
University of Southampton Research Repository

ePrints Soton

Copyright © and Moral Rights for this thesis are retained by the author and/or other
copyright owners. A copy can be downloaded for personal non-commercial
research or study, without prior permission or charge. This thesis cannot be
reproduced or quoted extensively from without first obtaining permission in writing
from the copyright holder/s. The content must not be changed in any way or sold
commercially in any format or medium without the formal permission of the
copyright holders.

 When referring to this work, full bibliographic details including the author, title,
awarding institution and date of the thesis must be given e.g.

AUTHOR (year of submission) "Full thesis title", University of Southampton, name
of the University School or Department, PhD Thesis, pagination

http://eprints.soton.ac.uk

http://eprints.soton.ac.uk/

Department of Electrical and Computer Engineering
The University of Auckland

New Zealand

Qualitative Topological
Coverage of Unknown

Environments by Mobile Robots
Sylvia Wong
February 2006

Supervisors: Dr Bruce A. MacDonald

Dr George Coghill

A         

D  P  E

2

Abstract

This thesis considers the problem of complete coverage of unknown environments by a mobile

robot. The goal of such navigation is for the robot to visit all reachable surfaces in an envi-

ronment. The task of achieving complete coverage in unknown environments can be broken

down into two smaller sub-tasks. The first is the construction of a spatial representation of the

environment with information gathered by the robot’s sensors. The second is the use of the

constructed model to plan complete coverage paths.

A topological map is used for planning coverage paths in this thesis. The landmarks in the

map are large scale features that occur naturally in the environment. Due to the qualitative

nature of topological maps, it is rather difficult to store information about what area the robot

has covered. This difficulty in storing coverage information is overcome by embedding a cell

decomposition, calledslice decomposition, within the map. This is achieved using landmarks in

the topological map as cell boundaries in slice decomposition. Slice decomposition is a new cell

decomposition method which uses the landmarks in the topological map as its cell boundaries. It

decomposes a given environment into non-overlapping cells, where each cell can be covered by

a robot following a zigzag pattern. A new coverage path planning algorithm, calledtopological

coverage algorithm, is developed to generate paths from the incomplete topological map/slice

decomposition, thus allowing simultaneous exploration and coverage of the environment.

The need for different cell decompositions for coverage navigation was first recognised by

Choset. Trapezoidal decomposition, commonly used in point-to-point path planning, creates

cells that are unnecessarily small and inefficient for coverage. This is because trapezoidal de-

composition aims to create only convex cells. Thus, Choset proposed boustrophedon decompo-

sition. It introduced ideas on how to create larger cells that can be covered by a zigzag, which

may not necessarily be convex. However, this work is conceptual and lacking in implementa-

tion details, especially for online creation in unknown environments. It was later followed by

Morse decomposition, which addressed issues on implementation such as planning with par-

tial representation and cell boundary detection with range sensors. The work in this thesis was

developed concurrently with Morse decomposition.

i

ii ABSTRACT

Similar to Morse decomposition, slice decomposition also uses the concepts introduced by

boustrophedon decomposition. The main difference between Morse decomposition and slice

decomposition is in the choice of cell boundaries. Morse decomposition uses surface gradients.

As obstacles parallel to the sweep line are non-differentiable, rectilinear environments cannot

be handled by Morse decomposition. Also, wall following on all side boundaries of a cell is

needed to discover connected adjacent cells. Therefore, a rectangular coverage pattern is used

instead of a zigzag. In comparison, slice decomposition uses topology changes and range sensor

thresholding as cell boundaries. Due to the use of simpler landmarks, slice decomposition can

handle a larger variety of environments, including ones with polygonal, elliptical and rectilin-

ear obstacles. Also, cell boundaries can be detected from all sides of a robot, allowing a zigzag

pattern to be used. As a result, the coverage path generated is shorter. This is because a zigzag

does not have any retracing, unlike the rectangular pattern.

The topological coverage algorithm was implemented and tested in both simulation and with

a real robot. Simulation tests proved the correctness of the algorithm; while real robot tests

demonstrated its feasibility under inexact conditions with noisy sensors and actuators.

To evaluate experimental results quantitatively, two performance metrics were developed. While

there are metrics that measure the performance of coverage experiments in simulation, there are

no satisfactory ones for real robot tests. This thesis introduced techniques to measure effective-

ness and efficiency of real robot coverage experiments using computer vision techniques. The

two metrics were then applied to results from both simulated and real robot experiments. In

simulation tests, 100% coverage was achieved for all experiments, with an average path length

of 1.08. In real robot tests, the average coverage and path length attained were 91.2% and 1.22

respectively.

Acknowledgements

It has been a long time since I first arrived at the E&E department in the University of Auckland

as a wide-eyed undergraduate. I am happy to have this opportunity to thank some of the people

who have helped make it an enjoyable experience.

First of all, I would like to thank my supervisor, Dr Bruce MacDonald for his support and

guidance throughout my PhD years. Without his encouragement and occasional stern looks, I

would not have been able to make it to the end.

I would also like to thank my parents. They provided much financial support, which is very

appreciated. I hope they feel proud when they see this 200 page masterpiece.

The technical staff in the department have also been of tremendous help. Lance Allen and the

workshop designed and built the wooden enclosure for the Khepera robot. Jamie Walker and

Evans Leung helped me with all sorts of computer and networking problems. Bev Painter,

Nichola Kavacevich and Grant Sargent have also been very helpful.

I greatly enjoyed the interactions with other PhD students in the department, from inspiring

technical discussions to playing age of empires. They are (in alphabetical order): Geoff Biggs,

Toby Collett, Barry Hsieh, Lee Middleton, Adrian Pais, Russell Smith, Brad Sowden, Chris

Waters, Joseph Wong and David Yuen.

Lastly, I would like to thank Jorge Cham, the creator of piled higher and deeper. His comic

strips provided me with laughter when I sorely needed it.

iii

iv

Contents

1 Introduction 1

1.1 Overview of problem domain .1

1.2 Applications of coverage path planning .3

1.3 Description of the thesis .3

1.3.1 Scope of the research .3

1.3.2 Overview of the thesis .4

1.4 Contributions of the thesis .5

2 Coverage navigation and path planning 7

2.1 Voronoi diagram . 8

2.2 Cell decomposition .10

2.3 Grid map .28

2.4 Topological map .34

2.5 Reactive robots .35

2.6 Coverage with multiple robots .36

2.7 Coverage of 3-dimensional surfaces .36

2.8 Performance metrics .37

2.8.1 Simulation .37

2.8.2 Real robots .37

2.8.3 Complexity of coverage navigation38

2.9 Discussion .39

2.10 Summary .40

3 Slice decomposition 41

3.1 Slice Decomposition I .42

3.1.1 Events .43

3.1.2 Algorithm .46

3.2 Slice Decomposition II .47

3.2.1 Events .47

v

vi Contents

3.2.2 Algorithm .49

3.3 Effects of step size and sweep direction .53

3.4 Tethered robots .56

3.5 Discussions .56

3.6 Summary .57

4 Topological Coverage Algorithm 59

4.1 Finite State Machine .60

4.1.1 State – Normal .60

4.1.2 State – Boundary .62

4.1.3 State – Travel .62

4.2 Cell boundaries .63

4.2.1 Event – Split .64

4.2.2 Event – Merge .67

4.2.3 Event – End .70

4.2.4 Event – Lengthen .72

4.2.5 Event – Shorten .73

4.2.6 Combination of split and merge events76

4.3 Topological Map .77

4.3.1 Nodes .80

4.3.2 Edges .80

4.3.3 Map updates .81

4.4 Travel between cells .90

4.5 Completeness .93

4.6 Complexity .95

4.7 Summary .97

5 Performance metrics 99

5.1 Metrics .100

5.1.1 Effectiveness: percentage coverage100

5.1.2 Efficiency: path length .100

5.2 In simulation .101

5.3 In real robot experiments .104

5.3.1 Creating composite images .104

5.3.2 Correcting perspective warp .108

5.3.3 Computing percentage coverage .110

5.3.4 Calculating normalised path length110

5.4 Summary .111

Contents vii

6 Implementation 113

6.1 Khepera robot .113

6.2 Simulation .115

6.3 Topological map .119

6.4 Robot controller .120

6.5 Summary .122

7 Results and discussion 123

7.1 Landmark Detection .123

7.1.1 Discontinuity on side of robot .124

7.1.2 Topology changes in front of robot .135

7.2 Coverage Experiments .138

7.2.1 Simulation .138

7.2.2 Real Robot .143

7.3 Zigzag as coverage pattern .143

7.4 Evaluating composite images .149

7.5 Performance Metrics .155

7.5.1 Simulation .155

7.5.2 Real robot experiments .156

7.6 Composite image for non-circular robots .159

7.7 Path lengthL and complexity of environment159

7.8 Summary .163

8 Future Work and Conclusions 165

8.1 Future work .165

8.1.1 Tethered robot .165

8.1.2 Simultaneous localisation and coverage (SLAC)166

8.1.3 Multi-robot coverage .167

8.2 Conclusions .167

A Landmark Recognition using Neural Networks 171

A.1 Pattern classification with Neural Networks171

A.2 Multilayer Perceptron (MLP) .172

A.2.1 Forward propagation .173

A.2.2 Error back-propagation .175

A.3 Learning Vector Quantisation (LVQ) .176

A.3.1 Vector Quantisation .176

A.3.2 Learning the reference vectors .176

A.4 Landmark recognition .177

viii Contents

A.4.1 Preprocessing .178

A.4.2 Results .179

A.5 Summary .180

B Computer Vision 183

B.1 Canny Edge Detection .183

B.1.1 Gaussian smoothing .185

B.1.2 Sobel edge detection .187

B.1.3 Non-maximal suppression .188

B.1.4 Hysteresis thresholding .189

B.2 Hough Transform .190

New ideas pass through three periods: 1. It can’t be done. 2. It probably
can be done, but it’s not worth doing. 3. I knew it was a good idea all
along!

Arthur C. Clarke

1
Introduction

1.1 Overview of problem domain

A recent survey released by the UN Economic Commission for Europe [1, 41] reported

that robot orders for the first half of 2003 were the highest ever recorded. The survey

also predicts the worldwide growth rate of the robotic industry will average at 7.4%

annually for the period 2003 to 2006. Also, by the end of 2006, a tenfold increase in domestic

service robots is predicted. These statistics and predictions show that robots have moved out

of science fiction and into everyday life. Nowadays, it is already common to find industrial

robots working in hazardous environments or space rovers surveying Mars. In the foreseeable

future, domestic and service robots may also become a common sight. Examples include do-

mestic robots mowing lawns and vacuuming floors autonomously, or professional service robots

assisting in surgeries and surveillance.

