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Abstract

This thesis considers the problem of complete coverage of unknown environments by a mobile
robot. The goal of such navigation is for the robot to visit all reachable surfaces in an envi-
ronment. The task of achieving complete coverage in unknown environments can be broken
down into two smaller sub-tasks. The first is the construction of a spatial representation of the
environment with information gathered by the robot’s sensors. The second is the use of the
constructed model to plan complete coverage paths.

A topological map is used for planning coverage paths in this thesis. The landmarks in the
map are large scale features that occur naturally in the environment. Due to the qualitative
nature of topological maps, it is rathefffttult to store information about what area the robot
has covered. This fliculty in storing coverage information is overcome by embedding a cell
decomposition, calleslice decompositigrwithin the map. This is achieved using landmarks in

the topological map as cell boundaries in slice decomposition. Slice decomposition is a new cell
decomposition method which uses the landmarks in the topological map as its cell boundaries. It
decomposes a given environment into non-overlapping cells, where each cell can be covered by
a robot following a zigzag pattern. A new coverage path planning algorithm, ¢ajpetbgical
coverage algorithmis developed to generate paths from the incomplete topologicakitap
decomposition, thus allowing simultaneous exploration and coverage of the environment.

The need for dferent cell decompositions for coverage navigation was first recognised by
Choset. Trapezoidal decomposition, commonly used in point-to-point path planning, creates
cells that are unnecessarily small andfiiogent for coverage. This is because trapezoidal de-
composition aims to create only convex cells. Thus, Choset proposed boustrophedon decompo-
sition. It introduced ideas on how to create larger cells that can be covered by a zigzag, which
may not necessarily be convex. However, this work is conceptual and lacking in implementa-
tion details, especially for online creation in unknown environments. It was later followed by
Morse decomposition, which addressed issues on implementation such as planning with par-
tial representation and cell boundary detection with range sensors. The work in this thesis was
developed concurrently with Morse decomposition.
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Similar to Morse decomposition, slice decomposition also uses the concepts introduced by
boustrophedon decomposition. The maiffatence between Morse decomposition and slice
decomposition is in the choice of cell boundaries. Morse decomposition uses surface gradients.
As obstacles parallel to the sweep line are ndiedentiable, rectilinear environments cannot

be handled by Morse decomposition. Also, wall following on all side boundaries of a cell is
needed to discover connected adjacent cells. Therefore, a rectangular coverage pattern is used
instead of a zigzag. In comparison, slice decomposition uses topology changes and range sensor
thresholding as cell boundaries. Due to the use of simpler landmarks, slice decompaosition can
handle a larger variety of environments, including ones with polygonal, elliptical and rectilin-
ear obstacles. Also, cell boundaries can be detected from all sides of a robot, allowing a zigzag
pattern to be used. As a result, the coverage path generated is shorter. This is because a zigzag
does not have any retracing, unlike the rectangular pattern.

The topological coverage algorithm was implemented and tested in both simulation and with
a real robot. Simulation tests proved the correctness of the algorithm; while real robot tests
demonstrated its feasibility under inexact conditions with noisy sensors and actuators.

To evaluate experimental results quantitatively, two performance metrics were developed. While
there are metrics that measure the performance of coverage experiments in simulation, there are
no satisfactory ones for real robot tests. This thesis introduced techniques to mé&stinee

ness and féiciency of real robot coverage experiments using computer vision techniques. The
two metrics were then applied to results from both simulated and real robot experiments. In
simulation tests, 100% coverage was achieved for all experiments, with an average path length
of 1.08. In real robot tests, the average coverage and path length attained were 91.2% and 1.22
respectively.
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New ideas pass through three periods: 1. It can’t be done. 2. It probably
can be done, but it’s not worth doing. 3. I knew it was a good idea all

along!

Arthur C. Clarke

Introduction

1.1 Overview of problem domain

recent survey released by the UN Economic Commission for Europe [1, 41] reported

that robot orders for the first half of 2003 were the highest ever recorded. The survey

also predicts the worldwide growth rate of the robotic industry will average at 7.4%
annually for the period 2003 to 2006. Also, by the end of 2006, a tenfold increase in domestic
service robots is predicted. These statistics and predictions show that robots have moved out
of science fiction and into everyday life. Nowadays, it is already common to find industrial
robots working in hazardous environments or space rovers surveying Mars. In the foreseeable
future, domestic and service robots may also become a common sight. Examples include do-
mestic robots mowing lawns and vacuuming floors autonomously, or professional service robots
assisting in surgeries and surveillance.

To be useful, a robot has to be skilled in the specific task it is designed for. For example, a
lawnmowing robot needs to know how to operate the grass cutting tool it carries; or a rubbish
collecting robot needs to know how to pick up soft drink cans and cigarette butts. However,
these robots should also be equipped with more general abilities such as obstacle avoidance,
map building, path planning and localisation. These abilities enable a robot to move around its
environment to do its jobf&ciently and with minimum human intervention.

1
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One such general ability that is very important to all autonomous robots is path planning. Path
planning in robotics is thatelligenceof finding a path in a map that leads from a start config-
uration to a goal configuration. This area of artificial intelligence has received a great deal of
attention in the robotics research literature [66, 76, 85, 91]. Path planning is an essential com-
ponent of robot manipulator controllers, as it is the the basis for describing and controlling the
manipulator tip [42, 54]. It is also important for mobile robots, as it is the basis for describing
and controlling the varying robot positions in space [46, 98].

Most path planning algorithms are for point-to-point path planning. This type of algorithm
usually attempts to find the shortest or quickest path to get from one point to another. Though
sometimes criteria other than path lengths are used [71]. However, in some applications, a
coveragepath is needed instead. The aim of a coverage path planner is to create a path that
covers all surfaces in an environment. In other words, given an initial location, it does not
matter where the final location is, as long as the journey visits all surfaces in the environment.
Examples of robotic tasks that require a coverage path are cleaning [38], surface coating [86,
87], humanitarian demining [69] and foraging.

Coverage path planning is similar to exploration, but not the same. When exploring, a robot
sweeps its long range sensors, moving so as to sense all of its environment, often to build a
map. In a coverage application, the robot or a tool it carries pass overll the floor surface.

Compared to point-to-point path planning, the coverage path planning problem has not received
as much attention. However, as robots move into service roles and interact with humans in
more varied environments for a wider range of tasks, coverage will become more important.
The ability to fully cover an environment will be a key capability for all mobile systems. For
example, domestic robot assistants can spend their idle time cleaning, collecting items and
storing them away.

Apart from generating dierent types of output, path planners alsfietiin their formats of

input (the map). As path planning is essentially a search on a map of the environment, the data
structure used to store this map naturally influences the operations of path planning algorithms.
Also, depending on the application domain, the environment the robot operates in maybe known
or unknown beforehand. If a map is created by a human operator and fed to the path planner,
the environment iknownto the robot. If no map is provided, the environmentirsknown

and the robot has to construct a map for path planning using sensor information. There are two
distinct ways to handle this situation. The first method is to carry out an exploration phase to
construct an accurate map [95, 107] before any path planning is done. The alternative is to make
assumptions concerning the unknown areas in the map in order to commence path planning, and
then update the planned path whenever new environmental information becomes available [58].
In other words, path planning is done opartial mapof the environment.
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1.2 Applications of coverage path planning

Coverage path planning is needed in a variety of mobile robot applications. The focus of this
thesis is on the coverage of flat, indoor, unknown surfaces populated with obstacles. It is also
assumed that the robot has to stay within the region. Typical applications that fit these criteria
are vacuum cleaning and floor scrubbing.

Lawn mowing is very similar, but the restriction on staying within bounds is relaxed. For
example, it is perfectly acceptable to push the lawn mower over the footpath while cutting grass
on the kerb. Compared to a typical home dfice, the average lawn is relatively free from
obstacles. Also, being an outdoor application, global positioning systems can be used to aid
localisation and landmark matching.

Intuitively, humanitarian demining should also allow the robot to stray outside the area to be
covered. However, since it is unknown whether the region outside is free of landmines, it is safer
and smarter to restrict movement within bounds of the environment. Also, due to the dangers of
the mines, the robot should not move into surfaces not scanned by the landmine detection tool
yet. Therefore, localisation must be very accurate. Otherwise, due to dead reél@anamgthe

robot might move into an area it believes to be covered, but is not in reality.

In window cleaning the target surface is vertical, instead of horizontal. Other than this minor
difference, the coverage requirement is essentially the same as vacuum cleaning.

In machine milling, it might be desirable to mill only in one direction (either in the spindle
direction, or against). This means the coverage path should be a sequence of, say, right-to-
left movements, instead of alternate left-to-right and right-to-left movements. This is because
milling in only one direction gives better surface quality [51].

1.3 Description of the thesis

1.3.1 Scope of the research

The purpose of this research is to develop robust coverage algorithms for mobile robots working

in unknown environments. | do not assume known environments because it can be costly and
inflexible to require a complete map of the environment the robot operates in. In certain types

of robots, for example, domestic vacuum cleaners, owners generally lack the expertise to enter
detailed maps to the robots and will therefore require professional help for such tasks. Also, the
map will need to be updated whenever the owner re-arranges the furniture.

1The estimation of a mobile robot’s position from the distance it has travelled and the direction it is heading.
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Map building is a key issue in this thesis because of the requirement of unknown environments.
The robot should simultaneously construct a map with sensor information while covering the
environment at the same time. This means that the coverage path planner has to make its
decision based on a partial map of the robot’s environment. Using a separate exploration phase
for map building purposes is consideredftiment because a coverage path already requires the
robot to visit all surfaces.

An integral part of developing a robotic coverage algorithm is to measure how well the algo-
rithm performs in experiments. Performance metrics allow quantitative evaluation of implemen-
tations. They also permit comparisons betwedfedent algorithms. Despite the importance of
guantitative metrics, this is an area that has received very minimal attention. Development of
suitable performance metrics is therefore another aim of this research.

1.3.2 Overview of the thesis

The thesis is divided into the following chapters:

Chapter 2 presents a literature review of algorithms for coverage using mobile robots. The
review includes algorithms for both known and unknown environments. The chapter also dis-
cusses existing performance metrics for evaluating coverage algorithms in both simulation and
real robot experiments.

Chapter 3 presents the events and algorithms for slice decomposition. Two versions of the

decomposition are presented. The first one is for known environments, and is produced using

a normal line sweep process. The second one is for unknown environments, where the sweep
line will be limited to within free space.

Chapter 4 introduces the topological coverage algorithm. The algorithm creates a slice decom-
position of any environment online, without a known map. It explains methods for detecting
landmarks used to form the decomposition. It also talks about how slice decomposition is stored
in a topological map, how the map is maintained and updated, and how to determine if the map
is completed and the environment is completely covered. It also explains why travelling be-
tween regions is robust. Completeness and complexity of the decomposition are also discussed.

Chapter 5 introduces two new performance metrics for coverage experiments. The chapter also
includes practical methods for evaluating and measuring parameters needed to calculate these
metrics.

Chapter 6 focuses on the implementation of the topological coverage algorithm. It describes the
simulation and real robot environment and platform. It also talks about the implementation of
the topological map and the robot controller.
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Chapter 7 shows results from experiments in simulation and with a real robot. The metrics
introduced in Chapter 5 are used to evaluate the performance of the experiments. The results
are also discussed and compared with existing coverage algorithms.

Chapter 8 presents a list of potential future work and some conclusions drawn from the research
in this thesis.

Appendix A describes an alternative method for recognising and classifying the landmarks used
in the topological map. Two types of neural networks are trained to learn ffezedit land-
marks. This appendix gives a brief introduction to the two neural networks, followed by results
from landmark recognition tests.

Appendix B covers the computer vision techniques used in Chapter 5 for creating composite
images in greater detail. Topics discussed include Canny edge detection and Hough transforms.

1.4 Contributions of the thesis

This thesis makes several significant contributions. A study in the existing literature provides
the basis for the identification of areas where contributions can be made to the field.

First is the development of an online coverage algorithm that uses a partial qualitative topolog-
ical map for planning. Previously, qualitative maps based on simple landmarks have only been
used in point-to-point path planning. This is because nodes and edges of topological maps do
not correspond to specific locations in space. This qualitative nature makégiiltio store
coverage information. The problem is overcome by using the landmarks as cell boundaries of
slice decomposition. In other words, the topological map embeds a slice decomposition of the
environment. As a result, even though individual nodes in the map are not associated with spe-
cific areas of space, a combination of nodes now defines a cell of the decomposition. Coverage
information is then stored with cells in slice decomposition.

Second is the introduction of slice decomposition, a cell decomposition for covering unknown
environments. It can handle a larger variety of environments than existing cell decomposition
based coverage algorithms. The concept of using the split and merge of the sweep line by
obstacles as cell boundaries was first introduced in boustrophedon decomposition [30]. This
approach creates maximum sized cells that can still be covered by a simple zigzag pattern.
However, boustrophedon decomposition lacks detailed algorithms or implementation details.
Slice decomposition extends the split and merge concepts in boustrophedon decomposition.
New cell boundary types are added to simplify boundary detection in online decomposition
with range sensors. Similar to slice decomposition, Morse decomposition [8] is also for cov-
ering general unknown environments using range sensors. The rfferedce between Morse
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decomposition and slice decomposition is in the choice cell boundaries. Morse decomposition
uses surface gradients. As obstacles parallel to the sweep line areffevardiable, rectilinear
environments cannot be handled by Morse decomposition. In comparison, slice decomposition
uses topology changes and range sensor thresholding as cell boundaries. Due to the use of sim-
pler landmarks, it can handle environments with polygonal, elliptical and rectilinear obstacles.

Thirdly, due to the use of simple landmarks as cell boundaries, the topological coverage algo-
rithm employs a shorter navigation pattern to cover each cell in the decomposition than Morse
decomposition. Wall following on side boundaries of cells is needed in Morse decomposition
to discover connected adjacent cells. This is because cell boundaries can only be detected when
they are the closest point on the obstacle surface from the robot compared to all other points
on the obstacle surface. Therefore, a rectangular pattern that includes retracing is used to cover
each cell in the decomposition. On the other hand, due to the use simpler landmarks and a more
general technique for landmark detection, the topological coverage algorithm allows a robot
to detect events in slice decomposition from all sides. As a result, a simple zigzag path that
does not include any retracing can be employed instead. Due to the use of a shorter navigation
pattern to cover individual cells, the topological coverage algorithm generates coverage paths
that are shorter and moréieient.

Lastly, new performance metrics for evaluating real robot coverage experiments are developed.
Currently, results from real robot experiments are mostly presented qualitatively, showing pic-
tures of the routes taken by the robots. The only metric available is the coverage factor [22].
However, it does not measuréectiveness orféciency of experiments properly. The two met-

rics proposed in this thesis measure tife@iveness andi&ciency of any coverage experiment
using data collected with computer vision techniques. The methods used to collect the data are
very general and are not limited to the experimental setup used for this thesis.



Only in our dreams are we free. The rest of the time we need wages.

Terry Pratchett, “Wyrd Sisters”

Coverage navigation and path planning

th planning for mobile robots generally involves a search on a spatial representation
map) of the environment. Therefore mapping and path planning are two related issues
and cannot be examined in complete isolation. Robotic maps are data structures that
store information about the environment. For any given data structure, there are multiple ways
to conduct a search. For example, there are numerous search algorithms for graphs, such as A*
search and depth-first search [92]. In summary, there are many types of robotic maps, and even
more path planning algorithms.

This chapter first introduces several common robotic maps. They are Voronoi diagram (Sec-
tion 2.1), cell decomposition (Section 2.2) and grid map (Section 2.3). These maps all employ
some form of space decomposition, where a complex space is repeatedly divided until simple
subregions of a particular type are created. Grid based maps are a special case of space de-
composition where the environment, both free space and obstacles, is decomposed into uniform
grid cells. Emphasis has been placed on space decomposition based maps as they are the most
common data structure used in coverage path planning. This is because coverage algorithms
usually use the strategy of “divide and conquer”. Basically the environment is segmented into
simpler subregions, and each subregion is then covered in turn. Cell decomposition is favoured
by Choset, the leader in the area of robot coverage algorithms [8, 9, 11]; while grid maps are the
most common choice among researchers in mobile robot coverage [44, 97, 109].

7
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Two other robotic mapping and path planning methods are also discussed. Even though they are
not based on space decomposition, they are included here because of their importance in mobile
robot navigation. The two methods are topological mapping (Section 2.4) and reactive robotics
(Section 2.5). Topological maps do not form precise geometric representations of space. Instead
the map describes spatial relationship in a qualitative way, much like the way humans describe
their environments. Reactive robotics approaches the navigation problem from a non symbolic
Al perspective. As such, no maps are used and there is no planning of paths in the traditional
sense.

Section 2.8 contains a survey on the performance metrics used in simulated and real robot
experiments of coverage algorithms. In also includes a brief discussion of the complexity, or
upper bound, of the length of a coverage path.

Lastly, this chapter finishes with a discussion that identifies areas where contributions can be
made.

2.1 Voronoi diagram

Perhaps the most popular space decomposition is the Voronoi diagram. It is used in a wide
range of disciplines including biology, computational geometry, crystallography and meteorol-

ogy [81].

Given a finite set of distinct points (called reference vectors) in the Euclidean plane, an ordinary
Voronoi diagram is formed by associating all locations in that space with the closest member
of the point set with respect to the Euclidean distance. Thus a Voronoi diagram partitions the
space into a set of non-overlapping regions. Figure 2.1 shows a set of reference vectors with its
Voronoi diagram.

More formally, let the set oh reference points bB = {py,..., pn} € R?, and their Cartesian
coordinates be;, ..., X,. Then the ordinary Voronoi region associated with reference gwpint
is given by

V(pi) = {X [ IX = xill < |Ix = xjll for i # j}

And the set given by
V ={V(p1),...,V(pn)}

is the ordinary Voronoi diagram of the reference pointRet

By applying a distance measure other than Euclidean distance, the ordinary Voronoi diagram
has been extended or generalised in many directions [81]. One of the most useful generalisations
for robotics is the area Voronoi diagram. This is because a typical robots’ environment consists
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Figure 2.1: Voronoi diagram for a set of reference points.

of a set ofn obstacleA = {A,, ..., Ay}, rather than a set of points. The area Voronoi diagram is
calculated using the following equation for the shortest distance from paobbstacleA:

ds(p, A) = myq_in{llx - Xill | X € A}

In other words, an area Voronoi diagram (or simply generalised Voronoi diagram) is formed by

associating all locations in the free space of the robot’s environment with the closest obstacle.
Figure 2.2 shows an example of a generalised Voronoi diagram for an environment with two

obstacles.

In robotics, generalised Voronoi diagrams have been used in path planning [66], topological
mapping [84] and localisation with visual landmarks [106]. A feature of maps based on gener-
alised Voronoi diagrams is that they maximise clearance between robot and obstacles. A robot
following the map will be staying far from obstacles. As a result, the Voronoi diagram is unde-
sirable for coverage tasks. On the other hand, this characteristic makes it perfect for exploration
navigation with long range sensors. For example, Acar, Choset and Atkar used a map based on
the generalised Voronoi diagram for a robot equipped with an extended range landmine detector

[6].



Coverage navigation and path planning

Figure 2.2: The Voronoi diagram maximises clearance between robot and obstacles. (Reproduced
from page 172 of [66]).

2.2 Cell decomposition

A cell decomposition divides a complex structiBento a collection of disjoint simpler com-
ponent cells. In exact cell decomposition, the union of the component cells is eSadtlile

in approximate cell decomposition, the union of the component cells is approxintatdliye
boundary of a cell corresponds to a criticalibf some sort. The most common example of cell
decomposition is trapezoidal decomposition [66]. It is formed by sweeping a line across the
environment, and maintaining a liBx of cells that intersects with the sweep line. The history

of list D, ie all the cells that have appeareddnforms the decomposition. A cell boundary is
created whenever a vertex is encountered. Due to the use of vertices as criticality, obstacles are
limited to polygons. Also, each cell of a trapezoidal decomposition is either a trapezoid or a
triangle. The algorithm for trapezoidal decomposition is shown in Algorithm 2.1.

Figure 2.3 shows an example of trapezoidal decomposition for an environment with one polyg-
onal obstacle. Originally, the lidd consists of only one cell, and this = (c;). At the first
vertex, cellc, is split into two parts, an@ changes tod,, ¢c3). For the next two vertices in the
environment, cells are replaced only. The [sthanges tod,, ¢;) and then again toc, c4).

Lastly, cellsc, andcs are merged into one cell, amibecomesd).

The trapezoidal decomposition was originally proposed by Chazelle to partition a 3D poly-
hedron into a collection of convex polyhedra [29]. Other usages outside of robotics include
decomposing complex polygons in 2D computer graphics [88].

For path planning, the trapezoidal decomposition is first reduced to a connectivity graph that

ICriticalities in cell decompositions are conditions of the sweep line where, if satisfied, a new cell boundary is
created.
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sweep direction

D = (C2, C3) D = (Cp, Ca)
Cy C1

D = (c) D = (Cs,C4)

Figure 2.3: Trapezoidal decomposition is formed by sweeping a line over the environment. A new cell
boundary is created whenever the sweep line encounters a vertex. Cell boundaries are
shown as dotted lines.
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Algorithm 2.1 Trapezoidal Decomposition
yL: position of sweep line
{y1,...,Yn}: sorted list of y coordinates of all vertices in environment
D= ( -+5Gi-2,Ci-1, G, Gi+1, Gi12, . . )
for y. =y toy, do
if vertex splits celk; into twothen
(Gi) « (Cqg, Ca1)
D = (- c e Ci—27 Ci—l’ Cd7 Cd+1’ Ci+l’ Ci+27 .. ')
else ifvertex merges two cellg andc;,; then
(Ci, Gis1) < (Ce)
D= ( -+5Gi—2,Ci-1,Ce, G2, - . )
else ifvertex replaces ceti with a new cellthen
(c) « (cr)
D = (- c e Ci—2, Ci—]., Cf, Ci+17 Ci+2’ .. ')
end if
end for

represents the adjacency relation among the cells [66]. Then this associated connectivity graph
is searched to find paths between any two cells. Figure 2.4 shows the connectivity graph for the
trapezoidal decomposition formed in Figure 2.3.

Choset first recognised that trapezoidal decomposition creates cells that are unnecessarily small,
and therefore in@cient, for coverage purposes [30, 32]. Trapezoidal decomposition creates
cells that are convex polygons only. However, non-convex cells can also be covered completely
by simple coverage patterns. A decomposition that creates more cells arffitesatebecause

for each cell, additional motion along the cell boundary maybe required. For example, the two
cells on each side of the obstacle in Figure 2.5(a) can be merged and a simple zigzag pattern
can still cover the combined cells (Figure 2.5(b)).

Based on this concept of merging multiple cells in trapezoidal decomposition, Choset proposed
the first exact cell decomposition specifically designed for coverage navigation [30]. The result-
ing decomposition is called boustropheddecomposition, signifying the relationship between

the decomposition and the zigzag. Boustrophedon decomposition introduces the idea of using
the split and merge of the sweep line by obstacles as criticality. This is explained in the example
in Figure 2.6. However, [30] does not provide a detailed algorithm for the decomposition, nor
does it define the criticality precisely. Moreover, it is unclear if, or how, concave obstacles are
handled.

Huang attempted to reduce the cost of coverage by minimising the number of turns in the
coverage path [55]. He introduced the Minimal Sum of Altitude (MSA) decomposition. The
decomposition works on known polygonal environments. The basic premise behind MSA de-

2Alternately from right to left and from left to right, like the course of the plough in successive furrows (Oxford
English Dictionary).
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Figure 2.4: To form the associated connectivity graph, each cell is labelled by a distinct integer and
connected to its neighbouring cells.

@ (b)

Figure 2.5: (a) Trapezoidal decomposition creates cells that are unnecessarily small for coverage tasks.
This is because some non-convex cells can be covered by a simple zigzag path. (b) Bous-
trophedon decomposition reduces the number of cells in trapezoidal decomposition. This is
achieved by combining multiple cells that can be covered by a zigzag.
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Figure 2.6: Criticalities in boustrophedon decomposition: (a) In event, (b) Out event.
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@ (b)

Figure 2.7: Assigning different sweep directions to cells can produce coverage paths with fewer turns.
(Reproduced from [55]).

composition is that cost of coverage is lower when there are fewer turns in the path. This is
because a robot must slow down to make a turn. Huang assumed that the cost of travelling
between cells in the decomposition is significantly lower than the cost of turning. By choosing
different sweep directions forftierent cells, the cost of a coverage path can be lowered. This is
illustrated in the example in Figure 2.7.

The MSA decomposition is created with a two step process — multiple line sweeps followed
by dynamic programming. For each edge orientation (of both the boundary of the environment
and all obstacles), a line sweep is performed. A cell boundary is created for each vertex at split
and merge eventsThe decompositions from all edge orientations are then overlaid upon each
other. Figure 2.8 shows an example of this multiple line sweep decomposition process.

Once the initial decomposition from multiple line sweeps is formed, an adjacency graph is
created to represent the decomposition. An example of this graph is shown in Figure 2.9.
The basis of the dynamic programming step is to either split this graph in two, thus creating
two smaller subproblems; or to try to unite all cells and cover them as one large region. The
minimum sum of altitudes of graph is defined as:

S(G) = min {C(G), minS(G}) + S(G‘Z)} 2.1)

wherei iterates over all possible ways to split the graplinto two connected subgrapi&
andG,. C(G) is the cost of covering all cells as one subregion. Figure 2.9 shows an example of
the first level of decomposing a problem. Figure 2.10 shows the final MSA decomposition for
a simple environment.

3An event in a cell decomposition occurs when the sweep line encounters a criticality. Therefore, a duality
exists between criticalities and events.
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Figure 2.8: The first step in creating a MSA decomposition is multiple line sweep. A line sweep is
performed for each edge orientation. The decomposition of all the line sweeps are then

overlaid on top of each other. (Reproduced from [55]).

N
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Figure 2.9: First stage of dynamic programming in MSA decomposition. The top box shows the ini-

tial decomposition from multiple line sweep, and its adjacency graph. There are 8 ways

this graph can be split into two connected graphs. The rightmost box in the bottom row
represents the choice of covering all cells as a single region. (Reproduced from [55]).
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y 4 - 4

(@) (b)

Figure 2.10: MSA decomposition of a simple environment. (a) Initial decomposition from multiple line
sweeps. (b) After dynamic programming. (Reproduced from [55]).

