in a cost-effective fashion dy-
namically?  We believe there are two main reasons for this: 

 
• Dynamic federation is a holistic property of Grids, but Grid architectures 

have been formulated in a fragmented way by specialized working groups (e.g. those 
of the Global Grid Forum [20]). 



• Previous Grid visions such as those from the Globus team [21], although en 
compassing dynamic federation are too high level or too specific to scientific collabo-
ration scenarios, with insufficient attention to business trust. 

 
It is not possible today for different organizations running different Grid infra-

structure to support even static federations.  For example the GRIP project showed 
that some level of interoperability is possible between Globus and UNICORE, but 
that there were fundamental incompatibilities in the security architecture and resource 
descriptions [22] used by each system.  Moreover, it is hard for domains to interact 
and federate resources even if they run the same Grid infrastructure.  The complex 
negotiations needed to establish certification across multiple sites, establish access 
rights, open firewalls and then maintain software compatibility are well known and 
documented [23,24]. 

Establishing trust relationships, and using them to facilitate resource sharing is one 
of the most challenging issues in Grids. Dynamic trust establishment and interopera-
bility across multiple and heterogeneous organizational boundaries introduce nontriv-
ial security architectural requirements. The main challenge is to ensure that: 

• Trust formation across organizational boundaries is subject to due diligence, 
usually carried out by humans in their business frame of reference; and 

• Trust exploitation (enabling resource sharing on commercial or non-
commercial terms) is then automated, so the benefits of a decision to trust can 
be realized very rapidly. 

Current Grids do not support automation, so the number of human decisions 
needed is large, and federation takes a long time.  Current Grids also do not support 
convenient trust scoping mechanisms, so a decision to trust an actor may involve 
placing complete trust in them, so the due diligence process is often arduous and 
time-consuming.  

The OGSA v1 document [1] describes a range of security components to support 
access control and identity mapping for VOs.  However, all are based on the exis-
tence of services established by the VO to support the necessary interactions (e.g. 
credential translation and centralized access control policy administration and imple-
mentation).  These mechanisms assume that a VO is well-established, already fully-
trusted by all participants, and has its own (trusted) resources to support the required 
services. We cannot make pre-assumptions about VO lifecycle or trust relationships 
between a VO and participating domains. Instead, we must support dynamic evolu-
tion of both VO and the trust relationships they are built upon, in a much more flexi-
ble way than before, in minutes rather than months, and with minimal (ideally zero) 
overheads and shared infrastructure [8]. 

3 A Grid Usage Scenario 

To provide a focus for our work a scenario was chosen that has the benefit that the 
required application technology is already available from the GRIA project [6]. This 
allowed us to focus on the dynamic trust federation and access control issues for our 
experiment. 



KINO is a leading producer of high-quality video content based in Athens.  In the 
course of their business, KINO has a need to perform high-definition 3D digital video 
rendering calculations, taking “virtual” 3D scenes and characters and generating 
high-quality video sequences from them.  However, this facility is only needed for a 
small subset of their work, so KINO cannot justify buying a large computational 
cluster to run such computationally intensive calculations. We assume that an anima-
tor is working on a high-definition video rendering job for a customer.  On the day 
before the deadline, he realizes that there is not time to complete the rendering com-
putations needed using the in-house systems available to him.  However, he learns of 
the existence of some GRIA services for rendering high-definition video, operated by 
GRIA service providers, and capable of providing the level of computational power 
required on a commercial basis.  (We do not concern ourselves here with how the 
animator finds out about these services, but focus on the trust federation challenges of 
using them). The animator tells his supervisor, and they agree that they should out-
source the rendering jobs to meet their deadline.  To do this, the supervisor must set 
up an account with one or more service providers, so the animator can submit render-
ing jobs to them.  To meet the deadline, everything must be set up and the jobs sub-
mitted by the end of the day, so the animator can collect the output and assemble the 
final video in the morning. The problem is that the GRIA services require that ac-
count holders and users be authenticated via X.509 certificates.  However, KINO 
operates a Kerberos (e.g. Active Directory) domain, and does not have a relationship 
with a third party certification authority.  To get certificates from a trusted third party 
such as Verisign will take far too long – the only solution is to establish a dynamic 
VO between itself and at least one service provider. 