To be useful, a robot has to be skilled in the specific task it is designed for. For example, a

lawnmowing robot needs to know how to operate the grass cutting tool it carries; or a rubbish

collecting robot needs to know how to pick up soft drink cans and cigarette butts. However,

these robots should also be equipped with more general abilities such as obstacle avoidance,

map building, path planning and localisation. These abilities enable a robot to move around its

environment to do its job efficiently and with minimum human intervention.

1

2 Introduction

One such general ability that is very important to all autonomous robots is path planning. Path

planning in robotics is theintelligenceof finding a path in a map that leads from a start config-

uration to a goal configuration. This area of artificial intelligence has received a great deal of

attention in the robotics research literature [66, 76, 85, 91]. Path planning is an essential com-

ponent of robot manipulator controllers, as it is the the basis for describing and controlling the

manipulator tip [42, 54]. It is also important for mobile robots, as it is the basis for describing

and controlling the varying robot positions in space [46, 98].

Most path planning algorithms are for point-to-point path planning. This type of algorithm

usually attempts to find the shortest or quickest path to get from one point to another. Though

sometimes criteria other than path lengths are used [71]. However, in some applications, a

coveragepath is needed instead. The aim of a coverage path planner is to create a path that

covers all surfaces in an environment. In other words, given an initial location, it does not

matter where the final location is, as long as the journey visits all surfaces in the environment.

Examples of robotic tasks that require a coverage path are cleaning [38], surface coating [86,

87], humanitarian demining [69] and foraging.

Coverage path planning is similar to exploration, but not the same. When exploring, a robot

sweeps its long range sensors, moving so as to sense all of its environment, often to build a

map. In a coverage application, the robot or a tool it carries mustpass overall the floor surface.

Compared to point-to-point path planning, the coverage path planning problem has not received

as much attention. However, as robots move into service roles and interact with humans in

more varied environments for a wider range of tasks, coverage will become more important.

The ability to fully cover an environment will be a key capability for all mobile systems. For

example, domestic robot assistants can spend their idle time cleaning, collecting items and

storing them away.

Apart from generating different types of output, path planners also differ in their formats of

input (the map). As path planning is essentially a search on a map of the environment, the data

structure used to store this map naturally influences the operations of path planning algorithms.

Also, depending on the application domain, the environment the robot operates in maybe known

or unknown beforehand. If a map is created by a human operator and fed to the path planner,

the environment isknownto the robot. If no map is provided, the environment isunknown,

and the robot has to construct a map for path planning using sensor information. There are two

distinct ways to handle this situation. The first method is to carry out an exploration phase to

construct an accurate map [95, 107] before any path planning is done. The alternative is to make

assumptions concerning the unknown areas in the map in order to commence path planning, and

then update the planned path whenever new environmental information becomes available [58].

In other words, path planning is done on apartial mapof the environment.

1.2 Applications of coverage path planning 3

1.2 Applications of coverage path planning

Coverage path planning is needed in a variety of mobile robot applications. The focus of this

thesis is on the coverage of flat, indoor, unknown surfaces populated with obstacles. It is also

assumed that the robot has to stay within the region. Typical applications that fit these criteria

are vacuum cleaning and floor scrubbing.

Lawn mowing is very similar, but the restriction on staying within bounds is relaxed. For

example, it is perfectly acceptable to push the lawn mower over the footpath while cutting grass

on the kerb. Compared to a typical home or office, the average lawn is relatively free from

obstacles. Also, being an outdoor application, global positioning systems can be used to aid

localisation and landmark matching.

Intuitively, humanitarian demining should also allow the robot to stray outside the area to be

covered. However, since it is unknown whether the region outside is free of landmines, it is safer

and smarter to restrict movement within bounds of the environment. Also, due to the dangers of

the mines, the robot should not move into surfaces not scanned by the landmine detection tool

yet. Therefore, localisation must be very accurate. Otherwise, due to dead reckoning1 error, the

robot might move into an area it believes to be covered, but is not in reality.

In window cleaning the target surface is vertical, instead of horizontal. Other than this minor

difference, the coverage requirement is essentially the same as vacuum cleaning.

In machine milling, it might be desirable to mill only in one direction (either in the spindle

direction, or against). This means the coverage path should be a sequence of, say, right-to-

left movements, instead of alternate left-to-right and right-to-left movements. This is because

milling in only one direction gives better surface quality [51].

1.3 Description of the thesis

1.3.1 Scope of the research

The purpose of this research is to develop robust coverage algorithms for mobile robots working

in unknown environments. I do not assume known environments because it can be costly and

inflexible to require a complete map of the environment the robot operates in. In certain types

of robots, for example, domestic vacuum cleaners, owners generally lack the expertise to enter

detailed maps to the robots and will therefore require professional help for such tasks. Also, the

map will need to be updated whenever the owner re-arranges the furniture.

1The estimation of a mobile robot’s position from the distance it has travelled and the direction it is heading.

4 Introduction

Map building is a key issue in this thesis because of the requirement of unknown environments.

The robot should simultaneously construct a map with sensor information while covering the

environment at the same time. This means that the coverage path planner has to make its

decision based on a partial map of the robot’s environment. Using a separate exploration phase

for map building purposes is considered inefficient because a coverage path already requires the

robot to visit all surfaces.

An integral part of developing a robotic coverage algorithm is to measure how well the algo-

rithm performs in experiments. Performance metrics allow quantitative evaluation of implemen-

tations. They also permit comparisons between different algorithms. Despite the importance of

quantitative metrics, this is an area that has received very minimal attention. Development of

suitable performance metrics is therefore another aim of this research.

1.3.2 Overview of the thesis

The thesis is divided into the following chapters:

Chapter 2 presents a literature review of algorithms for coverage using mobile robots. The

review includes algorithms for both known and unknown environments. The chapter also dis-

cusses existing performance metrics for evaluating coverage algorithms in both simulation and

real robot experiments.

Chapter 3 presents the events and algorithms for slice decomposition. Two versions of the

decomposition are presented. The first one is for known environments, and is produced using

a normal line sweep process. The second one is for unknown environments, where the sweep

line will be limited to within free space.

Chapter 4 introduces the topological coverage algorithm. The algorithm creates a slice decom-

position of any environment online, without a known map. It explains methods for detecting

landmarks used to form the decomposition. It also talks about how slice decomposition is stored

in a topological map, how the map is maintained and updated, and how to determine if the map

is completed and the environment is completely covered. It also explains why travelling be-

tween regions is robust. Completeness and complexity of the decomposition are also discussed.

Chapter 5 introduces two new performance metrics for coverage experiments. The chapter also

includes practical methods for evaluating and measuring parameters needed to calculate these

metrics.

Chapter 6 focuses on the implementation of the topological coverage algorithm. It describes the

simulation and real robot environment and platform. It also talks about the implementation of

the topological map and the robot controller.

1.4 Contributions of the thesis 5

Chapter 7 shows results from experiments in simulation and with a real robot. The metrics

introduced in Chapter 5 are used to evaluate the performance of the experiments. The results

are also discussed and compared with existing coverage algorithms.

Chapter 8 presents a list of potential future work and some conclusions drawn from the research

in this thesis.

Appendix A describes an alternative method for recognising and classifying the landmarks used

in the topological map. Two types of neural networks are trained to learn the different land-

marks. This appendix gives a brief introduction to the two neural networks, followed by results

from landmark recognition tests.

Appendix B covers the computer vision techniques used in Chapter 5 for creating composite

images in greater detail. Topics discussed include Canny edge detection and Hough transforms.

1.4 Contributions of the thesis

This thesis makes several significant contributions. A study in the existing literature provides

the basis for the identification of areas where contributions can be made to the field.

First is the development of an online coverage algorithm that uses a partial qualitative topolog-

ical map for planning. Previously, qualitative maps based on simple landmarks have only been

used in point-to-point path planning. This is because nodes and edges of topological maps do

not correspond to specific locations in space. This qualitative nature makes it difficult to store

coverage information. The problem is overcome by using the landmarks as cell boundaries of

slice decomposition. In other words, the topological map embeds a slice decomposition of the

environment. As a result, even though individual nodes in the map are not associated with spe-

cific areas of space, a combination of nodes now defines a cell of the decomposition. Coverage

information is then stored with cells in slice decomposition.

Second is the introduction of slice decomposition, a cell decomposition for covering unknown

environments. It can handle a larger variety of environments than existing cell decomposition

based coverage algorithms. The concept of using the split and merge of the sweep line by

obstacles as cell boundaries was first introduced in boustrophedon decomposition [30]. This

approach creates maximum sized cells that can still be covered by a simple zigzag pattern.

However, boustrophedon decomposition lacks detailed algorithms or implementation details.

Slice decomposition extends the split and merge concepts in boustrophedon decomposition.

New cell boundary types are added to simplify boundary detection in online decomposition

with range sensors. Similar to slice decomposition, Morse decomposition [8] is also for cov-

ering general unknown environments using range sensors. The main difference between Morse

6 Introduction

decomposition and slice decomposition is in the choice cell boundaries. Morse decomposition

uses surface gradients. As obstacles parallel to the sweep line are non-differentiable, rectilinear

environments cannot be handled by Morse decomposition. In comparison, slice decomposition

uses topology changes and range sensor thresholding as cell boundaries. Due to the use of sim-

pler landmarks, it can handle environments with polygonal, elliptical and rectilinear obstacles.

Thirdly, due to the use of simple landmarks as cell boundaries, the topological coverage algo-

rithm employs a shorter navigation pattern to cover each cell in the decomposition than Morse

decomposition. Wall following on side boundaries of cells is needed in Morse decomposition

to discover connected adjacent cells. This is because cell boundaries can only be detected when

they are the closest point on the obstacle surface from the robot compared to all other points

on the obstacle surface. Therefore, a rectangular pattern that includes retracing is used to cover

each cell in the decomposition. On the other hand, due to the use simpler landmarks and a more

general technique for landmark detection, the topological coverage algorithm allows a robot

to detect events in slice decomposition from all sides. As a result, a simple zigzag path that

does not include any retracing can be employed instead. Due to the use of a shorter navigation

pattern to cover individual cells, the topological coverage algorithm generates coverage paths

that are shorter and more efficient.