However, MSA decomposition is limited in the complexity of environments it can handle. This

Is because of an exponential complexity for the algorithm. Firstly, each sweep direction con-
tributes a dividing line that divides many cells. This produces a large number of cells in the
adjacency graph. Secondly, the dynamic programming phase must examine all connected sub-
graphs of 1 tan nodes for a graph af nodes.

Both boustrophedon and MSA decompositions are defined only for known environments. The
idea of using split and merge events of the sweep line as criticality was extended to unknown
environments in the works of Butler [22, 23] and Acar [8, 12]

For a cell decomposition to be used for covering unknown environments, the following issues
need to be addressed. Firstly, mobile robots can only move within the free space region of
the environment. As a result, the sweep direction can no longer be from top to bottom only.
For example, the area underneath the U-shaped obstacle in Figure 2.11 can only be swept in
the reverse (bottom to top) direction. Secondly, planning of the coverage path has to be done
using a partial cell decomposition of the environment. This is because the cell decomposition
has to be created simultaneously with the coverage process. Thirdly, criticalities can occur
between sweep line positions. An example of which is shown in Figure 2.12, where the vertex
is positioned between strips of the zigzag. Lastly, the criticality chosen has to be realistically
detectable by robot sensors.

Butler et. al. proposedCCg, an exact cell decomposition for contact sensing rébotser-
ing unknown rectilinear environments [23]. Cell boundaries are formed whenever an obstacle
boundary parallel to the sweep line is encountered. An exam@€gfs shown in Figure 2.13.

4Butler and Acar were PhD students at the Robotics Institute at Carnegie Mellon University. Choset is a
professor at the same institute, and is the supervisor of Acar.
SRobots that have no range sensing capabilities.
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Figure 2.11: Mobile robots cannot move inside obstacle space. (a) Sweep line is limited to the current
free space cell. (b) Some cells must be swept in the reverse direction.

Figure 2.12: The vertex falls between two consecutive strips of a zigzag.

Figure 2.13: CCy uses an exact cell decomposition for rectilinear environments. (Reproduced from
page 16 of [22]).
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Figure 2.14: The partial decomposition in CCx is stored as a list of cells C = {Cy, ..., C,}. This diagram
shows the data structure associated with an individual cell C;, which is a member of C, ie
Ci € C. Cell Cj is a neighbour of C; and is shown here for clarity. (Adapted from page 17
of [22]).

The partial decomposition constructed is stored as a list of €eH#s{C,, ..., C,}. Figure 2.14

shows the data structures associated with each c€lCin C;, is the maximum possible extent

of cell C;, and is represented simply by a rectan@lg.is the cell’s minimum known extent, and

is given by four points — two on the cell’s right boundaty #éndbr), and two on the cell’s left
boundary {| andbl). When the robot begins coverage with no knowledge of the environment,

C will contain a single cellCy in which the minimum known exter€,, has zero size and

the maximum possible exte@, is infinite in all directions. As the robot covers this cell, its
minimum known exten€C,_ will increase in size, while its maximum possible ext€gt will

be limited with the discovery of each boundary. In addition to the minimum and maximum
extents of the cell, the width of the portion of the cell that has been covered by the robot is
also represented(,). Associated with each of the edges of the cell is a linked list of intervals
which explicitly denote the cell’s neighbours at each point along the edge. Each interval is
represented as a line segment together with a neighbour ID. A cell is complete when its edges
are at known locations, it has been covered from side to side, and all sides have been completely
explored. In addition to the cell decompositiGh CCg maintains a lisH = {Ho,..., Hy} of
placeholders. A placeholder is an element of the boundary of any ¢@lihat is not a boundary

of the environment, and thus are entrances to to free space cells. Coverage of an environment is
complete when no placeholders remain.

Normally, the robot follows the U-shaped pattern in Figure 2.15 to cover individual cells. Seg-
mentsa and¢ are sliding movements against the side boundaries of the cell. An event (critical-
ity) occurs whenever the robot is prevented from successfully executing the U-shaped coverage
pattern. Also, all the events defined@Cx can be detected without the use of any range sens-
ing. Figure 2.16 shows the five events defined. In Figure 2.16(a), the robot’s path is interrupted
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T,

T,

Figure 2.15: U-shaped coverage pattern used in CCr and Morse decomposition. The pattern consists
of four segments, a to 6. Distances between consecutive 8 segments should be small
enough that no area is left uncovered when a robot follows this pattern.

by an obstacle while executing thesegment of the U-shaped pattern. In Figure 2.16(b), the
side boundary the robot follows in tlkesegment disappears. In Figure 2.16(c), the robot’s path

in B is obstructed by an obstacle. Figure 2.16(d) shows an unexpected non-collision in segment
B, where the robot does not encounter the side boundary as expected. In Figure 2.16(e), the
robot loses contact with the side boundary. This is distinct from the situation in Figure 2.16(b)
in that during thex segment the robot is outside the covered portion of the cell, while during
segment it is not.

When the robot encounters any of the five events, it attempts to fully explore the new cell
boundary. The maneuvers used depend on the event. The intervals associated with the current
cell are updated. After the cell boundary is completely explored, the algorithm searches the list
of placeholderdd for any uncovered cells. Travelling between cells is done by moving into
each cell in between, and moving first in one direction, for examplleen the other direction,

y, in order to reach the next cell.

Unlike the zigzag (Figure 2.17), the U-shaped pattern contains retracing. This retracing is
added to include wall following on both side boundaries. This is because a contact sensing
robot cannot detect obstacles except when wall following. Therefore, if the robot is following a
zigzag pattern and an opening occurs as shown in Figure 2.18, the robot will miss it.

Acar et. al.introduced Morse decomposition [8, 9] for range sensing robots covering unknown
environments. Cell boundaries in Morse decomposition are critical points of Morse functions.
The decomposition is based on a roadmap method originally proposed by Canny [26, 27]. Given
a real-valued functiom : R™ — R, its differential atp € R™is dh, = [Z1(p)--- Z(p)]. A

point p € R™is a critical point of a Morse function ig;ﬂl(p) == %‘n(p) = 0 and its Hessian
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Figure 2.16: Events that occur at cell boundaries in CCx.
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VL i)
i

Figure 2.17: Compared to the pattern in Figure 2.15, a zigzag includes wall following on only one side
boundary.

Y

T

Figure 2.18: Contact sensing robots (as used in CCg) will miss an opening in the side boundary unless
it is wall following.
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surface normal

Figure 2.19: A cell boundary in Morse decomposition occurs at this position because the surface nor-
mal of the obstacle is perpendicular to the sweep line.

(afi?xj(p)) is non-singular. To put it more simply, a critical point occurs when the sweep line
encounters an obstacle whose surface normal is perpendicular to the sweep line. This definition
of criticality for cell decomposition is explained graphically in Figure 2.19. Figure 2.20 shows

an example of Morse decomposition.

By using surface normals as criticality, the environment is limited fiedéntiable functions

only. Therefore, polygons cannot be handled as their vertices are non-smooth boundary points.
To overcome this limitation in Canny’s roadmap, Aar al. use Clarke’s generalised gradi-

ents [33, 67] to calculate surface normals at these non-smooth boundaries [9]. The generalised
gradient of a poink is the set of vectors within the convex hull of the surface normals of the
adjacent smooth surfaces aroun¢see Figure 2.21). The generalised gradient can be used on
any pointx that is not diferentiable, given that the function is Lipschitz aroundA function

is locally Lipschitz for a bounded subd®if there exists a constait such that

[f(x1) — F(X2)l < KX — X

for all pointsx; andx, of B. However, since any function with a discontinuity is not Lipschitz
around the discontinuity, rectilinear environments such as those u§Hckiare not covered by
Morse decomposition.

Critical points in Morse decomposition can be detected using omni-directional range sensors.
Given a robot is at point, then the closest point on the surface of obst@gl® pointxis cq

Co = arg minjix — ¢

Now, letd(x) be the shortest distance between poiaind the obstacl€;. Then the gradiefit

can be determined by
X —Cop

X = Coll

vd(x) =

By definition a gradient is a unit normal vector to a surface at a point [63].
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Figure 2.20: Criticality of Morse decomposition occurs at the positions of the black dots in the diagram.
The dotted lines are the cell boundaries. Three of the critical points have no cell bound-
aries drawn through because free space is of zero width at those positions.

Figure 2.21: The generalised gradient is the convex hull of the set of gradients around the non-smooth
boundary point.



2.2 Cell decomposition 25

Vdi(x)

Figure 2.22: Detecting critical points in Morse decomposition.

This equation can be explained as follows. &ds a point on the surface of the obstaClg
thenx — ¢y is a vector which points fromgy towardsx. However, becaus® is the closest point
on the surface fronx, it is thus normal to the obstacle surface. Division|By- Co|| turns the
result into a unit vector.

The robot has detected a critical point if the gradi®di(x) is perpendicular to the sweep
line. Figure 2.22 explains how critical points can be detected by robots equipped with omni-
directional range sensors.

The Morse decomposition is stored as a Reeb draphh the critical points as nodes. Fig-
ure 2.23 shows the graph corresponding to the decomposition in Figure 2.20. Note that the
edges in the graph represent the cells in the decomposition.

Similar toCCg, Morse decomposition has an associated algorithm for creating the decomposi-
tion online. It also employs the U-shaped coverage pattern in Figure 2.15. The wall following
offered by the U pattern is needed because critical points occurring on the side boundary, such
as those in Figure 2.24, cannot be detected even with unlimited range sensors except when wall
following [8]. This is because the robot can only detect critical points of Morse functions if the
critical point is closest to the robot compared to all other points on the obstacle surface.

An event occurs whenever the robot encounters a critical point while following the U-shaped
pattern. Figure 2.25 shows the two events defined in Morse decomposition. In Figure 2.25(a),
the robot is following the side boundary of the current cell when it encounters a critical point.
The next lap position is moved to where the critical point is. In Figure 2.25(b), the robot
encounters a critical point while moving along the length of the U-shaped pattern.

Information about uncovered cells is associated with nodes in the Reeb graph (ie the critical
points). When the robot finishes executing a U pattern which is interrupted by critical points,

’A Reeb graph is a topological graph of a Morse function
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Ps

Figure 2.23: Reeb graph for the Morse decomposition in Figure 2.20.

missed

critical points T~

W

Figure 2.24: With Morse decomposition, a range sensing robot can only detect cell boundaries on its
side. As a result, it will miss the critical points in this figure because there is no wall
following on that portion of the side wall.
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Figure 2.25: Events in Morse decomposition: (a) when wall following the side boundary, (b) when
traversing the length of the coverage pattern. The two dotted lines in the diagrams show
how the next strip position is changed.



28

Coverage navigation and path planning

it first looks for uncovered cells at the last encountered critical point. If the critical point is
associated with two uncovered cells (eg in Figure 2.25(b)), the robot picks one of the cells
associated as the next cell to cover. If there are no uncovered cells associated with the last
encountered critical point, a depth-first search is performed on the Reeb graph. To travel to
the selected uncovered cell, the robot follows the Reeb graph and plans a path that passes
through cells and critical points. The environment is fully covered when no uncovered cells are
associated with any of the nodes in the Reeb graph.

Although the starting point of this thesis is to investigate coverage with landmarks in topologi-
cal maps (Section 2.4), the method proposed ultimately creates a cell decomposition similar to
the split and merge concept in boustrophedon decomposition. However, unlike boustrophedon
decomposition, this thesis deals with coverage of unknown environm@ds.is especially
designed for robots with no range sensing ability. Similar to this thesis, Morse decomposition
is for range sensing robots working in more general unknown environments. Compared with
Morse decomposition, the method proposed in this thesis can handle a larger variety of envi-
ronments (rectilinear, polygonal and non-polygonal). Moreover, wall following on both side
boundaries is not needed due to the use of more general landmarks as criticalities, or events,
of the decomposition. Since retracing is eliminated from the coverage pattern, the proposed
algorithm generates shorter coverage paths.

Boustrophendon decomposition was first published in a conference in 1997 [32], and later as a
journal paper in 2000 [30]CCx was first published in 1999 [23]. Morse decomposition was
first published in 2000 [7, 10], and thus was developed in parallel with the work in this thesis,
which was also first published in 2000 [100, 101].

2.3 Grid map

In grid maps, environments are decomposed into a collection of uniform grid cells. This uniform
grid includes both free space and obstacles. Each cell contains a value stating whether an
obstacle is present. The value can either be binary or a probability [37]. Figure 2.26 shows an
example of a grid map.

The major advantage of this type of map is the ease in creating one. It is essentially an ar-
ray containing occupancy information for each cell of the map. However, grid maps require
accurate localisation to create and maintain a coherent map [28, 95]. They f#sdreum ex-
ponential growth of memory usage because the resolution does not depend on the complexity
of the environment [94]. Also, they do not permitieient planning through the use of standard
graph searches [94].
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Figure 2.26: A grid map. Grid cells with obstacle present are shaded.

Grid based maps are the most widely used spatial representation for coverage algorithms. This
Is due to the simplicity of marking covered areas in a grid map.

Zelinsky et. al. proposed anffline coverage algorithm [108] based on the distance transform
of a known grid map [58]. Figure 2.27 shows the distance transform of a simple environment
with one obstacle. Her& represents the initial (or starting) position of the robot, énd the
desired finishing position. The distance transform thus represents a wavefront that propagates
from the goal cellG to the initial cellS. The algorithm for calculating the distance transform

is shown in Algorithm 2.2. Lines 1 to 3 shows the initialisation needed before the execution of
the main loop in lines 4 to 11. In line 1, the distance transforms (DT) of all cells in the grid
are set to -1, which mark the cells as unprocessed. Execution starts with the gGalvekith

has a distance transform of O (lines 2 and 3). In each iteration of the main loop, unmarked cells
who are neighbours of marked cells are assigned a DT one higher than their neighbours’. This
continues until all cells in the grid map are marked.

Once the distance transform for the environment is calculated, the coverage path can then be
formed by selecting the neighbouring cell with the highest DT and is unvisited, starting from the
initial cell S. If two or more unvisited neighbours have the same transform, one of them is se-
lected randomly. Figure 2.28 shows the coverage path generated for the example in Figure 2.27.
The algorithm for generating the coverage path is explained in Algorithm 2.3.

Unlike other coverage algorithms, this distance transform based method requires the selection
of a goal location.

Ulrich et. al. [97] also used a grid map for their online coverage algorithm. The algorithm
starts with an exploration of the boundary of the environment. Afterwards, the robot moves
in a straight line until it reaches an obstacle in front. When it is stopped, a new direction
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Figure 2.27: Distance transform for the selection start position (S) and goal position (G). (Reproduced
from [108]).

Algorithm 2.2 Distance Transform for a Grid Map
Require: goal cellG
1: DT(all cells)« -1

2: DT(G) <0

33 n<0

4. while there exists a cett where DT€) =-1do

5. forall xsuch that DTX) = ndo

6: if yis a 8-neighbour ok and DT{) = -1 then
7: DT(y) «n+1

8: end if

9: end for

10 nNn<n+1
11: end while

Algorithm 2.3 Coverage Path Planning using Distance Transform
C « start cell
visited(all cells)« false
repeat
visited(C) « true
¢ < neighbouring cell with highest DT
until ¢ = goal cellG




2.3 Grid map 31

.

Figure 2.28: Coverage path generated from the distance transform. (Reproduced from [108]).

of travel is chosen. One of the criteria for the new direction is a high number of uncovered
grid cells. The algorithm also attempts to generate a path that ends successively with mutually
perpendicular walls (see Figure 2.29). This is done so the robot can alternately re-calibrate the
x andy coordinates of its odometry estimation, with values obtained from the initial exploration
phase. Since only a partial map is available, it may not be possible for the robot to reach the
target wall in the chosen direction due to the presence of unknown obstacles. In this case, the
robot updates the grid map and then selects a new direction of travel again. The path planning
used in this work is a rige approach and results in highly redundant paths, as can be seen in
Figure 2.29.

Unlike the almost random approach taken by Ulrath al, Gabriely and Rimon tackle the
problem of coverage path planning on a partial grid map with a systematic spiral path. This
is achieved by following a spanning tree of the partial grid map [45]. Tvieint sizes of

grid cells are used. The smaller grid cell is the same size as the robot. Four of these smaller
grid cells then form a mega cell. These concepts are shown in Figure 2.30. The details of this
spanning tree approach is shown in Algorithm 2.4. The two parameters to the function STC
are the current celk and its parent cellv. The algorithm is started by executing STC(NULL,
start cell). NULL is used for the parent cell because the start cell has no parent. A mega cell
is old (line 1), if at least one of its four subcells is covered; otherwise, meiw (line 2). At

each mega cell, the robot picks a new direction of travel by selecting the first uncovered free
space mega cell in an anti-clockwise direction (line 3). A spanning tree edge is also grown
from the current mega cell to the new one (line 4). The algorithm is recursive (line 6), and the
recursion is stopped only when the current gdllas nonewneighbours. This recursion moves
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Figure 2.29: The robot path in the work of Ulrich et. al. is highly inefficient. The dotted line represents
the path taken by the robot during boundary exploration, while the solid line represents
the path taken during coverage. (Reproduced from [97]).

the robot along one side of the spanning tree (line 5) until it reaches the end of the tree (line
2), at which point it turns around to move along the other side of the tree (line 8). Figure 2.31
shows the spanning tree and the coverage path for the environment in Figure 2.30. Notice that
when coverage is completed, the robot returns to the same mega cell as the initial location.

Algorithm 2.4 Spiral spanning tree coverage STWCX)

1: Mark the current celk asold

2: while x has anewobstacle-free 4-neighbour celb

3:  Scan for the first new neighbour a&fin anti-clockwise order, starting with the parent
cellw. Call this neighbouy.
Construct a spanning-tree edge fraro y.
Move to a subcell of by following the right-side of the spanning tree edges.
Execute STCX, y).
. end while
if x # start cellthen

move back fromx to a subcell ofv along the right-side of the spanning tree edges.

10: end if

© o N

Normally, cells in a grid map are square in shape and the same size as the robet. aDh
proposed the use of a grid with triangular cells in their coverage algorithm instead [80] (see
Figure 2.32). The rationale behind using a triangular grid is that it has a higher resolution com-
pared to a rectangular one with similar sized cells. The use of alternative tiling arrangements to
increase resolution is well known in image processing [74]eOlal. showed that this increase

in map resolution enables the robot to plan shorter coverage paths. However, the resolution
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Figure 2.30: Gabriely and Rimon use mega cells that are formed from four grid cells in their coverage
path planning algorithm.
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Figure 2.31: In Gabriely and Rimon, the robot circumnavigates the spanning tree formed from free
space mega cells.
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Figure 2.32: Oh et. al. used a triangular grid in their coverage algorithm.

of the grid can also be increased by using smaller square cells. Unlike in image processing,
there is no need for ultra high resolution in robot path planning. This is because mobile robots
are incapable of making very fine movement adjustments. Therefore | believe theféxtra e
needed in implementing an alternative grid arrangement is not worthwhile.

2.4 Topological map

Traditional approaches to robot mapping (such as the ones discussed previously in this chapter)
are based on accurate metrical descriptions of environments. As a result, global metric consis-
tency must be maintained to form a coherent and useful representation [59, 60, 64]. Therefore,
these metric maps are very vulnerable to inaccuracies in sensors, actuators and odometry.

On the other hand, humans perform well in spatial reasoning tasks despite a lack of precise
localisation. For example, | can easily plan a path that will take me from the engineering school
to other buildings on campus. And | can do this without knowing the exact distances between the
buildings or their precise locations. This is because humans approach the mapping problem in
a more qualitative way by using topological relationships between landmarks. For example, we
say that the engineering school is opposite the recreation centre and next door to the architecture
school. Biologists have also found that animals store spatial information topologically as well
[77,82].

Kuipers and Byun introduce the topological map for storing robots’ environments in this quali-
tative manner [64]. Figure 2.33 shows an example of their topological map. It consists of a set
of nodes and a set of edges. The nodes are landmarks, or distinctive places, in the environment;
the edges represent connectivities between the nodes. Kuipers and Byun use features like inter-
sections and corners for their nodes. However, other features can be used as well. For example,
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Figure 2.33: Kuipers and Byun use natural landmarks in an environment to create a topological map.
The map attempts to capture the topological relationship of landmarks.

Mataric uses larger scaled features such as walls and corridors [72]. The use of graphs to show
topological relationship is very common outside robotics. For example, most train and subway
maps show stations as nodes, with edges indicating services between stations.

Topological maps are robust against sensor and odometry errors because only a global topo-
logical consistency, rather than a metric one, needs to be maintained [64, 94]. As an example,
Zimmer successfully implemented a topological navigation and mapping system for a low bud-
get platform with only light and touch sensors [111].

A problem with this qualitative approach is the very low resolution of topological maps. To
combine the best of both worlds, hybrid maps have been introduced to unite the preciseness
of metric maps and robustness of topological maps. An example is the work of Tahatis

that uses a global topological map to connect local metric ones [96]. The low resolution of
topological maps is also the reason why it ifidult to use them for coverage path planning. A
node in a topological map is a landmark and does not correspond to a precise position or area
in space. This makes it ratheifidicult to mark covered regions.

2.5 Reactive robots

The classical Al approach to robot navigation is to break the problem up into functional mod-
ules such as sensory perception, environmental mapping, path planning and execution of those
plans [18]. Brooks argued that this encapsulation of knowledge in symbolic representations
makes the Al approach inflexible to deviations in the real world [20, 21]. Brooks introduces re-
active robotics, where no explicit internal representation is built [14, 18]. Instead, actions of the
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robot are simply reactions to its sensory inputs. Usually, the reactions are organised as a set of
behaviours and arranged in layers [18]. Examples of successful implementation of behaviour-
based architecture include a six-legged walking robot [19] and a swarm of robotic bulldozers
[83].

Behaviour-based systems are designed to overcome inaccurate sensors and imperfect control
through a tight coupling between sensors and actuators. As a result, it is extremely robust and
simple to implement. However, the principle of avoiding an explicit representation of goals has
also limited their achievements to very simple tasks [68]. To put it simply, a purely reactive
robot lacks purpose and plan.

The commercial vacuuming robot Roomba uses a purely reactive architecture [2]. Roomba
follows a spiral path when it is in open space and turns to a random direction when its path is
stopped by obstacles. However, since it does not retain a notion of what area has been covered,
the algorithm cannot guarantee completeness in a finite amount of time. And in most operations,
time is never unlimited. By following a pseudo random path, a reactive coverage robot will take

a long time, if ever, to achieve complete coverage.

2.6 Coverage with multiple robots

Some researchers approach the coverage problem with large teams of robots, using dynamic
roadmaps to coordinate robots’ behaviours over the desired region [16], or partitioning an envi-
ronment dynamically without the need for global communication [57]. This thesis focuses on
coverage with a single mobile robot, which is more appropriate for tasks such as vacuuming.
A team of vacuuming robots would be impractical and uneconomic in a domestic environment
for example, whereas a team of inexpensive robots may be appropriate for a foraging task in a
large environment.

2.7 Coverage of 3-dimensional surfaces

Most work on robot coverage path planning makes the assumption that the environment can
be modelled as a simple planar surface. This is a valid assumption for floors, windows, lawns,
etc. However, some surfaces are 3-dimensional in nature, and 3-dimensional path planning is
required instead. For example, an autonomous underwater vehicle covering the seabed [52] or
a robot painting motor vehicle panels [15] would need to move over 3-dimensional surfaces.
This thesis focuses only on coverage of simple planar surfaces.
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2.8 Performance metrics

Itis important to have a quantitative measure on how well an algorithm performs. Generally, the
measurement of performance is well studied in the area of localisation [35, 78]. However, this is
often neglected in discussions of research on robot navigation (including coverage navigation).
Most commonly, results are presented qualitatively, showing pictures of the route taken by the
robot from simulation [32, 80, 108], or from real robot experiments [8].

2.8.1 Simulation

Gabriely and Rimon used two ftierent metrics for their simulated experiments [45]. Their
testing environment was modelled as a uniform grid. The amount of coverage was measured
as the ratio of the number of grid cells that were visited at least once over the total number of
unoccupied grid cells. The other metric is the number of repeatedly covered grid cells. Re-
peated coverage is a measure of thieiency of the algorithm. This is because it is undesirable

to repeatedly cover any cell, and thus a good solution will minimise the amount of repeated
coverage. A problem with using number of repeatedly covered cells as a metric is that a repeat-
edly covered cell maybe covered more than twice. Also, there is no comparison with the total
number of grid cells to be covered. For example, 2 repeatedly covered cells out of 10 is very
different from 2 out of 1000.

2.8.2 Real robots

Ulrich et. al.[97] covered the test area with sawdust and estimated the amount of sawdust left
afterwards. The amount of sawdust left serves as an indication of how much of the total area is
covered. However, this method requires the robot to be equipped with a dust buster. It is also
error prone as estimating the amount of dust is not an easy task.

Butler introduces the coverage factof)[22], which is defined as

of = dxw
" Total area to be covered

(2.2)

whered is the total distance travelled amdis the width of the robot. However, usirdyx w

Is not a reliable way to estimate area covered by the robot, except in the rare case where the
robot does not cross over its own path. If the robot revisits any previously covered area, then

d x w gives no indication on either the total surface area covered, or the amount of re-coverage.

Therefore, the coverage factor in (2.2) is a poor measure of performance.
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2.8.3 Complexity of coverage navigation

Even with complete knowledge of the environment, it has been shown that finding the shortest
coverage path is an NP-hard problem [13]. This is not hard to verify as computing a coverage
path contains the travelling salesperson problem (TSP). In [13], Axtkial. showed that a TSP

tour for a grid map withN cells within a simple rectilinear polygémwill be at mostf"\'T‘4 in

length. For polygons with holes (ie environments with obstacles), Arkial. showed a bound

of 1.325N.

In unknown environments, there is no representation available to perform searches. The cost of
“search” is thus measured in terms of the length of the path taken [56]. For example, if a robot
is searching for a goal location, it must move around and explore the environment while looking
for the goal. An éicient algorithm will thus attempt to minimise the length of this path.

