
Efficient Haplotype Inference with Boolean Satisfiability

Inês Lynce
IST/INESC-ID

Technical University of Lisbon, Portugal
ines@sat.inesc-id.pt

João Marques-Silva
School of Electronics and Computer Science

University of Southampton, UK
jpms@ecs.soton.ac.uk

Abstract

One of the main topics of research in genomics is determin-
ing the relevance of mutations, described in haplotype data, as
causes of some genetic diseases. However, due to technolog-
ical limitations, genotype data rather than haplotype data is
usually obtained. The haplotype inference by pure parsimony
(HIPP) problem consists in inferring haplotypes from geno-
types s.t. the number of required haplotypes is minimum. Pre-
vious approaches to the HIPP problem have focused on inte-
ger programming models and branch-and-bound algorithms.
In contrast, this paper proposes the utilization of Boolean Sat-
isfiability (SAT). The proposed solution entails a SAT model,
a number of key pruning techniques, and an iterative algo-
rithm that enumerates the possible solution values for the tar-
get optimization problem. Experimental results, obtained on
a wide range of instances, demonstrate that the SAT-based
approach can be several orders of magnitude faster than ex-
isting solutions. Besides being more efficient, the SAT-based
approach is also the only capable of computing the solution
for a large number of instances.

Introduction
Over the last few years, an emphasis in human genomics has
been on identifying genetic variations among populations. A
comprehensive search for genetic influences on disease in-
volves examining all genetic differences in a large number
of affected individuals. This allows systematic testing of
common genetic variants for their role in disease. The next
high priority phase of human genomics will involve the de-
velopment of a full Haplotype Map of the human genome.
The HapMap Project (The International HapMap Consor-
tium 2003) represents a key effort to develop a public re-
source that will help researchers to find genes associated
with human disease. The achievement of this goal hinges
on the ability for efficiently inferring haplotypes from geno-
types.

There are two major approaches for solving the haplo-
type inference problem: combinatorial methods and statisti-
cal methods. Combinatorial methods often follow an opti-
mization criterion (see (Gusfield & Orzach 2005)), whereas
statistical methods usually follow a model of haplotype evo-
lution (e.g. see (Stephens, Smith, & Donelly 2001)).

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

A well-known combinatorial approach to the haplotype
inference problem is called Haplotype Inference by Pure
Parsimony (HIPP). This problem is is APX-hard (Lancia,
Pinotti, & Rizzi 2004) (and so NP-hard). The goal con-
cerns finding the minimum number of distinct haplotypes
for a given set of genotypes. Current approaches for solv-
ing the HIPP problem utilize Integer Linear Programming
(ILP) (Gusfield 2003; Brown & Harrower 2004; 2005a) and
branch and bound algorithms (Wang & Xu 2003). Observe
that SAT has not been used in the past in the context of the
HIPP problem, even though 2SAT has been used for solving
a restricted form of haplotype inference, under the perfect
phylogeny assumption (Halperin & Karp 2004).

The contribution of this paper is three-fold. First, we in-
troduce a plain SAT model for encoding the haplotype in-
ference by pure parsimony problem. Second, we introduce
search pruning techniques for making the initial model prac-
tical for solving existing problem instances. These tech-
niques include the elimination of symmetries by lexico-
graphic ordering, the computation of lower bounds and the
identification of structural properties of genotypes. Third,
we provide experimental results that demonstrate the effi-
ciency of the new approach.

Basic Definitions
The DNA is a double-stranded molecule held together by
weak bonds between base pairs of nucleotides. The posi-
tion of a specific nucleotide is called a site or locus. There
are four different types of nucleotides in DNA, which can be
distinguished by the bases they contain. These bases are ade-
nine (A), guanine (G), cytosine (C), and thymine (T). Base
pairs are formed only between A and T and between G and
C; thus the base sequence of each single strand can be de-
duced from that of the other strand in the DNA.

Replication is performed by first splitting the DNA dou-
ble strand, and afterwards recreating each one of the two
new strands with the corresponding bases. A mutation is an
imperfection in the replication process, leading to DNA se-
quence variations: a base is accidentally skipped, inserted,
or incorrectly copied. Once propagated to the next genera-
tion, a mutation may lead to variations within a population.