Lastly, new performance metrics for evaluating real robot coverage experiments are developed.

Currently, results from real robot experiments are mostly presented qualitatively, showing pic-

tures of the routes taken by the robots. The only metric available is the coverage factor [22].

However, it does not measure effectiveness or efficiency of experiments properly. The two met-

rics proposed in this thesis measure the effectiveness and efficiency of any coverage experiment

using data collected with computer vision techniques. The methods used to collect the data are

very general and are not limited to the experimental setup used for this thesis.

Only in our dreams are we free. The rest of the time we need wages.

Terry Pratchett, “Wyrd Sisters”

2
Coverage navigation and path planning

Path planning for mobile robots generally involves a search on a spatial representation

(map) of the environment. Therefore mapping and path planning are two related issues

and cannot be examined in complete isolation. Robotic maps are data structures that

store information about the environment. For any given data structure, there are multiple ways

to conduct a search. For example, there are numerous search algorithms for graphs, such as A*

search and depth-first search [92]. In summary, there are many types of robotic maps, and even

more path planning algorithms.

This chapter first introduces several common robotic maps. They are Voronoi diagram (Sec-

tion 2.1), cell decomposition (Section 2.2) and grid map (Section 2.3). These maps all employ

some form of space decomposition, where a complex space is repeatedly divided until simple

subregions of a particular type are created. Grid based maps are a special case of space de-

composition where the environment, both free space and obstacles, is decomposed into uniform

grid cells. Emphasis has been placed on space decomposition based maps as they are the most

common data structure used in coverage path planning. This is because coverage algorithms

usually use the strategy of “divide and conquer”. Basically the environment is segmented into

simpler subregions, and each subregion is then covered in turn. Cell decomposition is favoured

by Choset, the leader in the area of robot coverage algorithms [8, 9, 11]; while grid maps are the

most common choice among researchers in mobile robot coverage [44, 97, 109].

7

8 Coverage navigation and path planning

Two other robotic mapping and path planning methods are also discussed. Even though they are

not based on space decomposition, they are included here because of their importance in mobile

robot navigation. The two methods are topological mapping (Section 2.4) and reactive robotics

(Section 2.5). Topological maps do not form precise geometric representations of space. Instead

the map describes spatial relationship in a qualitative way, much like the way humans describe

their environments. Reactive robotics approaches the navigation problem from a non symbolic

AI perspective. As such, no maps are used and there is no planning of paths in the traditional

sense.

Section 2.8 contains a survey on the performance metrics used in simulated and real robot

experiments of coverage algorithms. In also includes a brief discussion of the complexity, or

upper bound, of the length of a coverage path.

Lastly, this chapter finishes with a discussion that identifies areas where contributions can be

made.

2.1 Voronoi diagram

Perhaps the most popular space decomposition is the Voronoi diagram. It is used in a wide

range of disciplines including biology, computational geometry, crystallography and meteorol-

ogy [81].

Given a finite set of distinct points (called reference vectors) in the Euclidean plane, an ordinary

Voronoi diagram is formed by associating all locations in that space with the closest member

of the point set with respect to the Euclidean distance. Thus a Voronoi diagram partitions the

space into a set of non-overlapping regions. Figure 2.1 shows a set of reference vectors with its

Voronoi diagram.

More formally, let the set ofn reference points beP = {p1, . . . , pn} ⊂ R
2, and their Cartesian

coordinates bex1, . . . , xn. Then the ordinary Voronoi region associated with reference pointpi

is given by

V(pi) = {x | ‖x − xi‖ ≤ ‖x − x j‖ for i , j}

And the set given by

V = {V(p1), . . . ,V(pn)}

is the ordinary Voronoi diagram of the reference point setP.

By applying a distance measure other than Euclidean distance, the ordinary Voronoi diagram

has been extended or generalised in many directions [81]. One of the most useful generalisations

for robotics is the area Voronoi diagram. This is because a typical robots’ environment consists

2.1 Voronoi diagram 9

Figure 2.1: Voronoi diagram for a set of reference points.

of a set ofn obstaclesA = {A1, . . . ,An}, rather than a set of points. The area Voronoi diagram is

calculated using the following equation for the shortest distance from pointp to obstacleAi:

ds(p,Ai) = min
xi

{‖x − xi‖ | xi ∈ Ai}

In other words, an area Voronoi diagram (or simply generalised Voronoi diagram) is formed by

associating all locations in the free space of the robot’s environment with the closest obstacle.

Figure 2.2 shows an example of a generalised Voronoi diagram for an environment with two

obstacles.

In robotics, generalised Voronoi diagrams have been used in path planning [66], topological

mapping [84] and localisation with visual landmarks [106]. A feature of maps based on gener-

alised Voronoi diagrams is that they maximise clearance between robot and obstacles. A robot

following the map will be staying far from obstacles. As a result, the Voronoi diagram is unde-

sirable for coverage tasks. On the other hand, this characteristic makes it perfect for exploration

navigation with long range sensors. For example, Acar, Choset and Atkar used a map based on

the generalised Voronoi diagram for a robot equipped with an extended range landmine detector

[6].

10 Coverage navigation and path planning

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

Figure 2.2: The Voronoi diagram maximises clearance between robot and obstacles. (Reproduced
from page 172 of [66]).

2.2 Cell decomposition

A cell decomposition divides a complex structureS into a collection of disjoint simpler com-

ponent cells. In exact cell decomposition, the union of the component cells is exactlyS. While

in approximate cell decomposition, the union of the component cells is approximatelyS. The

boundary of a cell corresponds to a criticality1 of some sort. The most common example of cell

decomposition is trapezoidal decomposition [66]. It is formed by sweeping a line across the

environment, and maintaining a listD of cells that intersects with the sweep line. The history

of list D, ie all the cells that have appeared inD, forms the decomposition. A cell boundary is

created whenever a vertex is encountered. Due to the use of vertices as criticality, obstacles are

limited to polygons. Also, each cell of a trapezoidal decomposition is either a trapezoid or a

triangle. The algorithm for trapezoidal decomposition is shown in Algorithm 2.1.

Figure 2.3 shows an example of trapezoidal decomposition for an environment with one polyg-

onal obstacle. Originally, the listD consists of only one cell, and thusD = (c1). At the first

vertex, cellc1 is split into two parts, andD changes to (c2, c3). For the next two vertices in the

environment, cells are replaced only. The listD changes to (c2, c4) and then again to (c5, c4).

Lastly, cellsc4 andc5 are merged into one cell, andD becomes (c6).

The trapezoidal decomposition was originally proposed by Chazelle to partition a 3D poly-

hedron into a collection of convex polyhedra [29]. Other usages outside of robotics include

decomposing complex polygons in 2D computer graphics [88].

For path planning, the trapezoidal decomposition is first reduced to a connectivity graph that

1Criticalities in cell decompositions are conditions of the sweep line where, if satisfied, a new cell boundary is
created.

2.2 Cell decomposition 11

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

c1

c2 c3

c4c5

c1

c2 c3

c4c5

c6

sw
ee

p
di

re
ct

io
n

c1 c1

c2 c3c2 c3

c4

D = (c2, c3) D = (c2, c4)

D = (c5, c4)D = (c6)

Figure 2.3: Trapezoidal decomposition is formed by sweeping a line over the environment. A new cell
boundary is created whenever the sweep line encounters a vertex. Cell boundaries are
shown as dotted lines.

12 Coverage navigation and path planning

Algorithm 2.1 Trapezoidal Decomposition
yL: position of sweep line
{y1, . . . , yn}: sorted list of y coordinates of all vertices in environment
D = (. . . , ci−2, ci−1, ci , ci+1, ci+2, . . .)
for yL = y1 to yn do

if vertex splits cellci into two then
(ci)← (cd, cd+1)
D = (. . . , ci−2, ci−1, cd, cd+1, ci+1, ci+2, . . .)

else ifvertex merges two cellsci andci+1 then
(ci , ci+1)← (ce)
D = (. . . , ci−2, ci−1, ce, ci+2, . . .)

else ifvertex replaces cellci with a new cellthen
(ci)← (cf)
D = (. . . , ci−2, ci−1, cf , ci+1, ci+2, . . .)

end if
end for

represents the adjacency relation among the cells [66]. Then this associated connectivity graph

is searched to find paths between any two cells. Figure 2.4 shows the connectivity graph for the

trapezoidal decomposition formed in Figure 2.3.

Choset first recognised that trapezoidal decomposition creates cells that are unnecessarily small,

and therefore inefficient, for coverage purposes [30, 32]. Trapezoidal decomposition creates

cells that are convex polygons only. However, non-convex cells can also be covered completely

by simple coverage patterns. A decomposition that creates more cells are less efficient because

for each cell, additional motion along the cell boundary maybe required. For example, the two

cells on each side of the obstacle in Figure 2.5(a) can be merged and a simple zigzag pattern

can still cover the combined cells (Figure 2.5(b)).

Based on this concept of merging multiple cells in trapezoidal decomposition, Choset proposed

the first exact cell decomposition specifically designed for coverage navigation [30]. The result-

ing decomposition is called boustrophedon2 decomposition, signifying the relationship between

the decomposition and the zigzag. Boustrophedon decomposition introduces the idea of using

the split and merge of the sweep line by obstacles as criticality. This is explained in the example

in Figure 2.6. However, [30] does not provide a detailed algorithm for the decomposition, nor

does it define the criticality precisely. Moreover, it is unclear if, or how, concave obstacles are

handled.

Huang attempted to reduce the cost of coverage by minimising the number of turns in the

coverage path [55]. He introduced the Minimal Sum of Altitude (MSA) decomposition. The

decomposition works on known polygonal environments. The basic premise behind MSA de-

2Alternately from right to left and from left to right, like the course of the plough in successive furrows (Oxford
English Dictionary).

2.2 Cell decomposition 13

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

1

32

5 4

6

Figure 2.4: To form the associated connectivity graph, each cell is labelled by a distinct integer and
connected to its neighbouring cells.

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

(a)

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

(b)

Figure 2.5: (a) Trapezoidal decomposition creates cells that are unnecessarily small for coverage tasks.
This is because some non-convex cells can be covered by a simple zigzag path. (b) Bous-
trophedon decomposition reduces the number of cells in trapezoidal decomposition. This is
achieved by combining multiple cells that can be covered by a zigzag.