Searching for a goal location in an unknown environment is therefore generally more expensive
(in terms of path length) than the optimal path. This can be explained with the following exam-
ple. Suppose arobot is facing a very long wall. There is a door along the wall to the other side.
If the robot knows where the door is, it can move directly from its current location to the door.
On the other hand, if the robot does not know the location of the door, it has to either explore
one side completely first (depth first search); or both side alternately, each time increasing the
exploration depths (breadth first search).

In [56], Icking et. al. proved an upper bound of\2for finding a coverage path in an unknown
grid map withN cells. This upper bound is provided by depth first search, which makes exactly
2(N — 1) = 2N — 2 steps in any environment with cells.

An algorithm for coverage of a gra(N, E) with depth first search is shown in Algorithm 2.5.

The algorithm visits every node in the graph at least once before returning to the start node
(lines 8-11). Line 13 directs the robot to retrace its footstep along the graph until it reaches
either the start node, or a node that has a neighbouring unvisited node. For every iteration of the
loop, the robot moves to one of its neighbouring nodes (line 17). During the execution of the
repeat..until loop, all nodes other than the start node are visited once with the condition at
line 8, and the second time with the retracing at line 13. Therefore, for a grapiNwitdes,

the total number of moves isi8(- 1).

The algorithm can be explained with the graphs in Figure 2.34. The node highlighted in each
graph is the start node. For the example in Figure 2.34(a), the robot visits each of the four
branches in turn. Each visit requires 4 moves to reach the furtherest node and back. Therefore,
a total of 16 (2x (9 — 1)) moves is taken with the depth first search. For the example in

8A polygon P is simple if the only points of the plane belonging to two polygon edgeR affe the polygon
vertices ofP.
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Algorithm 2.5 Coverage with Depth First Search
Require: G(N, E), start node
1: for each node in N do
2. predecesson] «— —1
3. visited() < false
4: end for
5: current«— start node
6: visited(currenty— true
7
8
9

: repeat
if there exists a neighbourof current where visitedq = falsethen
visited(X) < true

10: predecessox] « current

11: current— x

12:  else

13: current— predecessor(current)
14. endif

15:  move to current
16: until current= start node

Figure 2.34(b), the robot first visits the only node connected to the start node (1 move). It then
visits the two nodes connected to this centre node in turn (4 moves). Finally, it returns to the
start node (1 move). Therefore, a total of 6(24 — 1)) moves is taken.

2.9 Discussion

Most existing coverage planning algorithms favour metric based grid maps for spatial repre-
sentation. However, purely metric based maps need accurate localisation to be useful as they
require global metric consistency. On the other hand, the biologically inspired topological maps
are robust against such errors due to their use of topological relationships. However, it is dif-
ficult to use topological maps for coverage navigation as the nodes and edges do not directly
correspond to any specific area in space.

A solution to this problem of direct representation in topological maps is to use a hybrid met-
ric topological hierarchy. For example, a cell decomposition can also be represented by an
undirected graph. By using detectable landmarks in an environment as events of a cell decom-
position, a topological map that embeds a cell decomposition can be built [102]. This is the
approach taken in this thesis. A coverage algorithm that uses easily detectable landmarks to
build a topological map, and implicitly, a cell decomposition, is developed in Chapters 3 and 4.

The two performance metrics proposed by Gabriely and Rimon evaluat&e¢cg\weness (per-
centage coverage) anffieiency (number of repeatedly covered cells) of coverage experiments
in simulation. The fficiency measure has the problem that it is not normalised (with the total
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Figure 2.34: The coloured node is the start node of depth first search. A complete exploration of the
graph in (a) requires 16 moves (= 2 x (9 — 1)). A complete exploration of the graph in (b)
requires 6 moves (= 2 x (4 - 1)).

number of cells in the grid map). Moreover, the metrics are limited to simulation because real
robots do not move in a uniform grid. For example, the movement of a real robot is continu-
ous and therefore the robot is forced to “re-cover” surfaces it has already covered. Chapter 5
develops two new metrics for evaluatinfjectiveness andfciency that are applicable to both
simulations and real robot experiments.

2.10 Summary

This chapter reviewed existing coverage path planning methods. Itincludes coverage algorithms
that use a variety of spatial representations for mapping, such as grid map and cell decompo-
sition. It also discussed performance metrics used to evaluate results from robotic coverage
experiments.
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tends to stay in procrastination unless an external force is applied to it.

Jorge Cham, “Piled Higher and Deeper”, www.phdcomics.com

Slice decomposition

his thesis introduces an online coverage algorithm that uses a hybrid topgiogital

map for coverage path planning. The landmarks in the topological map are also crit-

icalities of a cell decomposition, calleslice decomposition [103]. Events in slice
decomposition use and extend the concept of split and merge events first introduced by bous-
trophedon decomposition. As a result, cells in slice decomposition can be covered by a robot
following a zigzag pattern. This topological coverage framework will be described in Chap-
ters 3 and 4. Chapter 3 introduces the concepts, events and algorithms of slice decomposition;
while Chapter 4 describes the online coverage algorithm that constructs the hybrid topological
map'slice decomposition.

This chapter is organised as follows. Section 3.1 presents the first version of slice decomposi-
tion. It improves on boustrophedon decomposition in three ways. Firstly, it provides precise
definitions for split and merge events in boustrophedon decomposition. Secondly, it adds two
new events for handling concave obstacles. Thirdly, it presents a detailed algorithm for the de-
composition algorithm. In Section 3.2, the second version of slice decomposition is presented.
The first version of slice decomposition is modified to handle the situation where the sweep line
Is limited to free space regions only. This modification is necessary for online creation of slice
decomposition in unknown environments by robots. This is because robots cannot perform a
line sweep within obstacles of the environment. Then, in Section 3.3fliet ef step size on

the overall decomposition formed is discussed. Finally Section 3.4 briefly discussed how slice
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Figure 3.1: At any time (and sweep position), the sweep line acts as a ray travelling from left to right
through the environment.

slices
1 /@

(60 T
V)

obstacle free space
segment segment

Figure 3.2: The arrangement of segments in slices made by the sweep line changes as it sweeps
through the environment.

decomposition can be applied to coverage navigation with tethered robots.

3.1 Slice Decomposition |

Slice decomposition is formed by a line sweep process, where a cell boundary is created when-
ever a criticality is encountered by the sweep line [29]. Criticalities, or events, in slice decom-
position are defined by the number of times the sweep line intersects with obstacle boundaries.
Consider a sweep line that passes through an environment from top to bottom. At any time,
the sweep line can be viewed as a ray that travels from the left boundary to the right bound-
ary, crossing over a series of free space and obstacle regions depending on the topology of the
environment. This is shown in Figure 3.1. At any time, the sweep line creatkseaf the
environment, and the series of regions within the slice are callgthents Figure 3.2 shows

two slices from two diterent sweep line positions.

The crossings test (or even-odd test) [49, 89] can be used to determine if a segment belongs to
a free space region or an obstacle region. In computer graphics, the crossings test is used to
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Pu,

Figure 3.3: Crossings test for determining whether a point is within general polygons.

determine quickly whether a poinpt, is inside a general polygénThe test involves shooting a
ray from the pointp, to a known pointp and counting the number of crossings the ray makes.
If the number of crossings is even, then potis in the same type of region ag; if the
number of crossings is odd, then pomt is in an opposite type of region fromp,. This is
illustrated in the example shown in Figure 3.3. Given a known poaimutside any objects, we
know that pointp,, is inside an object because the line connecting p@pend p,, intersects
only once with an object boundary. On the other hand, the line connecting grcamtd point

pu, intersects with objects 6 times, therefore p@ptmust be outside of any objects.

The crossings test thus guarantees that region type changes within a slice occur only at object
boundaries. This means that all spaces within a segment are always of the same type. Also,
there is always an even number of crossings within a slice. This is because a slice starts from
and finishes in the obstacle region outside the boundary of the environment.

In the case where the sweep line passes through a vertex, the vertex is classified as being in-
finitesimally away from the the sweep line [49]. This concept is explained in Figure 3.4. For
example, consider the line connecting pgipt and pointpy. If the vertex is classified as being

on the right of the line, then the line crosses the object twice (Figure 3.4(a)). If the vertex is clas-
sified as being on the left of the line, then the line does not cross the object at all (Figure 3.4(b)).
Either way, the crossings test concludes that the gmjnits outside of any objects. Figure 3.5
shows an example of a sweep line passing through the vertex at the bottom of the obstacle. The
vertex is classified to lie either infinitesimally above or below the sweep line.

3.1.1 Events

A cell boundary is created when a criticality occurs during the line sweep process. In slice
decomposition I, this criticality occurs when the number of crossings the sweep line makes

!General polygons have no restrictions on the placement of vertices.
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Figure 3.4: If the ray passes a vertex, it is always classified as being infinitesimally away from the ray.
This diagram magnifies the vertex touched by the line connecting point p,, and point py in
Figure 3.3. (a) Vertex classified to be on the right of the line. (b) On the left.

Figure 3.5: A vertex is classified as either infinitesimally above or below a sweep line that passes
through it.

with the environment changes between two consecutive slices. The change in the number of
crossings signifies an abrupt change in the topology among segments. Tw&glaoetS, are
consecutive if the two slices are from sweep line positions one time step apart. If the sweep line
moves by a distance afx for each time step, and the slicBgandS;, are from position, and

Xp respectively, then slic8, and sliceS, are consecutive slices if and only ik, — X, |[= AX.

There are four events in slice decomposition I:

1. Obstacle emergence\ free space segment in the previous slice is split into two by the
emergence of a new obstacle segment in the current slice. This is equivalent to the split
event in boustrophedon decomposition. The number of crossings made by the sweep line
is increased by two. The current slice also contains one more free space segment and one
more obstacle segment compared to the previous slice. An example of this is shown in
Figure 3.6(a).

2. Free space emergencAn obstacle segment in the previous slice is split into two by the
emergence of a new free space segment in the current slice. The number of crossings
made by the sweep line is increased by two. The current slice also contains one more
free space segment and one more obstacle segment compared to the previous slice. An
example of this is shown in Figure 3.6(b).

3. Obstacle disappearancé\n obstacle segment from the previous slice disappears in the
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Figure 3.6: Events in Slice Decomposition I: (a) obstacle emergence, (b) free space emergence, (c)
obstacle disappearance and (d) free space disappearance.

current slice. This is equivalent to the merge event in boustrophedon decomposition.
The number of crossings made by the sweep line is decreased by two. The current slice
also contains one less free space segment and one less obstacle segment compared to the
previous slice. An example of this is shown in Figure 3.6(c).

4. Free space disappearancd free space segment from the previous slice disappears in
the current slice. The number of crossings made by the sweep line is decreased by two.
The current slice also contains one less free space segment and one less obstacle segment
compared to the previous slice. An example of this is shown in Figure 3.6(d).

Free space segment emergence and disappearance are new events in slice decomposition I. They
are not covered by the split and merge concepts introduced by boustrophedon decomposition.
These two new events are added to handle concave obstacles.
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3.1.2 Algorithm

Slice decomposition is formed by maintaining a Xtof active obstacle and free space cells

with segments present on the slices created by the sweep line as it sweeps through the environ-
ment. The history of lisD, ie all the cells that have appearedDn forms the decomposition.

The sweep stops to process and updatdlsthenever an event occurs in the current slice. The
algorithm for slice decomposition is summarised in Algorithm 3.1.

Algorithm 3.1 Slice Decomposition |
1: c € {free space cell, obstacle cell
2: for all timetdo
3:  Move sweep line downwards kyx

4:  Dy1=1(..,C2,C-1,G,Ci1,Cis2,...)
5. for all segments i, ; do
6: if emergence insideg then
7 (Ci) A (Ce—l, Ce, Ce+1)
8: Dt =(...,Ci-2, Ci-1, Ce-1, Ce, Cer1, Civ1, Civ2s - - )
9: end if

10: if ¢; disappearghen

11 (Ci-1,Ci, Git1) < (Ca)

12: D; = ( ..,C_2,Cy4,Ciso, .. )

13: end if

14:  end for

15: end for

The algorithm consists of two loops, one for moving the sweep line from top to bottom through

the environment (line 2), the other for inspecting segments in the previous and the current slice
for topology changes (line 5). It starts at line 1 by specifying that all cells are either free space
cells or obstacle cells. Within the first loop, line 3 shows that the sweep line is moved by a very
small distance\x for each time step. Line 4 gives the format of the Dsat the previous time
stepD;_;. Lines 6 and 10 within the inner loop correspond the two main categories of events
(emergence and disappearance). For obstacle or free space segment emergences (line 6), the
segment that is split into two halves is replaced by three separate segments (line 7). The three
segments belong to new cells and are therefore given new celtd@sg., Ce.1. In other words,

these new cell IDs identifying this slice contain a cell boundary. Line 8 shows the, lefter

the changes. The updates that occur for obstacle or free space segment disappearance are shown
inlines 10 to 12. The cell that contains the disappeared segment, along with its two neighbours,
are replaced i by a single new cell (line 11). Line 12 shows the [xtafter the changes.

An example explaining the slice decomposition algorithm is shown in Figure 3.7. e
free space cells ang}, are obstacle cells. Initially, the sweep line intersects only with the first
free space celf;. Hence the decomposition is just that one space Belk (f;). At the first
event, an obstacle segment emerges and the firstf,cedlsplit. The decompositio®, then
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Figure 3.7: An example of slice decomposition | with an infinitesimally small step size Ax.

changes to contain three cells — a free space cell, an obstacle cell and another free space cell,
Dy = (fy, 04, f3). Then the obstacle cet]; is split into two obstacle cells when a free space

cell emerges. The decompositi@h changes to contain five cellsf,(0,, f4, 03, f3). Next Dy

changes to three cellsfs( 03, f3), as the left side bulge is passed. Finally the decompodjon
contains only one free space céjlwhen the sweep line exits the obstacle.

3.2 Slice Decomposition Il

Slice decomposition | keeps track of both free space and obstacle cells. However, robots cannot
move inside obstacles. This means that the sweep line is limited to the cell that the robot is

in, as shown in Figure 2.11(a) on Page 18. Sweeping in both forward and reverse directions

is also needed because some free space cells cannot be accessed except from the bottom. For
example, the cell under the U-shaped obstacle (Figure 2.11(b) on Page 18) can only be sweptin
the reverse direction. This is because the upper boundary of the cell is shared with an obstacle
and the robot can therefore only enter from the bottom boundary.

3.2.1 Events

Events in slice decomposition | have to be updated for the situation where the sweep line is
limited to the current free space region. For example, free space segment emergence (Fig-
ure 3.6(b)) cannot occur because it involves a sweep line moving from an obstacle to a free
space cell. Figure 3.8 summarises the abrupt topology changes that are classified as events in
slice decomposition Il. Since line sweep is done in both forward and reverse directions, the
arrows in Figure 3.8 indicate the current sweeping directions when the events are encountered.
It does not mean that sweeping can only be done in the top to bottom direction.

There are five events defined in Slice Decomposition II:
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Figure 3.8: Events in Slice Decomposition Il: (a) split, (b) merge, (a) end, (d) lengthen, and (e) shorten.
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1. Split Free space segment in the previous slice is split into two by the emergence of an
obstacle, as in Figure 3.8(a). This is equivalent to obstacle segment emergefitiren o
slice decomposition.

2. Merge Free space segment in the current slice neighbours free spaces other than the free
space segment in the previous slice in the direction of the previous slice. This is equivalent
to obstacle segment disappearance in normal slice decomposition. An example is shown
in Figure 3.8(b).

3. End The previous free space segment is the final one in the current cell. This is equivalent
to free space segment disappearance in the normal version. An example is shown in
Figure 3.8(c).

4. Lengthen Free space segment in the current slice neighbours an obstacle segment in
addition to the free space segment in the previous slice in the direction of the previous
slice. Another way to view this situation is that the current slice is much longer than the
previous slice. An example is shown in Figure 3.8(d).

5. Shorten Free space segment in the previous slice neighbours an obstacle segment in ad-
dition to the free space segment in the current slice in the direction of the current slice.
Another way to view this situation is that the current slice is much shorter than the previ-
ous slice. An example is shown in Figure 3.8(e).

Lengthenand shortenare new events and do not correspond to any events defined in slice
decomposition I. These two events witfect how some environments are decomposed. Take
the example in Figure 3.9. In slice decomposition Il, it is decomposed into three cells; in slice
decomposition [, the entire environment is “decompose” into one large cell. Boustrophedon
decomposition will also classify the entire environment as one large cell. The two new events
are added to allow for simpler detection of cell boundaries. This is because boundary walls
and free standing obstacles may appear identical to a robot when they are first encountered
(Figure 3.10). Cell boundary detection with range sensors will be discussed in more detail in
Chapter 4.

3.2.2 Algorithm

Algorithm 3.2 explains how slice decomposition Il is created. The algorithm maintains two lists,
O (open) andF (finish). The open lisD stores all free space cells that have been discovered,
while the finish listF remembers all cells that are visited. The algorithm loops until the open
list O becomes an empty set (line 3). This happens when all cells discovered have been visited.
In line 4, a cell in the open lisD is picked as the current cefl. This cell is then swept
systematically from one cell boundary (line 5) to the other (line 7) until an event is encountered
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Figure 3.9: In slice decomposition Il, this environment is decomposed into three different cells. In slice
decomposition |, this same environment is classified as one cell only.
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Figure 3.10: At the position marked with a large dot, these two situations appear identical locally to a
robot. Only if the robot continues along the path will it discover the differences. (The obsta-

cles are assumed to be very long). Event (a) lengthen, and (b) split of slice decomposition
1.
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(line 18). The events referred to in line 8 and 18 are those defined in Section 3.2.1. When an
event occur, the current cel is removed from the open li€ (line 10), and added to the finish

list F (line 9). If the event is a split or a merge, other cells are sharing the same boundary as the
current cellf, are added to the open li€, provided that they are not already in either @sor

F (line 12). Similarly, in lengthen or shorten events, the neighbouringfgglis added to the

open listOif it is not in either listO or F (line 15).

Algorithm 3.2 Slice Decomposition
1: O « initial cell

2. F«0

3: while O # 0 do

4. f.«—feO

5. move to one (of two) cell boundary ¢

6. repeat

7 move sweep line byAx towards the opposite cell boundary
8: if event occuthen

9: F—F+f.

10: O~ 0-f;

11 if event= split or mergethen

12: OO0+ fc+;|_, fC+2 if fc+1, fC+2 ¢ (O U F)
13: end if

14: if event= lengthen or shortethen

15: O« O+ fouqpif fo1 ¢ (OUF)

16: end if

17: end if

18:  until event occur

19: end while

Figure 3.11 shows an example of slice decomposition Il. H&res the initial cell of the de-
composition. When the sweep line arrives at the obstacle, a split event occurs, and free space
cell f; is split into f, and f; (Figure 3.11(a)). Both the oped and finishF lists are updated.
Then, f, is selected as the next current cell. Selection criteria is based on distance from the
current cell and will be discussed in Chapter 4. When the sweep line arrives at the bottom cell
boundary (Figure 3.11(b)), cellg and f5 are discovered and added to the openQisCell f,

is moved to the finish lisE because the sweep line has completely passes over thefxcill.
chosen as the next current cell in Figure 3.11(c). When the sweep line arrives at the top cell
boundary, no new cells are added to the operQisin Figure 3.11(d)f, becomes the current

cell. When the sweep line reaches the bottom cell boundafy, @ merge event occurs. Two
other cells,f; andfg, share this cell boundary with. However, onlyfs is added to the open list

O becausds; is already in the list. In Figure 3.11(e) and Figure 3.11ff)and f; becomes the
current cell respectively. When the sweep line finishes its passfguiie open lisO becomes
empty because all cells in the decomposition have been visited. The finifhri@i contains

all cells in the decomposition.
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Figure 3.11: Creating a cell decomposition using slice decomposition Il with an infinitesimally small
step size Ax.
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3.3 Hfects of step size and sweep direction

Since slice decomposition is defined with a discrete line sweep process, the step size between
consecutive slices thereforéfects the decomposition yield for a given environment. If the step
size is reduced to be infinitesimally small, limo AX, then the sweeping process becomes a
continuous sweep, and slice decomposition forms an exact cell decomposition of the environ-
ment. So far in this chapter, it is assumed that the sweep is continuous.

However, slice decomposition also works for step sizes larger than infinitesimal. In such cases,
slice decomposition forms an approximate decomposition of the environment instead. To cap-
ture all cells in a particular environment, the maximum step size has to be smaller than the
height of the smallest cell

AX = minh(c) (3.1)

Here,AX is the step size of the line sweep and ihfn) is the height of smallest cell. Equa-
tion (3.1) guarantees that all cells will be present in at least one slice.

Figure 3.12 illustrates theffect of varying step size and the resulting decomposition created.
When the step size is small, all cells in the environment are captured. For example, in Fig-
ure 3.12(a), the step size is small enough to guarantee a sweep line to pass through the small
cell between the two lobes at the top of the obstacle. When the step size is increased to the
height of the smallest cell, i&x = min;h(c;), the second sweep position in Figure 3.12(a) just
barely touches the cell. If the step size is further increased, the smallest cell may be missed
entirely, as is the case in Figure 3.12(c).

When (3.1) is satisfied, the decompositions created are independefifeoénices in step size.
Compare the slice decomposition in Figures 3.12(a) and 3.12(b). Although the cells are discov-
ered at diferent positions, the overall transitions of the [sare the same.

The slice decomposition created is the same whether the sweeping is done in the forward (top to
bottom) or the reverse (bottom to top) direction. This is because the decomposition is dependent
only on the position of the sweep lines. Figure 3.13 illustrates this concept. It shows the same
sweep line positions as Figure 3.12(a), but the obstacle is upside down. It can be seen that the
topology changes in the lif); are essentially the same in both figures. The only change is to
the numbering of cells, since the cells are discovered irfarént order.

However, if the environment is rotated, the decomposition created willfEereint. (3.1) guar-

antees the same decomposition being created only for a particular sweep angle. Figure 3.14
shows the same obstacle as in Figure 3.12, but rotateédi®0an be seen that the decompo-
sition is diferent from that given in Figure 3.12 regardless of how small the step size is. This

is not a shortcoming of a discrete sweep algorithm because continuous sweep based exact cell
decomposition, such as trapezoidal decomposition, is &lsotad by rotational transforms.
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Figure 3.12: Effect of step size on decomposition produced. Slice decomposition | is used in this ex-
ample. All sweep lines are assumed to be slightly above the obstacle surface they are
touching. The list of cells on the right shows where events occur. (a) Ax = % x minh(c), (b)
Ax = minh(g), (c) AX > minh(c).
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Figure 3.14: Rotation changes slice decomposition. Slice decomposition | is used in this example.
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Figure 3.15: (a) The shaded area shows the reachable surface for a robot tethered to the top right
corner of the environment. (b) To calculate its slice decomposition, the boundary of the
environment is reduced to where the robot can reach.

3.4 Tethered robots

If the robot is tethered, its movement becomes restricted. The resulting reachable surface is de-
pendent on the position where the tether is anchored and the length of the tether. Figure 3.15(a)
shows the reachable surface area for a robot tethered at the top left hand corner. The situation
can be viewed as a change of the boundary of the environment. To calculate the slice decompo-
sition for this robot, only the reachable surface is considered. Figure 3.15(b) shows the resulting

environment when restricted movement is taken into account. The slice decomposition created
is shown on the right of the diagram.

3.5 Discussions

Slice decomposition extends the split and merge concepts introduced by boustrophedon decom-
position. In addition to split (obstacle emergence) and merge (obstacle disappearance), slice
decomposition | has two new events that handle topology changes associated with concave ob-
stacles.

Ordinarily, the sweep line moves through the environment from top to bottom, passing both
obstacle and free space regions. However, online cell decomposition methods have to use a dif-
ferent line sweep process because mobile robots can only move within the free space regions.
Since the aim of this thesis is coverage in unknown environments, slice decomposition is thus
modified to handle this restriction. Firstly, the event free space emergence is removed. Sec-
ondly, the lengthen and shorten events are added to simplify cell boundary detection in online
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decomposition with range sensors. Lastly, instead of using a single list, the decomposition al-
gorithm maintains two lists to remember cells that are detected (opeD) lestd visited (finish
list F).

Events in exact cell decompositions are usually defined with small features in space. Examples
are vertices in trapezoidal decomposition [29] and critical points in Morse functions in Morse
decomposition [9]. In comparison, criticalities in slice decomposition are defined using large
features, segments, in the environment. These large features have physical attributes that are
detectable over time. Spurious sensor errors are filtered out through averaging. As a result, the
detection becomes robust against noisy and inaccurate sensing [72].

Due to the use of topology changes as events, slice decomposition can handle a larger variety of
environments compared to existing online cell decomposition based coverage algo@tns.

is designed for contact sensing robots working in rectilinear environments. Morse decomposi-
tion is more general and can handle obstacles with smooth surfaces. However, it is only defined
for non-rectilinear environments because boundaries parallel to the sweep line are degenerate
cases for Morse functions. In comparison, slice decomposition Il can handle environments with
polygonal and smooth-surfaced objects, including rectilinear ones.

3.6 Summary

This chapter introduces the events and algorithms of slice decomposition. It also discusses the
effect of step size and sweep direction have on the decomposition formed.
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Newton’s Second Law of Graduation: The age, 8, of a doctoral process
is directly proportional to the flexibility, f, given by the advisor and
inversely proportional to the student’s motivation, m.

Jorge Cham, “Piled Higher and Deeper”, www.phdcomics.com

Topological Coverage Algorithm

hapter 3 introduced slice decomposition Il, which creates a cell decomposition of an

environment using a sweep line that is restricted to free space regions only. This re-

striction of the sweep line reflects the inability of mobile robots to move within obsta-
cle regions of environments. This chapter continues the discussion by explaining how a mobile
robot with range sensors can construct slice decompositmmlihe, while simultaneously cov-
ering the unknown space. This is achieved by creating a partial topological map using sensor
information collected, and generating a coverage path using this partial map. The topological
map embeds the slice decomposition of the environment by using the events in slice decom-
position 1l as landmarks for its nodes. The map is updated whenever relevant new information
becomes available. The path planner then generates a new path based on the updated partial
topological map.