A Single Nucleotide Polymorphism or SNP is a DNA se-
quence variation, occurring when a single nucleotide is al-
tered. For example, a SNP might change the nucleotide se-

quence AAGCCTA to AAGCTTA. SNPs make up 90% of
all human genetic variations, and occur every 100 to 300
bases along the human genome. Variations in the DNA se-
quences of humans can affect how humans respond to dis-
eases and treatments.

A gene is an ordered sequence of nucleotides located in
a particular position that encodes a specific function. The
variants of a single gene are named alleles. Different alleles
give rise to differences in traits.

Different alleles may be explained in terms of SNPs. De-
pending on the number of possible alleles, a SNP site can
be biallelic (two different alleles) or multiallelic (more than
two different alleles). Almost always, there are only two
possible alleles for a SNP site among the individuals in a
population. In what follows we will only consider biallelic
SNPs.

A haplotype is the genetic constitution of a sequence of
nucleotides. The underlying data that forms a haplotype can
be the full DNA sequence in the region, or more commonly
the SNPs in that region. Diploid organisms pair homologous
sequences, and thus contain two haplotypes, one inherited
from each parent. The genotype describes the conflated data
of the two haplotypes. In other words, an explanation for
a genotype is a pair of haplotypes. If for a given site both
copies of the haplotype have the same value, then the geno-
type is said to be homozygous at that site; otherwise is said
to be heterozygous.

Haplotype Inference
Given a set G of n genotypes, each of length m, the hap-
lotype inference problem consists in finding a set H of
2 · n haplotypes (not necessarily distinct), such that for each
genotype gi ∈ G there is at least one pair of haplotypes
(hj , hk), with hj and hk ∈ H such that the pair (hj , hk)
explains gi. The variable n denotes the number of individu-
als in the sample, and m denotes the number of SNP sites. gi

denotes a specific genotype, with 1 ≤ i ≤ n. (Furthermore,
gij denotes a specific site j in genotype gi, with 1 ≤ j ≤ m.)

Without loss of generality, we may assume that the val-
ues of the two possible alleles of each SNP are always 0 or
1. Value 0 represents the wild type and value 1 represents
the mutant. A haplotype is then a string over the alphabet
{0,1}. Moreover, genotypes may be represented by extend-
ing the alphabet used for representing haplotypes to {0,1,2},
with homozygous sites being represented by values 0 or 1,
depending on whether both haplotypes have value 0 or 1 at
that site, respectively, and heterozygous sites being repre-
sented by value 2.

One of the approaches to the haplotype inference problem
is called Haplotype Inference by Pure Parsimony (HIPP).
A solution to this problem minimizes the total number of
distinct haplotypes used. The HIPP problem is APX-hard
(see (Gusfield 2003; Lancia, Pinotti, & Rizzi 2004) for
proofs and historical perspective). Experimental results pro-
vide support for this approach (Wang & Xu 2003): the num-
ber of haplotypes in a large population is typically very
small, although genotypes exhibit a great diversity. For ex-
ample, consider the set of genotypes: 2120, 2102, and 1221.

There are solutions for this example that use six distinct hap-
lotypes, but the solution 0100/1110, 0100/1101, 1011/1101
uses only four distinct haplotypes.

SAT-Based Haplotype Inference
The SAT-based formulation models whether there exists a
set H of distinct haplotypes, with r = |H| haplotypes, such
that each genotype gi ∈ G is explained by a pair of haplo-
types in H. The SAT-based algorithm considers increasing
sizes for H, from a lower bound lb to an upper bound ub.
Trivial lower and upper bounds are, respectively, 1 and 2 ·n.
The algorithm terminates for a size of H for which there
exist r = |H| haplotypes such that every genotype in G is
explained by a pair of haplotypes in H.