14 Coverage navigation and path planning

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

new
cell

old cell

new
cell

(a)

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

new cell

old cell old cell

(b)

Figure 2.6: Criticalities in boustrophedon decomposition: (a) In event, (b) Out event.

2.2 Cell decomposition 15

(a) (b)

Figure 2.7: Assigning different sweep directions to cells can produce coverage paths with fewer turns.
(Reproduced from [55]).

composition is that cost of coverage is lower when there are fewer turns in the path. This is

because a robot must slow down to make a turn. Huang assumed that the cost of travelling

between cells in the decomposition is significantly lower than the cost of turning. By choosing

different sweep directions for different cells, the cost of a coverage path can be lowered. This is

illustrated in the example in Figure 2.7.

The MSA decomposition is created with a two step process – multiple line sweeps followed

by dynamic programming. For each edge orientation (of both the boundary of the environment

and all obstacles), a line sweep is performed. A cell boundary is created for each vertex at split

and merge events.3 The decompositions from all edge orientations are then overlaid upon each

other. Figure 2.8 shows an example of this multiple line sweep decomposition process.

Once the initial decomposition from multiple line sweeps is formed, an adjacency graph is

created to represent the decomposition. An example of this graph is shown in Figure 2.9.

The basis of the dynamic programming step is to either split this graph in two, thus creating

two smaller subproblems; or to try to unite all cells and cover them as one large region. The

minimum sum of altitudes of graphG is defined as:

S(G) = min
{
C(G),min

i
S(Gi

1) + S(Gi
2)
}

(2.1)

wherei iterates over all possible ways to split the graphG into two connected subgraphsG1

andG2. C(G) is the cost of covering all cells as one subregion. Figure 2.9 shows an example of

the first level of decomposing a problem. Figure 2.10 shows the final MSA decomposition for

a simple environment.

3An event in a cell decomposition occurs when the sweep line encounters a criticality. Therefore, a duality
exists between criticalities and events.

16 Coverage navigation and path planning

Figure 2.8: The first step in creating a MSA decomposition is multiple line sweep. A line sweep is
performed for each edge orientation. The decomposition of all the line sweeps are then
overlaid on top of each other. (Reproduced from [55]).

Figure 2.9: First stage of dynamic programming in MSA decomposition. The top box shows the ini-
tial decomposition from multiple line sweep, and its adjacency graph. There are 8 ways
this graph can be split into two connected graphs. The rightmost box in the bottom row
represents the choice of covering all cells as a single region. (Reproduced from [55]).

2.2 Cell decomposition 17

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

(a)

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

(b)

Figure 2.10: MSA decomposition of a simple environment. (a) Initial decomposition from multiple line
sweeps. (b) After dynamic programming. (Reproduced from [55]).

However, MSA decomposition is limited in the complexity of environments it can handle. This

is because of an exponential complexity for the algorithm. Firstly, each sweep direction con-

tributes a dividing line that divides many cells. This produces a large number of cells in the

adjacency graph. Secondly, the dynamic programming phase must examine all connected sub-

graphs of 1 ton nodes for a graph ofn nodes.

Both boustrophedon and MSA decompositions are defined only for known environments. The

idea of using split and merge events of the sweep line as criticality was extended to unknown

environments in the works of Butler [22, 23] and Acar [8, 12]4.

For a cell decomposition to be used for covering unknown environments, the following issues

need to be addressed. Firstly, mobile robots can only move within the free space region of

the environment. As a result, the sweep direction can no longer be from top to bottom only.

For example, the area underneath the U-shaped obstacle in Figure 2.11 can only be swept in

the reverse (bottom to top) direction. Secondly, planning of the coverage path has to be done

using a partial cell decomposition of the environment. This is because the cell decomposition

has to be created simultaneously with the coverage process. Thirdly, criticalities can occur

between sweep line positions. An example of which is shown in Figure 2.12, where the vertex

is positioned between strips of the zigzag. Lastly, the criticality chosen has to be realistically

detectable by robot sensors.

Butler et. al. proposedCCR, an exact cell decomposition for contact sensing robots5 cover-

ing unknown rectilinear environments [23]. Cell boundaries are formed whenever an obstacle

boundary parallel to the sweep line is encountered. An example ofCCR is shown in Figure 2.13.

4Butler and Acar were PhD students at the Robotics Institute at Carnegie Mellon University. Choset is a
professor at the same institute, and is the supervisor of Acar.

5Robots that have no range sensing capabilities.

18 Coverage navigation and path planning

� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �

� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �

(a)

� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �

� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �

(b)

Figure 2.11: Mobile robots cannot move inside obstacle space. (a) Sweep line is limited to the current
free space cell. (b) Some cells must be swept in the reverse direction.

� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �

� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �

Figure 2.12: The vertex falls between two consecutive strips of a zigzag.

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

Figure 2.13: CCR uses an exact cell decomposition for rectilinear environments. (Reproduced from
page 16 of [22]).

2.2 Cell decomposition 19

intervals

Ciw

C j

∞

Cix

trtl

bl

br

Figure 2.14: The partial decomposition in CCR is stored as a list of cells C = {C0, . . . ,Cn}. This diagram
shows the data structure associated with an individual cell Ci , which is a member of C, ie
Ci ∈ C. Cell C j is a neighbour of Ci and is shown here for clarity. (Adapted from page 17
of [22]).

The partial decomposition constructed is stored as a list of cellsC = {C0, . . . ,Cn}. Figure 2.14

shows the data structures associated with each cell inCCR. Cix is the maximum possible extent

of cellCi, and is represented simply by a rectangle.Cin is the cell’s minimum known extent, and

is given by four points – two on the cell’s right boundary (tr andbr), and two on the cell’s left

boundary (tl andbl). When the robot begins coverage with no knowledge of the environment,

C will contain a single cellC0 in which the minimum known extentC0n has zero size and

the maximum possible extentC0x is infinite in all directions. As the robot covers this cell, its

minimum known extentC0n will increase in size, while its maximum possible extentC0x will

be limited with the discovery of each boundary. In addition to the minimum and maximum

extents of the cell, the width of the portion of the cell that has been covered by the robot is

also represented (Ciw). Associated with each of the edges of the cell is a linked list of intervals

which explicitly denote the cell’s neighbours at each point along the edge. Each interval is

represented as a line segment together with a neighbour ID. A cell is complete when its edges

are at known locations, it has been covered from side to side, and all sides have been completely

explored. In addition to the cell decompositionC, CCR maintains a listH = {H0, . . . ,Hm} of

placeholders. A placeholder is an element of the boundary of any cell inC that is not a boundary

of the environment, and thus are entrances to to free space cells. Coverage of an environment is

complete when no placeholders remain.

Normally, the robot follows the U-shaped pattern in Figure 2.15 to cover individual cells. Seg-

mentsα andδ are sliding movements against the side boundaries of the cell. An event (critical-

ity) occurs whenever the robot is prevented from successfully executing the U-shaped coverage

pattern. Also, all the events defined inCCR can be detected without the use of any range sens-

ing. Figure 2.16 shows the five events defined. In Figure 2.16(a), the robot’s path is interrupted

20 Coverage navigation and path planning

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

β

γ δα

Figure 2.15: U-shaped coverage pattern used in CCR and Morse decomposition. The pattern consists
of four segments, α to δ. Distances between consecutive β segments should be small
enough that no area is left uncovered when a robot follows this pattern.

by an obstacle while executing theα segment of the U-shaped pattern. In Figure 2.16(b), the

side boundary the robot follows in theα segment disappears. In Figure 2.16(c), the robot’s path

in β is obstructed by an obstacle. Figure 2.16(d) shows an unexpected non-collision in segment

β, where the robot does not encounter the side boundary as expected. In Figure 2.16(e), the

robot loses contact with the side boundary. This is distinct from the situation in Figure 2.16(b)

in that during theα segment the robot is outside the covered portion of the cell, while during

segmentδ it is not.

When the robot encounters any of the five events, it attempts to fully explore the new cell

boundary. The maneuvers used depend on the event. The intervals associated with the current

cell are updated. After the cell boundary is completely explored, the algorithm searches the list

of placeholdersH for any uncovered cells. Travelling between cells is done by moving into

each cell in between, and moving first in one direction, for examplex, then the other direction,

y, in order to reach the next cell.

Unlike the zigzag (Figure 2.17), the U-shaped pattern contains retracing. This retracing is

added to include wall following on both side boundaries. This is because a contact sensing

robot cannot detect obstacles except when wall following. Therefore, if the robot is following a

zigzag pattern and an opening occurs as shown in Figure 2.18, the robot will miss it.

Acar et. al. introduced Morse decomposition [8, 9] for range sensing robots covering unknown

environments. Cell boundaries in Morse decomposition are critical points of Morse functions.

The decomposition is based on a roadmap method originally proposed by Canny [26, 27]. Given

a real-valued functionh : Rm → R, its differential atp ∈ Rm is dhp = [∂h
∂x1

(p) · · · ∂h
∂xm

(p)]. A

point p ∈ Rm is a critical point of a Morse function if∂h
∂x1

(p) = · · · = ∂h
∂xm

(p) = 0 and its Hessian

2.2 Cell decomposition 21

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

(a)

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

(b)

�
�
�
�
�

�
�
�
�
�

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

(c)

� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

(d)

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �

� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

(e)

Figure 2.16: Events that occur at cell boundaries in CCR.

22 Coverage navigation and path planning

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Figure 2.17: Compared to the pattern in Figure 2.15, a zigzag includes wall following on only one side
boundary.

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

Figure 2.18: Contact sensing robots (as used in CCR) will miss an opening in the side boundary unless
it is wall following.

2.2 Cell decomposition 23

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

surface normal

Figure 2.19: A cell boundary in Morse decomposition occurs at this position because the surface nor-
mal of the obstacle is perpendicular to the sweep line.

(∂
2h

∂xi∂x j
(p)) is non-singular. To put it more simply, a critical point occurs when the sweep line

encounters an obstacle whose surface normal is perpendicular to the sweep line. This definition

of criticality for cell decomposition is explained graphically in Figure 2.19. Figure 2.20 shows

an example of Morse decomposition.

By using surface normals as criticality, the environment is limited to differentiable functions

only. Therefore, polygons cannot be handled as their vertices are non-smooth boundary points.

