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Abstract

In this paper we demonstrate that signal propagation across a laminar sheet of recurrent neurons is maximised when
two conditions are met. First, neurons must be in the so-called centre crossing configuration. Second, the network’s
topology and weights must be such that the network comprises strongly coupled nodes, yet lies within the weakly
coupled regime. We develop tools from linear stability analysis with which to describe this regime, and use them to
examine the apparent tension between the sensitivity and instability of centre crossing networks.
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1. Signal Propagation

Signal propagation is central to the control sys-
tems of all adaptive agents in that it is crucial for
the effective transduction of sensory input into mo-
tor output. Biological systems seem to achieve suc-
cessful signal propagation over extended networks
of neurons with relative ease (Carlson, 1991). Feed-
forward neural architectures have been employed to
investigate how signals propagate across networks
and can construct complex mappings between in-
put and output (Rumelhart and McClelland, 1986).
However, in general, biological neural networks are
recurrent, even in systems that have previously been
idealised as feed-forward in nature, e.g., the columns
within the visual cortex have recurrent connections
within and between layers (Carlson, 1991). Signal
propagation across such recurrent networks is likely
to be more complex than in feed-forward networks,
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where is taken for granted.

There has been a deal of speculation in neuro-
science concerning mechanisms that could promote
signal propagation across a sequence of neurons
(Twrrigiano, 1999). One set of ideas involves the
behaviour of nodes that tend to interact at the cen-
tre of their operating ranges. In general, networks
of such neurons are thought to be computation-
ally rich. More specifically, in this regime, nodes
are maximally sensitive to input, potentially fa-
cilitating more efficient signal propagation across
extended networks. Moreover, Turrigiano (1999)
describes how homeostatic processes (HPs) might
actively “keep neurons at the centre of their oper-
ating ranges” (Turrigiano, 1999).

Inspired by this work, Williams (2006) studied
how an abstraction of these HPs affected the abil-
ity of a continuous time recurrent neural network
(CTRNN) to propagate signals. In this work, HP
provided a simple feedback mechanism that altered
the gain and bias of a node such that its input tended
to lie at the centre of its transfer function. He hy-
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pothesized that networks composed of such nodes
would be better able propagate signals, because lo-
cal HP at the level of individual nodes would drive
networks into the most sensitive region of their dy-
namics.

Williams found that HP drove systems toward a
configuration that has been identified as significant
within the CTRNN literature. In this so-called “cen-
tre crossing configuration” all nodes in a CTRNN
interact at the centre of their sigmoid transfer func-
tions (Mathayomchan and Beer, 2002), a mathemat-
ical property that bears close resemblance to the
biological ideas highlighted by Turrigiano, amongst
others. Williams also demonstrated that signal prop-
agation was improved within such centre crossing
networks.

However, this signal propagation was impover-
ished within larger networks, and did not approach
the performance achieved by an equivalent feedfor-
ward architecture even for small networks (pers.
comm.). One possible reason for these results can be
induced from the original work on centre crossing
CTRNNs (Mathayomchan and Beer, 2002). Here,
it was demonstrated that the generation of rhyth-
mic patterns evolved more readily in such networks.
This is due to the fact that centre crossing networks
are likely to produce oscillatory dynamics. Such os-
cillatory behaviour is likely to corrupt the trans-
mission of signals across extended networks and ex-
plain why such networks would be outperformed by
feed-forward networks that do not exhibit such au-
tonomous oscillations.

There seems to be a tension between these two ac-
counts of the utility of centre crossing networks. On
the one hand, their sensitivity helps to prevent signal
loss while, on the other, they are prone to interfer-
ing reverberant activity. Here, we attempt to resolve
this conflict through the use of linear stability anal-
ysis and random matrix theory. We start by briefly
outlining the theoretical tools that we employ be-
fore applying them to a simple model of signal prop-
agation across a laminar CTRNN. First, we show
that the May-Wigner threshold on system stability,
originally derived for linear systems, constitutes a
bound on the stability of nonlinear CTRNNs. Then
we go on to demonstrate that signal propagation is
maximised just below the May-Wigner threshold for
a number of CTRNN topologies. We consider these
results in relation to “centre crossing ideas“ devel-
oped within research on both natural and artificial
neural networks.