The Plain SAT Model
In what follows we assume n genotypes each with m sites.
The same indexes will be used throughout: i ranges over the
genotypes and j over the sites, with 1 ≤ i ≤ n and 1 ≤
j ≤ m. In addition, r candidate haplotypes are considered,
each with m sites. An additional index k is associated with
haplotypes, with 1 ≤ k ≤ r. As a result, hkj ∈ {0, 1}
denotes the jth site of haplotype k. Moreover, a haplotype
hk, is viewed as a m-bit word hk 1 . . . hk m. A valuation
v : {hk 1, . . . , hk m} → {0, 1} to the bits of hk is denoted
by hv

k.
For a given value of r, the model considers r haplotypes

and seeks to associate two haplotypes (which can possibly
represent the same haplotype) with each genotype gi. As a
result, for each genotype gi, the model uses selector vari-
ables for selecting which haplotypes are used for explaining
gi. Since the genotype is to be explained by two haplotypes,
the model uses two sets, a and b, of r selector variables, re-
spectively sa

ki and sb
ki. Hence, genotype gi is explained by

haplotypes hk1 and hk2 if sa
k1i = 1 and sb

k2i = 1. Clearly,
gi is also explained by the same haplotypes if sa

k2i = 1 and
sb

k1i = 1.
If a site gij of a genotype gi is 0 or 1, then this is the value

required at this site and is used by the model. If a site gij is
0, then the model requires, for k = 1, . . . , r:

(¬hkj ∨ ¬sa
ki) ∧ (¬hkj ∨ ¬sb

ki) (1)

Hence, if haplotype k is selected for explaining genotype i,
either by the a or b representatives, then the value of haplo-
type k at site j must be 0.

If a site gij is 1, then the model requires, for k = 1, . . . , r:

(hkj ∨ ¬sa
ki) ∧ (hkj ∨ ¬sb

ki) (2)

Hence, if haplotype k is selected for explaining genotype i,
either by the a or b representatives, then the value of haplo-
type k at site j must be 1.

Otherwise, if a site gij is 2, one requires that the haplo-
types explaining the genotype gi have opposing values at site
j. This is done by creating two variables, ga

ij , g
b
ij ∈ {0, 1},

such that ga
ij 6= gb

ij . In CNF, the model requires two clauses:

(ga
ij ∨ gb

ij) ∧ (¬ga
ij ∨ ¬gb

ij) (3)

As a result, for the case where a site gij is 2, then the
model requires, for k = 1, . . . , r:

(hkj ∨ ¬ga
ij ∨ ¬sa

ki) ∧ (¬hkj ∨ ga
ij ∨ ¬sa

ki) ∧
(hkj ∨ ¬gb

ij ∨ ¬sb
ki) ∧ (¬hkj ∨ gb

ij ∨ ¬sb
ki) (4)

Clearly, for each i, and for either a or b, it is necessary
that exactly one haplotype is used, and so exactly one selec-
tor variable be assigned value 1. This can be captured with
cardinality constraints:

(
r∑

k=1

sa
ki = 1

)
∧

(
r∑

k=1

sb
ki = 1

)
(5)

Since the proposed model is purely SAT-based, a simple al-
ternative solution is used, which requires the utilization of
additional variables va

ki and vb
ki. The alternative solution

consists of the CNF representation of a simplified adder cir-
cuit. We consider the case for the a variables; for the b vari-
ables the model is exactly the same. The va

ki variables are
defined as follows:

va
1i ↔ sa

1i
(¬va

ki ∨ ¬sa
ki)

va
k+1 i = (sa

ki ∨ va
ki)

va
ri = 1

(6)

Finally, and given that 1 ≤ i ≤ n, 1 ≤ j ≤ m and
1 ≤ k ≤ r, the number of variables and constraints in the
proposed SAT model is, respectively, O(rf m+rf n+n m)
and O(rf n m), where rf is the final value of r. Since
rf = O(n), the number of variables and constraints be-
comes, respectively, O(n m + n2) and O(n2 m), which is
also the number of variables and constraints in the model
proposed in (Brown & Harrower 2004). Nevertheless, our
experience is that rf is in general much smaller than n,
and so our model yields significantly more compact rep-
resentations than the models of (Brown & Harrower 2004;
2005a).

It is important to observe that the model proposed above is
not practical for most of the existing problem instances, even
with the most efficient SAT solvers. As a result, a number
of techniques has been developed with the goal of providing
significant search pruning.

Breaking Symmetries
A key technique for pruning the search space is motivated
by observing the existence of symmetry in the problem for-
mulation.