Specifically, the topological coverage algorithm implements the algorithm for slice decompo-
sition 1l on Page 51 as a finite state machine (Section 4.1). The open and finisi®ltel (

F) are stored implicitly within the topological map, introduced in Section 4.3. Event detec-
tion is covered in Section 4.2, and the map updates associated are explained using examples in
Section 4.3.3. The selection of the next cell to cover, and how a path is planned to reach it is
described in Section 4.4. Finally, the chapter concludes with a discussion on the completeness
(Section 4.5) and complexity (Section 4.6) of the topological coverage algorithm.
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event occurred
new landmark reached

= T dart

Boundary)
arrived at boundary fully explored
uncovered
cell
alI covered

exit
Figure 4.1: State transition diagram for the topological coverage algorithm.

4.1 Finite State Machine

The topological coverage algorithm is organised as a finite state machine with three states —
boundary, normal and travel. Figure 4.1 shows the state transition diagram. The boundary state
handles the situation where the robot is on a cell boundary. The algorithm always starts in this
state. This is because the coverage process begins from a corner of the environment, which
is a cell boundary of the initial cell. This restriction on initial condition is not a shortcoming
because itis easy to program a robot to seek a corner by using simple forward and wall following
movements. The first corner found will then become the initial cell boundary.

When the robot finishes exploring the cell boundary, execution of the topological coverage
algorithm switches to the travel state. The robot searches its topological map and moves to the
selected uncovered cell. When it arrives at the selected cell, the algorithm enters the normal
state. This state controls the robot to follow a zigzag path to cover all the surface area in the
cell.

4.1.1 State — Normal

The normal state handles the coverage of individual cells in slice decomposition. This corre-
sponds to line 7 inside theepeat .. until loop in Algorithm 3.2 on Page 51. Its operation
is summarised in Algorithm 4.1.

Normally, the robot follows a zigzag path to cover all surface area in the current cell. This con-
tinues until it arrives at a landmark, which signifies arrival at a cell boundary. The topological
mapG is updated with the information that the current cell is completely covered. Details on
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Algorithm 4.1 Normal State
1: repeat
follow zigzag pattern
until at landmark
updateG
state< boundary

AX

Figure 4.2: To cover all surfaces between two consecutive strips, the inter-strip distance Ax cannot be
larger than the diameter of the robot 2r.

how landmarks and cell boundaries are detected can be found in Section 4.2, and description of
the map update process can be found in Section 4.3.

The step size\x of the line sweep needs to be small enough to cover all surfaces between
neighbouring strips in a zigzag. In Figure 4.2, the width of the robot is the same as the step
size, ieAx = 2r. In this case, the robot can cover all surfaces between strips, without any

overlapping. However, it is usually better to allow for an error margin and the area covered
should slightly overlap instead, as shown in Figure 4.3.

The following equation summarises the choice of step Ax#r a robot with radius:
AX < 2 (4.1)

This equation states that the step shkzeshould not exceed the diameter of the robotI2the
robot is rectangular, the%'w should be used instead afwherew is the width of the robot.

Figure 4.3: The area covered by neighbouring strips should overlap to provide a good coverage.
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4.1.2 State — Boundary

The boundary state handles the situation where the robot is on a cell boundary. The topological
coverage algorithm always starts in this state. This is due to the assumption that the initial
position of the robot is at a corner of the environment. In other words, the initial position is on a
cell boundary of the initial cell. This restriction on initial position is not a shortcoming because

it is easy to program a robot to seek a corner by using simple forward and wall following
movements.

The operation of the boundary state is summarised in Algorithm 4.2.

Algorithm 4.2 Boundary State
1: loop
2:  move forward along boundary

3: if atlandmarkhen

4: updateG

5. endif

6: if arrive at end of striphen
7: updateG

8: if boundary fully exploredhen
9: state< travel

10: else

11: turn around 189

12: end if

13: endif

14: end loop

The aim of the boundary state is to direct the robot to move along the boundary to expose all
cells neighbouring the current border. The topological i@aig updated whenever the robot
arrives at a landmark. It is also updated when the robot reaches either end of the cell boundary.
When the robot reaches one end of the boundary, it checks to see if it has been to both ends (line
8). If it has, then the cell boundary is fully explored, and execution of the algorithm switches
to the travel state. Otherwise, it turns around and moves towards the other end of the boundary.
Section 4.2 describes the operation of the boundary state in detail.

The boundary state corresponds to line 8 - 18 in Algorithm 3.2 on Page 51.

4.1.3 State — Travel

The travel state is responsible for generating and following paths that move the robot from
one cell to another. It implements lines 3 - 5 of Algorithm 3.2 on Page 51. Algorithm 4.3
summarises the operation of the travel state:
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Algorithm 4.3 Travel State
1: T(n) < searchs
if T(n) =0 then
exit algorithm
end if
: while T(n) # 0 do
move towardd (0)
if atT(0) then
T(n) = T(n) - {T(0)}
9: endif
10: end while
11: state< normal

Nk wN

First a graph search is done on the topological @ap find the closest uncovered cell, repre-
sented by a node in mdp, from the current location. The search returns a list of nodgs),

leading from the current node to the selected uncovered node. H&ajenotes the first node

in the listT(n). If the search returns an empty list, the environment is completely covered and
the algorithm exits (lines 2 - 3). To reach the selected uncovered cell, the robot moves from one
node inT(n) to the next. A node is removed froi(n) when the robot reaches the correspond-

ing area (lines 7 - 8). When the robot arrives at the last nodgm), ie the uncovered node,
operation switches to the normal mode. More details on path following and landmark matching
in the travel state can be found in Section 4.4.

4.2 Cell boundaries

A cell boundary occurs when the robot approaches a change in topology of segments. This
change is detected by monitoring obstacles around the robot. The conditions at which the robot
is considered to have arrived at a landmark and thus a cell boundary, and the action it takes
during the boundary state is determined by the type of topology change, the st#x sind

the detection range of the robot.

This section assumes that landmark detection is achieved using a combination of simple thresh-
olding, temporal sequence comparisgrsd odometry (comparing length of consecutive strips).
An alternative solution that uses a neural network is presented in appendix A.

All the diagrams in this section assume the sweep direction for the current cell is from top to
bottom.

lcomparing current sensor reading with previous ones
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Figure 4.4: Around a split event.
4.2.1 Event- Split

Figure 4.4 shows an example of a robot approaching a cell boundary caused by a split event.
This diagram shows the two closest sweep line positions around the criticality. The sweep line
at x is the last strip where the robot can move freely along the strip unobstructed. At the next
sweep positiorx;, 1, the robot’s path will be blocked. This is because the distance between the
strip to the obstacle is smaller than the minimum required for a robot to pass unobstructed:

Omin =T + 6C (4.2)

r is the radius of the robot anit is the minimum clearance the robot kept from obstacles.

A split event can first be detected at the sweep posiiom Figure 4.5(a), the distance to the
obstacle dropped below a threshold. At this point, the execution of the topological coverage
algorithm switches to the boundary state. As the robot continues to move forward, the distance
to the obstacle will eventually rises above the threshold, as shown in Figure 4.5(b). Between
the two positions shown in Figure 4.5, the distance to the obstacle stays below the threshold.
Therefore, if the robot missed the first transition where the distance drops below the threshold
(for example, due to sensor error), the split event can still be detected anytime while the distance
stays below the threshold.

If the robot leaves the current cell immediately after exploring the strip, éihe surface along

the emerging obstacle will remain uncovered. This is illustrated in Figure 4.6. The surface
along the dotted line in the diagram will be missed if the robot follows only the original sweep
positions atx; andx;,;. How much of the surface is left uncovered depends on the length of the
obstacle segment.

To address this problem, the robot will need to execute an extra strip that lies between the
sweep lines ax; andx;,1, as shown in Figure 4.7. The extra sweep position is labellegl.ds
is positioned so that the robot can get as close to the obstacle as possible.
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Figure 4.5: A split event occurs when there are obstacles close to the side of the robot in the direction
it is sweeping towards.
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Figure 4.6: By following only the original sweep line positions, surfaces between the boundary strip and
the obstacle will be missed. The area covered by the robot is shaded.
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Figure 4.7: To cover the surface next to the obstacle, an extra strip is added between the normal sweep
line positions.

AX

Xi+1 I

Figure 4.8: Detecting a split event when the robot’s path is obstructed at X;,;.

After the robot covered this extra strip, the current cell is declared to be completely covered,
and execution of the topological coverage algorithm enters the travel state to find a suitable
uncovered cell and travel there.

In the event that the robot fails to detect the split event while following sweep line pogition

it will continue with the zigzag path and move on to the next strip at poskign Eventually,

the robot’s path will be blocked by the obstacle, as shown in Figure 4.8. There ardfirerli

ways to detect a split event from the strip positiorxat. The first is by the presence of an
obstacle in the lower front of the robot, as shown in Figure 4.8. The other is by the sudden
reduction in length of the current strip compared to the previous one. Also, since a split event
can be detected via odometry (by comparing lengths of consecutive strips), it can be detected
by mobile robots equipped with bump sensors only.

Since the path along the strip is blocked, the robot will need to go around the obstacle to fully
explore the cell boundary. This is shown in Figure 4.9. This is achieved using a wall following
move around the obstacle. When the robot reaches the end of adjusted strip, there will be no
need for the addition of an extra strip since the surface near the obstacle will already be covered.
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Figure 4.9: This obstacle blocks the movement of the robot along a strip. The robot moves around the
obstacle to fully explore the cell boundary.

4.2.2 Event- Merge

Figure 4.10 shows the two closest sweep positions around a merge evanthatrobot’s path
is blocked by the obstacle which forms one of the side boundaries of the current cell. At the
next strip positionx,;, the boundary disappears, and the robot can move freely underneath it.
In other words, the strip a§,; is non-trivially longer than the strip at because of the opening
caused by the disappearing obstacle. More precisely, the length of the stip, dty ,, IS
non-trivially longer tharLy if

Ly, > Lx +2r (4.3)

wherer is the radius of the robot.

In Figure 4.11, the robot travels on the last strip of the current cell in the direction approaching
the disappearing side boundary. While still moving along the strip of its zigzag path, the robot
can first detect the opening in the side boundary by the absence of an obstacle in its lower front
(Figure 4.11(a)). Alternately, it can detect the event when moving from the strptatthe

next strip atx;,,, with the obstacle disappearing from its side (Figure 4.11(b)). Similar to the
situation with the split event, an extra sweep position betweandx;,; is needed to cover the
surface immediately underneath the disappearing obstacle. This extra sweep posgipnt

as close as possible to the obstacle. Since the robot arrives at the cell boundary in the middle of
the strip, it has to travel in both directions from this entry point to fully explore the boundary. In
other words, the robot has to first travel until the end of the strip in one direction, turn around,
and then travel until the end of the other direction. Only after both ends of the strip was visited
can the execution of the algorithm leaves the boundary state.

Figure 4.12 shows the reverse situation where the robot moves away from the criticality on the
last strip of the cell. The robot can first detect the merge event in this situation as an opening
behind itself while moving along the sweep positiorxatWhen it arrives at the end of the strip,

it moves down to the extra sweep positignto start exploring the boundary. The move to the
extra strip position does not have to be very accurate. The robot can simply move a distance
less than the normal step sia&. When the robot approaches the obstacle segment, it adjusts
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Figure 4.10: Around a merge event.
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Figure 4.11: Cell boundary handling for robots moving towards a merge event.
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Xi+1

Figure 4.12: Cell boundary handling for robots moving away from a merge event.

its distance to the obstacle. Because the robot enters the extra strip from one of its ends, the
robot enters the travel state when it reaches the other end.

If the robot fails to detect the merge event while at the strip posiipi will follow its normal

zigzag path and move on to the next strip positi@a. This is shown in Figure 4.13. There

are two ways to detect the merge event in this situation. Using range sensors, the robot can

detect an obstacle in the direction where it has just swept. Otherwise, it can detect the event by

comparing the length of the stripssatandx;,;. This is because the strip &t is a lot longer

than the one at;. After the robot has travelled a certain distance longer than the previous strip,

it will declare that it has entered a cell boundary. Since a merge event can be discovered by

comparing strip lengths, it can be detected by contact sensing robots. To cover the surface close
to the disappearing obstacle, the robot adjusts its path to be closer to the obstacle, indicated as
the extra sweep positiog in Figure 4.13.

4.2.3 Event-End

An end event occurs when there are no more strips left from the current position for the robot to
continue. Figure 4.14 shows a situation where this happens. Here, the robot finishes covering
the current cell and reaches the bottom cell boundary. This cell boundary does not lead to any
other free space cell. Therefore, this is the last free space segment left from the current sweep
position.

The end event can be first detected by the robot while travelling atong8imilar to the split

event, an end event is caused by the presence of obstacles in the direction the robot is sweeping
towards. A sweep position becomes the last strip in the cell when the distance from the strip
to the obstacle falls below a threshold. Thé&elience between the two events is that in an end
event, the cell boundary is not shared with any other free space regions. To cover the remaining
surface left in the free space cell, an extra strip is added as shown in Figure 4.15.

If the robot fails to detect the end event frognit will continue with its zigzag path and attempts



4.2 Cell boundaries

71

Xi+1

Xi+2

Xi+1

(b)

Figure 4.13: Detecting a merge event after the side boundary has disappeared.
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Figure 4.14: Around an end event.
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Figure 4.15: An extra strip is added between the last strip in the cell at x; and the obstacle to cover the
remaining surfaces in the cell.

|

Figure 4.16: The cell boundary blocks the robot’s movement from x to X;,1.

to move into the next strip position &t ,. However, the robot will not be able to move into

the strip position ak;,; because it is too close to the obstacle, as shown in Figure 4.16. When
the robot’s path is blocked while it is moving from one strip to the next, it declares that it has
entered a cell boundary. In other words, an end event can be detected by a contact sensing
robot. To cover the remaining surface in the cell, it can simply follow the obstacle from its
current position to the end of the strig/(in Figure 4.16).

4.2.4 Event- Lengthen

Figure 4.17 shows the sweep positions around a lengthen event. Detection of lengthen events
is identical to that of merge events. As explained in Figure 3.10 on page 50, the merge and
lengthen events appear identical locally to a robot when the event is first detected. Only when
the robot continues along the path will it discover th@atences. With a merge event, the robot
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Figure 4.18: Around a shorten event.

will detect another cell in the direction of the obstacle that causes the event originally. With a
lengthen event, the obstacle will stay on the side of the robot until the robot reaches the end of
the strip.

4.2.5 Event- Shorten

Figure 4.18 shows the sweep positions around a shorten event. In Figure 4.19(a), the robot
enters the strip ax; above the obstacle emergence. Therefore, the robot can detect that the
distance to the obstacle has dropped below the threshold when it enters the strip. This distance
stays below the threshold until the robot reaches the second position shown in Figure 4.19(a).
To cover the remaining surface in the current cell, an extra sweep positismdded, as shown

in Figure 4.19(Db).

If the robot fails to detect the obstacle emergencg ,at will continue and move to the next

strip at x,1. At this position, the robot’s path will eventually be blocked by the emerging
obstacle, as shown in Figure 4.20(a). A contact sensing robot will detect the shorten event at
Xi;1. To completely explore and cover the remaining boundary, the robot will need to follow the
obstacle, as shown in Figure 4.20(b).

Figure 4.21(a) shows the reverse situation, where the robot moves along the sfrip tite
direction towards the obstacle emergence. At the position shown in the diagram, the distance
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Figure 4.19: Detecting shorten events by monitoring obstacles in the direction the robot is sweeping
towards.
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Figure 4.20: The obstacle emergence in a shorten event blocks the path of the robot.
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Figure 4.21: Detecting shorten events by monitoring obstacles in the direction the robot is sweeping
towards.

to the obstacle drops below the threshold, and execution switches to boundary state. For the
remaining of the strip, this distance stays below the threshold. To cover the remaining area of
the current cell, an extra sweep positionis added, as in Figure 4.21(b).

If the robot fails to detect the obstacle emergenca ait will continue with its zigzag path.
However, the robot will not be able to move to its next stripxat since it is too close to

the obstacle, as shown in Figure 4.22. When the robot’s path is blocked while it is moving to
the next strip, it declares that it has entered a cell boundary, and start exploring the rest of the
boundary (same as Figure 4.21(b)).

4.2.6 Combination of split and merge events

The discussion for merge (Section 4.2.2) event assumes the first sweep line after the disappear-
ing obstacle extends beyond the obstacle. However, if there is another obstacle underneath the
disappearing one, no sweep line might pass underneath the disappearing obstacle segment at all.
This situation is shown in Figure 4.23. Here, the two obstacles form a small gap of wliglth 2
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Figure 4.22: The cell boundary blocks the robot's movement from x to X 1.

which is just wide enough for the robot to pass through. Only if a sweep line is positioned in
the exact middle of the gap will the robot be able to pass through the gap.

In Figure 4.23, the strip at; is the last one before the right side boundary disappears. The
strip atx,; would have extended underneath the top obstacle if the bottom obstacle does not
exist. In Figure 4.23(a), the robot moves along the strig @t the direction approaching the
disappearing side boundary. In Figure 4.23(b), the robot moves along the skipnathe
direction away from the disappearing side boundary. In both cases, the gap is detected with on
board range sensors while the robot is at either x;,,. To detect this gap, the range sensors
must have a detection range larger than the minimum clearance the robot kept from obstacles
oc. Therefore, ifdiange-miniS the minimum sensing range needed, then

drange-min > oC (4-4)

Since this combination event cannot be detected using odometry only methods, it cannot be
detected by a contact sensing robot. Unlike the merge event described in Section 4.2.2, there is
no sudden change in strip length before and after the event.

To explore and cover the gap between the obstacle, an extra sweep position is added midway
between the gap, as shown in Figure 4.24.

4.3 Topological Map

A planar graph representing the slice decomposition can be created by assigning nodes to the
thresholds described in Section 4.2, and connecting these nodes with edges. Figure 4.25 shows
examples ofncompleteplanar graphs around the five events in slice decomposition. The planar
graphs are incomplete because only nodes and edges around the events are shown. Moreover,
some edges are shown with only one endpbint.

2The two nodes that an edge connects are its endpoints.
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Figure 4.23: The two obstacles create a very narrow gap. Unless there is a sweep line position in the
exact centre of the gap, no sweep line will extend to the region between the two obstacles.

Figure 4.24: Similar to the merge event, an extra strip dm,;n below the obstacle is added.
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Figure 4.25: Events in slice decomposition can be represented with planar graphs: (a) split, (b) merge,

(c) end, (d) lengthen, (e) shorten.
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The planar graph constructed is not only a representation of the slice decomposition, but also
a qualitative topological map [64] of the environment. This is because the landmark nodes
are also recognisabl@laces of the environment. Here, the term landmark is used to refer to
large features in the environment such as walls and corridors. These landmarks are not features
independent of any particular coordinate system. This use of landmark is similar to Mataric in
[72].

4.3.1 Nodes

Two pieces of information are stored with every node in the topological map — the node type
and the edges incident tofit.

Four node types exist in the topological coverage algorithm — free space, obstacle uncovered
and joint. Free space and obstacle nodes are landmark nodes and are directly related to events in
slice decomposition (see Figure 4.25). Free space nodes have obstacles on two adjacent sides.
They are called free space nodes because corners are related to free space segment disappear-
ance. Obstacle nodes are associated with threshold drops and rises in the middle of strips. They
are called obstacle nodes because of their relationship to obstacle segment changes. Uncovered
nodes represent uncovered cells in the environment. Joint nodes connect the landmark nodes
(free space and obstacle nodes) to the existing map. In other words, they join the graph seg-
ments shown in Figure 4.25 to the existing map. Section 4.3.3 explains the functions of the
different types of nodes in more details using four examples.

Other than its type, each node also remembers the edges incident to it. An uncovered node has
only one edge incident to it, a free space node has two, a joint node has three, and the obstacle
node can have three or four.

4.3.2 Edges

Edges in the map are cell boundaries in slice decomposition. Each edge in the map has a
type and an approximate distance between its two endpoints. The five types of edges are open,
vertical, north, south and corridor. Open edges are horizontal edges that have no obstacles above
or below them. Vertical edges are for the right and left boundaries of a cell. North and south are
horizontal edges that are immediately below or above an obstacle respectively. Corridor edges
are ones with obstacles on both sides.

3Can be reliably detected by robots using sensors.
4An edge isncidentto its endpoints.
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4.3.3 Map updates

Figure 4.27: Sample environment.

This subsection is arranged into four examples explaining how the topological map is updated.

It also explains the functions and properties of the various types of nodes and edges. Figure 4.26

shows the symbols used in the diagrams in this subsection.

Example 1

The first example uses the obstacle seen in the examples in Chapter 3. This is shown in Fig-

ure 4.27 and there is only one obstacle in the environment. Cells that are detected but uncovered

are represented on the topological map as a pair of uncovered ngd@hérefore, the map in
Figure 4.27 contains only the uncovered free space cell at the top.

In Figure 4.28, the robot has covered the top free space cell and has arrived at the cell boundary.

The distance to the obstacle drops below the threshold. A new obstacle modecfeated.
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Figure 4.28: Detects a split event.

Since the obstacle node) is located in the middle of a strip, a joint node) (s added to
connect the obstacle node)(to the rest of the map. Also, uncovered nodegsdre connected

to both the obstacle node) and the joint nodes|). This is because the two nodes lead to the
two side boundaries of the new free space cell underneath. Note that the newly found uncovered
cell is also represented by a pair of uncovered noggs (

The type of edge used depends on the situation between the two nodes it connects. For example,
in Figure 4.28, an open edge is used between the obstacle opdend the joint nodes

because there are no obstacles on either side of the edge. Vertical edges are used to connect the
new uncovered nodes) as these edges are the side boundaries of the uncovered cell.

As the robot moves along the the cell boundary and reaches the point where the distance to
the obstacle rises above the threshold, the map is updated as shown in Figure 4.29. Note that
a south edge is used to connect the new obstacle rmmd®e the existing map because of the
obstacle below the edge. When the robot reaches the end of the strip, the uncovered)node (
representing the right boundary of the top free space cell is converted to a joint «)ae (
complete the cell boundary. This is shown in Figure 4.30. It can be seen from the diagram that
cell boundaries are represented as a horizontally connected series of nodes and edges. Also,
the map updates that occur during the boundary exploration have converted the two uncovered
nodes X) in Figure 4.27. Now the nodes surrounding the boundaries of the top free space cell
form a cycle® in the topological map.

SA cycle in a graph has positive length, its origin and terminus are the same, and its origin and internal nodes
are distinct.
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split event.

Figure 4.29: Reaching the other end of the obstacle segment in a

Figure 4.30: Finishing the cell boundary exploration. The nodes representing the top and bottom

Il form a cycle in the map.
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Figure 4.31: Covering another cell in the environment.

Assume that the robot now chooses to cover the cell to the left of the obstacle, as shown in
Figure 4.31. It can be seen that this uncovered cell is represented by a pair of uncovered nodes
(x). This pair of nodes are connected via a horizontal edge that is the top boundary of this cell.
This arrangement is similar to the one shown in Figure 4.27. It is this configuration of nodes
and edges that indicates the existence of an uncovered cell in the topological map.

When the robot reaches the bottom of this cell, the two uncovered nodes are converted into
other types of nodes, as shown in Figure 4.32. The status of the current cell is now changed
from uncovered to covered, since the nodes representing it now forms a cycle in the map. As
the robot explores the cell boundary, it will discover the other end of the disappearing obstacle
segment that causes the merge event (Figure 4.33). An obstacle moeadded for this
landmark. An uncovered node) is also added for the new free space cell above the cell
boundary. Figure 4.34 shows the robot completing the exploration and map updating for this
cell boundary. At this moment, there are three uncovered cells in the topological map.

Figure 4.35 shows the robot reaching the top boundary of the free space cell. A free space node
(O) is added here because the landmark is surrounded by obstacles on two adjacent sides. Since
free space nodes are corners by definition, it is therefore always located at ends of cell bound-
aries. This is in contrast to obstacle nodes, which are always in the middle of cell boundaries.
As a result of this, free space nodes are only incident to two edges, while obstacle nodes are
incident to three.

When the robot reaches the other end of this cell boundary, the map is updated to indicate this
cell is completely covered. This is shown in Figure 4.36.
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Figure 4.36: Completing the free space cell.
Example 2

Sometimes both the top and bottom boundaries of an uncovered cell have been exposed during
two different boundary explorations. This happens around a free standing obstacle, when one
side of the obstacles has been covered. Figure 4.37 shows a robot covering a cell where both
top and bottom boundaries are known. Note that there are two sets of uncovered:>jodes (
one for the top boundary, one for the bottom. This duplication of uncovered ngjlesqurs
because boundary exploration of both the top and bottom borders classify the cell as uncovered.
The robot does not know that both borders belong to the same cell during the earlier boundary
explorations. When the robot reaches the top border and arrives at the obstaclexadtis (
recognised as previously visited. The two sets of unexplored edges are merged to form a single
cell as shown in Figure 4.38.

Landmark matching is done both metrically and topologically [64]. A list of possible matches

is found by selecting nodes that are metrically close to the robot’s position. Closeness is defined
loosely as a region two to three times larger than the robot. If there is more than one possible
candidate, a topological matching procedure is initiated. This involves comparing directions of
obstacles around candidate nodes with the robot’s current situation. Using the situation shown
in Figures 4.37 and 4.38 as an example, lets assume the metrical match procedure returns the
two obstacle nodes)) above the obstacle. Using the knowledge that there are no obstacles on
either side of the strip previously, it can be concluded that the obstacle node on the right is a
match by analysing the topology around the two nodes. The node on the right is connected to
an open edge in the direction behind the robot, while the one on the left is connected to a south
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Figure 4.37: An uncovered cell where both top and bottom boundaries are known.
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Figure 4.38: The obstacle

topologically.

node (O) is identified as the current landmark by matching metrically and
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Figure 4.39: Two obstacle nodes (0) are added for the merge and split events. Because the two events
occur at the same sweep position, the “cell” between the events is considered covered
already.
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Figure 4.40: Completed topological map for this example.

edge.

