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Abstract

A micromachined three-dimensional electrostatic actuator that is optimized
for aligning and tuning optical microcavities on atom chips is presented.
The design of the 3D actuator is outlined in detail, and its characteristics are
verified by analytical calculations and finite element modelling.
Furthermore, the fabrication process of the actuation device is described and
preliminary fabrication results are shown. The actuation in the chip plane
which is used for mirror positioning has a working envelope of 17.5 pm.
The design incorporates a unique locking mechanism which allows the
out-of-plane actuation that is used for cavity tuning to be carried out once
the in-plane actuation is completed. A maximum translation of 7 ym can be

achieved in the out-of-plane direction.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The study of cold neutral atom clouds that are confined
in microscopic traps has recently become a very active
field of research [1, 2]. The ability to confine and
manipulate atoms above micro-structured surfaces—known
as atom chips—holds great promise for integrated atom
optics and the realization of novel quantum devices such as
atom interferometers [3] and quantum information processors
[4]. Most atom chip experiments to date, including the
first Bose—Einstein condensate on a chip [5], have produced
the trapping fields with current-carrying wires.  These
structures are typically lithographically patterned and remain
fixed throughout the experiment. Being able to actuate
components on the atom chip would expand the range of
devices that can be integrated on an atom chip. One
specific example is the optical microcavity, which could make
the detection of single neutral atoms on a chip possible
[6]. Two key requirements of an optical cavity, alignment
and tunability, can be met if the cavity-mirrors can be
moved.
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In this paper we investigate the feasibility of incorporating
micro-opto-electro-mechanical systems (MOEMS) on atom
chips. We are particularly interested in constructing a
device based on electrostatic actuation which offers sufficient
control over the movement of a microfabricated mirror
to align an optical microcavity. Actuators based on
the physical principle of electrostatics have been widely
investigated in MEMS. Actuators operating in two and
three dimensions have been demonstrated and integrated
in applications such as STM/AFM [7], optical switching
devices [8, 9] or microgrippers [10]. The strongest advantage
over piezoelectric actuation is the large translation offered
by electrostatic actuation [11]. Comb drive structures are
commonly used for in-plane (xy) actuation because they are
easy to manufacture by applying deep reactive ion etching
techniques [12]. However, comb drives have also been
demonstrated for out-of-plane (z) actuation [13]. A small
number of electrostatic devices that allow actuation in all
three directions have been fabricated in the past [14—16]. Our
electrostatic xyz-actuator uses several comb drive structures
for the xy-actuation which allows a translation of 17.5 um
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Figure 1. Schematic representation of the atom chip.

with an accuracy in the sub-micron range and a parallel plate
configuration for the z-actuation with a maximum translation
of 7 um and an envisaged accuracy of a few nanometers. The
working envelope of the electrostatic xyz-actuator ensures
the required alignment and tunability of the optical cavity.
Further, a unique locking mechanism for the xy stage is
implemented.

This paper is organized as follows. In the following
section we present the general principles of our atom chip.
In section 3 we discuss the details of the actuator design based
calculations. In section 4 we show simulated results of the
movement. Section 5 deals with the fabrication issues of the
actuator. Finally, we conclude the paper in section 6.

2. System principles

The layout of the proposed atom chip is shown in figure 1. The
chip consists of high current-density gold wires that have been
micromachined on a silicon substrate [17]. The wires extend
further into a region on the atom chip (not shown in figure 1)
where the atom cloud is initially trapped and cooled by
standard methods (see, e.g., [2]). The atoms are then
guided along the wires into the structure which includes the
xyz-actuator. Here, the high-reflection coated tip of a single-
mode optical fibre is mounted between the atom guiding wires.
The fibre has two functions; the high reflection coated fibre
tip serves as a plane cavity mirror while the fibre itself is used
as the input and output port for laser light. A second mirror,
that is spherical [18], is fabricated on a platform which is then
attached to the xyz-actuator. This assembly is placed opposite
the plane mirror at a distance which leads to an optically stable
cavity. The alignment and tuning of the optical cavity becomes
possible using the actuator. Laser light that is coupled to the
optical cavity can then be used to characterize the trapped atom
cloud.

A cross section of the atom chip in figure 2 details
the three-dimensional actuation structure, with the optical
cavity and the optical fibre. Additionally the novel locking
mechanism of the xy-actuation is shown which offers improved
mechanical stability for the optical cavity tuning.
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Figure 2. Cross section of the multi-layered atom chip actuator.

