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Abstract

We introduce the ‘No Panacea Theorem’ for classifier
combination in the two-classifier, two-class case. It states
that if the combination function is continuous and diverse,
there exists a situation in which the combination algorithm
will always give very bad performance. Thus, there is no
optimal algorithm, suitable in all situations. From this the-
orem, we see that the probability density functions (pdf’s)
play an important role in the performance of combination
algorithms, so studying the pdf’s becomes the first step in
finding a good algorithm.

1. Introduction

For almost any pattern recognition problem, there exist
many classifiers which provide potential solutions to it.
Combination of these classifiers may provide more accurate
recognition than any individual classifier. There is, how-
ever, little general agreement upon the underlying theory of
classifier combination apart from various results and ideas
scattered in the literature. A popular analysis of combi-
nation schemes is based on the well-know bias-variance
dilemma [1]. Tumer and Ghosh [4] showed that combining
classifiers using a linear combiner or order statistics com-
biner reduces the variance of the actual decision boundaries
around the optimum boundary. Kittler et al. [2] developed
a common theoretical framework for a class of combination
schemes and gave a possible reason why the sum rule
often outperforms the product rule. Notwithstanding these
theoretical studies, this paper describes some ‘pessimistic’
aspects of classifier combination. We prove that there is no
‘perfect’ combination algorithm suitable for all situations.
Such a property, which is called the 'no panacea’ principle
by Kuncheva [3], appears widely acknowledged, but no
strict mathematical proof exists for it.

The ‘No Panacea Theorem’ for classifier combination
can be regarded as a special case of the ‘No Free Lunch’

theorem. Wolpert and Macready [8] proved that no op-
timisation algorithm exists which is always better than
any other. In [7], Wolpert further extended the ‘No Free
Lunch’ idea to supervised learning and concluded that the
performance of any learning algorithm is the same when
averaging over all prior probability distributions, which is
very similar to the conclusion of this paper.

Another origin of our proof comes from the Chentsov
theorem [5] in statistics, which states that for any estima-
tor €,(A) of an unknown probability measure defined on
the Borel subsets A C (0,1), there exists a measure P
for which ¢;(A) does not provide uniform convergence.
Our method to construct the probability density functions
in Section 3 is very similar to the proof of this theorem.

2 Background

Suppose there are two classifiers, each assigning an
input X to one of two classes, wy and ws, as described by
two score functions f1(X) and f2(X). The decision rule of
the kth classifier (k = 1, 2) is:

X ewp
X € wy

if f,(X) >0
if fr(X) <0

We will use 27 and z2 to represent f1(X) and f2(X).
If the input data has a subscript, such as X;, we will
use x1; and xo; to represent f1(X;) and fo(X;). Based
on these definitions, every combination algorithm defines
a combination function F'(x1, z2), with the decision rule:

X €w ifF(.%‘l,xg) >0 (1)
X cwy if F(x1,20) <0

Decide {

Decide {

A combination function divides the domain of all points
{z1, z2} into two regions, denoted by D,,, and D,,,.
D, = {{z1, 22} F(x1,22) > 0}
Dy, = {{w1, 22} [F (21, 22) < 0}

Finally, we define the joint probability density functions
of x1, x5 given that the input data satisfy:
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P(lEl,fEQ‘X S wl)
P(l‘hl’g‘X S WQ)

pi(r1,22) =
p2(z1,22) =
According to our previous definitions, we can obtain the

classification error rate as a function of p; and po:

P(error) = P(wy)P(error|wy) + P(ws)P(errorjws) (2)

//p1($1,332)d$1d332
D->
//pg(xl,xg)dxldxg
D

Here P(w) and P(ws) are the prior probability that an
input data X belongs to w; and ws respectively.

In order to build the theorem, two assumptions for the
combination function need to be added.

where P(errorjw;) =

P(error|lwy) =

Assumption 1 [Continuous assumption]. The combina-
tion function F(x1,x2) is continuous with respect to x;
and xs. More specifically, for any point {19, %20}, and
forany € > 0, there is a 6 = §(€) > 0 such that

If /(21 — 210)2 + (w2 — 20)% < 8, then
|F(z1,22) — F(z10,720)| < €

A useful corollary can be deduced from the continuous
assumption which will be used in our proof of the ‘No
Panacea Theorem’.