Example 3

Section 4.2.6 discussed the situation where a merge and a split event happens in the proximity
of one another. Figure 4.39 shows a robot encountering such a situation. Here, the gap between
the top and the bottom obstacle is quite small, and the robot can just pass through. Since the
robot detected both a split and a merge event, two obstacle nojlese added. However,
uncovered nodes<) are added only for the lower set of joint)(and obstacled) nodes. This

is because the two events actually occur at the same sweep position (there is only one sweep
position through the gap), and therefore the “cell” between the two events is already covered.
Figure 4.40 shows the completed topological map for this example.
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Figure 4.41: Reaching a new node that does not lead to any uncovered cells.

B

Figure 4.42: The uncovered node (x) is converted to a free space node (0O).
Example 4

In the previous examples, all the free space nodgslare cell boundaries with only free space

nodes (). This example shows a situation where a free space noysh@ares a cell boundary

with other types of nodes. This occurs in shorten and lengthen events. Figure 4.41 shows a
robot arriving at a new free space node)( The uncovered nodex] is converted to a free

space noder{), as shown in Figure 4.41. No uncovered noggié added to the free space

node (O) because it does not lead to any free space cell underneath. This is because the free
space segment at that end becomes an obstacle segment in the next sweep line position. The
obstacle segment ends and free space segment from the new uncovered cell underneath starts at
the position shown in Figure 4.43. The representation of the completed cell boundary is shown

in Figure 4.44.

4.4 Travel between cells

When the robot finishes covering the current cell, it searches the topological map for the closest
uncovered node from its current position. Since the goal location is unknown, no heuristic
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Figure 4.43: The free space cell underneath is connected from this position.

il

Figure 4.44: The cell boundary is completed.
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Figure 4.45: Results of a breadth-first search on the map in Figure 4.38. The current node is node 1,
and the closest uncovered node found is node 4.

information is available relating each node to the goal node. As a result, a blind %Shasch

to be used. A standard breadth-first search assumes that the length of a route from one node
to another is equal to the number of edges in the path. To take advantage of the approximate
distance information stored with the edges, a modified breadth-first search [92] can be used

instead. This modified breadth-first search favours nodes with shorter distances from the start

node.

The graph search returns a list of nodes from the current node to the selected uncovered node.
The robot then moves from node to node until arriving at the chosen uncovered node. Similar to
the landmark matching in the boundary state, the robot determines if it has arrived at the target
node using a combination of metric and topological matching. When the robot moves into the
region close to the target, it uses sensor and temporal information to decide when it has arrived at
the node. Temporal information comes from previous sensor readings and actuator commands.
The match is qualitative and there is no guarantee the robot will arrive at the exact location as
previously. However, an exact match of locations from previous visits is not necessary. This is
because cells in slice decomposition are bounded by obstacle boundaries, not the exact location
of where these obstacles are first detected.

Using the situation in Figure 4.38 as an example, a standard breadth-first search will return
either of the paths shown in Figure 4.45, depending on the search order. This is because both
paths link the current node to an uncovered nade\via three edges. The only ftkrence
between the two routes is the second node (2a and 2b) on the route.

If route a is returned by the search, the robot turns around and moves forward until arriving at
the left boundary of the environment. It then turns right (from a geocentric point-of-view) and

SA blind search does not use a cost or evaluation function to bias the search to move more quickly toward the
goal.
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follows the boundary. The length of the edge between node 2a and 3 is estimated by the number
of strips it took the robot to arrive from the bottom to the top of the cell. As aresult, itis not very
accurate. The uncovered cell represented by node 4 is assumed to start at the position of node
3. Therefore, after the robot arrives at the approximate position of 3, it turns right again and
starts moving towards the direction of the obstacle. The sweep position should be very close to,
but underneath the obstacle. When the robot gets closer to the obstacle, it can adjust the sweep
position accordingly and starts covering the chosen cell in the normal state of the topological
coverage algorithm.

If route b is returned, the robot will follow the obstacle until it arrives at node 2b, which is at
the bottom of the obstacle. It then turns around and moves towards the left boundary of the
environment. When it arrives at the wall (node 3), it turns around again, switches execution of
the algorithm to normal state and begins covering the cell.

4.5 Completeness

It is important to show that an online coverage algorithm is complete, that it can fully cover
a given environment. This section attempts to prove the topological coverage algorithm can
always find and cover all reachable surfaces in unknown environments.

Slice decomposition subdivides free space in the environment into a collection of disjoint cells.
Two cells are said to bdirectly connected if they share a common cell boundary. Two cells are
indirectly connected if there is a series of directly connected cells that link the two. A robot can
always find a path between two directly or indirectly connected cells. Therefore, the reachable
surface in an environment is the union of all cells directly or indirectly connected to the initial
cell.

The topological coverage algorithm achieves complete coverage by creating a slice decomposi-
tion of the environment and covering all cells in the decomposition. Since cells in slice decom-
position can be covered by a robot following a zigzag path, the problem of proving complete
coverage can be simplified to showing that all reachable cells are guaranteed to be discovered
and visited. It is assumed that the robot has range sensing ability.

Lemma 4.5.1. All topology changes in the environment are always detected.

Proof. The inter-strip distanc@&x is always set to ensure a robot following two consecutive
strips can fully cover all surfaces between the two strips. No surfaces are left uncovered between
consecutive strips. Therefore, even robots equipped with only bump sensors can detect obstacles
that appear within the length of the strips. In other words, all obstacles to the side of the robot
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will be detected by following a zigzag path.

For all the events in slice decomposition, on top of detection by range sensors, there is a fall back
to simple detection by odometry. In split (Figure 4.8) and shorten (Figure 4.20(a)) events, an
obstacle appears in the middle of the strip and blocks the path of the robot. This causes a sharp
decrease in the strip length compared to the previous strip. In end (Figure 4.16) and shorten
(Figure 4.22) events, the robot's path is blocked while moving from one strip to the next. In
merge and lengthen events, the obstacle appears on the side of the robot in the direction where
it has already swept. The obstacle does not “block” the path of the robot, rather, it “opens” the
area underneath. This creates an huge increase in the length of the current strip compared to the
previous one. This increase is larger than can be attributed to sensor (odometry) error.

The only situation where the robot may not pass an obstacle by its side is when two events occur
in the proximity of each other, creating a small opening. This is discussed in Section 4.2.6.
Since the robot will only encounter the criticality on its front or back, there is no fall back to
detection by odometry. In other words, detection has to be done purely via range sensing. If
the robot can pass through the gap, it must be at least of weith. £4.1) gives the maximum

value ofAx at 2. (4.2) states that is always smaller thad,,,. Therefore, the step sizex is

always smaller than the minimum gap widtth. For this reason, part of the robot will always
pass in front of the gap independent of the sweep line positions. Therefore, a robot is capable
of detecting such a gap even with short range sensors. m|

The cell boundary where the robot enters a cell is calledg®ningcell boundary. Thelosing
cell boundary is the boundary the robot reaches when it finishes covering a cell.

Lemma 4.5.2. The closing cell boundary of any visited cell is always found.

Proof. This follows directly from Lemma 4.5.1. A robot following the zigzag coverage path
will always be able to detect all topology changes happening in the cell. O

When the robot arrives at the closing cell boundary, it is programmed to fully explore the bound-
ary reached. This full exploration of cell boundary has two goals. First it completes the cov-
erage of the current cell and removes all uncovered nodes associated. Secondly, it exposes all
other cells that are connected to the same boundary. The following Lemma guarantees all cells
sharing the closing cell boundary of a visited cell are added to the topological map.

Lemma 4.5.3. All cells that share the same cell boundary to the closing cell boundary of a
visited cell are detected.

Proof. This also follows directly from Lemma 4.5.1. A robot moving along the strip of the
closing cell boundary can always detect all topology changes at that sweep position. O
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When the robot finishes exploring a closing cell boundary, it searches the topological map for
any uncovered cells. Since the topological map is a connected graph, travelling to any uncovered
node is a simple matter of finding a path between the current node and the chosen uncovered
node in the connected graph.

Lemma 4.5.4. All cells that are added to the topological map will be visited.

Proof. Topological coverage algorithm continues until the map does not contain any uncovered
cell. Therefore, all cells that are added to the map will be covered before the algorithm finishes.
i

Proposition 4.5.5. All reachable cells in slice decomposition are covered.

Proof. Starting from the initial cell, all reachable cells are either directly or indirectly con-
nected. Lemma 4.5.3 guarantees that all the reachable cells are detected. Lemma 4.5.4 guar-
antees that all these reachable cells will also be visited. Lemma 4.5.2 shows the robot will
always reach the closing boundary of the cell it is covering. Therefore, all reachable cells in the
environment are detected, visited and covered. m]

4.6 Complexity

The topological map is a bi-directed gra@itN, E), whereN is a list of n nodes, ancE is a

list of e edges. Graphs are generally implemented as adjacency lists [53, 73, 93]. An example
of representing a graph as adjacency lists is shown in Figure 4.46. The space complexity is
thereforeO(n + €).

Topological map updates involve insertion and deletion operations on graphs. These are con-
stant time operations because insertion and deletion on linked lists are constant time [73].

Searching for an uncovered cell on the topological map is done using breadth-first search. An
implementation of breadth-first search adapted from Tanimoto [92] is shown in Algorithm 4.4.
The algorithm requires the topological m&gN, E), a start node, and a goal node as input.

In the coverage algorithm, the start node is the current node the robot is situated at, while the
goal node is any node of type uncovered. In the algorithr@glecessois an array, whilepen
closedandpath are all linked lists. Initialisation of the predecessor array in lines 1 - 3 takes
O(n). Initialisation of the linked lists in lines 4 - 6 B(1). There are two nested loops between
lines 7 - 27, with the inner loop starting at line 21. The loop terminates either at line 9 when
no goal node (uncovered nodes) is found; or at line 19, when the first empty node is opened.
Therefore, the outer loop rur@(n) times. The inner loop runs once for each node adjacent
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Figure 4.46: (a) A directed graph. (b) Implementation as adjacency lists. Each node in the graph has a

list of nodes it is connected to.
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to the opened node (line 21). From the adjacency lists, it can be seen that the inner loop
iterates 2 times. Therefore the total time the nested loop iterat€3(msax(, €)). Normally,

there are more edges than nodes in a graph. Thus the time complexity of the nested loop can be
simplified toO(e). Combining the loop and the initialisation, the running time of the algorithm

can be expressed &n + €). (In the less common scenario where there are more nodes than
edges, the running time 3(n)).

Algorithm 4.4 Standard Breadth-First Search
Require: G(N, E), start node, goal node
1: for each node&in N do

2:  predecessonj «— —1
3: end for
4: open« start node
5: closed« 0
6: path— 0
7: loop
8. if open= 0 then
9: return(
10: endif
11: n <« open(0)
12:  open« open -n
13: closed« closed+ n
14: if n = goal nodehen
15: repeat
16: path« path+ n
17: n « predecessonj
18: until n# -1
19: return path
20. endif
21: for each nodenadjacent tan do
22: if m¢ open andn ¢ closedthen
23: open« open+ m
24: predecessonf) < n
25: end if
26: end for
27: end loop
4.7 Summary

The topological coverage algorithm enables a robot to completely cover any unknown environ-
ment by incrementally constructing, updating, and storing coverage information in a topolog-
ical map. The topological map shares the same set of landmarks with slice decomposition II.
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Therefore, it is both a qualitative representation of landmarks in the environment, and a slice
decomposition of the same space.

It is very difficult to mark particular regions in the environment as covered in a topological map.
This is due to the qualitative nature of the representation. The nodes and edges of the map do not
correspond to specific locations in space. Thifialilty in storing coverage information within

a topological map is overcome by embedding slice decomposition within the map. Even though
individual nodes in the map are still not associated with specific areas of space, a combination
of nodes now defines a region (a cell) bounded by obstacles.

Completeness and complexity of the topological coverage algorithm are also discussed. Com-
pleteness is important because an online coverage algorithm must completely and fully cover
all the reachable surface. On the other hand, complexity was not an important issue in prac-
tice. Empirical observation shows that the robot spends a lot more time moving through the

environment than searching the topological map. There was never any noticeable reduction in
performance due to computational requirements of the coverage algorithm.



Newton’s Third Law of Graduation: For every action towards gradua-

tion there is an equal and opposite distraction.

Jorge Cham, “Piled Higher and Deeper”, www.phdcomics.com

Performance metrics

rformance metrics allow quantitative evaluation of results from experiments. They also
rovide a way to compare fierent experiments, or algorithms, meaningfully. There are
two questions commonly asked about coverage operations [104]. Firstly, how much of
the environment is covered or missed? Secondly, how much time is wasted on revisiting area
that is covered already?

The first question can be answered with a measure of fleeteness of the operation. In
simulation, this is commonly measured by calculating the percentage of grid cells covered [45].
In real robot experiments, existing approaches to estimating percentage coverage include sprin-
kling sawdust [97] and using the coverage factor [22]. Neither methods produce a good estimate
of the percentage coverage for real robot experiments.

The second question is an inquiry about tiigceency of the operation. For simulated exper-
iments, Gabrielyet. al. uses the number of repeatedly covered grid cells [45]. There are two
minor flaws with using repeatedly covered cells as a metric. Firstly, a repeatedly covered cell
maybe covered more than twice. Secondly, the figure is not normalised against the total num-
ber of grid cells in the environment. There are no existing measurioieacy for real robot
coverage experiments.

This chapter presents the two metrics that will be used to measure the performance of coverage
experiments in this thesis. Section 5.1.1 defines ffeceveness metric, which is the same

99
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as the one used by Gabriedy. al.[45]. The dficiency metric defined in Section 5.1.2 is an
improvement over the use of repeatedly covered cells. The metric not only estimates the area
of re-coverage, it is also normalised against the actual area covered by the robot.

These metrics are useless if the data they requirefli€ult or impossible to obtain. There-

fore, the rest of the chapter describes practical methods for obtaining and estimating the data
needed. Section 5.2 presents methods for estimating the metrics with grid-based simulation en-
vironments. Section 5.3 describes estimation in real robot experiments using computer vision
techniques.

5.1 Metrics

5.1.1 Hfectiveness: percentage coverage

The dfectiveness of a coverage algorithm is the amount of the total surface covered by a robot
running the algorithm. Therefore,

_Area of surface covered
~ Total reachable surface area

(5.1)

The coverage metri€ calculates the percentage coverage of an experiment. It requires the
estimation of the area of surface covered in an experiment and a measure of the area of reachable
surface in the environment.

5.1.2 Hificiency: path length

The dficiency of a coverage algorithm can be measured by the length of the path taken to
completely cover an environment. The path length is related to the time spent on the coverage
task if the robot moves in a fairly constant speed.

To make the metric environment independent, it is necessary to normalise the actual path length
|IP4]| travelled by the robot. An ideal solution would be to divide the actual path IdRgh

by the length of the optimal path. The optimal path is the shortest path possible to cover an
environment if the robot starts with a map. Any path generated by an online algorithm, such as
the topological coverage algorithm in this thesis, will be longer than the optimal path.

However, Arkinet. al.has shown that finding the optimal coverage path is an NP-hard problem
[13]. They proved this by formulating coverage as a travelling salesman problem, with each
location in the reachable area as a city. As a result, the actualRaatiken by the robot
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is compared to theninimal path R, instead. The minimal patR,, is the shortest coverage

path for a mobile robot that can teleport with no cost associated with the teleport operation.
All environments can be covered by such a robot with no retracing. The minimaPpath
therefore always equal to or shorter than the realisable optimal path. In summary, the path
length taken is normalised by

’

_ 1Pl
1Pl
where||P,|| and||Py|| are the Euclidean distances for the actual path and the minimal path
respectively.

(5.2)

However, (5.2) does not take into account the amount of cové&agphieved in the experiment.
This is important as the experiment may not attain 100% coverage?figdthe minimal path

for covering theentire space. If the robot covers only 50% of a given environment, fgn
should be compared with 50% Bf, instead. The minimal path;, of the area actually covered

in an experiment is
Area of surface covered

X = X
™~ Total reachable surface area ™

Therefore, (5.2) becomes
[IPall

=—= 5.3
IPmll x C (5.3)

(5.3) is the path length metric used for measurifiifcency of coverage experiments. The
length of the actual patR, can be calculated from wheel encoders’ readings. The minimal path
P depends on the configuration of the environment.

5.2 In simulation

The simulation environment is assumed to be a uniform grid with square cells. Therefore, area
in simulation can be measured in numbers of grid cells. (5.1) can be rewritten as

Area of surface covered

Total reachable surface area

_number of grid cells covered (5.4)
~ number of reachable grid cells '

The number of grid cells reachable is calculated with the distance transform [58]. Figure 5.1
shows the distance transform of a very small and simple environment. It is assumed that the
robot is the same size as a grid cell. Also, the robot keeps a distance of at least one grid cell from
any obstacles. Starting from the initial cell (marked 0), all 8 neighbours of a marked cell are
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Figure 5.1: Calculating the total number of reachable grid cells using the distance transform.

tagged with a number one higher than itself. This tagging propagates until all cells not occupied
by an obstacle, or a neighbour of an obstacle, are marked. The total number of reachable grid
cells is then the number of cells marked, or numbered, by the distance transform.

Since the only piece of information needed is whether a path exists between any given grid cell
and the initial grid cell, the distance transform is an overkill for this application. A simple filling
algorithm [40], like the one shown in Figure 5.2, alreadffises. However, both the distance
transform and the filling algorithm require similar amounts of computation and coding time.
Therefore, it does not make anyffgirence which of the two methods are used to calculate the
number of reachable grid cells.

The other parameter in (5.4), the number of grid cells covered, is found by counting grid cells
after the simulation is finished. Only reachable grid cells covered are included in the total. If
any non-reachable grid cells are covered, they are simply ignored in the count.

The path length measure from (5.3) is reformulated as

[IPall

[IPmll < C

B number of moves (5.5)
~ number of reachable grid celsC '

The actual path length is calculated as the number of moves the robot has made. This is similar,
but not the same, as the number of cells in the robot’s path. Trexehce is in the handling of
multiply visited grid cells. Here, a grid cell that has been visité¢ones occupies steps in the

path.

The number of reachable grid cells is used as the length of the minimal path. This comes directly
from the definition of the minimal path, which is the path length needed to achieve complete
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(@) (b)
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Figure 5.2: Calculating the total number of reachable grid cells with a a simple filling algorithm. (a) The
algorithm starts with marking the initial cell. (b) In the next step, all the neighbours of the
initial cells are marked. (c) Then all the neighbours of the grid cells marked in the previous
steps are marked as well.
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coverage with a teleport robot. With no cost to teleportation, such a robot canrcgridrcells
in n steps. In other words, if the environment maeachable cells to be covered, the minimal
path would also be.

5.3 Inreal robot experiments

5.3.1 Creating composite images

To calculate the amount of covera@ean estimate of the area covered by the robot is required.

It is important not to calculate this area from robot’s positions estimated from dead reckoning.
This is because dead reckoning attempts to estimate the rgosisonbased on the distance

it travelled in its current direction from its previous position. Consequently, accumulation of
errors, especially in the orientation, can lead to a larger and larger discrepancy between the
estimated and the actual poses.

Therefore, an external, independent perspective of the experiment process is required. A simple
and cheap solution is to use a wall mounted camera to capture a movie of the robot’s progress.
The experiment setup used in this thesis is shown in Figure 5.3 and a sample image from the
camera is shown in Figure 5.4. Computer vision techniques can then be employed on the images
captured to estimate the area covered by the robot. Figure 5.5 shows a flowchart explaining
the process. First, the original frames captured by the camera are combined to form a single
composite image. This composite image illustrates all the surfaces the robot covered. Since
the original images contain perspective distortion, this artefact is removed using a deskewing
operation. The percentage coverage is then estimated from the resulting deskewed composite
image.

In this thesis, a composite image of an experiment refers to a single image that shows the trail or
path of the robot during the experiment. To create such an image, the position of the robot is first
extracted from each frame captured by the camera. These positions are then superpositioned to
form a single image.

Two methods have been devised for creating composite images [105]. The first method, image
subtraction, requires very little computation. However, ftests from two major disadvantages.
Firstly, it is not particularly reliable as artefacts frequently appear in the background subtraction
process. This is because of environmental factors such as lighting. Additionally, in the case of a
tethered robot (such as the Khepera) the cable motion is computed as part of the final composite
image.

The other method, evidence gathering, improves tolerance to poor lighting by matching a model
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Figure 5.3: Mounted camera capturing frames of robot's movements.

Figure 5.4: An image captured by the experimental setup shown in Figure 5.3.

— »l»l» Area=?

composite deskewed
original Image image
frames

coverage

Figure 5.5: Estimating the percentage coverage from an image sequence.
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of the robot using a Hough accumulator [79]. The major disadvantage of evidence gathering is
the Hough transform used is very computation intensive. More details on the computer vision
techniques employed in evidence gathering can be found in Appendix B.

Image subtraction

The first step in this method is to subtract a reference imdgem each of the original images
fi in the sequence. Thus
s=f-r (5.6)

As the images employed are full colour (RGB) images, this subtraction is computed for each
colour channel separately. Thetdrences highlights the movement of the robot in the image
sequence. This is because the robot is the only moving object in a static environment.

It is desirable that the reference imagee an accurate representation of the environment with-
out the robot in it. Any error in the reference image will result in artefacts.inlf the ex-
periments are very short, it is possible to use an image taken immediately before or after an
experiment as the reference imageas long as the robot is not in the scene.

However, if there are illumination changes within the scene, then a temporal average of the
entire sequence should be used as the reference imagesive approach would suggest using
the average of the images. However, this will result in a ghostlike trail that corresponds to the
motion of the moving object. Instead the median operator was employed. This computes the
reference image as follows

r = mediarffo, -+ , fos) (5.7)

for a sequence with imagesf, to f,,_;.

In implementation, the median operation is computed via a histogram of image intensities at
each point and finding the value corresponding to the 50th percentile.

After the subtraction in (5.6) is computed, théfeience images are thresholded pointwise

with a step response. If the value of a pixel is greater than 127, the value is changed to one;
otherwise if the value is smaller than 127, 0 is assigned instead. These threshéieleshce
Images are then combined by performing a pointvéiRef the all the images. This method-
ology works as the main point of filierence between successive frames is the robot. As the
thresholded images aréfectively a binary representation of thiftérence, then a logica@R

will yield a resulting image which is a superposition of the robots locations.
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Evidence Gathering - Hough Transform

The first step of evidence gathering is image subtraction using (5.6). The resufiegice
imagess are then edge detected to find the edge information for each colour channel. The
edge map is computed using a Canny edge detector [25, 79], for two main reasons. Firstly, it
is considered to have an optimal response for step edge responses, and secondly it can serve to
reduce noise in the image. This noise reduction is useful as it can help remove small artefacts
in s due to estimation problems in the reference image. The final edgeen@pcomputed

via weighted summation and thresholding of the individual colour channels. The weighting in
the summation allows the emphasis of features in particular colour bands. The value of the
threshold is tuned empirically.

The edge mag is then presented as evidence to a model of the robot. The specific model
used depends on two factors — the shape of the robot; and how this shape changes because of
perspective fects as the robot moves within the environment. For example, the Khepera robot
was modelled as a circle. This is possible as at the extreme end of the enclosure, where the robot
Is at the maximum distance from the camera, the Khepera is still circular. In this case the model
fitting must find the diameter that best fits the Khepera in each frame. A Hough transform is
used to fit the model to the edge data. The specific model fitting algorithm is shown below:

Algorithm 5.1 Hough Evidence Gathering
for d = Dpin t0 Dinax dO
for all edge pixelsX,y) do
for 6 =0to 2r do
X — X— 9 cos
Ye < Y- 5Sinf
if (X, Ye) IS inimage andX, y.) is an edge pointhen
incrementA(x, Y, d)
end if
end for
end for
end for

For a circular fit, the image is initially examined to find all the edge points. For each edge
point, all the points are computed that are in a circle of diamgt@nd centred on this edge
point. Diameter was employed instead of radius as it is easier to compute this from an image
sequence. If the computed point is another edge point, then an array is incremented with a point
indexed by the original edge point and the diameter.

After evidence is gathered from the entire image, the af@yy, d) will contain peaks which
correspond to likely circle centre points and diameters. Within this array the peak corresponds to
the circle centre and diameter which occurs most often. This is the best candidate for the robot’s
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Figure 5.6: Quadrilateral to square mapping.

location within the frame. It can be computationally expensive to search all possible diameters
so the possible search space is reduced by examination of the original image sequence. The
purpose of this is to find estimates of the diameters of the robot at the maximum and minimum
distance from the camera. This sets upper and lower bounds to the diameter parBmgter,
andDyax.

The output of the model fitting stage will be a series of numbers which describe the central
coordinates of the robot and the model chosen to describe the robot. By examining the results
from all successive frames an accurate representation of the robot’s path can be found. This,
along with the model of the robot, can be used to produce a composite image for estimating the
surface area covered by the robot.

5.3.2 Correcting perspective warp

The images captured by the camera showféegceknown as perspective warping. This means
that distant lines are shortened when compared to closer lines. This shortfasigrekes it
difficult to estimate the coverage area. Therefore, it is essential to correct foffdut &his

can be performed using an inverse perspective transform to map the quadrilateral into a unit
region as shown in Figure 5.6. This mapping makes the assumption that the original object, in
this case the tray, is square in shape. The perspective transform described in this section follows
the work of [99].

To make the mathematics simpler, this discussion will originally examine the reverse of the
transform shown in Figure 5.6. The forward perspective can be written:

X a1 a2 aygf|u
Y|=[221 a2 ax||V (5.8)
w Az Az asz||W

Herex,y, u andv are coordinates as shown in Figure 51\8s the perspective. It can be simply
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written asx’ = Au. Euclidean coordinates can be computed using equation (5.8) and performing
the following substitutions :

X apu+ appVv+ a;gw
X = — — 11 12 13 (59)
w aAzU + agpV + AzaW
_ y’ _ dp1U + ayoV + apsW (5 10)
W agiU+ gV + agaW '

y
For most applicationw is generally 1.