Consider two haplotypes hk1 and hk2 , and the selector
variables sa

k1i, sa
k2i, sb

k1i and sb
k2i. Furthermore, consider

Boolean valuations vx and vy to the sites of haplotypes hk1

and hk2 . Then, hvx

k1
and h

vy

k2
, with sa

k1is
a
k2is

b
k1is

b
k2i = 1001,

corresponds to h
vy

k1
and hvx

k2
, with sa

k1is
a
k2is

b
k1is

b
k2i = 0110,

and one of the assignments can be eliminated. To remedy
this, one possibility is to enforce an ordering of the valua-
tions to the haplotypes1. Hence, for any valuation v to the
problem variables we require hv

1 < hv
2 < . . . < hv

r .

1See for example (Frisch et al. 2002) for a survey on the uti-
lization of lexicographic orderings for symmetry breaking.

It is straightforward to enforce each sorting constraint in
linear size on the number of haplotypes and sites. This is
done by representing in CNF a Boolean comparator circuit
between hk and hk+1, with 1 ≤ k < r, and requiring hk <
hk+1.

Computing Lower Bounds
Lower bounds allow reducing the number of iterations of the
algorithm proposed in the previous section. Moreover, lower
bounds also allow reducing the size of the model described
in the previous sections.

Two genotypes, gi and gl, are declared incompatible iff
there exists a site for which the value of one genotype is 0
and the other is 1. For example, g1 = 012 is incompatible
with g2 = 112, whereas the genotypes g1 and g3 = 210 are
not incompatible. Clearly, for two incompatible genotypes,
gi and gl, the haplotypes that explain gi must be distinct from
the haplotypes that explain gl. Given the incompatibility re-
lation we can create an incompatibility graph I , where each
vertex is a genotype, and two vertexes have an edge iff they
are incompatible. Suppose I has a clique of size k, then the
number of required haplotypes is at least 2 · k − σ, where σ
is the number of genotypes in the clique which do not have
heterozygous sites. In order to find the largest lower bound,
our objective is to identify the maximum clique in I . Since
this problem is NP-hard, we settle with computing a maxi-
mal clique in the incompatibility graph. Currently, a greedy
procedure is used, which starts from the genotype with the
largest number of incompatible genotypes and at each step
adds genotypes incompatible with all genotypes included in
the clique. Given a lower bound lb, the algorithm described
in the previous section is only required to enumerate tenta-
tive sizes for the number of haplotypes between lb and 2 ·n.

Moreover, we note that the information regarding the
lower bound can be used for reducing the size of the model.
If a genotype gi is part of the clique and has at least one het-
erozygous site, then we can associate two dedicated haplo-
types with gi. If a genotype gi is part of the clique and all its
sites are homozygous, then we associate only one dedicated
haplotype with gi. In addition, when considering the can-
didate haplotypes for a genotype gl, which is incompatible
with genotype gi included in the clique, the haplotypes as-
sociated with gi need not be considered as candidates for gl.
This eliminates s variables and the corresponding clauses.

We conclude this section by noting that it is possible to
increase the lower bound obtained with a maximal clique.
Suppose a genotype gi, not part of the maximal clique,
which is heterozygous at site j, and further assume that all
other genotypes assume the same homozygous value (either
0 or 1) at site j. Then, it is straightforward to conclude that
explaining genotype gi requires one haplotype which cannot
be used to explain any of the other genotypes. Hence, gi can
be used to increase the lower bound by 1.

Identifying Structural Properties
One additional simplification consists of using the structural
properties of genotypes with the purpose of reducing the
search space. These simplifications have been used by oth-
ers (Brown & Harrower 2005b).

The first observation is that sets of genotypes often in-
clude duplicate genotypes. Clearly, in the presence of two
equal genotypes, one can be discarded, assuming the two
genotypes are explained identically. Hence, the solution for
the remaining genotype is also the solution for the discarded
genotype. Another observation is that duplicate sites can
be discarded, i.e. sites for which each genotype has equal
values. Finally, complemented sites can also be discarded,
where two sites are complemented iff the homozygous sites
have complemented values.