Corollary 1 If F(x1,z2) is continuous, then for
any F(x19,x20) > 0 (or < 0), there exists an open
ball B (Xo,d) so that for every {z1,22} € B (Xy,0),
F(z1,z2) > 0 (or <0).

Here B (X, ¢) refers to the set of points {x1, 2} which
satisfies the following relationship.

\/(’Il — $10)2 -+ (IL‘Q — I20)2 <0

Assumption 2 [Diverse assumption]. The combination
function takes both positive and negative values. That is,

H 10, , Tow, }, such that F(x1,,, Tow,) > 0

H 1wy Tow, }, such that F(x14,, Taw,) < 0

This assumption is called diverse because it guarantees
the combination function makes diverse decisions.

3 Proof of the ‘No Panacea Theorem’

We first define the characteristics of the training data.
Given M + N training data pints, we assume the first M

points, X1, Xo,..., X, belong to w; and the follow-
ing N, Xary1, Xpr42y-- -, XN, to wo. Their scores
given by the two classifiers are represented as {211, z21},
{®12, 220}, - {Z1(m4 M) T2(vr4+-n) . Now we have the
following theorem.

Theorem 1 Given the M + N training points as de-
scribed above, if a combination function F(x1,x2) satisfies
the continuous and diverse assumptions, then there exist
two continuous probability density functions pi1(xy1,x2)
and po(x1,x9) such that for any given P > 0 and any
e € (0,1), the following two properties holds:

1. pi(x14,2:) > P,
p2(x1i, x2i) > P,

i=1,2,...,M
i=M+1,M+2,...,M+N

2. P(error), which is calculated by equation (2), is
greater than 1 — e.

For  this two-classifier, two-class problem,
every combination algorithm needs to generate a
combination function F'(x1,x3) based on the training
data Xq,Xo,...,Xnpyn. But, as can be seen from
equation (2), the performance of the combination algorithm
is not only associated with the function F'(z1, z2), but also
associated with the probability density functions p; (x1, z2)
and pa(z1,22). However, the pdf’s pi(z1,z2) and
p2(x1,22) can not be completely revealed by finite
training data, so for any combination algorithm, there may
exist some pdf’s which make the performance very bad.
Thus, properties (1) and (2) give criteria for how bad the
performance of the combination may be. Property (1)
states that there exist pdf’s which make the density on the
training data very high. Property (2) states that such pdf’s
also make the error rate very high. Generally, these two
properties indicates that for any combination algorithm
which satisfies the continuous and diverse assumptions,
there exist pdf’s which can very possibly generate the
training data, but the combination function trained by these
data may give very poor performance. The main idea of
our proof is to generate Gaussian mixture distributions
which have high density in the ‘wrong’ areas (where the
combination function gives incorrect classification).

Proof. Because F(x1,xz2) satisfies the diverse as-
sumption, there exist two points {x1,,,%2,, } € w1
and {Z14,,Tow,} € wo, so that F(x1,,,%2,,) > 0
and F(%14,,%2w,) < 0. Because F(z1,x2) is con-
tinuous, by Corollary (1), there exist é; and Jdo which
make B(X,,,01) C Dy and B(X,,,02) C D>.

Now we will prove that the following forms of p; and p2
satisfy these properties.
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M
pi(z1,22) = M+1€ t11(z1, 22) +

M
<1 — M + 16) tlg(l‘l,xg)

€> tor(x1, x2) +

1= )t 20)
N+1€ 22(T1, T2

Here ¢1; and tp; are mixture Gaussian distributions,
and t15 and 95 are Gaussian distributions.

N

p2($17I2) = (]\H—l

<Tr1*Tf1j)2+(T/2*w2j)2 }

{ 202
tulen ) = 37 2m2 Z '
(@1 =210y +(1271'2w2)2
1 - 202
tio(w1, 2) = 92 “2
nog,
1 1 M+N {_(zllej)2+51271‘2j)2}
tor(z1,20) = E € 272
N 2702
2 j=M+1
(T1—2107) +(5’32’1'2w1)2
1 - 202
ta(z1,22) = 972 “1
T,

o1, 02, 0, and o, are parameters to be decided. In the
following, we prove that when o;, 02, 0., and o, are
small enough, property (1) and (2) will hold.