For arbitrary systems (quadrilateral to quadrilateral) solving this equation will have 8 degrees of
freedom (two for each point in the quadrilateral). However, for the situation here the uv plane
is a unit square. Thus :

(0.0) — (%0, Yo0)
(1,0) = (x1, 1)
(1,1) - (X Y2)
(0,1) - (X3, Y3)

This gives the following values for the elements of the transformation matrix :

X1 — Xp+az1X1 X3 — X+ az2X3 Xp

A=lyi—Yo+ayr Ys—VYo+asys Yo (5.11)
AXgAyo—Ay3AXe AX1Ay3—Ay1AX3 1
AxiAyz2—-Ay1AX; AX1Ayo—Ay1AX%z

To compute the reverse of this transform requikeSbe found. This can be found by observing
thatA™ = %. Now as deA is a scalar quantity then a#ljcan be used as an approximation

of A~! so long as suitable scaling is performed on the coordinates.

To employ this transformation on the image requires that the corner points of the quadrilateral be
known. This could be computed via image processing and the methodology of edge detection.
However, as they are fixed in all frames they were found by empirical examination. Once found,
these points were used to generate a grid of points at which to sample the image. Neighbouring
points yield a quadrilateral in the xy plane and once deskewed they form a rectangle in the uv
plane. For each quadrilateral the intensity was computed using bi-linear interpolation (average
of the intensities of the nearest pixels). So long as the density of points in the griticsesuly

large then this method will yield an accurate image with the perspective warp removed.
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5.3.3 Computing percentage coverage

After the perspective warping is removed in the composite image, it is very simple to compute
the percentage covera@e The covered area is estimated by counting pixels in the trail of
the robot in the composite image. Since the covered area is calculated in pixels, the reachable
surface area has to be in pixels as well.

Area of surface covered

Total reachable surface area
Number of covered pixels

_ (5.12)

Total number of pixels in environmertNumber of obstacle pixels

For the experiments in this thesis, the tray shown in Figure 5.4 was used. A piece of software is
written especially for calculating the number of pixels within the tray and the obstacles. These
regions are marked manually inside this program, and the software will calculate the number of
pixels in the two categories. Theffirence between the tray and the obstacles within gives the
total area of reachable surface in number of pixels.

5.3.4 Calculating normalised path length

Unlike in simulation, eiciency cannot be estimated by the number of repeatedly covered pixels
in the composite image. This is because a real robot does not move in a grid. It “re-visits” a
significant number of pixels even when moving forward. Therefore, we meafigiercy as

the distance the robot travels instead.

To obtain the path length metric in (5.3), estimations of the actual distance travelled by the robot
and the minimal path to cover the environment are needed. The actual distance travelled can
be obtained using the wheel encoders on robots. Wheel encoders are reasonably accurate in
measuring distances travelled, with errors arising only when the robot slips, or if a wheel is not
completely circular [39].

The minimal path is estimated using the assumption that the robot moves in a zigzag pattern.
The area to be covered can then be divided as shown in Figure 5.7. The width of each division
is the inter-strip distancax of the zigzag. The minimal path lengfi.,|| to cover the entire
region is the sum of the lengths of these divisions.

With an estimation of the lengths of the minimal p##y)||, the actual pattiP,|| and the per-
centage coverage (from the composite image), (5.3) can be used directly to calculate the path
length metricL.
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Axl:

Figure 5.7: Estimating the minimal path length in real robot experiments. Ax is the step size of the
sweep, which is also the distance between consecutive strips in the zigzag.

5.4 Summary

In simulation, the &ectiveness metri€ is the same as the one used by Gabriely and Rimon
[45]. However, the path length is an improvement over their use of repeatedly covered cells
for measuring fficiency of coverage path. With, the length of the actual path taken by the
robot is compared with the minimal path of the environment. In other words, it shows how
much longer the path generated by the algorithm is compared to the minimal path. Moreover,
the metric also takes into account multiply covered cells and actual area covered.

The major contribution of these metrics however lies in the ability to evaluate them from real
robot experiments. Previously, the only real performance metric for non-simulated robots was
the coverage factor proposed by Butler [22]. The problem with the coverage factor is that it is
a poor measure of botHfeiency and &ectiveness. This chapter outlines practical and simple
solutions for calculating both metrics proposed from real robot experiments. A feature of the
method used for extracting the parameters needed is that it is robot platform independent. The
only on-board sensor required is wheel encoders for recording the actual distance travelled.
Even this requirement can be relaxed since the path travelled by the robot is reconstructed when
creating composite images using Hough transform (evidence gathering). As a result, the path
length travelled can be calculated in terms of pixels from the captured movie of the experiment.
Therefore, the only equipment necessary for evaluating the two proposed metrics is a camera to
record the experiments.

The performance metrics will be employed in Chapter 7 to evaluate experimental results of the
topological coverage algorithm.
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If we knew what it was we were doing, it would not be called research,

would it?

Albert Einstein

Implementation

he validity of the topological coverage algorithm was verified through testing in simu-

lation and with the miniature robot Khepera [75]. This chapter describes the methods

and tools used for developing, debugging and testing the topological coverage algo-
rithm. The robot used and its command set is introduced first in Section 6.1. This is followed
by a description of the simulated robot and environment, where most of the development took
place (Section 6.2). The next two sections concentrate on the implementation of the cover-
age algorithm itself, with the topological map in section 6.3, and the the robot controller in
Section 6.4.

6.1 Khepera robot

The robot used for testing the topological coverage algorithm is the miniature Khepera robot.
A picture of it is shown in Figure 6.1. The robot is 53mm in diameter. The robot is equipped
with eight infra-red proximity sensors for detecting obstacles. The sensors are placed around
the robot in the layout shown in Figure 6.2. The infra-red sensors can detect objects up to
30mm to 40mm away. The sensors return an integer between 0 and 1023 depending on the
distance between the sensor and the obstacle (with 1023 being the closest). The Khepera is also
equipped with incremental optical wheel encoders for dead reckoning. The resolution of the

113
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Figure 6.1: The Khepera miniature robot.

IR sensors

wheel

Figure 6.2: Layout of infra-red sensors on the Khepera.

wheel encoders is 12 pulses per mm of path of the robot.

The Khepera can be programmed and controlled using either the on-board Motorola 68HC08
microcontroller, or the serial communication protocol via an RS232 serial line. For the ex-
periments in this thesis, control via the serial link is used. This is because implementing the
algorithm on a PC allows for faster development, easier debugging and better code sharing
between the Khepera and simulation experiments.

The serial communication protocol provides complete control of the functionalities of the Khep-
era. Table 6.1 shows a list of commands that are used in implementing the topological coverage
algorithm. The protocol is in the form of commands and responses. Commands are sent from
the host computer to the robot, and the responses are the answer the robot gives for the command
sent.
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Function Command | Response

Set a position to be reached C,left,right | ¢

Set speed D,left,right | d

Read speed E e,left,right

Set position to the position countelG,left,right | g

Read position H h,left,right

Read proximity sensors N n,sensor Q; - ,sensor 7

Table 6.1: Commands in the communication protocol of the Khepera. This list contains only commands
used in the experiments.

The set position (C) command is used to instruct the robot to tutraB0 180. Normal nav-

igation, such as move forward and wall following, is done using the set speed (D) command.
The read speed (E) command sends the speed of the wheels back to the host computer, which
can be used to check if the robot is moving. The set position counter (G) command is used to
clear the counters of the wheel encoders; while the read position (H) command is used to read
the values of these counters. The read proximity sensors (N) command is for obtaining range
sensor data.

6.2 Simulation

The simulation environment is modelled as a>660 uniform grid. The robot is circular and

has a diameter of one grid cell. It is programmed to keep a minimum distance of one grid
cell from obstacles. It is equipped with 8 range sensors distributed uniformally around its
circumference. The sensing range can be varied, but it is set to 10 grid cells by default. It is
assumed that the sensors have no blind spots, and can detect everything around the robot up
to the maximum sensing range. Also, the regions of detection for individual sensors do not
overlap. The detection region therefore grows from the simulated robot in a pattern like the one
shown in Figure 6.3. If an obstacle falls within the region of detection of one of the 8 sensors,
the simulated robot will be notified of the index of the sensor that detected the obstacle, and the
distance to the obstacle.

An environment editor was written to ease the creation of environments for testing. It imports
and exports environment description in plain text files. Figure 6.4 shows a screenshot of the
editor. Obstacles can only be drawn as straight lines and circles. By using a combination of
these shapes, more complicated obstacles can be created.

Figure 6.5 shows the main simulator. The environment loaded is displayed twice on the screen.
The left half shows the world view, where the robot moves; the right half shows the map view,
which displays the topological map generated. Figure 6.6 shows another screenshot of the
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Figure 6.3: Region of detection for a simulated robot with a sensing range of 10.

@O D5 50 N

Figure 6.4: Screen shot of the environment editor. The environment in this figure contains only a single
diagonal line.
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Figure 6.5: The simulator screen is divided into two halves. The world view on the left side displays
the environment the robot moves in. The map view on the right shows the topological map
created.

simulator, taken after the simulation has run for a little while. The world view now displays
surfaces that the robot has covered, marked withfardint colour. Grid cells that have been
visited more are shaded with a darker colour.

The map view in Figure 6.6 shows the topological map created so far. The nodes are drawn in
the grid cells where they are first detected, with the exception of uncovered nodes. These are
initially displayed with their adjacent nodes and will be moved once they are converted to free
space, obstacle or joint nodes. Also, all nodes are drawn as identical circles irrespective of their
types. The numbers above the nodes are their internal tags within the topological map and are
displayed for debugging purposes. If multiple nodes exist in the same grid cell, only the tag with
the lowest numerical value is displayed. The edges are drawft@retit colours depending on

their types to aid debugging. Clicking anywhere on the map view of the simulator will bring
up an information dialogue. This dialogue shows the nodes present at that position, and edges
that are incident to them. An example of this is shown in Figure 6.7. Here, the grid cell has an
obstacle node (13) and an uncovered node (14). Node 13 is connected to fiaemtdnodes,

one of which is node 14 in the downward direction. There is a corresponding entry for node 14
that shows it is connected to node 13 in the upward direction. In the case where there are no
nodes at the location selected, an empty dialogue box is shown.

Statistics for the performance metrics of simulated experiments can be obtained via the “Show
Stats” button in the main window. Figure 6.8 shows the statistics for the simulation in Fig-



118

Implementation

Bun

step

Save Show Stats

Cuit

10016 -= 10015

Figure 6.6: Covered area is shaded with multiply covered surfaces in darker colours.
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Figure 6.7: Information on nodes present at any location can be obtained by clicking on the map view

of the simulator.
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reachahkle = 1695
Mever = 1062

Cnce = 584§
Twice = 49
Thrice =10

Four times = 0

Five fimes = 0

Even more = 0

Total cell covered = B37
F_a/P_m = 1.07692
Effectiveness = 0.375811
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Figure 6.8: The statistics dialogue shows various statistics for the simulation.

ure 6.6. Since only a small portion of the environment is covered, a large number of cells are
in the nevercategory (1062 to be exact). The last line in the dialogue box shows the percent-
age coverag€, and the second to last shows the normalised path length without staling
(Section 5.1).

6.3 Topological map

The topological map is implemented using the Graph class in L'H3]. However, the im-
plementation is not LEDA dependent, and other graph libraries can be used instead. A suitable
alternative is the open-sourced Boost graph library [4, 90]. Both LEDA and Boost libraries are
written in C++. Of course, there is always the option of writing your own graph library.

The graph library should at least provide the functions listed below. The list is included here to
illustrate what is required of the library, and to aid in selection of a suitable library, especially
if the topological coverage algorithm is to be implemented in a langudtgeht from G-+.

1. Retrieve adjacent and incident nodes or edges.

2. Obtain properties such as degree of a Rpdamber of edges and nodes in graph, and if
the graph is empty.

Lversion 3.7.1 is used for this thesis. A few years ago, the LEDA library had a free license for research use in
academic institutes. The newer versions are non-free only.
2The degree of a node is the number of edges incident with it.
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3. Alter existing graph by addition and deletion of nodes and edges.
4. Store extra data with nodes and edges.

The usefulness of the last item on the list, the ability to store extra data with nodes and edges,
may not be self evident. In robotics, the topological maps usually have information associated
with their nodes and edges. For example, the nodes might have information about the landmarks
they represent, such as sonar signatures [65] or panoramic images [106]; the edges might store
appropriate behaviours or control strategies for traversal [64]. Therefore, it is important for the
library to provide a mechanism for associating extra data of arbitrary types with graphs.

6.4 Robot controller

Based on current sensor inputs, and the internal representation (topological map), the robot con-
troller issues appropriate commands to the actuators. The purpose of the controller is to guide
the robot to carry out the topological coverage algorithm. The mechanism used to communicate
with the robot difers between simulation and the Khepera. With the simulated robot, commu-
nications are achieved through function calls. For the Khepera, the controller communicates
with the robot via a serial link.

The controller employs a hybrid deliberativeactive architecture. This hybrid architecture
incorporates the deliberative reasoning and planning in symbolic Al with the responsiveness
of behaviour-based execution [24,68]. The topological coverage algorithm is organised as a
finite state machine with three states (normal, boundary, travel). For each stdfierentiset of
behaviours is active. The behavioural control for each state is also implemented as a finite state
machine, which is a common way of implementing behaviour-based architectures in sequential
machines [61].

In the normal state, the robot moves in a zigzag path to cover the current cell. The state contains
two behavioursforward and next strip Their interaction is shown in Figure 6.Forward

moves the robot along the strip of a zigzag. When the robot encounters an obstacle in the front,
it has arrived at the end of a strifNext stripguides the robot to move into the next strip of

the zigzag. It is composed of three sequential movements — t4rm@@e forward for a fixed
amount of time, and turn 9@gain. This series of actions brings the robot into the beginning of
the next strip and faces the correct direction. If alandmark is encountered at any time during the
execution of the normal state, the controller moves onto the boundary state (see Section 4.1.1).

The boundary state guides the robot along a cell boundary. Its operation is carried out by three
behaviours, as shown in Figure 6.10. Tbevard andwall follow behaviours move the robot
along the cell boundary for exploration. Every time the robot visits a landmark, it alternates
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Figure 6.9: Following a zigzag path in the normal state.
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Figure 6.10: Behaviours for cell boundary exploration.

between the two states. This is because landmarks appearing in the middle of the strip arise
from obstacle segment topology changes. When the robot reaches the end of the strip, it checks
whether the boundary has been fulyplored If it has, the controller leaves the boundary state;
otherwise the robaurns aroundand explores the cell boundary in the other direction.

In the travel state, the robot follows a path that leads it from the current location to a chosen
uncovered cell. This path is generated from a search on the topological map. The behaviours
that guide the robot along this path are shown in Figure 6.11. The edges in the path are followed
using eithewall follow or forward, depending on the edge type. When the robot arrives at the
next node in the path, it turns to face the appropriate directawe(direction. Then it embarks

on the edge in the path by choosing the appropriate control strategy. This continues until the
robot arrives at the destination node, when the controller returns to the normal state.
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Figure 6.11: Behaviours guiding the robot to move along a path of nodes and edges in the travel state.

6.5 Summary

The development tools and implementation details described in this chapter serve as a link
between the theory presented in earlier chapters and the experimental results in the next chapter.
It explains how the ideas developed in this thesis are transformed into actual prototypes (on
simulated and physical robots).

The topological coverage algorithm is the result of an iterative development process. Other
than verifying the correctness of the algorithm, the experiments are also an integral part of the
development process of the algorithm itself. This iterative process is the reason behind the large
amount debugging help present in the simulation tools.

The information and details included in this chapter will also be of use to anyone wishing to
implement the topological coverage algorithm.



Any sufficiently advanced technology is indistinguishable from magic.

Arthur C. Clarke

Results and discussion

his chapter presents results from experiments designed to test the proposed topolog-

ical coverage algorithm. It begins with a description of the sensor detection tests in

Section 7.1. These tests assess the ability of common range sensors in detecting the
topology changes of events in the topological coverage algorithm. This is then followed by
qualitative analyses of results from both simulation and real robot coverage experiments in Sec-
tion 7.2. Section 7.3 discusses the use of zigzag as the coverage pattern in the topological
coverage algorithm. In Section 7.4, the two methods for creating composite images are com-
pared. The evaluation is done because the percentage coisga important parameter for
the two performance metrics. The metrics are then used in Section 7.5 to analyse quantitatively
the experimental results first presented in Section 7.2. Section 7.6 explains how composite im-
ages can be created for robots that are not circular. Lastly, Section 7.7 tests the relationship
between complexity of environment and path length empirically.

7.1 Landmark Detection

Three types of range sensors commonly used in mobile robots were tested for their abilities to
detect landmarks in the topological coverage algorithm. They are laser scanner, ultrasonic trans-
ducers and infra-red proximity sensors. The tests on laser and sonar sensors were conducted
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Figure 7.1: B21r robot.

with the b21r robot in Figure 7.1. The laser scanner is a SICK model LMS-200 and is mounted
on the front of the b21r. For the experiments in this chapter, the resolution was g8t tB&ch

scan returns 361 readings, thus covering a semi-circle in front of the robot. The sonar sensors
are SensComp 6500 modules. They are evenly distributed around the b21r and there are 24
of them in total. The infra-red sensor tests were done with the Khepera robot. The infra-red
sensors are Siemens SFH900s, and their positions on the Khepera are shown in Figure 6.2 on
Page 114. They return an integer between 0 and 1023 depending on the distance to the closest
obstacle (1023 being nearest).

Two sets of tests were carried out. The first set tests the ability to discover discontinuities on the
side of robots. This is used in the detection of split, end and shorten events at the sweep position
;. Itis also used to detect merge and shorten events at sweep pogitiomhe second set of

tests examines the ability of the robot to detect a gap or opening in the front or back direction.
This is used to detect merge and lengthen events at sweep positibis also the only method

to detect combined split and merge events. This is because combined split and merge events
cannot be detected using odometry by comparing lengths of consecutive strips. In comparison,
all the other events can fall back to detection by odometry in case range sensing fails.

7.1.1 Discontinuity on side of robot

Figure 7.2(a) shows the experimental setup used to test the sonar and laser sensors on the b21r.
Two sets of bookcases were used to set up a series of obstacles for this experiment. The gap
between the two set of bookcases was approximately 80cm. The b21r was driven parallel to
the obstacles, in the direction shown in Figure 7.2(b). Laser and sonar sensor readings were
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Figure 7.2: Experimental setup for testing topology changes on the side with the b21r.
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Figure 7.3: (a) At the last strip before reaching the emerging obstacle. (b) At the first strip passing
below the disappearing obstacle.

recorded. The experiments were repeated 12 times, with the b21r at varying distances from the
obstacles.

In the first 4 experiments, the b21r was placed fairly closed to obstacles. The left edge of the
robot was about 20 to 30cm away from the obstacles. (The b21r has a diameter of 55cm). This
corresponds to strip positiag in split, shorten and end events, where the robot is on the last
strip before the emerging obstacle blocks its path. This is illustrated in Figure 7.3(a). In merge
and lengthen events, this corresponds to strip poskignwhere the robot is on the first strip

to pass underneath the disappearing obstacle. This is shown in Figure 7.3(b).

Figure 7.4 plots the distances measured by the laser scanner from two of the experiments. The
measurements were recorded while the robot was moving along the path shown in Figure 7.2(b).
The plots superimpose readings from the 11 leftmost beam positiynst@an be seen that the

laser scanner can detect the gap between the two bookcases for 7 consecutive time steps. This
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Figure 7.4: Distance to obstacles measured by the laser scanner on the b21r. The plots show mea-
surements from the 11 leftmost beam positions of the sensor. The robot was fairly close to
the obstacles. Distances were measured in millimetres.

confirms that changes in topology are large features and do not rely on detection from a single
specific location. The slight drop in measured distance within the gap was due to the edge of the
bookcase in the background behind the obstacles used for the experiments. Figure 7.5 shows
distances measured by sonar sensors from the same two experiments as before. The plots show
readings from the sonar sensor on the left of the b21r. It can be seen that sonar sensors had no
problem detecting the gap either.

The experiments were then repeated 4 times with the b21r placed slightly further away (about
50cm away). However, the distance between the robot and the obstacles remains smaller than
the diameter of the robot. Therefore, the robot is still on the last strip before the emerging
obstacle (Figure 7.3(a)), or the first strip after a disappearing one (Figure 7.3(b)).
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Figure 7.5: Distance to obstacles measured by the ultrasonic sensor mounted on the left hand side
Distances were measured in

of the b21r. The robot was fairly close to the obstacles.
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Figure 7.6: Distance to obstacles measured at about 50cm away with the laser scanner. The plots
show measurements from the 11 leftmost beam positions of the sensor. Measurements are
in millimetres.

Figure 7.6 plots the distances measured by the laser scanner from two of the experiments. The
plots superimpose readings from the 11 leftmost beam positiohs The sonar sensor mea-
surements from the same experiments are shown in Figure 7.5. It can be seen that both the laser
and sonar range finders can detect the gap easily.

In the last 4 experiments, the b21r was placed even further away, at approximately 80cm from
the bookcases. As a result, the robot is now situated at one strip away from the cell boundary.
This is illustrated in Figure 7.8.

Figure 7.9 shows readings from the laser scanner from two of the experiments. Figure 7.10
shows readings from the sonar sensor from the same two experiments. Both sensors can still
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Figure 7.7: Distance to obstacles measured at about 50cm away with the sonar sensor mounted on the
left of the b21r. Measurements are in millimetres.
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Figure 7.8: (a) At the second last strip before reaching the emerging obstacle. (b) At the second strip
passing below the disappearing obstacle.

detect the gap easily at this distance.

The experiments were repeated with the Khepera robot to test the infra-red proximity sensors.
Figure 7.11(a) shows the experimental setup used. A round plastic container and two square
blocks are used to set up two sets of obstacles. The Khepera was driven parallel to the obstacles,
in the direction shown in Figure 7.11(b). Two sets of experiments were carried outeaedt
distances from the obstacles. Each set of experiments was repeated 4 times.

In the first four experiments, the Khepera was placed fairly close to the obstacles, at about 20mm
away. (The diameter of the Khepera is 53mm). This means the robot is on the strip nearest to
the cell boundary, as in Figure 7.3. Figure 7.12 plots the readings returned by the infra-red
sensor mounted on the left from two of these experiments. The first peak corresponds to the
circular plastic container, and the second one corresponds to the square blocks. The infra-red
sensor successfully detected the topology changes in all four experiments.

In the next four experiments, the Khepera was placed slightly further away at about 35mm from
the obstacles. The distance is still smaller than the diameter of the robot. Figure 7.13 shows the
infra-red sensor readings from two of the experiments. They show that the sensor successfully
detected the topology changes.

No experiments were done at distances two strips away from the cell boundaries. This is because
the diameter of the Khepera is larger than the reliable detection distance of the infra-red sensors
(40mm). This means that ¥ in Figure 7.3(a) (o1 in Figure 7.3(b)) is between 40mm and

53 mm away from the obstacle, the infra-red sensors will not be able to detect the emerging (or
disappearing) obstacle. However, this does not imply that the discontinuity cannot be detected.
All the events that lead to discontinuities on the side can also be detected with strip length
comparisons with data collected from wheel encoders.
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Figure 7.9: Distance to obstacles measured at about 80cm away with the laser scanner. The plots
show measurements from the 11 leftmost beam positions of the sensor. Measurements are
in millimetres.
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Figure 7.10: Distance to obstacles measured at about 80cm away with the sonar sensor mounted on
the left of the b21r. Measurements are in millimetres.
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Figure 7.11: Experimental setup for testing topology changes on the side with the Khepera.
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Figure 7.12: Distance to obstacles measured by the infra-red proximity sensor mounted on the left hand
side of the Khepera. The robot was about 20mm away from the obstacles.
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Figure 7.13: Distance to obstacles measured by the infra-red proximity sensor mounted on the left hand
side of the Khepera. The robot was about 35mm from the obstacles.
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Figure 7.14: Experimental setup for testing topology changes in the front with the b21r.
7.1.2 Topology changes in front of robot

Figure 7.14(a) shows the experimental setup used with the b21r. Two partitions were used to
create an opening of about 80cm wide. In the experiments, the b21r was driven towards the
opening, as in Figure 7.2(b). While the robot was moving towards the partitions, laser and
sonar sensor readings were recorded. Four of these experiments were carried out.

The experimental setup corresponds to strip posiian combined mergsplit events. This

is illustrated in Figure 7.15(a). In merge and lengthen events, the situation is sligfesedt

from the experimental setup. This is because only one of the two obstacles are present, as in
Figure 7.15(b). However, the sensor tests are still relevant as detection of merge and lengthen
events atx; relies on partial presence of obstacles in front of the robot. The emergence of
another obstacles in proximity merely reduces the width of the opening.

When the robot is facing such an opening, some of the front range sensors will detect a much
longer distance to obstacle than others. This is illustrated in Figure 7.16. Sensors pointing
towards the opening will return longer distance readings than those facing the obstacles next to
the opening. Figure 7.17 shows 3 sets of readings from the laser scanner as the b21r approached
the partitions in Figure 7.14. The opening was in front of the robot, slightly towards the right
hand side. As a result, there was a largéedence in measured distances between the left and
right fronts. This diference remained as the robot moved closer to the partitions.

Figure 7.18 shows distances measured by the laser scanner infleremti experiments with

the b21r. The values were recorded while the robot followed the path shown in Figure 7.14(b).
For each graph, five sensor readings from beam positiohsrithe right of the centre front are
plotted, together with five from the left. It can be seen that the distances measured on the right
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Figure 7.15: Moving towards an opening on the side boundary in (a) combined merge/split event, (b)
merge and lengthen events.

Figure 7.16: An opening in front of the robot is indicated by a large difference in measured distances.
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Figure 7.17: Laser sensor readings as the b21r moved towards and opening.
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front of the robot are much larger than those from the left front. Therefore, the opening was
successfully detected.

Figure 7.19 shows distances measured by sonar sensors as the robot moved towards the obsta-
cles. For each graph, measurements from the first sensors to the left and right of the centre front
are plotted. The distance measured by the left front sensor stayed at the threshold (1000mm). In
comparison, the distance measured by the right front sensor dropped as the robot moved closer
to the partitions. In other words, the sensor on the right front detected the obstacle, while the
one on the left front did not. Therefore, the opening was successfully detected by the sonar
sensors.

The experiment was repeated with the Khepera to test the infra-red proximity sensors. The
experimental setup was the same as the one shown in Figure 7.14(b). Two square blocks were
used to create the opening required. Four experiments were carried out.