4 Background 
4.1 GRIA 

GRIA [6] is a Web Service grid middleware created by the University of South-
ampton and NTUA in the GRIA project, based on components developed by them in 
GRIA, in the EC GEMSS [16] and UK e-Science Comb-e-Chem [17] projects.  The 
GRIA middleware was tested using two industrial applications, one of which was 
KINO’s high-definition video rendering application. GRIA uses secure "off the shelf" 
web services technology and it is designed for business users by supporting B2B 
functions and easy-to-use APIs. It can easily support legacy applications.  

Unlike more “traditional” Grids, GRIA was designed from the outset to support 
commercial service provision between businesses [7], by supporting conventional 
B2B procurement processes.  The security infrastructure of GRIA is designed to 
support and enforce these processes, so that nobody can use GRIA services without 
first agreeing to pay the service provider.  The procedure for using GRIA services is 
summarized in Figure 1: 
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Fig. 1. GRIA usage procedure 

Each GRIA service provider has an account service and a resource allocation ser-
vice, as well as services to store and transfer data files and execute jobs to process 
these data files.  The procedure for using GRIA services is as follows: 

1. Account Establishment: First, the supervisor must open an account with the 
service provider, providing evidence of creditworthiness (e.g. a credit card 
number) to their account service.  If the details are accepted, the service pro-
vider will assign an account with a credit limit, to which the supervisor can 
control access. 

2. Resource Allocation: The animator must then allocate resources using the ser-
vice provider’s resource allocation service.  This is only possible if the ani-
mator has access to an account (the one controlled by their supervisor), to 
which the resource allocation will be billed. 

3. Data Transfer: To transfer data, the animator has to set up a data store using 
the data service.  The animator can only do this if he/she has a resource allo-
cation from which to assign the necessary resources (maximum storage and 
data transfer volume). 

4. Data Processing: To process data, the animator has to set up a job using the 
job service.  This also requires a resource allocation from which to assign the 
necessary resources (processing time and power).  Once the job has been set 
up, the animator can specify which data stores the job should use for input 
and output, and subsequently start the job. 

5. Data Retrieval: Once the job has finished, the animator can retrieve results 
from the specified output data store(s), or enable access so their customer can 
do so.  

As indicated in figure 1, it is not necessary for the same person to carry out all 
these steps.  Each service provides methods that allow the primary user to enable 
access to a (fixed) subset of methods to a specified colleague or collaborator.  Thus, 
the supervisor in Figure 1 can enable their animator to initiate resource allocations 
charged to the account, and the animator can in turn enable their customer to have 



read access to the computational output.  This feature is implemented using dynami-
cally updatable access control lists, linked to management operations of the GRIA 
services through which the corresponding resources are accessed. The GRIA mid-
dleware was a convenient starting point for these experiments because (a) it already 
has a dynamic authorization mechanism, and (b) applications needed for KINO’s 
scenario are already available as GRIA services from the original GRIA project. 

4.2 Security Token Service 

A Security Token Service (STS) is a Web Service that issues security tokens as de-
fined by the WS-Trust specification. This service can be used when a security token 
is not in a format or syntax understandable by the recipient. The STS can exchange 
the token for another that is comprehensible in recipient domain. For example, if the 
user holds a Kerberos ticket asserting their identity, but the target service needs an 
X.509 certificate, the Kerberos ticket can be presented to an STS, which will issue the 
holder with an equivalent X.509 certificate asserting the same identity. 

The STS developed for this experiment was specifically focused on Kerberos-PKI 
interoperability, converting identity tokens only, but is architecturally open and able 
to handle attributes other than identity and other token formats such as SAML. Our 
STS implementation is based on a Kerberised Certification Authority (KCA), which 
issues short-lived user certificates based on the user’s Kerberos identity.  The KCA 
has its own certificate signing key, and a long-lived, self-signed CA certificate, which 
is not widely known.  A relying party must trust the KCA’s own certificate in order to 
verify user certificates issued by it.  Thus, the KCA does not directly address the 
problem of establishing trust between domains, but it does provide a good starting 
point for experiments involving identity mapping and trust federation between do-
mains including a translation between different authentication mechanisms. 