2. Linear Stability Analysis

In this section, we show that it is possible to
obtain insights into the properties of an ensemble
of nonlinear systems using linear stability analysis
(LSA). Specifically, we claim that this type of anal-
ysis allows us to demarcate stable and unstable re-
gions in the CTRNN parameter space. We start by
demonstrating that the absolute strength of the cou-
pling around all CTRNN equilibria is bound by their
weights. We then present results that allow us to
describe a stable region in the parameter space of
linear networks with weights that are normally dis-
tributed. Finally, we combine these insights and ar-
gue that they allow us to numerically and analyti-
cally calculate a bound for the stability of CTRNNS.

2.1. Coupling in a CTRNN at Equilibrium

The CTRNN (Beer, 1995), or leaky integrator,
equation for NV nodes is given by
N
y; = —y; + tanh Zwijyj +0; + I; (1)

Jj=1

where y; represents activation at the i*" neuron,
w;j is the weight on the connection between neurons
i and j. The parameter 6; is the bias value at the ‘"
neuron. I; is the sensory input at node 7 at time t and
is assumed to be zero unless specified. Note: in this
work, for simplicity, we neglect the usual timescale
parameter 7;. Hence each CTRNN is fully parame-
terized by the set of weights and biases [, O)].

Analysis of the dynamics of these systems is dif-
ficult even in the two-node case, see Beer (1995).
However progress can be made by examining the dy-
namics around such a system’s equilibrium positions
(Strogatz, 1994). In general, an N-node CTRNN will
have multiple equilibria. Let us focus on the general
case denoted by y* = (y7,....,yx)- It is possible to
linearize this non-linear system around this equilib-
rium and study the dynamics infinitely close to it
as described by the Jacobian (Strogatz, 1994; Mur-
ray, 1989), a matrix of interaction strengths which
in this case is given by

wi{f —1... wf;’i,f
J = (2)
wje\fif . wf\f]{, -1

y*



where we have made the following substitutions

: d[tanh(U;)]
eff _
Wi o = Wij T (3)
and
N

j=1
The Jacobian now consists of a set of effective
weights (7)) that characterise a linear system
that can, nevertheless, be considered to approxi-
mate the dynamics of the original non-linear system
around its identified equilibrium, y*.

It can be shown that the stability of the system
around y* is completely determined by the eigen-
values of the Jacobian (Strogatz, 1994). Specifically,
a system is said be stable (i.e., it will quickly re-
turn after small perturbations) if all the real parts
of the eigenvalues of the Jacobian are negative. Con-
versely, it will be unstable (i.e., small perturbations
from equilibrium will diverge away) if any of the real
parts of the eigenvalues of the Jacobian are positive
(Strogatz, 1994).

The Jacobian for this system, and hence its sta-
bility, is dependent on y*, © and €2, see equation (3)
and (4). However, it is possible to determine an up-
per bound on the absolute values of the entries of
the Jacobian in terms of only the weight values, .
Specifically, the contribution of y* and © to the
Jacobian is constrained by the maximum value of
the first derivative of the transfer function (in this
case the hyperbolic tangent function). Now fig. 1
shows how a hyperbolic tangent function, and its
first derivative, sech? (z), vary with their arguments.
The latter reaches a maximum value of unity when
x = 0 and tends towards zero on either side.

We can therefore deduce that the maximum abso-
lute values of the effective weights will be achieved
when this function evaluates to unity in which case
they will be equal the original network weights, i.e.,

Maz|wi]T|] = |wiy| (5)

As such, the maximum possible absolute magnitude
of the coupling around any equilibrium in a non-
linear system with weights 2 is just equal to the
weights themselves. Variation in the equilibrium po-
sition y* and the biases ® may only reduce the cou-
pling from this value. Furthermore, it is centre cross-
ing networks that achieve this maximum possible
absolute coupling, since, for such networks, nodes in-
teract at the centre of their transfer functions, where
the derivative is maximal. We present a more de-

Fig. 1. The top panel shows a typical sigmoidal transfer func-
tion, here, the hyperbolic tangent. The bottom panel shows
its first derivative, in this case sech?(x). By definition, this
derivative reaches a maximum coincident with the maximum
gradient of the sigmoidal transfer function which, for any
canonical transfer function, will occur for z = 0.

tailed version of this argument elsewhere (Buckley,
2007).