Figure 7.20 shows the results from two of the experiments with the Khepera. For each graph,
measurements from the sensors on the immediate left and right of the centre front are plotted. As
the robot moved closer to the obstacles, the values returned by the right front sensor increased,
indicating the appearance of an obstacle. On the other hand, the left front sensors never detected
any obstacles throughout the experiments. In other words, the infra-red sensors successfully
detected the opening between the obstacles.

7.2 Coverage Experiments

7.2.1 Simulation

To test the correctness of the proposed topological coverage algorithm, 11 environments popu-
lated with various standalone obstacles were created. The obstacles can be located either in the
middle of the region or put against the boundary. The complexity of these environments ranges
from 6 to 14 free space cells. Environments with standalone obstacles are the norm in testing
coverage algorithms [8, 23, 30].

Figure 7.21 shows three screenshots from simulation with one of these normal environments.
This figure shows how the topological map is incrementally constructed as the environment is
being covered. Notice that the horizontal edges of the topological map correspond to the cell
boundaries of the decomposition. Also, some of the vertical edges cross over the obstacles.
This is because they are simply drawn as straight lines linking their incident nodes. The vertical
edges merely represent the side boundaries of cells in the decomposition, and there are no
restrictions on possible shapes of these boundaries.
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Figure 7.18: Distances measured by the laser scanner as the b21r moved towards a set of partitions.
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Figure 7.19: Distances to obstacles measured by sonar sensors as the b21r moved towards a set of
partitions. The graphs show measurements from the sonar sensors on the immediate left
and right of the front one. The two sensors are mounted at 15° off the centre front.
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Figure 7.20: Distances to obstacles measured by infra-red sensors as the khepera moved towards two
square blocks. The graphs show measurements from the two infra-red sensors mounted
on the front (see Figure 6.2 on page 114).
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Figure 7.21: Coverage of one of the normal environments in simulation.
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Figure 7.22 shows the coverage of another normal environment. Here two of the obstacles are
put next to the boundary. As a result, the shape of the external boundary is altered.

The topological coverage algorithm was also tested in environments ffeasdrom the normal

ones. Figure 7.23 shows the coverage of a spiral. Figure 7.24 has a non rectilinear boundary.
Figure 7.25 shows twofhice-like environments with long thin obstacles representing partitions.

All of these were completely covered.

7.2.2 Real Robot

The correctness of the topological coverage algorithm was also tested with the Khepera robot.
Four diferent environments were used. The environment in Figure 7.26(a) has a rectilinear
boundary and no free standing obstacles. The environment in Figure 7.26(b) has a rectangular
boundary and one square obstacle. The environment in Figure 7.26(c) has a rectangular bound-
ary, one circular and one elliptical obstacle. Lastly, the environment in Figure 7.26(d) has a
non-rectilinear boundary and a circular obstacle.

The pictures in Figure 7.26 are composite images displaying coverage results from the experi-
ments. The composite images have been rotated so the robot always started at the top left corner
and faced right. Moving on an average of 0.0121f1.2 cnjfs), the robot takes approximately

5 minutes on average to cover the environments inside the tray.

The output of the Hough accumulator used in evidence gathering contains a list of centres and
radii of the robot throughout the video sequence. A composite image that shows the area cov-
ered (like the ones in Figure 7.26) is created by drawing a series of filled circles corresponding
to the list is drawn over the reference image. If only the centres are plotted, a composite image
showing the path taken by the robot is created instead. Examples of this are shown in Fig-
ures 7.27. These images show the route the robot took in the experiments. It can be seen that
the strips in the zigzag path were not perfectly horizontal. However, the robot still found and
covered all the free space cells.

7.3 Zigzag as coverage pattern

Compared to other online coverage algorithm based on cell decomposition, the proposed topo-
logical coverage algorithm employs a more general technique for boundary detection. This is
because cell boundaries are detected through topology changes, which are large features. As a
result, a robot with range sensors can detect new cells all around itself, not just on its sides.

Existing cell decomposition based coverage algorithms require wall following on both side
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Figure 7.26: Coverage with the Khepera robot.
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Figure 7.27: Path taken by the Khepera robot.
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Figure 7.28: Environment with a gap on the right wall that falls between strips of the zigzag, but large
enough for the robot to enter: (a) approaching the opening, (b) gap found and entered.

boundaries to detect openings such as the ones in Figure 2.24 on Page 26. In topological cov-
erage algorithm, this kind of opening is handled as a combined merge and split event. Sec-
tion 7.1.2 demonstrates the ability to detect this event wiiedint range sensors.

Figure 7.28(a) shows the simulated robot approaching a gap that lies between consecutive strips
of the zigzag. The robot detects the gap while moving towards the side boundary. When it
arrives at the side boundary, operation switches to boundary state. The robot enters the gap to
continue exploring the new cell boundary (Figure 7.28(b)). In the figure, the inter-strip distance
AX has been increased. This is because normally consecutive strips are on consecutive rows
in the uniform grid of the simulated environment. Therefore, there are no gaps between strips.
Only by increasing the inter-strip distanag, can an environment with an opening in the side
boundary that lies between consecutive strips can be created.

As the proposed topological coverage algorithm does not require a coverage pattern that in-
cludes retracing, the path length required to cover a given environment is shorter than existing
cell decomposition based online algorithms.

7.4 Evaluating composite images

Two methods for creating composite images are introduced in this thesis. The first method,
image subtraction, isfiecient and simple to perform, butfears from two major disadvantages.
Firstly, it is not particularly reliable as artefacts frequently appear in the background subtraction
process; this is because of environmental factors such as lighting. Additionally, in the case
of a tethered robot (such as the Khepera) the cable motion is computed as part of the final
composite image. The second method, evidence gathering, includes more post-processing after
the subtraction step. The images are edge detected and then a Hough transform is used to find
the most likely match of the robot in each frame. As a result, evidence gathering is very tolerant
to different lighting conditions. However, the Hough transform is computationally intensive.
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Figure 7.29: Frames taken under good lighting condition. (a) Reference background image. Composite
image created using (b) image subtraction, (c) evidence gathering.

Therefore, the two methods are a trafid@tween speed and accuracy.

Figure 7.29 shows composite images created from frames taken on a sunny day with good
lighting conditions. Figure 7.29(b) is created using image subtraction, and Figure 7.29(c) with
Hough transform. The good lighting produces good contrast between the robot and the back-
ground. Therefore, the resultant composite images created from the two methods look similar.

Figure 7.30 shows composite images created from frames taken on a rainy day. With poor
lighting conditions, it can be seen that the contrast in the original images (Figure 7.30(a)) is
a lot lower. Figure 7.30(b) is created with image subtraction, and Figure 7.29(c) is produced
with Hough transform. It is obvious that the resultant composite image created by evidence
gathering is better. For example, in the composite image created using subtraction, areas that
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Figure 7.30: Frames taken under poor lighting condition. (a) Reference background image. Composite
image created using (b) image subtraction, (c) evidence gathering.

the robot could not possibly reach are classified as covered, like the boundary of the tray or on
top of the obstacles.

The tiny gaps present in the top part of the tray in Figure 7.30(b) are artefacts from the image
subtraction method. Examining the original frames showed that the region was properly covered
by the robot. This occurs because the robot extracted using image subtraction sometimes is
incomplete. Thisfectis illustrated in Figure 7.31. Figure 7.31(b) shows the result of extraction
using image subtraction. The robot is incomplete and does not appear solid. In comparison,
Hough transform does not 8ar from this problem, as seen in Figure 7.31(c).

To evaluate the two methods for creating composite images quantitatively, a sequence of 100
frames was hand marked to provide the ground truth. One image from this hand marked se-
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Figure 7.31: (a) Extraction from a single frame. (b) Robot extracted using image subtraction appears
“porous”. (c) Hough transform does not suffer from this effect.
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Figure 7.32: A sample image from the hand marked sequence. The position of the robot is coloured
manually.

‘ Mean Std. devH Combined
Subtraction 269.81| 45.80
Hough transform 155.18| 41.12

Table 7.1: Misclassification (in number of pixels) compared with a sequence of hand marked images.
There are 100 frames in the image sequence. The table shows the mean number of mis-
classified pixels, its standard deviation, and the combined total in a composite image.

guence is shown in Figure 7.32. The position of the robot in each frame from the hand marked
sequence was then compared to that extracted with background subtraction and Hough trans-
form.

All pixels in the images belong to one of two classes - the robot or the background. Comparison
was done by tallying the number of pixels classified into the wrong category. For example, if a
pixel is classified as being part of the robot by the Hough transform (or background subtraction),
but belongs to the background in the hand marked frame, then it is a wrong classification;
similarly, a pixel classified as part of the background by Hough transform, but belonging to the
robot in the hand marked frame is also a misclassification.

Table 7.1 shows the results of comparison. It can be seen that background subtraction has a
higher average number of misclassified pixels. This is also evident in ffexaffice images

in Figure 7.33, which highlights the misclassified pixels in a frame. The last column in the
table shows the total number of misclassified pixels in the composite images created with all
100 frames. The dlierence composite images are shown in Figure 7.34. The results in Ta-
ble 7.1 prove that Hough transform is a more accurate method for extracting robot positions
from images.

A disadvantage of the Hough transform is its high computational cost compared to the image
subtraction method. For a sequence of around 3000 frames, image subtraction takes only a few
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Figure 7.33: Misclassified pixels are coloured to highlight the differences between the hand marked
image and the robot position extracted using (a) image subtraction, (b) Hough transform.

(@) (b)

Figure 7.34: Misclassified pixels in the composite image of 100 frames using (a) image subtraction, (b)
Hough transform.
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Complexity | Path length_ | Std. dev.
Normal (11) 6-14 1.08 0.04
Spiral 9 1.12 -
Irregular Boundary 4 1.03 -
Office (2) 9,13 1.10 0.03

Table 7.2: Results from simulation for the normal, spiral, irregular-shaped and office-like environments.
The complexity refers to the number of free space cells. The path lengths listed for normal
and office are the averages of all environments in the category.

minutes, while evidence gathering takes several hours. However, since performance metrics are
used diine for data analysis, the speed of the evidence gathering method is still acceptable as
processes can be left running on a computer cluster overnight.

There are two possible ways to improve computatifficiency. First, the current implementa-

tion used Python, a scripting language. The speed of computation may be improved by imple-

mentation using a compiled language such as C. Secondly, in the current implementation, three
parameters (x,y and radius) are used for model fitting with the Hough accumulator. Since the

robot size does not vary much from one side of the tray to the other side, the dimension of the

model can be reduced by varying only the centre of the model (x,y). However, neither method

will make Hough evidence gathering real time.

7.5 Performance Metrics

In this section, performance metrics proposed in this thesis will be used to evaluate the results
from simulated and real robot experiments quantitatively.

7.5.1 Simulation

All 15 simulated environments tested were fully covered, with percentage coverad®0%.

This is calculated using (5.4) on page 101. Since the simulated robot is programmed to keep
a minimum distance of one cell from obstacles, cells immediately next to obstacles are non-
reachable, and thus ignored in calculating the percentage coverdagble 7.2 summarises the

path length metrid for these experiments. The complexity in the Table refers to the number of
free space cells in the environment.

Icking et. al.proved an upper bound of\2for complete coverage paths for unknown grid maps
with N cells [56]. Using (5.5) on Page 102, the path lengfior the upper bound can be found:
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‘ Average Std. dev.
Subtraction 92.9 2.94
Hough evidence gathering 91.2 1.13

Table 7.3: Coverage percentages C for experiments with the Khepera.

number of moves

number of reachable grid cebsC
2N

Nx1
= 2

Therefore, the path lengthsachieved in the simulated experiments are all within the theoretical
upper bound.

7.5.2 Real robot experiments
Percentage coverage

The amount of coverage achieved in an experiment is estimated from its composite image using

pixel counts. Before doing a pixel count, the composite image is de-skewed and cropped, and

the obstacles in the image are coloured. Figure 7.35 shows the result of such processing on the
composite images. The obstacle is coloured blue because none of the original colours present
(red, white and yellowish green) have blue in their RGB space.

Table 7.3 summarises the experimental results over 9 experiments. The figures in the table
show the topological coverage algorithm performed the coverage tasks successfully. It can
be seen that the average percentage coveZagcgculated using image subtraction is slightly
higher. This is evident from the composite images in Figures 7.30 and 7.35. Artefacts occurring
from misclassification of background as part of the robot are more pronounced than incomplete
extraction of the robot. However, this might not always be the case because it is not possible to
predict the distribution of artefacts arising from the background subtraction process.

Path length

To calculate the path length mettiadefined in (5.3) on Page 101, three parameters — coverage
C, actual distance travelldiP,/| and minimal path distandf®,|| — are needed. The percentage
coverageC is already calculated for thdtectiveness metric. The actual distance trave|Rg
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(© (d)

Figure 7.35: Before conducting a pixel count to estimate the percentage coverage, composite images
are de-skewed, cropped and false coloured. (a) and (b) are created using image subtrac-
tion and evidence gathering from the same video sequence. (c) and (d) are from another
video sequence.
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Figure 7.36: The distance between consecutive strips can be found using a pair of images from the
captured video sequence. The Hough accumulator returns the centre and radius of the
robot extracted from the image. Since the real world radius of the robot is also known, the
real world distance between the two centres can be calculated.

‘ Average Std. dev.

un-scaled with percentage coverag® ( 0.99 0.04
subtraction 1.19 0.047
Hough evidence gathering 1.22 0.037

Table 7.4: Path length metrics for experiments with the Khepera.

by the robot is calculated using odometry information from the wheel encoders on the Khepera.
The minimal path|P,|| depends on both the total area of the environment and the inter-strip
distanceAx. The total area can be obtained easily with a measuring tape. To estimate the inter-
strip distancé\x, | use the list of radii and centres of the model fitted by the Hough accumulator.
The inter-strip distanc&x is measured empirically because the Khepera is commanded to move
between strip by turning on the motor for a specific amount of time. Two images from the ends
of consecutive strips are used, as illustrated in Figure 7.36. The distance between the centres of
the robot in the two images gives the inter-strip distangen pixels. Since the radius of the

robot is known both inside the image (from the radius of the model fitted) and in real life, the
real world distance between the two strips can thus be calculated. This procedure was repeated
with multiple pairs of images. It is found that the inter-strip distanges the same throughout

all the experiments, with only a variance of 1 pixel.

Table 7.4 shows the path length metric for the experiments carried out. The first row is the un-
scaled path length measure= 2 in (5.2) on Page 101. The averageis smaller than unity,
which implies that the actual pat?, is shorter than the minimal pat,. This is of course
impossible. It illustrates the importance of scaling the path length with the actual percentage
coverageC achieved to obtain a meaningful metric. The next two rows are the path length
metricL in (5.3), scaled with the percentage cover@gebtained from pure image subtraction

and Hough evidence gathering respectively. The path length is now over unity, which means

that the actual path taken is longer than the minimal path.

The path lengths from experiments with the Khepera are longer than all the environments
tested in simulations. There are two reasons behind this increase in path length. Firstly, the
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percentage coveradge is below the 100% achieved in simulation. According to (5.3), a cov-
erageC below unity will increase the path length mettic Secondly, not all free space cells

can be covered by an integer number of strips. In other words, the height of a free space cell
may not be an integer multiple of the inter-strip distanoe As a result, the last strip in a free
space cell maybe closer to the previous strip then normal. This can be seen at the bottom of
Figure 7.27(b).

7.6 Composite image for non-circular robots

To extract a non-circular robot using Hough transform, féeedent model from the one used

in Algorithm 5.1 on Page 107 is required. For example, for the B21r robot in Figure 7.37, an
ellipse would be used as a model for the robot. The centres of the elliptical model fitted was
drawn over each image in Figure 7.37. Note that the cylindrical robot does not appear circular
because the camera is not mounted directly above the environment. If pure image subtraction is
used to create the composite images, no changes are required because the method is not model
based.

To extract an odd shaped robot or a tool carried by a robot, a marker has to be used. With
Hough evidence gathering, a model is fitted for the marker, not the robot itself. With the image
subtraction method, the entirety of the robot is extracted and centres are never found. This
means that image subtraction cannot be used to create composite maps for coverage with tools
that present partial views of the robot. In comparison, evidence gathering can fit a model to find
the position of the tool instead of the robot position.

7.7 Path lengthL and complexity of environment

Figure 7.38 shows a plot of the path length melriagainst the number of free space cells for

the 15 environments in Table 7.2. The graph shows that environments with the same number of
free space cells are not covered with the same path ldngHor example, the path lengths

for the four environments with 9 free space cells range from 1.03 to 1.12. Tresatice arises
because the re-coverage needed to completely cover an environment depends on the layout
of the obstacles. However, it can be seen that there is a trend of increasing path length with
an increase in the number of free space cells. This is because more travelling is required in
environments with more free space cells.

The section investigates empirically the relationship between path length and the number of
free space cells. Five simulated environments were created. The environments were essentially
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Figure 7.37: Extracting the location of a B21r robot using Hough evidence gathering.

The white dots
correspond to where the centres are found.
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Figure 7.38: Path length L vs number of free space cells in random environments.
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Figure 7.39: Simulated environments used to study effect of number of free space cells on path length
L.

identical apart from the number of obstacles present. Rectangular obstacles were placed in a
regular fashion as shown in Figure 7.39. The five environments have 2 to 10 obstacles, creating
5 to 21 free space regions. Results from these experiments are plotted in Figure 7.40. With

nearly identical environments, the path lengtappears to increase linearly with the number of

free space regions.

The reason behind this linear increase can be explained using Figure 7.41. Consider the envi-
ronment in Figure 7.41(a). Let's assume that the free space cells are covered in the sequence
shown in the diagram. Also assume that the travel required to get frora aatll cellb is t,_p

in length. Then the total travel required in Figure 7.41(a) is

T=ti 2+t 3+1t34
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Figure 7.40: Path length L vs number of free space cells in environments with identical layouts.

(a) (b)

Figure 7.41: The two environments are essentially identical other than the number of obstacles present.

The environment in Figure 7.41(b) is essentially the same as that in Figure 7.41(a), but has two
obstacles. Another way to view this is that the new environment contains two blocks — A and
B. The two blocks are of the same configuration and share free space cell number 4. The total
travel required is

T = (tio+tz+tzs)+(tas+1ts56+1t67)
(tio + o3 +1t34) + (tip + Tr3 +t3.4)

2% (t1o + 13 +134)

In summary, both the layout and the number of obstadtesthe length of a coverage path.
With more free space cells, there is an increase in the number of times the robot needs to move
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between cells. However, the distance the robot need to travel to get from one cell to another
depends on the placement of obstacles in the environment.

7.8 Summary

The landmark detection experiments show that events in the topological coverage algorithm are
easily and accurately detected by range sensors. The tests also confirm that landmarks are large
features that appear across multiple time steps.

Coverage experiments in simulation tested the correctness of the proposed topological cover-
age algorithm. The tests confirm that the algorithm can correctly and completely cover un-
known environments, using a partial topological map created during the coverage process. The
experiments also show that the topological coverage algorithm can handle a wider variety of
environments than previous cell decomposition based coverage algorithms. This includes non-
polygonal obstacles (not possible in boustrophedon decompositidd@g)dnd obstacles with
surfaces parallel to the sweep line (not possible in Morse decomposition).

In addition, sensor tests and simulation experiments show that unlike existing online cell de-
composition based coverage methods, the topological coverage algorithm does not require wall
following on the side boundaries of cells. Therefore, a shorter coverage pattern that does not in-
clude retracing can be used. The overall coverage path generated from the topological coverage
algorithm is thus shorter compared to existing algorithms.

Tests on the Khepera robot empirically demonstrate that the proposed algorithm is indeed viable
under real, inexact conditions with sensor and actuator errors.

Accuracy of the composite map used in the proposed performance metrics was compared with
a hand marked sequence of 100 frames. Hough evidence gathering was found to be the better
method for extracting positions of the robot in a video sequence. The performance metrics were
then used to evaluate the simulated and real robot experiments empirically. In the simulated
experiments, all environments were completely covere (¥ 100%), with an average path
lengthL of 1.08. In the real robot experiments, the average coveCagas 91.2%, with an
average path length of 1.22. The path lengtchieved in both real and simulated experiments
was lower than the upper bound of 2 proved by Ickagal..



164 Results and discussion




The fool doth think he is wise, but the wise man knows himself to be a
fool.

William Shakespeare, “As You Like It”, V.i.31

Future Work and Conclusions

8.1 Future work

8.1.1 Tethered robot

Slice decomposition is defined for both free-moving and tethered robots. However, the current
simulation environment can only handle free-moving mobile robots. Therefore, an obvious area
for future development is to add support for tethered robots in the simulation. This extension
would allow development and testing of the online topological coverage algorithm with such
restricted movement.

One addition required to the simulation engine is the calculation of whether a robot can reach
a target location given its present location and the configuration of its tether. A visibility graph
can be used for this purpose. It allows for rapid calculation of the minimum length of the
tether between the anchor point and the robot, around a given set of obstacles. This use of the
visibility graph is slightly diterent from its normal use in navigation [66] to find the shortest
path. This diference is illustrated in Figure 8.1. In Figure 8.1(a), the shortest path between the
robot and the anchor point is highlighted. However, if the robot moves between the obstacle
to reach the current point, the minimum tether length required to reach the current location is
actually the distance shown in Figure 8.1(b). This is because the tether is “tangled” between
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robot robot
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Figure 8.1: A visibility graph. (a) Shortest path between robot and anchor point. (b) Minimum tether
length to reach current location if robot passes between the obstacles. This is different from
the shortest path because the tether is "tangled” between the obstacles.

the obstacles. To determine whether the robot can reach a certain location, the minimum tether
length is compared with the actual tether length.

8.1.2 Simultaneous localisation and coverage (SLAC)

Although topological maps are tolerant to errors in pose estimation, the performance of the
coverage operation is stilff@cted. This is because the amount of coverage achieved within a
cell is dependent on the direction of the zigzag. Therefore, incorporating localisation correction
within the framework will improve coverage performance.

Recent advances in SLAM (simultaneous localisation and mapping) have greatly improved mo-
bile robot localisation. SLAM uses statistical techniques to correct the robot’s pose (position

and orientation) estimation. By adapting existing SLAM methods to coverage navigation, lo-

calisation in the topological coverage algorithm can be improved. Of particular interests are
SLAM techniques designed for topological maps, such as the work on Generalised Voronoi
graph by Choset and Nagatani [31], and the hybrid topological map with laser signatures (sig-
natures stored with the nodes) by Tomatisal.[96].
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8.1.3 Multi-robot coverage

Another interesting extension is to develop a multi-robot version of the topological coverage al-
gorithm. For small domestic environments, it is more appropriate to use a single robot solution.
For large scale foraging and demining, a multi-robot team could significantly shorten the time
required to finish the task.

The major issue here will be the coordination of the robot team to perform this complex, global
task (mapping and complete coverage). Simply increasing the number of robots in the team
does not improveféiciency of achieving the operational goal.

There are three main approaches to coordinating multi-robot teams — fully centralised, fully
distributed and auctignegotiation-based [34]. In fully distributed frameworks [43, 83], robots
do not explicitly work together, but group-level cooperation behaviour emerges from their inter-
action with each other and the world. This type of architecture is popular in the field of swarm
robotics. Since theffort of the team is not coordinated, complete coverage cannot be guaran-
teed until one member of the team has fully covered the environment. Thus a fully distributed
approach is not suitable for this application.

In a fully centralised multi-robot team, a single robot or central computer acts as the leader of
the team. Team members report their findings and status to the leader. The leader is completely
responsible for planning the actions of all team members. A fully centralised architecture will be
the easiest way to implement a multi-robot version of the topological coverage algorithm. This
is because a single topological map can be maintained by the leader. This type of architecture is
good for a small robot team, but does not scale well with increases in team size. The bandwidth
and computational requirements of the leader grow very rapidly as the number of robots in the
team increases. The leader also represents a single point of failure.

The most common approach to coordinating multi-robot teams is the atnetgwtiation-based
architecture [47,112]. Here, tasks are traded among team members, but the individual robots
are responsible for their own planning. Communications are limitediéssy bids and awards

of tasks. To implement the topological coverage algorithm into an auction-based framework,
further work needs to be done to find an appropriate task decomposition scheme, a suitable cost
function and a negotiation protocol.

8.2 Conclusions

Topological maps represent features in the environment using topological relationships between
landmarks. This is similar to the way animals represent their spatial environments [77, 82].
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Topological maps are robust against sensor and odometry errors because only a global topolog-
ical consistency, rather than a metric one, needs to be maintained [94]. However, due to their
gualitative nature, it is diicult to store coverage information in a topological map. This is be-
cause nodes and edges in the map do not correspond to specific locations in space. This thesis
tackles the representation problem by embedding a cell decomposition, called slice decomposi-
tion, within the topological map. This is achieved by using landmarks in the topological map as
cell boundaries in slice decomposition. As a result, even though individual nodes in the topo-
logical map are not associated with specific areas of space, a combination of nodes now defines
a region (a cell) bounded by obstacles.

Although the starting point of this thesis is to investigate coverage with landmark-based topo-
logical maps, the method proposed ultimately creates a cell decomposition similar to the split
and merge concept in boustrophedon decomposition [30]. However, the work on boustrophe-
don decomposition is conceptual in nature. It does not provide a detailed algorithm for the
decomposition, nor does it define the criticality precisely. It is also unclear if, or how, concave
obstacles are handled. Lastly, boustrophedon decomposition is defined for known environments
only.

Slice decompositionCCr [23] and Morse decomposition [8] all extend the use of split and
merge events to unknown environmeniSCx, is different in that it is designed for contact
sensing robots operating in rectilinear environments. Similar to slice decomposition, Morse
decomposition is for range sensing robots covering general unknown environmentstt@ihe di
ence between Morse decomposition and slice decomposition is in the choice of cell boundaries.
Morse decomposition uses surface gradients of obstacles as cell boundaries. An event occurs
when a surface gradient is perpendicular to the sweep line. As obstacles parallel to the sweep
line are non-dierentiable, rectilinear environments cannot be handled by Morse decomposi-
tion. In comparison, slice decomposition uses topology changes in segments to define cell
boundaries. Due to the use of simpler landmarks, slice decomposition can handle a larger va-
riety of environments than Morse decomposition, including ones with polygonal, elliptical and
rectilinear obstacles.