5 Experimental Design 

In the KINO application scenario described earlier, we assume that the KINO end 
users are authenticated via Kerberos, while the GRIA service provider requires X.509 
authentication. Other, more complex scenarios involving peer-to-peer interactions 
between Kerberos domains are also possible, but these are not explored in this paper. 
We used an STS that can be used to convert identity credentials between Kerberos 
and X.509 representations, and GRIA dynamic authorization to support dynamic 
extension of trust between the two users and the service provider through dynamic 
policy updates reflecting the new trust relationship.  The two KINO users will use 
these capabilities to perform the following tasks: 

 
1. The supervisor will open an account with a GRIA service provider, using a 

credit card to establish KINO’s creditworthiness.  To do this, the supervisor 
must present an X.509 certificate, which they get from the STS. 



2. The supervisor will enable access to the account for the animator, allowing 
him to charge work to the account.  To do this, the supervisor must specify 
the identity of the animator granted access to the account. 

3. The animator will then allocate resources and submit their rendering jobs.  To 
do this, the animator must present an X.509 certificate, which they get from 
the STS. 

4. The following day the animator will retrieve the rendered video and compose 
it with other sequences to create the finished commercial. 

5. Later the supervisor will receive a statement of jobs and charges to their 
credit card, giving the details of the user(s) who ran these jobs. 

 
For simplicity, we consider only a single service provider even though it is obvi-

ously possible to use the same approach with multiple service providers, at least in a 
B2B service grid like GRIA. We assume that the credit card used by the supervisor is 
acceptable to the service provider (up to some credit limit), and that the supervisor is 
willing to trust the animator to decide how much rendering computation is needed 
(within that limit) and to submit the jobs.  Thus, the three parties (supervisor, anima-
tor and service provider) are willing to trust each other sufficiently for the above 
scenario to be implemented. Our goals are therefore to conduct experiments to answer 
the following questions: 

1. How can the service provider translate business trust (in the creditworthiness 
of the KINO supervisor) into a trusted digital authentication mechanism 
based on KINO’s “self-signed” certification mechanism? 

2. How can the supervisor dynamically authorize the animator to use this trust 
relationship and access the service provider’s rendering service? 

3. How can the service provider be sure the animator is the person who the su-
pervisor intends should have access to his account? 

4. When the supervisor gets their statement, how can they recognize that the 
correct person has been running jobs on their account? 

 
Finally, in answering these questions, we also want to establish how these things 

can be achieved using current and proposed standards, and where (if at all) those 
standards cannot meet our needs. 

6 Review of Standards and Specifications 

6.1 WS-Trust 

WS-Trust [11] defines a protocol by which web services in different trust domains 
can exchange security tokens for use in the WS-Security header of SOAP messages. 
Clients use the WS-Trust protocols to obtain security tokens from Security Token 
Services. WS-Trust is highly relevant to the question of how to obtain an X.509 cer-
tificate for accessing a web service based on a Kerberos-authenticated identity – in-
deed this is a scenario commonly used to illustrate how WS-Trust works. 
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Fig. 2. WS-Trust example using Kerberos and X509 

In this example, a client presents a Kerberos ticket granting ticket (obtained when 
the user logged in to the Kerberos domain) to a ticket granting service, and gets back 
a Kerberos ticket for an X.509 security token signing service, from which it can ob-
tain a signed X.509 certificate for presentation (e.g. in the WS-Security header) to the 
target service. WS-Trust defines how the tokens are exchanged (steps 1 and 2 above).  
However, WS-Trust does not actually provide any mechanisms to manage trust be-
tween domains, and only describes token exchange between entities that already trust 
each other. 

6.2 WS-Federation 

WS-Federation [11] describes how to use WS-Trust, WS-Security and WS-Policy 
together to provide federation between security domains. It gives a number of scenar-
ios, starting with a simple example involving two domains, as shown in figure 3. 

In this scenario, a client from domain A authenticates itself to its own organisa-
tion’s Identity Provider (a type of security token service). To use the service in do-
main B, it needs a different token that will be trusted by that organization.  WS-
Federation describes the pattern of WS-Trust exchanges needed for this and many 
other scenarios. However, WS-Federation does not define any standard way to estab-
lish this trust relationship dynamically.  
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Fig. 3. Usage of WS-Federation between two security domains  

According to the specification: 
“The following topics are outside the scope of this document: 

1. Definition of message security or trust establishment/verification 
protocols...” 

 



Thus, trust relationships must already exist between the WS-Trust token services 
in a WS-Federation exchange, as indicated in Figure 3.  Although these two specifi-
cations describe the message exchanges needed, they do not solve the problem of 
dynamic trust and security federation. 