Experimental Results
The main goal of this section is to demonstrate that the
HIPP problem is effectively solved using our model and a
state-of-the art SAT solver. We have implemented the algo-
rithm described in the previous section using a Perl script
that encodes the problem to be given to the minisat SAT
solver (Eén & Sörensson 2003). Our solution is called
SHIPs (Sat-based Haplotype Inference by Pure Parsimony).

For evaluating SHIPs, as well as other available tools
for solving the HIPP problem, we have collected a sig-
nificant number of problem instances. Problem instances
may be obtained following two different approaches: gen-
erating problem instances or obtaining real problem in-
stances. Problem instances are typically generated using
Hudson’s program ms (Hudson 2002). This program gen-
erates haplotypes following a standard coalescent approach
in which the genealogy of the sample is first randomly gen-
erated and then mutations are randomly placed on the ge-
nealogy. Given the haplotypes, genotypes are generated
and given to a HIPP solver. In addition, the HapMap
project (http://www.hapmap.org/) provides a com-
prehensive source of genotype data over four populations.

Experiments performed by Gusfield (Gusfield 2003)
demonstrate that the HIPP approach is particularly accurate
on solving problems with moderate levels of recombination.
(Recombination occurs whenever a haplotype results from
the combination between the two haplotypes of a parent.)
For these problems, 80% to 95% of the inferred haplotypes
are correct. Moreover, an extensive experimental evaluation
presented in (Wang & Xu 2003) demonstrates that the HIPP
approach is competitive with other approaches, performing
different forms of haplotype inference (Stephens, Smith, &
Donelly 2001). Furthermore, the HIPP approach is compet-
itive in terms of accuracy, and significantly faster in terms of
performance.

For our experiments we have used three sets of bench-
marks. These benchmarks are obtained as follows:

1. Uniform: Given a set of haplotypes obtained by using
the ms program, remove repeated haplotypes. Randomly
pick any two haplotypes as an explanation for a genotype.

2. Non-uniform: Given a set of haplotypes obtained by us-
ing the ms program, pairs are obtained by randomly pair-
ing two haplotypes, which form a genotype. Repeated
haplotypes are not removed and so have a higher proba-
bility of being picked.

3. Hapmap: Genotype inputs obtained over all four
HapMap populations: Yoruba of Ibadan - Nigeria,

10−2

10−1

100

101

102

103

104

10−2 10−1 100 101 102 103 104

H
ap

ar

SHIPs

uniform
non-uniform

hapmap

Figure 1: Hapar vs SHIPs on uniform, non-uniform and
hapmap instances.

Japanese of Tokyo, Chinese of Beijing and US with north-
ern and western European ancestry. For each DNA se-
quence, a continuous collection of SNPs with a small
amount of recombination was selected.

Table 1 provides results for a set of 229 problem in-
stances, including uniform, non-uniform and hapmap in-
stances 2. The ms program has been used to generate uni-
form and non-uniform instances with 10, 30, 50, 75 and 100
sites. Uniform instances with 10 sites include different re-
combination levels: 0, 4 and 16. All the other instances have
recombination level 0. Moreover, instances with 10 and 30
sites have 50 genotypes, whereas instances with 50, 75 and
100 sites have only 30 genotypes. For the problems obtained
from the HapMap project, sequences of lengths 30, 50 and
75 were tested. The number of genotypes in these problems
range from 7 to 68 genotypes.

Table 1 compares the performance of RTIP (Gusfield
2003), Poly (Brown & Harrower 2004), Hybrid (Brown &
Harrower 2005a), Hapar (Wang & Xu 2003) and SHIPs on
solving these 229 problem instances. The first three solvers
were provided by D. Brown and I. Harrower and Hapar was
provided by its authors. For each solver is given the num-
ber of problems solved within 1000s using a 1.9 GHz AMD
Athlon XP with 1GB of RAM running RedHat Linux.

From Table 1 it is clear that Hapar and SHIPs are by far
the most effective solvers. All others abort on many more
problem instances. Moreover, SHIPs aborts 1 single in-
stance out of 229, in contrast with Hapar which aborts 39
out of 229.

Figure 1 compares the CPU time required by both Hapar
and SHIPs on solving each of the 229 problem instances.
(A log scale has been used.) Observe that for this plot the
limit CPU time was extended to 10000s. With the only ex-

2Instances provided by D. Brown and I. Harrower.