3. Design of the xyz-actuator

A detailed diagram of the actuator is shown in figure 3. The
xy-plane actuation is accomplished by four individually driven
comb structures that are connected via four-beam elements to
a centre frame. The spherical cavity is embedded within the
centre frame in the serpentine spring suspended centre mass.
The movable element of each comb drive is suspended by
a double-folded spring suspension with a beam width w =
3 um and a length /; =200 um. The four-beam elements that
connect the comb drives to the centre frame structure have the
same width as the spring suspension, but their length is I, =
300 um. This choice of beam width and beam length gives
the system a low spring constant which is beneficial for the
translational range of the system.

The gap between the comb fingers is ¢ = 3 um with
a height 7 = 60 um. For a deflection in one direction the
translation function is given by [19]

SoNh

v? (1)
8 kiot, y

yv) =

where N is the number of movable combfingers, V'is the applied
voltage, & is the permittivity of air, and ki, is the total spring
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Figure 3. Three-dimensional actuator outlining the relevant design parts.
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Figure 4. Centre frame structure that encloses the z-actuator. The locking mechanism can be seen in the enlarged view where the silicon

oxide stubs (red) are clearly visible.

constant taken as the sum of the spring constant of the double-
folded spring in one comb drive and the spring constant of
two-beam elements (see figure 3). The motion accuracy of
the in-plane actuation is primarily defined by the operation
voltage. It is strongly dependent on the gradient of the first
derivation of the translation function (equation (1)) and is
given by
d d ( eoNh
8 ktol, y
where m is the gradient. Due to the quadric character of the
translation function, the accuracy is defined by the gradient
m of equation (2). However, the linear approximation of
equation (2) is only valid for small AV. Increasing the driving

> V2 =2mV )

voltage at 40 V of around 100 mV results in the motion of
5.3 nm at a deflection of 1.05 um. The voltage source used
for operation is able to provide a stabilized voltage of around
10 wV. Thus, the analytical resolution of the actuator is not
limited by the operation voltage, but rather constrained by
external noise such as vibration as well as Brownian noise and
intrinsic noise.

The locking mechanism of the in-plane actuator is based
on the electrostatic pull-in phenomenon that occurs between
the four-pillar structures in each corner of the centre frame
structure and the embedded counter electrodes on the glass
substrate. A three-dimensional drawing of the centre frame is
shown in figure 4. The dc pull-in voltage Vp; of a parallel plate
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electrostatic actuator can be calculated using the formula [20]

8k:80
Vpr = L 3
TV 2745 3)

where k, is the spring constant of the four-beam elements
connecting the centre frame structure with the comb drive
structures in the z-direction, g is the initial gap between the
two electrodes, ¢ is the free-space permittivity and A is the
area of the electrodes where the electrostatic force is applied.
Using the values k, = 16224 Nm™!, gg =2 um and A =
0.221 mm? in equation (3), we obtain Vp; = 140 V. At 140 V
the four-pillar structures, each with an electrode area of
235 pum by 235 pm, snap towards the bottom electrodes and
secure the centre frame structure to the glass substrate. This
locks the xy-actuation stage.

The system can be unlocked simply by switching off
the applied voltage. In order to avoid a discharge between the
two electrodes several silicon oxide stubs are processed on the
bottom surface of the silicon pillars facing the gold electrodes.
The principle is shown in the enlarged view of figure 4. The
stubs reduce the contact area between the electrodes which
allows the system to unlock without having the contact surfaces
sticking together. Applying the locking mechanism to the
xy-actuation is expected to reduce the impact of any external
vibration to the entire system, hence improving the stability of
the z-actuation.

The parallel-plate configuration that is used for the locking
mechanism is also used for z-actuation. With an actuation
beyond 1/3 of the initial gap spacing, the system becomes
unstable and the pull-in phenomenon becomes effective [21].
In the actuator, the initial gap spacing between the centre mass
that is suspended by four serpentine springs and the opposite
facing gold electrode on the glass substrate is 21 um (see
figure 4), which then means that the maximum actuation is
limited to 7 um. Using equation (3) with the values for k, =
0.65257 N m~!, go = 21 pum and A = 0.04 mm?, the
pull-in voltage for the z-actuation becomes Vp; = 71.12 V.
The characteristic of motion accuracy in the out-plane
actuation is equivalent to the in-plane actuation accuracy as
described above. Hence the same voltage source can be
used to tune the optical cavity in the z-direction within a few
nanometers.