7 Architectural and standardization challenges 

The standards and specifications described above cover many aspects of building a 
secure grid spanning multiple security domains over a public network. However, they 
leave four major questions unanswered from a Grid architecture and standards per-
spective. 
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Fig. 4. Key architectural challenges 

Our experiments were designed to answer these questions, as indicated in figure 4: 
1. How can the security token service guarantee the identity or other attributes 

of users (the authentication problem)? 
2. How does the security token service know what tokens to issue to a user with 

a given set of home domain attributes (the mapping problem)? 
3. How can the web service validate tokens issued by the security token service 

(the trust problem)? 
4. How does the web service know how to interpret the security token issued 

tokens (the policy problem)? 
Some of these questions are unanswered because it is not clear how best to apply 

the available specifications, and some because the specifications explicitly avoid 
addressing the question. 

8 Approach 

In practice, the four questions highlighted above are clearly related.  For example, 
the access control policy used by the target web service specifies the attributes (to-
kens) required by a user in order to gain access to the service.  This policy in effect 
defines how the web service will interpret tokens presented to it.  The mapping used 
by the security token service to issue tokens to authenticated users must therefore be 
consistent with the access policy of the target web service. 

Thus the web service can only trust the security token service if the mapping used 
IS consistent with its access policy, AND it has a way to digitally verify that tokens 



claimed to have been issued by the security token service are genuine, AND the secu-
rity token service has accurate information about users when applying its mapping to 
decide what tokens it can issue. 

For example, suppose the web service policy is such that a user identified as good-
guy@kino.gr can access the service.  This implies that security token service will only 
issue a certificate in this name to a KINO user if they are supposed to be able to ac-
cess the service.  The mapping might be done as the followings: 

 
• supervisor → goodguy@kino.gr. 
• animator → goodguy@kino.gr. 
• cameraman → badboy@kino.gr. 

 
This is OK if the intention is that the supervisor and animator can access the ser-

vice but the cameraman cannot.  If we now want the cameraman to have access, we 
can: 

 
• change the internal identity authentication mechanism so the cameraman can 

authenticate themselves to the security token service as “animator” 
• change the security token service mapping so that a user authenticated as 

“cameraman” can get a certificate in the name of goodguy@kino.gr. 
• ask the web service provide to change their access policy so badboy@kino.gr 

can also have access to the service. 
 
This is why we decided to combine dynamic access control and trust (attribute) 

federation and mapping mechanisms and investigate them together. In dynamic secu-
rity these aspects must remain consistent, so treating them separately will neglect 
some possible scenarios, and may even be dangerous.  Conversely, using them to-
gether gives us more options to solve the trust and security federation problems. 

Clearly, relationships (1) and (3) in Figure 4 represent critical points in our inves-
tigation, since they are the points where one has to validate some action by a remote 
user.  The obvious solution is to co-locate two of the services so that one of these 
relationships operates within a single trust domain.  The normal approach is to co-
locate the security token service and the target web service, suggested by Figure 3.  
This makes it easy to define the meaning of tokens (in terms of the access rights asso-
ciated with them), and to digitally verify them at the target service. However, when 
users from a new domain wish to use the service, one must dynamically update the 
mapping used by the security token service (taking account of the attributes that 
might be presented by the new users), and create a new digital authentication path (1) 
between the new user domain and the security token service. Our approach was there-
fore to place the security token service in the same domain as the client, co-locating 
the security token service and the user authentication service.  This makes it easy to 
establish the authentication relationship (1) from figure 5 and it means the mapping 
used by the security token service only needs to handle user attributes from one do-
main.  (It also makes it easy to implement the security token service in a Kerberos 
domain).  Then instead of updating the mapping in the security token service, we can 
use the dynamic authorization mechanism from GRIA to allow trusted users on the 



client side to amend the access control policy (restricted to the resource they control) 
in terms of the X.509 security tokens issued by the STS. 
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Fig. 5. Dynamic authorization in GRIA 

There are still some practical problems to be solved, one of which is shown in Fig-
ure 5: to tell the web service (step 3) that a new user is to be authorized, we need to 
know what (mapped) token that user would have got from the security token service.  
We therefore need a second service for translating user attributes based on the same 
mapping.  Since the STS is a kinds of CA that issues X.509 identity certificates, the 
translation service must provide a way to look up the X.509 certificate that would be 
issued to a specified user.  Note that this second service does not sign a public key 
presented by the requester, as the requester would then be able to claim the attributes 
specified in the returned token.  The token simply allows the requesters to refer to 
another user’s identity in a way that can be recognized later by the target service. 