2.2. The May-Wigner Threshold

In order to characterise general conditions for sta-
bility in CTRNNSs, we will make use of work origi-
nally carried out by Gardner and Ashby (1970) and
later formalised by May (1972). In a now classic
study, Gardner and Ashby (1970) investigated sta-
bility criteria for large complex systems in terms
of the effect of a network’s size, connectivity and
weight strength on its tendency to exhibit a stable
point attractor. Gardner and Ashby considered lin-
ear networks of the following form

N
Yi = —Yyi + Zwijyj (6)
=1

They employed a numerical method of determin-
ing stability in networks of varying size, N, and con-
nectivity, C. Non-diagonal entries of {2 were drawn
from a normal distribution with zero mean and vari-
ance, «. Note: all the self-weights (leading diagonal
entries) were set to w; = —1, but the results here
do not depend on this. Gardner and Ashby (1970)
found that the probability of network stability, p,
falls with increasing network size. Furthermore, it
was observed that networks have a high probabil-
ity of stability if either o or C are low, and that
this probability decreases with increasing C' or «
(see fig. 2, solid line).

Later, May (1972) was able formalize these find-
ings using analytical results from random matrix
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Fig. 2. Curves represent the impact of variance in a network’s weight strengths, «, on the probability of network stability for
three different classes of network, with the vertical line indicating the prediction made by the May-Wigner threshold. First
(solid line), probability of stability in linear networks comprising N = 100 nodes of the kind studied by Gardner and Ashby
(1970). Each network is connected according to a matrix populated with off-diagonal values drawn from a normal distribution,
and leading diagonal values w;; = —1. The probability of stability is determined by inspection of the numerically calculated
eigenvalues of the Jacobian. Second (circles), fully connected networks of 100 unbiased CTRNN nodes (i.e., var(©) = 0) with
connection weights specified by the same matrices. Third (squares), the same sample of CTRNNs with node biases drawn from
a normal distribution with zero mean and variance, var(©) = 4. The proportion of networks that do not exhibit oscillatory
behaviour is employed as a proxy for stability. Each data point is the average of 50 network realisations, and the error for all

data points is less than 2%.

theory (Wigner, 1959; Mehta, 1967). He was able
to derive a critical threshold below which any net-
work has a high probability of stability. Explicitly,
he stated that in the limit of large system size (N >
1) a system is almost certainly stable if

NCo? < 1 (7)

This result, generally referred to as the May-
Wigner stability theorem, corresponds well with
Gardner and Ashby’s original findings and still
holds as a very important threshold (Sinha and
Sinha, 2005): a system is almost certainly stable if
the variance of the weights conforms to the follow-
ing inequality

a < ayw =1/VNC (8)

Fig. 2 reconfirms the canonical result that the im-
pact of variance in a network’s weights on its prob-
ability of stability (as determined numerically for a
sample of networks) agrees well with the analytically
derived May-Wigner threshold. In order to make use
of this powerful result, we will need to consider how
it might be applied to the non-linear CTRNN.

2.3. The Stability of CTRNNs

Given the results of the last two sections, it is
now possible to determine general conditions for
the stability of CTRNNs with normally distributed
weights. We will achieve this by using linear anal-
ysis tools to consider their (non-linear) behaviour
around an arbitrary equilibrium, y*. Consider a
CTRNN with N nodes and k connections per node.
As before, each weight is drawn at random from a
normal distribution with zero mean and variance a.
However, here, the network biases, ©, are similarly
distributed normally with zero mean and variance
var(0©).

While the May-Wigner threshold applies directly
to systems of linear elements, the non-linear trans-
fer functions of a CTRNN require us to employ the
reasoning introduced in section 2.1. Since the abso-
lute values of the effective weights associated with a
particular equilibrium in a network’s dynamics can-
not be greater than that of their corresponding ac-
tual weights (wiejf F < wij;), and these weights are
normally distributed with zero mean, the variance



of the effective weights cannot be greater than that
of the actual weights (a®// < a2?). Hence, if the
variance of a network’s actual weights lies below the
May-Wigner threshold (o < o™W'), so will the vari-
ance of its effective weights (a®/f < o™"W).1 Con-
sequently, for any CTRNN where o < a™"W | each of
its equilibria will have a high probability of stability.