4. Simulation

During the design evaluation, several simulations on the
actuation have been carried out by using finite element
modelling (FEM) software to verify the analytical calculations.
The results are shown in figure 5, where we plot the simulated
xy-translation curves of the comb drives. Translation curves
calculated using equations (1) and (3) have been included for
comparison. The translation curve for a deflection which is
produced by operating only one comb drive is outlined in blue,
while the combined operation of both comb drives is outlined
in green. Due to the symmetrical character of the device,
the deflection curves are the same in both directions in the
xy-plane. Translation curves for the z-actuation are also shown
in figure 5. The simulation yields a maximum deflection of
6.77 pum at the pull-in voltage of 69.73 V which is within 2%
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Figure 5. Translation curves of the actuation. The notation xy is
used here to indicate a combined drive along both axes.
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Figure 6. Simulation result of a translation of 8.75 ym in the
+y direction at 117 V.

of the analytical result. This translation range is sufficient
to tune the cavity over several fringes at a wavelength of
780 nm.

Simulation results confirm that for the design with
330 comb fingers for each comb drive, a maximum translation
of 8.75 um of the centre frame in one direction (measured
from the origin) can be achieved by applying 117 V to the
comb drive. A colour-coded representation of the simulation
in the +y direction is shown in figure 6.

For a combined translation, e.g. in the +x and +y direction
as shown in figure 7, the maximum simulated translation is
found to be 11.79 um. This is less than the vector sum of
12.37 pum of the analytically obtained result for the individual
drives. Since every comb drive pair is mechanically connected
by single beams to the centre mass, crosstalk between the
comb drives is expected and verified by the simulation results
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Figure 7. Simulated translation of the centre mass in the +y and
+x direction of 11.79 um at 117 V.

(cf figure 5—green graph). A comb drive pulling along the
x-axis affects the deflection of the comb drive that operates
along the y-axis. Although this crosstalk is not desired, it only
affects the system behaviour at large displacements and can be
disregarded for small translations (up to 4 um from the centre
point).

We estimate that the misalignment of the spherical mirror
during the fabrication process will be in the 4 to 5 um regime.
The predicted maximum actuation range is therefore sufficient
to compensate for the misalignment.

Successful detection and characterization of the trapped
atom cloud requires the cavity to be robust against external
perturbations.  Although the mechanical stability can be
improved by applying the locking mechanism, the centre
mass that is suspended by the four serpentine springs is
still susceptible to vibrations. Figures 8 and 9 represent the
simulated resonance frequencies of the centre mass suspended
by the four serpentine springs. Two resonant frequencies
in x, y, z both below 1 kHz have been identified— f,.s at
581 Hz and fires/fyres at 820 Hz. Only one resonant frequency
is found for x and y, because of the symmetrical design of the
z-actuation. The resonant mode values are within the expected
range. The mode values should be high enough to avoid any
inference with low frequencies, which are commonly present
in a laboratory environment.

5. Preliminary fabrication results

As shown in the cross section of figure 2 the atom chip consists
of several wafers. A patterned glass substrate (layer #1) is
anodically bonded to a structured silicon substrate (layer #2).
A second silicon substrate (layer #4) follows, including the
optical fibre and the micro-structured gold wires. Layers
#4 and #2 are bonded to a spacer glass wafer (layer #3).

Bl T =

Displacement [um]: 0 1.6 3.1 47 6.3

Figure 8. Resonance frequency f,s = 581 Hz (mode 1) in the
z-motion.

BT T 3

Displacement [um]: 0 16 3.1 47 6.3

Figure 9. Resonance frequency fyes/fyres = 820 Hz (mode 2) in the
x- and y-motion.

The fabrication process of the three-dimensional actuator is
illustrated in figure 10. Starting with the PECVD deposition
of a 1 wum thick silicon oxide layer on the back of a 380 um
silicon substrate (figure 10(a)), the spherical cavity is
processed on the front side of the substrate #1. After the
silicon oxide layer is masked and dry etched to obtain the
silicon oxide stubs, (figure 10()) a deep reactive ion etching
process is applied etching 320 pum deep into the silicon
substrate forming the rigid anchor posts and pillar structures
(figure 10(c)).