To overcome this limitation in Canny’s roadmap, Acaret. al. use Clarke’s generalised gradi-

ents [33, 67] to calculate surface normals at these non-smooth boundaries [9]. The generalised

gradient of a pointx is the set of vectors within the convex hull of the surface normals of the

adjacent smooth surfaces aroundx (see Figure 2.21). The generalised gradient can be used on

any pointx that is not differentiable, given that the function is Lipschitz aroundx. A function

is locally Lipschitz for a bounded subsetB if there exists a constantK such that

| f (x1) − f (x2)| ≤ K |x1 − x2|

for all pointsx1 andx2 of B. However, since any function with a discontinuity is not Lipschitz

around the discontinuity, rectilinear environments such as those used inCCR are not covered by

Morse decomposition.

Critical points in Morse decomposition can be detected using omni-directional range sensors.

Given a robot is at pointx, then the closest point on the surface of obstacleCi to pointx is c0

c0 = arg min
c∈Ci

‖x− c‖

Now, let d(x) be the shortest distance between pointx and the obstacleCi. Then the gradient6

can be determined by

∇d(x) =
x− c0

‖x− c0‖

6By definition a gradient is a unit normal vector to a surface at a point [63].

24 Coverage navigation and path planning

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

Figure 2.20: Criticality of Morse decomposition occurs at the positions of the black dots in the diagram.
The dotted lines are the cell boundaries. Three of the critical points have no cell bound-
aries drawn through because free space is of zero width at those positions.

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

Figure 2.21: The generalised gradient is the convex hull of the set of gradients around the non-smooth
boundary point.

2.2 Cell decomposition 25

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

c0

x

∇di(x)

Figure 2.22: Detecting critical points in Morse decomposition.

This equation can be explained as follows. Asc0 is a point on the surface of the obstacleCi,

thenx− c0 is a vector which points fromc0 towardsx. However, becausec0 is the closest point

on the surface fromx, it is thus normal to the obstacle surface. Division by‖x − c0‖ turns the

result into a unit vector.

The robot has detected a critical point if the gradient∇di(x) is perpendicular to the sweep

line. Figure 2.22 explains how critical points can be detected by robots equipped with omni-

directional range sensors.

The Morse decomposition is stored as a Reeb graph7, with the critical points as nodes. Fig-

ure 2.23 shows the graph corresponding to the decomposition in Figure 2.20. Note that the

edges in the graph represent the cells in the decomposition.

Similar toCCR, Morse decomposition has an associated algorithm for creating the decomposi-

tion online. It also employs the U-shaped coverage pattern in Figure 2.15. The wall following

offered by the U pattern is needed because critical points occurring on the side boundary, such

as those in Figure 2.24, cannot be detected even with unlimited range sensors except when wall

following [8]. This is because the robot can only detect critical points of Morse functions if the

critical point is closest to the robot compared to all other points on the obstacle surface.

An event occurs whenever the robot encounters a critical point while following the U-shaped

pattern. Figure 2.25 shows the two events defined in Morse decomposition. In Figure 2.25(a),

the robot is following the side boundary of the current cell when it encounters a critical point.

The next lap position is moved to where the critical point is. In Figure 2.25(b), the robot

encounters a critical point while moving along the length of the U-shaped pattern.

Information about uncovered cells is associated with nodes in the Reeb graph (ie the critical

points). When the robot finishes executing a U pattern which is interrupted by critical points,

7A Reeb graph is a topological graph of a Morse function

26 Coverage navigation and path planning

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

p1

p2

p3

p4

p8

p5

p6

p7

Figure 2.23: Reeb graph for the Morse decomposition in Figure 2.20.

critical points
missed

� �
� �
� �
� �

� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	

Figure 2.24: With Morse decomposition, a range sensing robot can only detect cell boundaries on its
side. As a result, it will miss the critical points in this figure because there is no wall
following on that portion of the side wall.

2.2 Cell decomposition 27

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

new position

original position

(a)

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

old position

new position

(b)

Figure 2.25: Events in Morse decomposition: (a) when wall following the side boundary, (b) when
traversing the length of the coverage pattern. The two dotted lines in the diagrams show
how the next strip position is changed.

28 Coverage navigation and path planning

it first looks for uncovered cells at the last encountered critical point. If the critical point is

associated with two uncovered cells (eg in Figure 2.25(b)), the robot picks one of the cells

associated as the next cell to cover. If there are no uncovered cells associated with the last

encountered critical point, a depth-first search is performed on the Reeb graph. To travel to

the selected uncovered cell, the robot follows the Reeb graph and plans a path that passes

through cells and critical points. The environment is fully covered when no uncovered cells are

associated with any of the nodes in the Reeb graph.

Although the starting point of this thesis is to investigate coverage with landmarks in topologi-

cal maps (Section 2.4), the method proposed ultimately creates a cell decomposition similar to

the split and merge concept in boustrophedon decomposition. However, unlike boustrophedon

decomposition, this thesis deals with coverage of unknown environments.CCR is especially

designed for robots with no range sensing ability. Similar to this thesis, Morse decomposition

is for range sensing robots working in more general unknown environments. Compared with

Morse decomposition, the method proposed in this thesis can handle a larger variety of envi-

ronments (rectilinear, polygonal and non-polygonal). Moreover, wall following on both side

boundaries is not needed due to the use of more general landmarks as criticalities, or events,

of the decomposition. Since retracing is eliminated from the coverage pattern, the proposed

algorithm generates shorter coverage paths.

Boustrophendon decomposition was first published in a conference in 1997 [32], and later as a

journal paper in 2000 [30].CCR was first published in 1999 [23]. Morse decomposition was

first published in 2000 [7, 10], and thus was developed in parallel with the work in this thesis,

which was also first published in 2000 [100, 101].

2.3 Grid map

In grid maps, environments are decomposed into a collection of uniform grid cells. This uniform

grid includes both free space and obstacles. Each cell contains a value stating whether an

obstacle is present. The value can either be binary or a probability [37]. Figure 2.26 shows an

example of a grid map.

The major advantage of this type of map is the ease in creating one. It is essentially an ar-

ray containing occupancy information for each cell of the map. However, grid maps require

accurate localisation to create and maintain a coherent map [28, 95]. They also suffer from ex-

ponential growth of memory usage because the resolution does not depend on the complexity

of the environment [94]. Also, they do not permit efficient planning through the use of standard

graph searches [94].

2.3 Grid map 29

Figure 2.26: A grid map. Grid cells with obstacle present are shaded.

Grid based maps are the most widely used spatial representation for coverage algorithms. This

is due to the simplicity of marking covered areas in a grid map.

Zelinsky et. al. proposed an offline coverage algorithm [108] based on the distance transform

of a known grid map [58]. Figure 2.27 shows the distance transform of a simple environment

with one obstacle. Here,S represents the initial (or starting) position of the robot, andG is the

desired finishing position. The distance transform thus represents a wavefront that propagates

from the goal cellG to the initial cellS. The algorithm for calculating the distance transform

is shown in Algorithm 2.2. Lines 1 to 3 shows the initialisation needed before the execution of

the main loop in lines 4 to 11. In line 1, the distance transforms (DT) of all cells in the grid

are set to -1, which mark the cells as unprocessed. Execution starts with the goal cellG, which

has a distance transform of 0 (lines 2 and 3). In each iteration of the main loop, unmarked cells

who are neighbours of marked cells are assigned a DT one higher than their neighbours’. This

continues until all cells in the grid map are marked.

Once the distance transform for the environment is calculated, the coverage path can then be

formed by selecting the neighbouring cell with the highest DT and is unvisited, starting from the

initial cell S. If two or more unvisited neighbours have the same transform, one of them is se-

lected randomly. Figure 2.28 shows the coverage path generated for the example in Figure 2.27.

The algorithm for generating the coverage path is explained in Algorithm 2.3.

Unlike other coverage algorithms, this distance transform based method requires the selection

of a goal location.

Ulrich et. al. [97] also used a grid map for their online coverage algorithm. The algorithm

starts with an exploration of the boundary of the environment. Afterwards, the robot moves

in a straight line until it reaches an obstacle in front. When it is stopped, a new direction

30 Coverage navigation and path planning

� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �

13

13

S

12

12

12 11

11

11 10

10

10

9 8

9

9

9

9

9

9

9

9

8

8

8

8

8

8

8

8

5

4

7

7

7

7 7 7

7

7

7

7

7

7

6

6

6

6

6

6

5

5

5

5

5

5

4

4

4

4

4

4

6

66

4 4 4 4

7 7 7 7

6 6 6 6 6

5 5 5 55

4

4

4

4

4

4

3333333

3

3

3

3

3

11

2

2 2

1

1 G

1

2 2

1

1

1 2

2

2

2

22222

2

2

3

3

3

3

3

Figure 2.27: Distance transform for the selection start position (S) and goal position (G). (Reproduced
from [108]).

Algorithm 2.2 Distance Transform for a Grid Map
Require: goal cellG

1: DT(all cells)← −1
2: DT(G)← 0
3: n← 0
4: while there exists a cellc where DT(c) = -1 do
5: for all x such that DT(x) = n do
6: if y is a 8-neighbour orx and DT(y) = -1 then
7: DT(y)← n+ 1
8: end if
9: end for

10: n← n+ 1
11: end while

Algorithm 2.3 Coverage Path Planning using Distance Transform
c← start cell
visited(all cells)← false
repeat

visited(c)← true
c← neighbouring cell with highest DT

until c = goal cellG

2.3 Grid map 31

� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �

9 8 7 6 5 4 3 2 2 2 2 2 3 4

43211123456789

9 8 7 6 5 4 3 2 1 G 1 2 3 4

4

43

32

22

11

3

22

33

2

2 13456789

9

9 8

8 7

7 6

6

5

5

4

4

3

3

3 3 3 4

4

5

6

77

6

5

44

5

6

77

6

5

44

5

6

77

6

56

6

77

7

78

8

89

9

910

10

1011

11

1112

12

1213

13

S

Figure 2.28: Coverage path generated from the distance transform. (Reproduced from [108]).

of travel is chosen. One of the criteria for the new direction is a high number of uncovered

grid cells. The algorithm also attempts to generate a path that ends successively with mutually

perpendicular walls (see Figure 2.29). This is done so the robot can alternately re-calibrate the

x andy coordinates of its odometry estimation, with values obtained from the initial exploration

phase. Since only a partial map is available, it may not be possible for the robot to reach the

target wall in the chosen direction due to the presence of unknown obstacles. In this case, the

robot updates the grid map and then selects a new direction of travel again. The path planning

used in this work is a naı̈ve approach and results in highly redundant paths, as can be seen in

Figure 2.29.