The network simulation results presented in fig. 2
are consistent with this line of reasoning, suggest-
ing that it is valid to co-opt these linear stability
results in order to characterise the onset of instabil-
ity in non-linear CTRNN systems. Here, networks
of 100 nodes with weights and biases distributed as
described above were forward integrated for 1000
time steps with a Euler step of 6t = 0.05. As an
indication of instability in these networks, oscilla-
tory behaviour is tested for by measuring the aver-
age deviation from the mean after a transient pe-
riod of 500 time steps. Both for cases where nodes
are unbiased (var(©) = 0, circles) and where bi-
ases vary (var(©) = 0, squares), no simulated net-
work below the May-Wigner threshold exhibits os-
cillatory behaviour. Clearly, networks may be unsta-
ble in other ways, but the fact that we see no oscil-
latory behaviour below the threshold can be taken
as reasonable evidence for the stability in that re-
gion. CTRNNSs in this stable region bounded by the
May-Wigner threshold can be considered to be ex-
amples of weakly coupled systems which are studied
throughout neuroscience and are considered to be
good models of the dynamics of networks of neurons
in many parts of the nervous system (Hoppensteadt
and Izhikevich, 1997).

3. Signal Propagation in a Recurrent Sheet
of CTRNN Nodes

Here we examine signal propagation across lami-
nar sheets of CTRNN nodes utilising the tools devel-
oped within the previous section. Each sheet consists
of N = 60 nodes arranged in a L x W = 15 x 4 rect-
angular array. The networks are connected accord-
ing to various topologies, see fig. 3. Each connection
within the network (i.e., the value of each entry in
the weight matrix, §2) is drawn from a normal distri-
bution with zero mean and variance «. Similarly, the
biases of the network are again drawn from a normal
distribution with zero mean and variance var(©).

1 There is a slight complication here, since the May-Wigner
threshold does not speak to weight distributions with non-
zero mean. See Buckley (2007).
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Fig. 3. A laminar sheet of N CTRNN nodes arranged in
an array with width, W, and length, L, is driven by a
square wave input signal at one corner node. The correla-
tion between this input signal and the output taken from
the diametrically opposed node is measured for three differ-
ent topologies: (a) a rectangular lattice, (b) the same lattice
randomly rewired such that every node is assigned k& = 4 in-
coming edges at random, but out degree is free to vary, (c)
a fully connected network.

All networks are forward integrated with an Euler
step of & = 0.05 . Note: this way of randomly con-
structing CTRNNs resembles the way in which an
initial population of neural networks is constructed
prior to some period of artificial evolution, see, e.g.,
Beer (2003).

A square wave signal is applied to the input node
i = 1. This comprises intervals of low stimulation,
I; = 0, for periods uniformly distributed over the
interval [50,400], and high stimulation, I; = 1,
with length uniformly distributed over the interval
[50, 200] time steps, see the top two panels of fig. 5.
We measure the correlation between the input sig-
nal and the output signal from the diametrically
opposite node, see fig. 3. Note: calculating correla-
tion involves scaling each signal by its variance and
is therefore insensitive to the absolute magnitude
of the signal. However, here we apply a small mag-
nitude noise signal to each node (~ 107°) at every
time step, which effectively masks any correlation
between the input and extremely small output sig-
nals. Finally, the phase delay between input and
output signal imposed by the shortest path length
separating the input node from the output node is
corrected for such that, for every measurement, the
correlation is maximised, see the top left panel of



fig. 5.

First we consider networks in which all bias values,
O, are set to zero. Note: this ensures that network
equilibria occur where all node activations are zero.
Furthermore, at such equilibria, all nodes interact
at the centre of their sigmoidal transfer functions.
Hence all such CTRNNs can be considered to be
very simple examples of centre crossing networks.

Fig. 5 shows typical traces of the input, output
and inter node activations for a lattice network (see
fig. 3a). The two left-hand panels depict the dynam-
ics of such a network parameterised to lie within
the weakly coupled region below the May-Wigner
threshold. The output signal closely maps the in-
put with some consistent delay, but the absolute
magnitudes of the node activations are very small,
since the signal is significantly attenuated as it tra-
verses the lattice. As a result, signal propagation
performance is critically dependent on the scale of
any noise within the system. For systems with small
weight values, the output signal is so small that
it is washed away by the internal noise injected at
each node. The two right-hand panels depict the dy-
namics associated with a lattice parameterised to
lie above the May-Wigner threshold. Networks in
this region exhibit high magnitude complex dynam-
ics unrelated to the input signal. In general the ab-
solute value of the propagated signal increases with
weight variance. Note the difference in scale on the
y-axes of the lower panels.