Next, a 500 wm glass substrate (substrate #2) is prepared
by wet etching one 21 um deep cavity and four 2 pum
deep cavities (figure 10(d)). On the bottom surface of the
cavities the metal electrodes are patterned from a layer of gold
evaporated onto the substrate surface (figure 10(e)). Finally
both substrates #1 and #2 are anodically bonded (figure 10(f))
and exposed to a second deep dry-etch of 60 um which releases
the actuation structure (figure 10(g)).

Due to the complexity of the three-dimensional actuator,
the fabrication process has been split up into two parts. First,
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Figure 10. Overview of the fabrication process of the three-dimensional actuator.
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Figure 11. Overview of the fabrication process of the
two-dimensional actuator.

the in-plane actuator that is used solely for the optical cavity
alignment is fabricated. A second fabrication process is
applied to add the out-of-plane actuation that is used for tuning
the optical cavity. Without any actuation in the z direction
the full fabrication process can be simplified as shown in
figure 11.

On the front of a 380 pm thick silicon substrate (substrate
#1 in figure 11(a)) a spherical cavity is processed [18]. Then,
a deep-dry etch of 320 um is applied to the back side of
this wafer, forming the rigid anchor posts of the xy-actuation
structure. After anodically bonding the silicon substrate #1
to the glass substrate #2 (figure 11(b)), a second 60 pum
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dry-etch from the front is carried out releasing the xy-actuator
(figure 11(c)). So far we have processed the xy-actuator.
Figure 12 shows SEM images after each processing step.
Figure 13 is a SEM image of the final xy-actuation structure.
At the moment the xy-actuation device is being prepared for
testing the actual translation that can be achieved. These
results can then be compared to our analytical and simulated
findings.

Since the surface of the 320 yum deep dry-etch forms the
bottom plane of the comb fingers, it is crucial for the design
evaluation that the bottom plane that is a part of the comb drives
is smooth. For example, a deformation around the suspension
of the rigid anchor posts results in an irregularity of the attached
suspension beams which makes the system less controllable
and less predictable. In order to rule out any conflict
between the design and the fabrication process, the surface
roughness in the 320 m etched surface plane was investigated.
Figure 14 shows an AFM measurement of the surface, which
is then used to determine the roughness of the 320 pum
deep surface. The RMS surface roughness was measured
to be 26 nm, which is well in agreement with the design
objectives.

Another important aspect of the actuation behaviour is the
comb finger structure in each individual comb drive. Initial
fabrication results reveal a discrepancy between the initial
design and the actual outcome of the microstructures after
processing. The gap g between the comb fingers is specified
in the design to be 3 um, but due to the undercut during the
release etch, a broadening occurs which results in a final gap
distance of around 3.5 um after processing. This inevitable
broadening effect is due to the actual machining process
that is used for deep reactive ion etching. The undercut is
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Figure 12. SEM images of the fabrication results after each processing step: (a) rigid anchor posts formed after the 1st etch, (b) anodic

bonding, (c¢) releasing the structure after the 2nd etch and (d) the comb drive fingers.
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Figure 14. AFM measurement on the 320 um etched surface.

Figure 13. SEM image of the final xy-actuator. The deflection y is inversely proportional to the gap

distance ¢ which means that the enlarged gap can be

specified by the manufacturer of the etching apparatus to be compensated either by increasing the driving voltage or by

a maximum of 250 nm. The undercut of the 3 um masked obtaining the same electrostatic force by adding more comb

resist layer on top of the comb fingers can clearly be seen in  fingers to each comb drive segment, see equation (1). In this
figure 15. way, the full working envelope can still be achieved.
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Figure 15. Broadening of the gap due to undercut during deep dry-etching.

6. Conclusions

A three-dimensional electrostatic actuator that can be
integrated on atom chips was presented. = The device
incorporates a unique locking mechanism securing the xy-
actuation stage at a pull-in voltage of Vp; = 140 V expecting
to enhance the mechanical stability of the optical cavity. The
electrostatic xyz-actuator uses several comb drive structures
for the xy-actuation allowing a translation of 17.5 um with
an accuracy in the sub-micron range and a parallel plate
configuration for the z-actuation with a maximum translation
of 7 um with an envisaged accuracy of a few nanometers. A
design and simulation evaluation was carried out on the three-
dimensional actuation device. Both analytical calculations
and simulation results of the actuation showed that sufficient
translation for alignment and tuning of a microcavity can be
achieved. The fabrication process of the device was outlined
and preliminary results of the fabrication process of the
Xy-actuator were presented.
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