Unlike the almost random approach taken by Ulrichet. al., Gabriely and Rimon tackle the

problem of coverage path planning on a partial grid map with a systematic spiral path. This

is achieved by following a spanning tree of the partial grid map [45]. Two different sizes of

grid cells are used. The smaller grid cell is the same size as the robot. Four of these smaller

grid cells then form a mega cell. These concepts are shown in Figure 2.30. The details of this

spanning tree approach is shown in Algorithm 2.4. The two parameters to the function STC

are the current cellx and its parent cellw. The algorithm is started by executing STC(NULL,

start cell). NULL is used for the parent cell because the start cell has no parent. A mega cell

is old (line 1), if at least one of its four subcells is covered; otherwise, it isnew (line 2). At

each mega cell, the robot picks a new direction of travel by selecting the first uncovered free

space mega cell in an anti-clockwise direction (line 3). A spanning tree edge is also grown

from the current mega cell to the new one (line 4). The algorithm is recursive (line 6), and the

recursion is stopped only when the current cellx has nonewneighbours. This recursion moves

32 Coverage navigation and path planning

start

end

Figure 2.29: The robot path in the work of Ulrich et. al. is highly inefficient. The dotted line represents
the path taken by the robot during boundary exploration, while the solid line represents
the path taken during coverage. (Reproduced from [97]).

the robot along one side of the spanning tree (line 5) until it reaches the end of the tree (line

2), at which point it turns around to move along the other side of the tree (line 8). Figure 2.31

shows the spanning tree and the coverage path for the environment in Figure 2.30. Notice that

when coverage is completed, the robot returns to the same mega cell as the initial location.

Algorithm 2.4 Spiral spanning tree coverage STC(w, x)
1: Mark the current cellx asold
2: while x has anewobstacle-free 4-neighbour celldo
3: Scan for the first new neighbour ofx in anti-clockwise order, starting with the parent

cell w. Call this neighboury.
4: Construct a spanning-tree edge fromx to y.
5: Move to a subcell ofy by following the right-side of the spanning tree edges.
6: Execute STC(x, y).
7: end while
8: if x , start cellthen
9: move back fromx to a subcell ofw along the right-side of the spanning tree edges.

10: end if

Normally, cells in a grid map are square in shape and the same size as the robot. Ohet. al.

proposed the use of a grid with triangular cells in their coverage algorithm instead [80] (see

Figure 2.32). The rationale behind using a triangular grid is that it has a higher resolution com-

pared to a rectangular one with similar sized cells. The use of alternative tiling arrangements to

increase resolution is well known in image processing [74]. Ohet. al.showed that this increase

in map resolution enables the robot to plan shorter coverage paths. However, the resolution

2.3 Grid map 33

� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �

� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �

� � �
� � �
� � �
� � �

� �
� �
� �
� �

� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � �
� � �
� � �
� � �

	 	
	 	
	 	
	 	

� �
� �
� �
� �

robot−sized cell

mega cell

Figure 2.30: Gabriely and Rimon use mega cells that are formed from four grid cells in their coverage
path planning algorithm.

starting
cell

Figure 2.31: In Gabriely and Rimon, the robot circumnavigates the spanning tree formed from free
space mega cells.

34 Coverage navigation and path planning

Figure 2.32: Oh et. al. used a triangular grid in their coverage algorithm.

of the grid can also be increased by using smaller square cells. Unlike in image processing,

there is no need for ultra high resolution in robot path planning. This is because mobile robots

are incapable of making very fine movement adjustments. Therefore I believe the extra effort

needed in implementing an alternative grid arrangement is not worthwhile.

2.4 Topological map

Traditional approaches to robot mapping (such as the ones discussed previously in this chapter)

are based on accurate metrical descriptions of environments. As a result, global metric consis-

tency must be maintained to form a coherent and useful representation [59, 60, 64]. Therefore,

these metric maps are very vulnerable to inaccuracies in sensors, actuators and odometry.

On the other hand, humans perform well in spatial reasoning tasks despite a lack of precise

localisation. For example, I can easily plan a path that will take me from the engineering school

to other buildings on campus. And I can do this without knowing the exact distances between the

buildings or their precise locations. This is because humans approach the mapping problem in

a more qualitative way by using topological relationships between landmarks. For example, we

say that the engineering school is opposite the recreation centre and next door to the architecture

school. Biologists have also found that animals store spatial information topologically as well

[77, 82].

Kuipers and Byun introduce the topological map for storing robots’ environments in this quali-

tative manner [64]. Figure 2.33 shows an example of their topological map. It consists of a set

of nodes and a set of edges. The nodes are landmarks, or distinctive places, in the environment;

the edges represent connectivities between the nodes. Kuipers and Byun use features like inter-

sections and corners for their nodes. However, other features can be used as well. For example,

2.5 Reactive robots 35

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

Figure 2.33: Kuipers and Byun use natural landmarks in an environment to create a topological map.
The map attempts to capture the topological relationship of landmarks.

Mataric uses larger scaled features such as walls and corridors [72]. The use of graphs to show

topological relationship is very common outside robotics. For example, most train and subway

maps show stations as nodes, with edges indicating services between stations.

Topological maps are robust against sensor and odometry errors because only a global topo-

logical consistency, rather than a metric one, needs to be maintained [64, 94]. As an example,

Zimmer successfully implemented a topological navigation and mapping system for a low bud-

get platform with only light and touch sensors [111].

A problem with this qualitative approach is the very low resolution of topological maps. To

combine the best of both worlds, hybrid maps have been introduced to unite the preciseness

of metric maps and robustness of topological maps. An example is the work of Tomatiset. al.

that uses a global topological map to connect local metric ones [96]. The low resolution of

topological maps is also the reason why it is difficult to use them for coverage path planning. A

node in a topological map is a landmark and does not correspond to a precise position or area

in space. This makes it rather difficult to mark covered regions.

2.5 Reactive robots

The classical AI approach to robot navigation is to break the problem up into functional mod-

ules such as sensory perception, environmental mapping, path planning and execution of those

plans [18]. Brooks argued that this encapsulation of knowledge in symbolic representations

makes the AI approach inflexible to deviations in the real world [20, 21]. Brooks introduces re-

active robotics, where no explicit internal representation is built [14, 18]. Instead, actions of the

36 Coverage navigation and path planning

robot are simply reactions to its sensory inputs. Usually, the reactions are organised as a set of

behaviours and arranged in layers [18]. Examples of successful implementation of behaviour-

based architecture include a six-legged walking robot [19] and a swarm of robotic bulldozers

[83].

Behaviour-based systems are designed to overcome inaccurate sensors and imperfect control

through a tight coupling between sensors and actuators. As a result, it is extremely robust and

simple to implement. However, the principle of avoiding an explicit representation of goals has

also limited their achievements to very simple tasks [68]. To put it simply, a purely reactive

robot lacks purpose and plan.

The commercial vacuuming robot Roomba uses a purely reactive architecture [2]. Roomba

follows a spiral path when it is in open space and turns to a random direction when its path is

stopped by obstacles. However, since it does not retain a notion of what area has been covered,

the algorithm cannot guarantee completeness in a finite amount of time. And in most operations,

time is never unlimited. By following a pseudo random path, a reactive coverage robot will take

a long time, if ever, to achieve complete coverage.

2.6 Coverage with multiple robots

Some researchers approach the coverage problem with large teams of robots, using dynamic

roadmaps to coordinate robots’ behaviours over the desired region [16], or partitioning an envi-

ronment dynamically without the need for global communication [57]. This thesis focuses on

coverage with a single mobile robot, which is more appropriate for tasks such as vacuuming.

A team of vacuuming robots would be impractical and uneconomic in a domestic environment

for example, whereas a team of inexpensive robots may be appropriate for a foraging task in a

large environment.

2.7 Coverage of 3-dimensional surfaces

Most work on robot coverage path planning makes the assumption that the environment can

be modelled as a simple planar surface. This is a valid assumption for floors, windows, lawns,

etc. However, some surfaces are 3-dimensional in nature, and 3-dimensional path planning is

required instead. For example, an autonomous underwater vehicle covering the seabed [52] or

a robot painting motor vehicle panels [15] would need to move over 3-dimensional surfaces.

This thesis focuses only on coverage of simple planar surfaces.

2.8 Performance metrics 37

2.8 Performance metrics

It is important to have a quantitative measure on how well an algorithm performs. Generally, the

measurement of performance is well studied in the area of localisation [35, 78]. However, this is

often neglected in discussions of research on robot navigation (including coverage navigation).

Most commonly, results are presented qualitatively, showing pictures of the route taken by the

robot from simulation [32, 80, 108], or from real robot experiments [8].

2.8.1 Simulation

Gabriely and Rimon used two different metrics for their simulated experiments [45]. Their

testing environment was modelled as a uniform grid. The amount of coverage was measured

as the ratio of the number of grid cells that were visited at least once over the total number of

unoccupied grid cells. The other metric is the number of repeatedly covered grid cells. Re-

peated coverage is a measure of the efficiency of the algorithm. This is because it is undesirable

to repeatedly cover any cell, and thus a good solution will minimise the amount of repeated

coverage. A problem with using number of repeatedly covered cells as a metric is that a repeat-

edly covered cell maybe covered more than twice. Also, there is no comparison with the total

number of grid cells to be covered. For example, 2 repeatedly covered cells out of 10 is very

different from 2 out of 1000.

2.8.2 Real robots

Ulrich et. al. [97] covered the test area with sawdust and estimated the amount of sawdust left

afterwards. The amount of sawdust left serves as an indication of how much of the total area is

covered. However, this method requires the robot to be equipped with a dust buster. It is also

error prone as estimating the amount of dust is not an easy task.

Butler introduces the coverage factor (cf) [22], which is defined as

cf =
d × w

Total area to be covered
(2.2)

whered is the total distance travelled andw is the width of the robot. However, usingd × w

is not a reliable way to estimate area covered by the robot, except in the rare case where the

robot does not cross over its own path. If the robot revisits any previously covered area, then

d×w gives no indication on either the total surface area covered, or the amount of re-coverage.