We firstly prove that when o7 is small enough,
Py (z14,@9;) > Pfori=1,2,...,M:

121 (e —w0y)?
207

€
o (M + 1)o2

€

2n(M +1)o%

p1(T14, T2;) >

So if we choose:

€
2r(M 4+ 1)P
we will always have py (z1;, ©2;) > P. The same deduction
can be used to prove that if:

o1 < 3)

€
2n(N +1)P
then po(x14,@0;) > PG=M+1,M+2,...,
Thus, we have proved property (1).

For property (2), we will prove that when o,,, and o,
are small enough, both P(error|w;) and P(error|ws) are
greater than 1 — e.

= //pl(x17$2)d$1d1'2
D>
M
// <]. - M n 16) tlg(iﬂl,xg)dl‘ldﬂfg
Do

0'2<

“)
M + N).

P(error|wy)

v

Since B(X,,,d2) C D2, we have:
M
P(error|w;) > (1 BT 1e> X

// t12(z1, x2)dz1dzo
Xy ,02)

_ (1 M e) L

M+1 ) 2m02,

{ _ (21— 21049) %+ (w2 —w20,5)?
(&

-z }
270y d.’Eld.’bQ

B(sz 762)

For a Gaussian distribution with mean 0 and variance o,
we have the Chernoff bound [6] for the integral.

P-5<X <8 = / Ner A=) s
s V2o

> 1-ocd 5

Thus we can finally obtain:

— — { Ji }
P 1 € 1 2e 4oy
(CITOI"OJl) ( M ) ( )

So if we choose:

P

M4+1—(M+1)e

then P(error|w;) will be greater than 1 — e. Similarly, if:
01

N+1—(N+1)e

then P(errorjws) will be greater than 1 — e. If both
P(error|w;) and P(error|w;) are greater than 1 — €, from
equation (2), the total error rate P(error) is also greater
than 1 — €. Thus, we have proved property (2).

®)

Ow, <

Ow; <

(6)
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4 Example

Suppose we have four training data points, two of which
belong to w; and two belong to wy (i.e., M = 2and N =
2). The scores of the two data points from w; are given
as {x11,221} = {1,2} and {z12,220} = {2,1}; and
the scores of the two data points from w, are given as
{z13, 223} = {—1,—2} and {214,224} = {—2,—1}. We
assume that the combination function F'(x1, z2) follows the
simple sum rule:

X € wy
X € wy

ifxy +x9 >0

Decide { i 2y + 29 < 0

It is obvious that this rule is continuous and diverse. We
can choose the corresponding {z1.,, 2., } = {1,1}, and
{10y, T2w, } = {—1, —1}. For the sum rule, thereisa d; =
1 which makes B({1,1},d1) € D, and a d; = 1 which
makes B({—1,—1},d2) € D,. Finally, we choose ¢ = 0.1
and P = 2.

Egns. (3), (4), (5) and (6) yield o1 = 02 = 0.0515
and o,, = 0,, =0.2304. Figure 1 shows p;(z1,x2)
and py(z1, z2) obtained by setting o1, 02, 0,,, and o, as
above. Figure 1(a) shows that more than 90% (1 — ¢ =
0.9) of the probability that the input data belong to w; is
accumulated near the point {—1,—1}. At this point, the
sum rule gives an incorrect classification. It can also be seen
that high probability also exists near the training data {1, 2}
and {2, 1}, which indicates that in such a distribution, it is
very possible to have these training data, but impossible to
obtain correct classification by the sum rule.

It may be argued that such a ‘strange’ probability dis-
tribution, which is so biased in the ‘wrong’ areas and
near the training data, is not a distribution that nature
‘favours’. However, in situations which are not so extreme,
we can show that a given combination rule also can not
guarantee good performance. However, space precludes
further examples.

5 Conclusions

We have proved the ‘No Panacea Theorem’ for classifier
combination, which states that if the combination function
is continuous and diverse, there exists a situation in which
the combination algorithm will make very bad performance.
Thus, there is no optimal combination algorithm which is
suitable in any situation. Although the proof is based on the
two-classifier and two-class problem, it can be generated to
the case of multiple classifiers and multiple classes.

Our aim in presenting this theorem is not to criticise any
particular algorithms for combining classifiers, but rather
to point out the difficulties we might encounter in this
area. From this theorem, we see that a good combina-
tion algorithm is not only dependent on the combination

(®)

Figure 1. An example of the probability
density functions which give bad perfor-
mance for combination by the sum rule.

(@) pi(z1,22); (b) p2(z1,22)

function, but also on the probability density functions, so
studying the pdf’s becomes the first step in finding a good
combination algorithm.
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