Fig. 4 shows how the correlation between input
and ouput, corr(Input/Output), varies with the
log of the variance of the weights, log;,(«) for the
three different network connection topologies given
in fig. 3. The left-hand panel presents results for
a lattice network (see fig. 3a), and shows that the
correlation between input and output rises and
then falls with the variance of the weights. More
specifically, there is an intermediate region where
the coupling between nodes is high enough to resist
signal attenuation, but low enough to avoid insta-
bility. This “sweet spot“ is located just below the
May-Wigner threshold.

The right-hand panel of fig. 4 presents results for
a rewired lattice (fig. 3b) and a fully connected net-
work (fig. 3b). For these topologies, the short path
length between input and output nodes ensures that
the signal attenuation problem suffered by the lat-
tice is not as significant. As a result, high correlation
between input and output can be achieved with low
weight variance. However, the figure confirms that
signal propagation still falls sharply above the May-

Wigner threshold for these networks, despite the po-
tential advantage conferred by their short minimum
path lengths.

Note that the different topologies of the rewired
lattice and fully connected network lead to differ-
ences between the results of both the numerically
predicted probability of stability and the position
of the analytically derived May-Wigner threshold.
This fall in performance is well predicted both by
the numerically calculated probability of stabillity
and the analytically calculated May-Wigner thresh-
old, further supporting the arguments made in sec-
tion 2. Specifically, as the weight variance exceeds
this threshold, reverberant oscillation and node sat-
uration associated with the unstable regime destruc-
tively interferes with the transmission of informa-
tion.

How do these results generalise to networks that
are not in a centre crossing configuration? Fig. 6
shows how the input/output correlation varies with
the log of the variance of the biases, log,0(var(0)),
for the three different network topologies. In each
case, the variance of the weights, «, is set according
to fig. 4 such that it maximises signal propagation for
unbiased networks. In all cases, increasing variance
damages signal propagation. Nominally, this result
is in line with Williams and Noble (2007).

Interestingly, effective signal propagation in both
the fully connected network and the rewired lattice
is more resistant to increasing variance in ©. This is
likely to stem from the involvement of fewer nodes
in the path along which the signal propagates. How-
ever, the key observation here is that departure from
centre crossing configurations does damage signal
propagation.

4. Discussion and Conclusion

Here we have suggested that not only is signal
propagation across CTRNNs, and recurrent net-
works in general, maximised when they are in a cen-
tre crossing configuration, but that they must also
lie within the weakly coupled regime bounded by
the May-Wigner threshold. More accurately, while
the May-Wigner threshold speaks to ensembles of
networks with normally distributed weights, a more
general stability criterion derived numerically via
linear stability analysis provides a similar bound
that can apply to networks in general. Furthermore,
signal propagation is robust to internal noise to the
extent that a networks nodes are strongly coupled.
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Fig. 4. The correlation between input and output signal, corr(Input/Output), versus the log of the variance of the weights,
logio(a) for rectangular laminar networks with length (L = 15) and width (W = 4) and all biases, ©, set to zero. The solid
line in the left-hand panel and the circles and squares in the right-hand panel show the correlation for a lattice network (see
fig. 3a), randomly rewired lattice network (see fig. 3b) and fully connected network (see fig. 3c), repsectively. The dot-dashed
lines are the respective numerically calculated probabilities of stability, and the vertical lines represent the analutically derived
May-Wigner thresholds. Each data point is calculated as the average if 50 network realisations with the error-bars in the
left-hand plot representative of standard deviations throughout.
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Fig. 5. Plots of network activity over time for the lattice network reported in figure 4 parameterised below the May-Wigner
threshold (left-hand panels) and above it (right-hand panels). The two top panels show the input signal and the scaled output
signal, solid and dashed lines respectively. The bottom two panels show a representative selection of the absolute activation
values for all nodes. Note the difference in scale of y-axes on the bottom pair of graphs. The delay between the input and
output signal is marked on the top-left panel.
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These two factors combine to ensure that a region
just below the May-Wigner threshold is optimal for
signal propagation in recurrent networks since it
combines stability with low signal attenuation.

While it was apparent that network topologies re-
sulting in short path lengths between input and out-
put nodes (e.g., fully connected networks) achieved
high performance in signal propagation, this perfor-
mance was also bounded by the same thresholds on
stability. In fact, since we are interested in signal
propagation as a proxy for signal transduction, a re-
quirement for the involvement of intermediate nodes
that can provide a substrate for successive compu-
tational operations is implied, ruling out short path
length as a solution to signal transduction in gen-
eral.