Therefore, the coverage factor in (2.2) is a poor measure of performance.

38 Coverage navigation and path planning

2.8.3 Complexity of coverage navigation

Even with complete knowledge of the environment, it has been shown that finding the shortest

coverage path is an NP-hard problem [13]. This is not hard to verify as computing a coverage

path contains the travelling salesperson problem (TSP). In [13], Arkinet. al.showed that a TSP

tour for a grid map withN cells within a simple rectilinear polygon8 will be at most6N−4
5 in

length. For polygons with holes (ie environments with obstacles), Arkinet. al.showed a bound

of 1.325N.

In unknown environments, there is no representation available to perform searches. The cost of

“search” is thus measured in terms of the length of the path taken [56]. For example, if a robot

is searching for a goal location, it must move around and explore the environment while looking

for the goal. An efficient algorithm will thus attempt to minimise the length of this path.

Searching for a goal location in an unknown environment is therefore generally more expensive

(in terms of path length) than the optimal path. This can be explained with the following exam-

ple. Suppose a robot is facing a very long wall. There is a door along the wall to the other side.

If the robot knows where the door is, it can move directly from its current location to the door.

On the other hand, if the robot does not know the location of the door, it has to either explore

one side completely first (depth first search); or both side alternately, each time increasing the

exploration depths (breadth first search).

In [56], Icking et. al.proved an upper bound of 2N for finding a coverage path in an unknown

grid map withN cells. This upper bound is provided by depth first search, which makes exactly

2(N − 1) = 2N − 2 steps in any environment withN cells.

An algorithm for coverage of a graphG(N,E) with depth first search is shown in Algorithm 2.5.

The algorithm visits every node in the graph at least once before returning to the start node

(lines 8-11). Line 13 directs the robot to retrace its footstep along the graph until it reaches

either the start node, or a node that has a neighbouring unvisited node. For every iteration of the

loop, the robot moves to one of its neighbouring nodes (line 17). During the execution of the

repeat..until loop, all nodes other than the start node are visited once with the condition at

line 8, and the second time with the retracing at line 13. Therefore, for a graph withN nodes,

the total number of moves is 2(N − 1).

The algorithm can be explained with the graphs in Figure 2.34. The node highlighted in each

graph is the start node. For the example in Figure 2.34(a), the robot visits each of the four

branches in turn. Each visit requires 4 moves to reach the furtherest node and back. Therefore,

a total of 16 (2× (9 − 1)) moves is taken with the depth first search. For the example in

8A polygon P is simple if the only points of the plane belonging to two polygon edges ofP are the polygon
vertices ofP.

2.9 Discussion 39

Algorithm 2.5 Coverage with Depth First Search
Require: G(N,E), start node

1: for each noden in N do
2: predecessor(n)← −1
3: visited(n)← false
4: end for
5: current← start node
6: visited(current)← true
7: repeat
8: if there exists a neighbourx of current where visited(x) = falsethen
9: visited(x)← true

10: predecessor(x)← current
11: current← x
12: else
13: current← predecessor(current)
14: end if
15: move to current
16: until current= start node

Figure 2.34(b), the robot first visits the only node connected to the start node (1 move). It then

visits the two nodes connected to this centre node in turn (4 moves). Finally, it returns to the

start node (1 move). Therefore, a total of 6 (2× (4− 1)) moves is taken.

2.9 Discussion

Most existing coverage planning algorithms favour metric based grid maps for spatial repre-

sentation. However, purely metric based maps need accurate localisation to be useful as they

require global metric consistency. On the other hand, the biologically inspired topological maps

are robust against such errors due to their use of topological relationships. However, it is dif-

ficult to use topological maps for coverage navigation as the nodes and edges do not directly

correspond to any specific area in space.

A solution to this problem of direct representation in topological maps is to use a hybrid met-

ric topological hierarchy. For example, a cell decomposition can also be represented by an

undirected graph. By using detectable landmarks in an environment as events of a cell decom-

position, a topological map that embeds a cell decomposition can be built [102]. This is the

approach taken in this thesis. A coverage algorithm that uses easily detectable landmarks to

build a topological map, and implicitly, a cell decomposition, is developed in Chapters 3 and 4.

The two performance metrics proposed by Gabriely and Rimon evaluate the effectiveness (per-

centage coverage) and efficiency (number of repeatedly covered cells) of coverage experiments

in simulation. The efficiency measure has the problem that it is not normalised (with the total

40 Coverage navigation and path planning

(a) (b)

Figure 2.34: The coloured node is the start node of depth first search. A complete exploration of the
graph in (a) requires 16 moves (= 2× (9− 1)). A complete exploration of the graph in (b)
requires 6 moves (= 2× (4− 1)).

number of cells in the grid map). Moreover, the metrics are limited to simulation because real

robots do not move in a uniform grid. For example, the movement of a real robot is continu-

ous and therefore the robot is forced to “re-cover” surfaces it has already covered. Chapter 5

develops two new metrics for evaluating effectiveness and efficiency that are applicable to both

simulations and real robot experiments.

2.10 Summary

This chapter reviewed existing coverage path planning methods. It includes coverage algorithms

that use a variety of spatial representations for mapping, such as grid map and cell decompo-

sition. It also discussed performance metrics used to evaluate results from robotic coverage

experiments.

Newton’s First Law of Graduation: A grad student in procrastination
tends to stay in procrastination unless an external force is applied to it.

Jorge Cham, “Piled Higher and Deeper”, www.phdcomics.com

3
Slice decomposition

This thesis introduces an online coverage algorithm that uses a hybrid topological/metric

map for coverage path planning. The landmarks in the topological map are also crit-

icalities of a cell decomposition, calledslice decomposition [103]. Events in slice

decomposition use and extend the concept of split and merge events first introduced by bous-

trophedon decomposition. As a result, cells in slice decomposition can be covered by a robot

following a zigzag pattern. This topological coverage framework will be described in Chap-

ters 3 and 4. Chapter 3 introduces the concepts, events and algorithms of slice decomposition;

while Chapter 4 describes the online coverage algorithm that constructs the hybrid topological

map/slice decomposition.

This chapter is organised as follows. Section 3.1 presents the first version of slice decomposi-

tion. It improves on boustrophedon decomposition in three ways. Firstly, it provides precise

definitions for split and merge events in boustrophedon decomposition. Secondly, it adds two

new events for handling concave obstacles. Thirdly, it presents a detailed algorithm for the de-

composition algorithm. In Section 3.2, the second version of slice decomposition is presented.

The first version of slice decomposition is modified to handle the situation where the sweep line

is limited to free space regions only. This modification is necessary for online creation of slice

decomposition in unknown environments by robots. This is because robots cannot perform a

line sweep within obstacles of the environment. Then, in Section 3.3, the effect of step size on

the overall decomposition formed is discussed. Finally Section 3.4 briefly discussed how slice

41

42 Slice decomposition

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

Figure 3.1: At any time (and sweep position), the sweep line acts as a ray travelling from left to right
through the environment.

� � � � � � �� � � � � � �� � � � � � �
� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �
� � � � � � �� � � � � � �
� � � � � � �
� � � � � � �

� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �
� � � � � � �� � � � � � �
� � � � � � �� � � � � � �
� � � � � � �� � � � � � �
� � � � � � �� � � � � � �

� � � � � � �� � � � � � �

� � �� � �
� � �� � � � � �� � �

� � �� � �

free space
segment

obstacle
segment

2

1

slices

Figure 3.2: The arrangement of segments in slices made by the sweep line changes as it sweeps
through the environment.

decomposition can be applied to coverage navigation with tethered robots.

3.1 Slice Decomposition I

Slice decomposition is formed by a line sweep process, where a cell boundary is created when-

ever a criticality is encountered by the sweep line [29]. Criticalities, or events, in slice decom-

position are defined by the number of times the sweep line intersects with obstacle boundaries.

Consider a sweep line that passes through an environment from top to bottom. At any time,

the sweep line can be viewed as a ray that travels from the left boundary to the right bound-

ary, crossing over a series of free space and obstacle regions depending on the topology of the

environment. This is shown in Figure 3.1. At any time, the sweep line creates aslice of the

environment, and the series of regions within the slice are calledsegments. Figure 3.2 shows

two slices from two different sweep line positions.

The crossings test (or even-odd test) [49, 89] can be used to determine if a segment belongs to

a free space region or an obstacle region. In computer graphics, the crossings test is used to

3.1 Slice Decomposition I 43

pk

pu2

pu1

pu3

Figure 3.3: Crossings test for determining whether a point is within general polygons.

determine quickly whether a pointpu is inside a general polygon1. The test involves shooting a

ray from the pointpu to a known pointpk and counting the number of crossings the ray makes.

If the number of crossings is even, then pointpu is in the same type of region aspk; if the

number of crossings is odd, then pointpu is in an opposite type of region frompk. This is

illustrated in the example shown in Figure 3.3. Given a known pointpk outside any objects, we

know that pointpu1 is inside an object because the line connecting pointspk andpu1 intersects

only once with an object boundary. On the other hand, the line connecting pointpk and point

pu2 intersects with objects 6 times, therefore pointpu2 must be outside of any objects.

The crossings test thus guarantees that region type changes within a slice occur only at object

boundaries. This means that all spaces within a segment are always of the same type. Also,

there is always an even number of crossings within a slice. This is because a slice starts from

and finishes in the obstacle region outside the boundary of the environment.

In the case where the sweep line passes through a vertex, the vertex is classified as being in-

finitesimally away from the the sweep line [49]. This concept is explained in Figure 3.4. For

example, consider the line connecting pointpu3 and pointpk. If the vertex is classified as being

on the right of the line, then the line crosses the object twice (Figure 3.4(a)). If the vertex is clas-

sified as being on the left of the line, then the line does not cross the object at all (Figure 3.4(b)).

Either way, the crossings test concludes that the pointpu3 is outside of any objects. Figure 3.5

shows an example of a sweep line passing through the vertex at the bottom of the obstacle. The

vertex is classified to lie either infinitesimally above or below the sweep line.

3.1.1 Events

A cell boundary is created when a criticality occurs during the line sweep process. In slice

decomposition I, this criticality occurs when the number of crossings the sweep line makes

1General polygons have no restrictions on the placement of vertices.