Table 1: Results for RTIP, Poly and Hybrid, Hapar and SHIPs.

Benchmarks Sites Recomb Genotypes RTIP Poly Hybrid Hapar SHIPs
Uniform 10 – 50 15/15 15/15 15/15 15/15 15/15

10 4 50 15/15 14/15 14/15 15/15 15/15
10 16 50 15/15 6/15 6/15 15/15 15/15
30 – 50 6/15 4/15 3/15 15/15 15/15
50 – 30 0/50 12/50 13/50 50/50 50/50
75 – 30 0/10 2/10 2/10 8/10 10/10

100 – 30 0/10 0/10 1/10 9/10 10/10
Non-Uniform 10 – 50 15/15 14/15 14/15 15/15 15/15

30 – 50 11/15 1/15 2/15 15/15 15/15
50 – 30 3/15 0/15 1/15 12/15 15/15
75 – 30 2/15 0/15 0/15 4/15 15/15

100 – 30 1/15 0/15 0/15 4/15 15/15
Hapmap 30:75 – 7:68 0/24 12/24 12/24 13/24 23/24
TOTAL 10:100 0:16 7:68 83/229 80/229 83/229 190/229 228/229

ception of a hapmap problem instance for which both SHIPs
and Hapar abort, each of the problem instances was solved
by SHIPs in less than 30s. Although within 10000s Hapar
aborted on 20 instances, around 80% of the instances were
solved in less than 100s. Moreover, and besides trivial in-
stances (for which both SHIPs and Hapar take less than 1s),
SHIPs is in general faster than Hapar by 1 to 4 orders of
magnitude.

In order to further compare the performance of SHIPs and
Hapar, we have performed experiments on more 175 hard
problem instances. Some of the instances were also pro-
vided by Brown and Harrower: 70 uniform instances with
50 genotypes each (15 instances with 10 sites and recombi-
nation level 40, 3 × 15 instances with 30 sites and recombi-
nation levels 4, 16 and 40 and 10 instances with 50 sites) and
15 non-uniform instances (with 50 sites and 50 genotypes).
Furthermore, we have generated more 3 × 15 uniform and
3 × 15 non-uniform problem instances with 75 sites and 50
genotypes, 100 sites and 50 genotypes, and 100 sites and
100 genotypes.

Figure 2 provides a plot comparing the CPU time required
by Hapar and SHIPs for solving each of the additional 175
problem instances within 10000s. This comparison between
Hapar and SHIPs clearly demonstrates the supremacy of the
new SAT-based approach. Similarly to the previous results,
and besides trivial instances, SHIPs is in general between 2
and 4 orders of magnitude faster than Hapar. In addition,
SHIPs aborted only 2 problem instances out of 175 (∼ 1%),
while Hapar aborted 79 problem instances (∼ 45%), includ-
ing most of the non-uniform instances.

Related Work
Over the last few years, a number of authors have pro-
posed solutions for the HIPP problem (Gusfield & Orzach
2005). With a few notable exceptions (Wang & Xu 2003),
the majority of the proposed solutions are based on Integer
Linear Programming (ILP) (Gusfield 2003; Brown & Har-
rower 2004; 2005a). The original ILP model, RTIP, has
linear space complexity on the number of possible haplo-

10−2

10−1

100

101

102

103

104

10−2 10−1 100 101 102 103 104

H
ap

ar

SHIPs

uniform
non-uniform

Figure 2: Hapar vs SHIPs on additional uniform and non-
uniform instances.

types (Gusfield 2003), and so exponential on the number of
given genotypes. A Boolean variable yr is associated with
each pair of haplotypes that can explain a given genotype
gi, and denotes whether these pair of haplotypes is used
for explaining gi. A cardinality constraint requires that ex-
actly one pair of haplotypes must be used for explaining
each genotype, among all pairs that can explain the geno-
type. Each candidate haplotype is associated with a dedi-
cated variable xs, which denotes whether the haplotype is
used. The utilization of a specific pair of haplotypes for ex-
plaining a genotype implies the respective xs variable. The
cost function consists of minimizing the number of xs vari-
ables assigned value 1. Techniques for eliminating irrelevant
pairs of haplotypes have been developed (Gusfield 2003).
In (Wang & Xu 2003), the RTIP model was adapted to a