These results are founded on the confirmation
that the weak coupling region is well predicted by
both the numerical calculations of linear stability
analysis and also the analytical derivation of the
May-Wigner threshold. That linear tools such as
these can be used to make headway in understanding
a class of non-linear network is encouraging, since
there is real need to understand the dynamics of
CTRNNs. While some models employ bio-inspired
augmentation of CTRNN-style networks (Husbands
et al., 1998; Williams, 2004), there is an increas-

ing move in CTTRN research to treat them as ar-
bitrary dynamical systems. Indeed, this is founded
on the fact that they have been proven to be univer-
sal smooth function approximators (Funahashi and
Nakamura, 1993).

However, it is one thing to demonstrate that a
class of network is capable of arbitrary behaviour
in general, and another to characterise the type of
behaviour that such networks are liable, likely, or
suitable to exhibit. Consequently, one interesting
task is to characterise the parts of CTRNN parame-
ter space that readily enable adaptive behaviour. In
particular, how might particular bio-inspired mech-
anisms (e.g., homeostatic plasticity, neuromodula-
tory gases, etc.) be associated with regions within
this space that scaffold generic dynamics conducive
to certain tasks. The work presented here is intended
as a contribution towards answering this style of
question.

References

Beer, R. D., 1995. On the dynamics of small
continuous-time recurrent neural networks.
Adaptive Behavior 3 (4), 471-511.

Beer, R. D., 2003. The dynamics of active categorical
perception in an evolved model agent (with com-



mentary and response). Adaptive Behavior 4 (11),
209-243.

Buckley, C. L., 2007. A systemic analysis of the
ideas imminent in neuromodulation. Ph.D. the-
sis, Electronics & Computer Science, University
of Southampton.

Carlson, N. R., 1991. Physiology of Behaviour:
Fourth Edition. Allyn and Bacon.

Funahashi, K., Nakamura, Y., 1993. Approximation
of dynamical systems by continuous time recur-
rent neural networks. Neural Networks 6, 801—
806.

Gardner, M. R., Ashby, W. R., 1970. Connectance of
large dynamic (cybernetic) systems: Critical val-
ues for stability. Nature 228, 784-784.

Hoppensteadt, F. C., Izhikevich, E., 1997. Weakly
Connected Neural Networks. Springer-Verlag,
New-York.

Husbands, P., T. Smith, N. J., O’Shea, M., 1998.
Better living through chemistry: Evolving gasnets
for robot control. Connection Science 10, 185-210.

Mathayomchan, B., Beer, R. D.; 2002. Center-
crossing recurrent neural networks for the evolu-
tion of rhythmic behavior. Neural Computation
14, 2043-2051.

May, R. M., 1972. Will a large complex system be
stable. Nature 238, 413—414.

Mehta, M. L., 1967. Random Matrices. Academic
Press, New York.

Murray, J. D., 1989. Mathematical Biology.
Springer, Heidelberg.

Rumelhart, D. E., McClelland, J. L., 1986. Parallel
Distributed Processing: Explorations in the Mi-
crostructure of Cognition. MIT Press, Cambridge,
MA.

Sinha, S., Sinha, S., 2005. Evidence of universality
for the May-Wigner stability theorem for random
networks with local dynamics. Phy. Rev. Let. E
71, 1-4.

Strogatz, S. H., 1994. Nonlinear Dynamics & Chaos.
Addison-Wesley, Reading MA.

Turrigiano, G. G., 1999. Homeostatic plasticity in
neuronal networks: The more things change, the
more they stay the same. Trends in Neuroscience
22, 221-227.

Wigner, E. P., 1959. Gruppentheorie und Thre An-
wendung auf die Quantenmechanik der Atom-
spektren, trans. J. J. Griffin. Academic Press,
New York.

Williams, H., 2004. Homeostatic plasticity in recur-
rent neural networks. In: Schaal, S., Ijspeert, A.,
Billard, A., Vijayakumar, S., Hallam, J., Meyer,

J.-A. (Eds.), Eighth International Conference on
the Simulation of Adaptive Behavior. MIT Press,
Cambridge, MA, pp. 344-353.

Williams, H., Noble, J., 2007. Homeostatic plasticity
improves signal propagation in continuous time
recurrent neural networks. Biosystems 87 (2-3),
252-259.

Williams, H. P., 2006. Homeotstatic adaptive net-
works. Ph.D. thesis, Biosystems group, School of
Computing, The university of Leeds.