8.1 Dynamic authorization 

Dynamic authorization is only needed at the service provider, following the pattern 
of Figure 5. In our experiment, we relied on the existing GRIA process-based access 
control (PBAC) dynamic authorization system, but we did consider how this might be 
used in combination with more generic trust mapping facilities in future. One interest-
ing point is that the dynamic authorization functions are provided by methods of the 
target service (e.g. enableAccess, disableAccess on the account service, enableRead, 
enableWrite on the data service, etc).  This makes sense, because: 

 
• The access policy should refer to capabilities of the service, so dynamic update 

options available must also be related to capabilities of the service; and 
• Access to the dynamic update options should also be regulated by the same 

dynamic policy, so the full trust lifecycle can be supported in a single architec-
tural mechanism. 

 
It would be possible to provide a generic “dynamic authorization” WSDL port 

type, using a standard method for requesting more access policy amendments.  How-
ever, any user who was allowed to access this method would be able to request any 
policy amendment (not just enabling badboy@kino.gr to access their account).  One 
would then need a further, more complex authorization policy regulating what kinds 
of dynamic policy amendments could be requested by each user.  This “meta-policy” 



would be quite difficult to generate, since the “target” would be a constraint on some 
other (potentially arbitrary) policy update request. A more sensible arrangement is to 
retain the approach used in GRIA, as shown in Figure 6.   
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Fig. 6. Dynamic authorization infrastructure 

In this approach, the interfaces to the dynamic policy store (3) and (5) should only 
be accessible to the service provider, so it is not essential that they be standardised, 
though it would be advantageous for service implementation portability.  There are 
several candidate specifications for checking policy (3) including XACML [26], and 
IETF Generic AAA [14], but these do not explicitly address dynamic policy updating 
mechanisms. Obviously, when performing operations like enableAccess, the client 
must specify the scope of the policy change. In GRIA, this is done by sending a con-
text identifier specifying what is to be made accessible (e.g. an account code), as well 
as a reference token relating to the colleague or collaborator who should be added to 
the access control list for that context. This approach can also be applied to WSRF 
resources, and use SAML tokens or X.509 attribute certificates to indicating more 
general role-based policy updates, of course. 

8.2 Implementation and Technical validation 

A proof-of-concept implementation of this prototype has been provided for both: 
the client (Kerberos) side and server (X.509) side. The components that client side 
contains are: a GRIA client application and middleware, able to send authenticated 
requests to use GRIA services, A STS, that can supply signed X.509 identity tokens 
in response to GRIA client and a Public Key Certificate service that can supply X.509 
certificates (but not the private keys) for any user in the Kerberos domain. 

Having located all the trust (attribute) mapping technology on the client side (in-
side the client Kerberos domain), the only components we need on the server side is a 
set of GRIA services for managing accounts and resource allocations, and for trans-
ferring and processing data.  To validate the modified GRIA implementation, we ran 
tests between a prospective client in a Kerberos domain (at KTH) and a GRIA service 
provider established at IT Innovation.  A GRIA client application for rendering was 
released to KTH, and used to run rendering calculations at IT Innovation. 

The system worked exactly as expected. A user at KTH was unable to access the 
GRIA services initially, but they were able to apply for an account.  When the service 



administrator at IT Innovation approved the account, the service became capable of 
authenticating credentials issued by the STS inside the KTH domain.  The user at 
KTH was then able to use the account and delegate to colleagues authenticated in the 
same way, so they could allocate resources and run jobs. The main lessons learned in 
conducting these tests were as follows: 

Previously untrusted users can open accounts, and become trusted if the service 
provider’s checks show that the business risks are acceptable.  However, the service 
provider will then accept connections from other users that have X.509 credentials 
from the same source as the new user.  For example, if a school teacher opened an 
account using the school’s corporate credit card, their students would then be able to 
make connections to the GRIA service as well.  Only the original account holder 
would be added to the authorization policy of the service, so requests from the stu-
dents would be rejected unless explicitly authorized by the teacher.  However, in 
principle it would be better to impose some authorization checks at the transport layer 
as well as the service layer to reduce risks of attack by “malicious colleagues”. 