Moreover, as landmarks are large features, they can be easily detected via range sensor thresh-
olding. As a result, events can be detected from all sides of the robot. This is confirmed with
the landmark detection tests in Section 7.1. In comparison, events in Morse decompaosition can
only be detected if the critical point on the obstacle is closest to the robot than any other point
on the obstacle. This is due to thefdiulty in detecting surface gradients. Therefore, an U-
shaped coverage pattern that includes wall following on both side boundaries is used to cover
individual cells. This U-shaped pattern includes retracing. The topological coverage algorithm
can use the simpler zigzag pattern for covering individual cells. Without any retracing in the
coverage pattern, the topological coverage algorithm generates shorter, and thufimeng, e
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coverage paths.

It is important to have a quantitative measure on how well an algorithm performs. While there
are metrics that measure the performance of coverage experiments in simulation, there are no
satisfactory ones for real robot tests. The only existing metric for real robot experiments is
the coverage factor [22]. However, it is a poor measure of bfgteveness andfiéciency.

Thus, this thesis proposed two performance metrics for evaluating coverage experiments. The
metrics are for both simulation and real robot experiments. The methods used to extract data
needed are robot platform independent. The first metric is percentage coverage, which measures
the dfectiveness of an experiment. In simulation, this is the percentage of grid cells covered
(same as the one used by Gabriely and Rimon in [45]). In real robot experiments, a composite
image of the experiment is created using computer vision techniques. Then, the percentage
coverage is estimated using the number of pixels the robot has appeared in the composite image.
The second metric measures thagency of the experiment in path length. Since finding the
optimal coverage path is an NP-hard problem, the concept of minimal path is introduced. The
minimal path is the shortest coverage path for a mobile robot that can teleport with no cost
associated with the teleport operation. The actual path taken by the robot is normalised against
the minimal path and the percentage coverage. In simulation, the path lengths are measured in
number of grid cells. This metric is an improvement over the use of repeatedly covered cells
by Gabriely and Rimon because it takes into account multiply covered cells and actual area
covered. In real robot experiments, the actual path length is taken from wheel encoder readings;
while the minimal path is estimated using the area of the environment and the diameter of the
robot.

The two performance metrics are applied to results from both simulated and real robot exper-

iments. In simulation tests, 100% coverage was achieved for all experiments, with an average
path length of 1.08. In real robot tests, the average coverage and path length attained were
91.2% and 1.22 respectively.

In summary, this thesis has made the following major contributions to the area of complete cov-
erage path planning for mobile robots. Firstly, it developed an online coverage algorithm that
uses a partial topological map of large features in the environment for path planning. Secondly,
it introduced slice decomposition, a cell decomposition for covering unknown environments.

It can handle a larger variety of environments than existing cell decomposition based cover-
age algorithms. Thirdly, due to the use of simpler landmarks as cell boundaries, the proposed
coverage algorithm employs a shorter navigation pattern than existing methods. Lastly, new
performance metrics for evaluating real robot coverage experiments are developed. These new
metrics measure the experiments more reliably and accurately than existing metrics.
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Oh, yes. The important thing about having lots of things to remember is
that you’ve got to go somewhere afterwards where you can remember
them, you see? You've got to stop. You haven'’t really been anywhere
until you’ve got back home. I think that’s what I mean.

Terry Pratchett, “The Light Fantastic”

Landmark Recognition using Neural
Networks

This chapter outlines how supervised neural networks can be trained to correctly recognise
and classify the topology changes used in the topological coverage algorithm. The chapter
starts with a description of how classification works in the neural networks paradigm (Sec-

tion A.1). Then the architectures and training algorithms for two supervised neural networks

are explained. The two networks are multi-layer perceptron (Section A.2) and learning vec-

tor quantisation (Section A.3). Finally, Section A.4 presents the implementation and testing of

these two networks in the landmark recognition task.

A.1 Pattern classification with Neural Networks

Classification is the problem of assigning new inputs to one of a number of discrete classes. A
simple way to achieve this is to analyse sample data manually, and then establish a set of rules
that captures the distinctive features of th&atent classes. For example, we might use the
rules in Figure A.1 to distinguish between dogs, tables and vases.

In general, the classification problem is a non-linear mapping from several input variables to
several output variables. In the previous example, the input could be video, soyadtantie
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has
four legs?

has head? vase

dog table

Figure A.1: Simple rules to classify dogs, tables and vases.

samples of the objects; the output variable has three values, one for each class.

Neural networks fier a very powerful and very general framework for mapping arbitrary in-
put variables to another set of output variables, where the form of the mapping is governed by
a number of adjustable parameters [17,50]. Figure A.2(a) shows a hypothetical classification
problem involving two independent input variabbesandx,. Neural networks perform classi-
fications by creating decision boundaries in the input space. For the example in Figure A.2(b),
new samples that lie to the left of the decision boundary are classified as belonging ©,¢lass
while samples to the right of the decision boundary are classified as belonging t€glass

Training neural networks therefore involves creating decision boundaries to minimise misclas-
sification errors. The decision boundary is altered with the adjustable parameters of the neural
network. The training is done with appropriate machine learning algorithms, and is dependent
on the type of network used.

By using a neural network, the designer of a classification system no longer has to manually de-
vise a set of rules to separate the input samples into their designated classes. The computer can
automatically extract the relevant features to create the classification system required. Examples
of classification using neural networks in robotic systems include detecting defective areas in
waste pipes and drains [36], and classifying outdoor road scenes with panoramic images [110].

A.2 Multilayer Perceptron (MLP)

Figure A.3 shows a picture of a multi-layer perceptron (MLP). It is the most common type of
neural network used. The network is made up of several layers of artifical neurons. Each neuron
Is connected to every neuron in the immediately adjacent layers. The network can have many



A.2 Multilayer Perceptron (MLP) 173

X2 A O © Xo A

Y

X1 X1
(@ (b)

Figure A.2: (a) A classification problem with two variables. Circles (0) denote samples from class C;
and crosses (x) denote samples from class C,. (b) Neural networks perform classification
by forming decision boundaries. (Adapted from [17]).

hidden layers, but only one input and one output layer.

An MLP estimates the decision boundary in terms of composition of the activation function(s)
of the network. The hidden layer(s) usually uses a sigmoid function,

1
9(@) = 1+ expCa) (A.1)

while the output layer normally uses a linear activation function
g@=a (A.2)

However, other functions can also be used. This concept of estimating a non-linear function
with a composition of simpler functions is not unique to the MLP. For example, the Fourier
series represents arbitrary periodic functions with sines and cosines.

A.2.1 Forward propagation

A new data sample is classified with a forward propagation through the MLP. This subsection
describes the operation of this forward propagation. Figure A.3 shows an example of a two-

1Using linear activation functions in the output layer does not restrict the class of functions that can be approx-
imated by the MLP. Also, sigmoidal activation functions limit the range of possible outputs to the range attainable
by the sigmoid. [17]
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outputs

bias
units

inputs

Figure A.3: A multi-layer perceptron with d inputs, M hidden units, and c outputs.

laye? MLP with d inputs,M hidden layer neurons, ambutputs.

The output of thgth hidden neuron is obtained by a weighted linear combination af theuts
d
a; = Z Wii X; (A3)
i=0

Herew; is one of the weights in the first layer, connecting inptd hidden neurory. wijo
denotes the bias for hidden neurpwith x, permanently set at 1.

The activation of hidden neurgnis then obtained by transforming the linear sum in (A.3) with
the sigmoidal activation function in (A.1)

z = g(&) (A.4)

The outputs of the MLP are obtained similarly. For each output nekjrthre activation is given

by
M
Ay = ZijZj (A5)
=0
Yo = 0(a) (A.6)

W is the weight connecting hidden neurpnd output neuroR. z; is the output of hidden
neuronj. §(a) is the linear activation function defined in (A.2).

2|t has two layers of adaptive weights.
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By combining (A.3), (A.4), (A.5) and (A.6), the result of forward propagation of input sample
x through an MLP can be summarised as

M d
Yk = Q(Z ijg(z Wi Xi]] (A7)
=0 i=0

A.2.2 Error back-propagation

MLP is trained using an algorithm known as error back-propagation. It involves propagating
errors in the output layer backwards to adjust the weights in the network.

Initially, the weights in the network are set to some random values. For each iteratiomput
vectorx(t) from the training set is applied to the network to find the activations in the hidden
and output layers using (A.4) and (A.6) yi{(t) is the output of neurokin the output layer, and
t(t) is the target (or desired) output of the same neuron, thelotad error gradientof output
neuronk is defined as

k() = Yk(t) — t(t) (A.8)

The error gradient for the hidden layer neurjos found using
Cc
6j(t) = ZJ' (t)(l - Zj (t)) Z ij(t)6k(t) (Ag)
k=1

It can be seen that the error gradients from the output l&y@rare propagated backwards to
the hidden layer.

Using the error gradientk(t) andds(t), the weights in the output and hidden layers are updated
with

AWk j (t)
Aw;i(t)

—T]5k(t)Zj (t) + a/Aij(t - 1) (AlO)
—néj(t)Xi (t) + aAWji (t — 1) (All)

Heren is the learning rate, and the momentum term. The update equations specify that the
updates to weightss; andw; with the current input sample(t) is dependent on the update
from the previous sample.

Training continues until the stopping criterion is met, with repeated forward presentation of
input samples (A.7), and backward propagation of error gradients (A.10) and (A.11).



176 Landmark Recognition using Neural Networks

\ Decision boundary

Figure A.4: Classification using LVQ.

A.3 Learning Vector Quantisation (LVQ)

A.3.1 Vector Quantisation

Classification in LVQ is done via a set of reference vectors. A subset of these reference vectors
are placed into each of the classes of the data samples. A sample is considered to be of the
same class as its closest reference vector. Figure A.4 shows an example of an LVQ for a set
of samples with two classes. The reference vectors are divided into the two classes, labelled
o ande. The region that belongs to each reference vector is shown in Figure A.4. This is the
same as the Voronoi tessellation, which is based on nearest neighbourhood on a set of vectors.
The class region is the union of the Voronoi sets for the reference vectors belonging to the same
class. Therefore, the decision boundary of the LVQ is the borders of the Voronoi tessellation
that separate Voronoi sets intdfdrent classes. As a result, the decision boundary in LVQ is
piecewise linear.

A.3.2 Learning the reference vectors

The reference vectors are initially distributed randomly within the classes, with an equal number
of vectors in each class. The learning process thus involves using the training set to move these
vectors to form a good decision boundary.

Let x(t) be an input sample in the training set, andt) represent sequential values of time



A.4 Landmark recognition 177

reference vector. Latbe the index of the nearest to x:

c

X = mell

arg minj|x — mj|

@mw—mm

Then the following equations define the basic learning algorithm LVQ1 [62]:

_ me(t) + a(t)[x(t) — m(t)] if xandm, belong to the same class

me(t + 1) (A.12)

me(t) — a(t)[x(t) — mc(t)] if xandm belong to diferent classes

m(t+ 1) =m(t) fori#c (A.13)

a; is the learning rate and its value is limited to between 0 and 1. Also, the learning rate
decreases monotonically with time during learning.

The update equations basically moves the nearest reference vector for a data sample either closer
to or further away from the sample, depending on whether the sample and the nearest reference
vector belong to the same class. All other reference vectors are unchanged.

If individual learning rateg;(t) are assigned to each of the reference vetipthen the update
equation (A.12) become:

me(t) + ac()[X(t) — m(t)] if xandm, belong to the same class
m(t+1) = (A.14)
me(t) — ac()[X(t) — m(t)] if xandm, belong to diferent classes

This is known as the optimised learning rate LVQ1, or OLVQL1. It is the learning method used
in the experiments in this thesis. The number of time steps needed to learn the LVQ is generally
30 to 50 times the number of reference vectors [62].

A.4 Landmark recognition

The Maxifander robot was used for the training and testing of the two neural networks in the
landmark recognition task. A picture of the mobile robot is shown in Figure A.5. It has a single
ultrasonic transducer on the top. A stepper motor is used to rotate the transducer around to
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Figure A.5: Maxifander in a university laboratory.

detect obstacles from all directions of the mobile robot. A vector of 48 readings is returned
from a single 360-degree scan.

Sonar data collected were categorised into three groups — free space nodes, obstacle nodes and
everything else. The tasks of the two neural networks were thus to learn this classification and
to predict which group a new sonar data sample belonged to.

A.4.1 Preprocessing

Both free space and obstacle nodes are local features. To reduce the influence of far away
objects on the recognition process, the measured sonar range data was cut if it was over a
certain threshold.

To make the classification independent of the orientation of the robot, each vector of 48 range
readings was virtually rotated into the orientation most occupied by obstacles [65]. After this
virtual rotation, index 0 of the vector would always be pointing towards the direction where the
sonar range sensor measured the shortest distances. An example explaining this virtual rotation
is shown in Figure A.6. This most occupied orientation was calculated using the following
equation:

R 1 S
duoo = - Z d (A.15)

wheren = 48 is the number of readings in each vectbis a vector originating from the centre
of the robot denoting sonar sensor reading for direcitjtﬂndcTMoo is the vector for the most
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Figure A.6: Rotation of sonar reading to most occupied direction. (a) Index to the sonar data vector,
(b) Original data, (c) Rotated most occupied direction to index O.

occupied orientation.

Using (A.15), all 48 points in the vector were used to calculate the most occupied orientation.
This made the process of finding the most occupied orientation more robust to noise than if only
the shortest range in the vector was used.

A.4.2 Results

Multi-layer perceptron (MLP)

The training and testing of MLPs was done using the free Stuttgart Neural Network Simulator
(SNNS) [3]. MLPs with various configurations were trained multiple times on this recognition
problem using the training set to find the network that achieved the lowest mean square error
on the test sét The parameters that were varied in the networks were number of hidden layer
neurons, learning rate, momentum term and initial weight values.

The lowest mean square error achieved was 0.0955 with 8 hidden neurons, learning tede

and momentum termr = 0.25. Classification accuracy achieved in the test set is shown in
Table A.1, where accuracy is defined as the number of accurate predictions divided by the total
number of samples in the test set. The result of classification using MLP on a test environment
Is shown in Figure A.7(a).

3A test set contains input samples for testing the classification accuracy of neural networks. The samples in the
test set are not in the training set.
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| MLP  LVQ
concave| 90% 90%
convex | 60% 100%
others 95% 88%

Table A.1: Accuracy achieved on the test set for MLP and LVQ.

B obstacle

free space

partitions

................... AN desks and chairs

(@ (b)

Figure A.7: Classification with (a) MLP (b) LVQ.
Learning vector quantisation (LVQ)

LVQs for testing the landmark recognition problem were implemented using the fredHAKQ

[5]. Networks with diferent numbers of neurons, or reference vectors, distributed among the
three classes were trained for 40 epdcisnetwork with 30 neurons yielded good results. The
accuracy achieved is shown in Table A.1. The result of classification using LVQ on the test
environment is shown in Figure A.7(b).

A.5 Summary

Supervised neural networks were chosen for this task because the landmark types to be recog-
nised were predefined. The neural networks were trained to generate rules statistically to clas-
sify sonar range data into three pre-defined classes. ffAreint use of neural networks for
topological maps is to let unsupervised neural networks partition environments into separate
regions according to similarity of input sensory data [65, 111].

It can be seen from Table A.1 that the two neural networks gifferéint accuracy rates for the
three categories to be classified. Despite tfi@ince in accuracies, the resultant classification
is quite similar, as in Figure A.7. This is due to the fact that misclassification occurs mostly at
the boundaries betweenfidirent zones. Misclassification at boundaries is insignificant because

4An epoch is a complete presentation of the training set.
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it does not &ect the implementation of the topological coverage algorithm. This shows that
accuracy alone is not a good indication on how well a neural network performs for a target
application. Overall, both neural networks are capable of recognising free space and obstacle
nodes in the environment.
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One of the problems of taking things apart and seeing how they work
— supposing you're trying to find out how a cat works — you take that
cat apart to see how it works, what you’ve got in your hands is a non-
working cat. The cat wasn’t a sort of clunky mechanism that was sus-
ceptible to our available tools of analysis.

Douglas Adams, “Hitchhiker’s Guide to the Galaxy”

Computer Vision

This chapter describes two of the computer vision techniques used for creating composition
images in Chapter 5 in greater detail. Section B.1 explains the Canny edge detector, which
is perhaps the most popular edge detection technique at present [79]. This is followed by a
description of the Hough transform in Section B.2, which is used for locating and extracting
shapes in images.

B.1 Canny Edge Detection

Edge detection is an important operation in computer vision applications. Edges are employed
as primitive features which guide applications to make more complex suppositions about the
visual information. Edges are also important in preprocessing an image to yield regions of
interest.

Figure B.1 shows an image of a light box on a dark background. In this image, the edges are
clearly defined as the external boundary of the box. Figure B.2 shows the intensity profile of the
image across the row of pixels where the y-coordinate is 50. Note that there is a large change in
intensity at the point where the box startsXat 20). This trend is reversed where the box ends
(atx = 70). In summary, the change in intensity is directly related to the edges in the image.

183
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Figure B.1: An image with strong edges.
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Figure B.2: The intensity profile of the image across y=50.
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In computer vision terms, an edge is characterised by significant step changes in intensity.
Detection of edges within images are based on mathematical methods which can be applied to
detect such rapid changes in slope. For instance, the first derivative of the intensity function
should have a maxima at the midpoint of the left edge and a minima at the midpoint of the
right edge (Figure B.3(a)). The second derivative is zero at the beginning and end of each edge
(Figure B.3(b)). The first and second derivatives are the basis for the design of many edge
detection techniques [48, 70].

The Canny edge detector was designed to be an optimal edge detector. It has the following
properties:

e Optimal detectioBy smoothing the image, spurious responses are reduced, and the edge
map is made less noisy.

e Good localisationTo improve accuracy in detection, edges must be found in the correct
location.

e Single responsA single response is found for each valid edge in an image. For instance,
a edge detector based on the second derivative will have two responses for every edge in
the image. This was considered non-optimal by Canny.

These three goals are achieved using the following steps:
1. Gaussian smoothing
2. Sobel edge detection
3. Non-maximal suppression
4. Hysteresis thresholding

These steps will now be discussed in turn. The image shown in Figure B.4 will be used to aid
in this discussion.

B.1.1 Gaussian smoothing

Canny demonstrated in [25] that Gaussian smoothing was the optimal method for image smooth-
ing. Application of Gaussian smoothing requires convolution of the inhégg) with a suitable
Gaussian mas§(x, y):

l+g= > 1(.Kax- ,y-k

j.k

The codficients of the Gaussian mask can be defined by the Gaussian function:
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Figure B.3: (a) First derivative, and (b) second derivative of the edge profile in Figure B.2.
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Figure B.4: An image of the Khepera robot moving in its environment.
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Figure B.5: Gaussian blurring of an image (a) 3x 3 (b) 5x5(c) 7x 7

24y2
axy) =€ =7 (B.1)

The larger the mask that is employed, the more accurately it fits the ideal Gaussian. However,
this accuracy comes at a cost of increased computation. Generally, for real applications, a mask
of size 5x 5 or 7x 7 is employed. Ther term in (B.1) is chosen to make sure the fiméents

drop to O near the edge of the mask. Figure B.5 shows increasing Gaussian blur on a sub region
of the image in Figure B.4.

B.1.2 Sobel edge detection

The Sobel edge operator is a widely used edge detection operator. It is an example of a gra-
dienyderivative based edge detector. It approximates the gradient operation by a pair3of 3
masks:
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Figure B.6: The result of edge detection after Gaussian blurring.

10 -1 1 2 1
Mc=|2 0 -2|, M=0 0 0
10 -1 -1 -2 -1

The masks are aligned in the horizont,j and vertical directionsNl,). Operation of the
Sobel edge detector involves computing a pair of gradient im&esdS,, by first convolving
the imagd with each of the masks:

Each point in the two gradient image$, andS, are then combined using sum of squaries
generate a candidate edge nMdor the original imagé:

M= 1/S§+S§

A candidate edge map is shown in Figure B.6. Brighter intensities in this image relate to
stronger edges.

B.1.3 Non-maximal suppression

The next stage in the processing of the edge data is to use non-maximal suppression. Non-
maximal suppression serves to find the highest points in the edge information and follow the

! Alternately, the sum of absolute values can be used.
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Figure B.7: The result of applying non-maximal suppression.

contours that they belong to. This process is performed via the use of the edge gradient images,
Sy andS,. For a 3x 3 region, the gradient is maximal if the gradient on either side of it is less
than the gradient at the centre point. Thus, in order to find this value the value of the gradient at
points normal to the actual gradient are required. As the image is defined upon an integer grid,
interpolation is required for this. Thus:

S S-S
Gi= IM(Xx+1y-1)+ =—2M(x,y-1)

TS, S
S S-S
Gy= IM(x—-1,y+1)+ =—2M(x,y+ 1)
Sx Sx

If the value of the gradient at the poikt(x, y) exceeds botfs; andG,, then the point is marked
as a peak; otherwise it is set to 0. The result of non-maximal suppression applied to the Sobel
edge image is shown in Figure B.7.

B.1.4 Hysteresis thresholding

The final step in the Canny edge detector is the use of hysteresis thresholding. This uses a
hysteresis function to threshold the image. Figure B.8 shows an example of hysteresis thresh-
olding. In the example, the underlying function (as given by the smooth curve), is hysteretically
thresholded. A maximum value is kept until the value of the curve drops below a minimum
value (lower threshold). This value is kept until the value of the data exceeds the upper thresh-
old. In this way, values which exceed the upper threshold are considered to be definite edge
points; while values below the lower threshold are definitely not edge points. Points which lie
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upper threshold

lower threshold

Figure B.8: Hysteresis thresholding. The smooth curve is the underlying function. The square curve is
the output of hysteresis thresholding.

Figure B.9: Hysteresis thresholding applied to the non-maximally suppressed image.

in between are indeterminate and generally depend on their neighbours. In implementation,
any edge point can be used as the starting seed. The neighbours of the seed are then searched
to see if they exceed the lower threshold. If they do, then they are also labelled as an edge
point and become a new seed. The process terminates when there are no neighbours above the
lower threshold and no seeds remaining. Figure B.9 shows the result of applying hysteresis
thresholding to the non-maximally suppressed image in Figure B.7.

The image in Figure B.9 is the final result of the Canny edge detector. The Canny edge detector
is generally a very clean looking edge map with little noise. Furthermore, it preserves fine detail
in the image. These features make the edge map very useful for subsequent processing.

B.2 Hough Transform

The Hough transform is a computer vision technique for finding shapes in images. Generally it
is used to find lines, circles, and ellipses, though it has been extended to more arbitrary shapes
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[79]. It owes its popularity to the fact that it achieves the same result as template métching
without the computation overhead. The reduction in computational overhead is due to the way
in which it reformulates template matching as an evidence gathering technique where votes are
cast in an accumulator array. To achieve this, it uses a mapping from the image space to the
accumulator. The mapping is computationalffi@ent as it is based upon a description of the
shape that is being searched for.

In this thesis, a circular object was required to be identified. This was the Khepera robot. For
this reason, the Hough transform was employed as a circle finder. The general equation for a
circle is:

(X = X0)® + (¥ = Yo)> = r?

This defines a circle centred on point,(yo) with a radiusr. This definition implies that the

circle is a locus of points, centred on poirg,(yo), with a radiug. However, there is an alternate

view in that it is also the locus of circles, centred aty) with a radiusr. The two cases are
illustrated in Figure B.10. Geometrically, the two cases are equivalent. For the Hough transform
the latter of the two views is used for the accumulator space. The reason it is employed is as
follows. For any point that is on the circle in Figure B.10(a), a unique circle can be drawn in
the accumulator space as shown in Figure B.10(b). Other concyclic points also result in another
circle in the accumulator space. However, the key point to note is that in the accumulator space,
all these circles pass through one point in common. This is the point which corresponds to the
centre point of the original circle. In employing the Hough transform, a count is kept of the
number of times a circle is drawn though this centre point for each candidate edge point in the
original image. As only valid edges are used in this process, the computational requirements of
the matching process is significantly reduced compared to template matching.

An example of this notion applied to the Canny edge image from Figure B.9 is shown for several
different radii in Figure B.11. Figure B.11(a) shows the accumulator space where the radii is
too small for the feature of interest. There is no main peak though the highest peak lies in the
robots general vicinity. This is probably due to the fine details on the top surface of the robot.
In Figure B.11(b), the radii is set to the same as the Khepera. Notice the distinct peak found
centred on the robots’ centre. In Figure B.11(c), the radii is set to be equal to that of the round
obstacle. This gives a nice peak centred on the centre of the obstacle. Generally, the exact
radius of the object to be found is not known and a range of candidate radii are employed. The
peak finding process in this case requires a three dimensional seaxci, ir).(

2In template matching, a template is centred on an image point, and the number of points in the image that
match the template is counted. The procedure is repeated for the entire image. The point which led to the best
match, the maximum count, is deemed to be the point where the shape (given by the template) lies within the image
[79].
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@ (b)

Figure B.10: Definition of a circle (a) a locus of points (b) a locus of circles.

It is possible to use a parametric form of the circle as follows:

X = Xg + I COSH, Y =VYo+rsing

This is useful as it directly allows the parameters to be solved for :

Xg = X— T C0SY, Yo=Yy —rsind (B.2)

These equations directly define the points in the accumulator space (as seen in Figure B.10). In
(B.2),0is not a free parameter but defines the trace, or point spread function, of the curve. These
notions put together allow us to define the algorithm for the Hough transform (Algorithm B.1).
Figure B.12 highlights the position and size of the robot in Figure B.9 as found by the Hough
transform.
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Figure B.11: Scaled accumulator space for Figure B.9 with radii of (a) 5 pixels (b) 12 pixels (c) 32 pixels.



194 Computer Vision

Algorithm B.1 Hough transform
| <« mxnimage
a «— mx narray of zeros
E < set of edge points ih
for (x,y) € Edo
for r € [Fmin, max dO
for 6 € [0, 27) do
Xg < X—T % COSH
Yo < Y —T xSing
if (X0, Yo) in imagethen
a(Xo, Yo) < a(Xo,Yo) +1
end if
end for
end for
end for

o/ ”

Figure B.12: The drawn circle on this image shows the position and size (x, y, r) of the robot as extracted
by the Hough transform.
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