branch and bound algorithm, Hapar. In addition, key reduc-
tions on the size of the model are achieved by identifying
haplotypes that may only explain one or two genotypes. A
more recent ILP model, Poly, is polynomial in the number
of sites and population size (Brown & Harrower 2004), with
a number of constraints in Θ(n2m). More recently, (Brown
& Harrower 2005a) introduced a new polynomial-size for-
mulation, Hybrid, consisting of a hybrid of the two ILP for-
mulations above.

Conclusions and Future Work
This paper proposes SHIPs, the first SAT-based approach for
the problem of inferring haplotypes under the pure parsi-
mony criterion.

The results presented in the paper are conclusive. The
SHIPs approach is much more efficient than all existing
combinatorial approaches, either based on integer linear pro-
gramming or on dedicated branch-and-bound solutions. Be-
sides being in general several orders of magnitude faster than
the previous best existing solution (i.e. Hapar) for non-trivial
instances, SHIPs is also capable of solving a large number
of instances that no other approach is capable of.

Despite SHIPs being extremely efficient on existing prob-
lem instances, and even on significantly more complex prob-
lem instances specifically generated for this paper, several
challenges still remain. The practical utilization of SHIPs
on significantly larger real-world instances will create hard
problem instances, which current SAT solver technology
may be unable to tackle. Expected improvements include
the development of additional pruning techniques, more so-
phisticated lower bounding, and a more optimized encoding
into SAT.

Acknowledgments
The authors are very grateful to Arlindo Oliveira for hav-
ing pointed out the HIPP problem. This work is partially
supported by Fundação para a Ciência e Tecnologia under
research project POSC/EIA/61852/2004.

References
Brown, D., and Harrower, I. 2004. A new integer pro-
gramming formulation for the pure parsimony problem in
haplotype analysis. In Proceedings of the 4th Workshop on
Algorithms in Bioinformatics (WABI’04).

Brown, D., and Harrower, I. 2005a. A new formulation for
haplotype inference by pure parsimony. Technical Report
CS-2005-03, University of Waterloo, School of Computer
Science.

Brown, D., and Harrower, I. 2005b. Personal communica-
tion.

Eén, N., and Sörensson, N. 2003. An extensible sat-
solver. In Proceedings of the 6th International Confer-
ence on Theory and Applications of Satisfiability Testing
(SAT’03), 502–518.

Frisch, A.; Hnich, B.; Kiziltan, Z.; Miguel, I.; and Walsh,
T. 2002. Global constraints for lexicographic orderings. In

Proceedings of the 8th International Conference on Prin-
ciples and Practice of Constraint Programming (CP’02).
Gusfield, D., and Orzach, S. 2005. Handbook on Com-
putational Molecular Biology, volume 9 of Chapman and
Hall/CRC Computer and Information Science Series. CRC
Press. chapter Haplotype Inference.
Gusfield, D. 2003. Haplotype inference by pure parsimony.
In Proceedings of the 14th Annual Symposium on Combi-
natorial Pattern Matching (CPM’03), 144–155.
Halperin, E., and Karp, R. M. 2004. Perfect phylogeny and
haplotype assignment. In Proceedings of the 8th Annual
International Conference on Computational Molecular Bi-
ology (RECOMB’04), 10–19.
Hudson, R. R. 2002. Generating samples under a wright-
fisher neutral model of genetic variation. Bioinformatics
18(2):337–338.
Lancia, G.; Pinotti, C. M.; and Rizzi, R. 2004. Haplo-
typing populations by pure parsimony: complexity of ex-
act and approximation algorithms. INFORMS Journal on
Computing 16(4):348–359.
Stephens, M.; Smith, N.; and Donelly, P. 2001. A new
statistical method for haplotype reconstruction. American
Journal of Human Genetics 68:978–989.
The International HapMap Consortium. 2003. The inter-
national hapmap project. Nature 426:789–796.
Wang, L., and Xu, Y. 2003. Haplotype inference by maxi-
mum parsimony. Bioinformatics 19(14):1773–1780.