Trusted users cannot delegate access rights to users from a currently untrusted Ker-
beros domain.  It is clear that this could be supported by allowing a trusted user to 
specify a new token source as well as the attributes of their intended delegate.  The 
problem is that it would then be a remote (though trusted) user, rather than a service 
provider, who approved a decision to trust a new token source.  The new user’s rights 
would be tightly specified, but again there could be a risk of “malicious colleague” 
attack, so service providers may prefer not to delegate such decisions to customers. 

Adding the client’s STS certificate to the service provider’s trust store once busi-
ness trust is established provides for an efficient implementation.  One could use a 
call-back token authentication mechanism (as in Shibboleth [25]), but that adds an 
overhead to each subsequent call to the service by the newly trusted user.  Note that 
in a conventional X.509 configuration, a call-back would be needed to check the 
Certificate Revocation List for the remote user.  However, the STS issues short-lived 
tokens, so the risks associated with infrequent updates of the CRL are much lower 
than in a conventional PKI. The remote server has to be certified by a “well known” 
CA that the client already trusts, or else the client cannot risk passing any sensitive 
information to it.  In our test scenario, the supervisor passes a credit card number (or 
other evidence of creditworthiness) to the GRIA service, so he must be able to au-
thenticate it even if the service cannot at that stage authenticates him except through 
the validity of the card number.  Thus, it is necessary to hold a set of “well known” 
CA certificates in a trust store, while simultaneously updating the client’s key pair 
and associated certificate.  It is not normally appropriate to attempt to use simultane-
ous bi-directional trust propagation – at least not using the mechanisms tried here. 

9 Conclusion and future work 

Dynamic resource federation is an obvious requirement of next generation Grid ar-
chitecture, to address the need for short-term virtualization of business relationships 
to address transient opportunities and deliver short-term goals. Our studies have been 
based on a practical (if small scale) scenario from KINO, which is driven by a tran-



sient, short-term business need.  The main barrier to dynamic federation over short 
time scales in such scenarios is security. We have examined relevant standards and 
specifications including WS-Security, WS-Trust, WS-Federation, etc.  These can be 
used to federate security services, but do not directly address the dynamic extension 
of business trust relationships into the digital domain. 

Our analysis of specifications shows that dynamic trust federation and dynamic au-
thorization (access control) are intimately coupled aspects of dynamic security federa-
tion on the Grid.  The mechanisms used to federate trust (i.e. authenticate attributes 
and tokens) are quite different from those needed to enforce access control policies.  
However, both aspects must be consistent, and in a dynamic federation scenario, this 
means they need to be changed through some concerted procedure.  On the other 
hand, the fact that dynamic federation can be achieved through a combination of the 
two mechanisms offers a wider range of options for implementing federation mecha-
nisms. Our analysis suggests that trust (e.g. identity) mapping should normally be 
performed by the domain in which the identity (or other) attributes are assigned to 
users, while the consequences are defined in the target domain by using dynamic 
authorisation mechanisms to update the policy for the target service.  This is not the 
pattern traditionally seen in WS-Federation, but uses the same specifications. 

We developed an experimental Grid prototype based on trust mapping technology 
used by KTH (STS) and a Business-to-Business Grid middleware (GRIA) that in-
cludes dynamic authorization support. The experimental prototype shows that by 
combining trust federation and dynamic authorization, one can enable dynamic fed-
eration of resources based on a short-term, rapidly formed business relationship. 

The next step will be to formalize the architectural concepts used to achieve this as 
part of the NextGRID next generation Grid architecture. A more general reference 
implementation of these concepts is now being produced within the NextGRID pro-
ject, and will be made available to the community and incorporated in a future release 
of the GRIA middleware, and possibly other NextGRID compatible Grid middleware 
in future. 
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