44 Slice decomposition

(a) (b)

Figure 3.4: If the ray passes a vertex, it is always classified as being infinitesimally away from the ray.
This diagram magnifies the vertex touched by the line connecting point pu3 and point pk in
Figure 3.3. (a) Vertex classified to be on the right of the line. (b) On the left.

� ��

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

Figure 3.5: A vertex is classified as either infinitesimally above or below a sweep line that passes
through it.

with the environment changes between two consecutive slices. The change in the number of

crossings signifies an abrupt change in the topology among segments. Two slicesSa andSb are

consecutive if the two slices are from sweep line positions one time step apart. If the sweep line

moves by a distance of∆x for each time step, and the slicesSa andSb are from positionsxa and

xb respectively, then sliceSa and sliceSb are consecutive slices if and only if| xa − xb |= ∆x.

There are four events in slice decomposition I:

1. Obstacle emergence: A free space segment in the previous slice is split into two by the

emergence of a new obstacle segment in the current slice. This is equivalent to the split

event in boustrophedon decomposition. The number of crossings made by the sweep line

is increased by two. The current slice also contains one more free space segment and one

more obstacle segment compared to the previous slice. An example of this is shown in

Figure 3.6(a).

2. Free space emergence: An obstacle segment in the previous slice is split into two by the

emergence of a new free space segment in the current slice. The number of crossings

made by the sweep line is increased by two. The current slice also contains one more

free space segment and one more obstacle segment compared to the previous slice. An

example of this is shown in Figure 3.6(b).

3. Obstacle disappearance: An obstacle segment from the previous slice disappears in the

3.1 Slice Decomposition I 45

� ��

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

(a)

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � � �
� � � � � �

� � � � �
� � � � �

� �� � �� �

(b)

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

��

(c)

� � � � �� � � � �
���
�

� �� �� �� �

� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �

� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �

(d)

Figure 3.6: Events in Slice Decomposition I: (a) obstacle emergence, (b) free space emergence, (c)
obstacle disappearance and (d) free space disappearance.

current slice. This is equivalent to the merge event in boustrophedon decomposition.

The number of crossings made by the sweep line is decreased by two. The current slice

also contains one less free space segment and one less obstacle segment compared to the

previous slice. An example of this is shown in Figure 3.6(c).

4. Free space disappearance: A free space segment from the previous slice disappears in

the current slice. The number of crossings made by the sweep line is decreased by two.

The current slice also contains one less free space segment and one less obstacle segment

compared to the previous slice. An example of this is shown in Figure 3.6(d).

Free space segment emergence and disappearance are new events in slice decomposition I. They

are not covered by the split and merge concepts introduced by boustrophedon decomposition.

These two new events are added to handle concave obstacles.

46 Slice decomposition

3.1.2 Algorithm

Slice decomposition is formed by maintaining a listD of active obstacle and free space cells

with segments present on the slices created by the sweep line as it sweeps through the environ-

ment. The history of listD, ie all the cells that have appeared inD, forms the decomposition.

The sweep stops to process and update listD whenever an event occurs in the current slice. The

algorithm for slice decomposition is summarised in Algorithm 3.1.

Algorithm 3.1 Slice Decomposition I
1: c ∈ {free space cell, obstacle cell}
2: for all time t do
3: Move sweep line downwards by∆x
4: Dt−1 = (. . . , ci−2, ci−1, ci , ci+1, ci+2, . . .)
5: for all segments inDt−1 do
6: if emergence insideci then
7: (ci)← (ce−1, ce, ce+1)
8: Dt = (. . . , ci−2, ci−1, ce−1, ce, ce+1, ci+1, ci+2, . . .)
9: end if

10: if ci disappearsthen
11: (ci−1, ci , ci+1)← (cd)
12: Dt = (. . . , ci−2, cd, ci+2, . . .)
13: end if
14: end for
15: end for

The algorithm consists of two loops, one for moving the sweep line from top to bottom through

the environment (line 2), the other for inspecting segments in the previous and the current slice

for topology changes (line 5). It starts at line 1 by specifying that all cells are either free space

cells or obstacle cells. Within the first loop, line 3 shows that the sweep line is moved by a very

small distance∆x for each time step. Line 4 gives the format of the listD at the previous time

stepDt−1. Lines 6 and 10 within the inner loop correspond the two main categories of events

(emergence and disappearance). For obstacle or free space segment emergences (line 6), the

segment that is split into two halves is replaced by three separate segments (line 7). The three

segments belong to new cells and are therefore given new cell IDs,ce−1, ce, ce+1. In other words,

these new cell IDs identifying this slice contain a cell boundary. Line 8 shows the listDt after

the changes. The updates that occur for obstacle or free space segment disappearance are shown

in lines 10 to 12. The cell that contains the disappeared segment, along with its two neighbours,

are replaced inD by a single new cell (line 11). Line 12 shows the listDt after the changes.

An example explaining the slice decomposition algorithm is shown in Figure 3.7. Here,fn are

free space cells andon are obstacle cells. Initially, the sweep line intersects only with the first

free space cellf1. Hence the decomposition is just that one space cell,Dt = (f1). At the first

event, an obstacle segment emerges and the first cellf1 is split. The decompositionDt then

3.2 Slice Decomposition II 47

f2 f3

f3o3f4
o2

f2

f5 o3 f3

f6

o1

f1

Dt

(f1)

(f2,o1, f3)

(f2,o2, f4,o3, f3)

(f5,o3, f3)

(f6)

Figure 3.7: An example of slice decomposition I with an infinitesimally small step size ∆x.

changes to contain three cells – a free space cell, an obstacle cell and another free space cell,

Dt = (f2,o1, f3). Then the obstacle cello1 is split into two obstacle cells when a free space

cell emerges. The decompositionDt changes to contain five cells, (f2,o2, f4,o3, f3). Next Dt

changes to three cells, (f5,o3, f3), as the left side bulge is passed. Finally the decompositionDt

contains only one free space cellf6 when the sweep line exits the obstacle.

3.2 Slice Decomposition II

Slice decomposition I keeps track of both free space and obstacle cells. However, robots cannot

move inside obstacles. This means that the sweep line is limited to the cell that the robot is

in, as shown in Figure 2.11(a) on Page 18. Sweeping in both forward and reverse directions

is also needed because some free space cells cannot be accessed except from the bottom. For

example, the cell under the U-shaped obstacle (Figure 2.11(b) on Page 18) can only be swept in

the reverse direction. This is because the upper boundary of the cell is shared with an obstacle

and the robot can therefore only enter from the bottom boundary.

3.2.1 Events

Events in slice decomposition I have to be updated for the situation where the sweep line is

limited to the current free space region. For example, free space segment emergence (Fig-

ure 3.6(b)) cannot occur because it involves a sweep line moving from an obstacle to a free

space cell. Figure 3.8 summarises the abrupt topology changes that are classified as events in

slice decomposition II. Since line sweep is done in both forward and reverse directions, the

arrows in Figure 3.8 indicate the current sweeping directions when the events are encountered.

It does not mean that sweeping can only be done in the top to bottom direction.

There are five events defined in Slice Decomposition II:

48 Slice decomposition

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

fc+1

fc

fc+2

(a)

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

fc+1

fc fc+2

(b)

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

fc

(c)

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

fc

fc+1

(d)

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

fc+1

fc

(e)

Figure 3.8: Events in Slice Decomposition II: (a) split, (b) merge, (a) end, (d) lengthen, and (e) shorten.

3.2 Slice Decomposition II 49

1. Split: Free space segment in the previous slice is split into two by the emergence of an

obstacle, as in Figure 3.8(a). This is equivalent to obstacle segment emergence in offline

slice decomposition.

2. Merge: Free space segment in the current slice neighbours free spaces other than the free

space segment in the previous slice in the direction of the previous slice. This is equivalent

to obstacle segment disappearance in normal slice decomposition. An example is shown

in Figure 3.8(b).

3. End: The previous free space segment is the final one in the current cell. This is equivalent

to free space segment disappearance in the normal version. An example is shown in

Figure 3.8(c).

4. Lengthen: Free space segment in the current slice neighbours an obstacle segment in

addition to the free space segment in the previous slice in the direction of the previous

slice. Another way to view this situation is that the current slice is much longer than the

previous slice. An example is shown in Figure 3.8(d).

5. Shorten: Free space segment in the previous slice neighbours an obstacle segment in ad-

dition to the free space segment in the current slice in the direction of the current slice.

Another way to view this situation is that the current slice is much shorter than the previ-

ous slice. An example is shown in Figure 3.8(e).

Lengthenand shortenare new events and do not correspond to any events defined in slice

decomposition I. These two events will affect how some environments are decomposed. Take

the example in Figure 3.9. In slice decomposition II, it is decomposed into three cells; in slice

decomposition I, the entire environment is “decompose” into one large cell. Boustrophedon

decomposition will also classify the entire environment as one large cell. The two new events

are added to allow for simpler detection of cell boundaries. This is because boundary walls

and free standing obstacles may appear identical to a robot when they are first encountered

(Figure 3.10). Cell boundary detection with range sensors will be discussed in more detail in

Chapter 4.

3.2.2 Algorithm

Algorithm 3.2 explains how slice decomposition II is created. The algorithm maintains two lists,

O (open) andF (finish). The open listO stores all free space cells that have been discovered,

while the finish listF remembers all cells that are visited. The algorithm loops until the open

list O becomes an empty set (line 3). This happens when all cells discovered have been visited.

In line 4, a cell in the open listO is picked as the current cellfc. This cell is then swept

systematically from one cell boundary (line 5) to the other (line 7) until an event is encountered

50 Slice decomposition

f2

f1

f3

Figure 3.9: In slice decomposition II, this environment is decomposed into three different cells. In slice
decomposition I, this same environment is classified as one cell only.

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

fc

fc+1

(a)

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

fcfc+2

fc+1

(b)

Figure 3.10: At the position marked with a large dot, these two situations appear identical locally to a
robot. Only if the robot continues along the path will it discover the differences. (The obsta-
cles are assumed to be very long). Event (a) lengthen, and (b) split of slice decomposition
II.

3.2 Slice Decomposition II 51

(line 18). The events referred to in line 8 and 18 are those defined in Section 3.2.1. When an

event occur, the current cellfc is removed from the open listO (line 10), and added to the finish

list F (line 9). If the event is a split or a merge, other cells are sharing the same boundary as the

current cellfc are added to the open listO, provided that they are not already in either listO or

F (line 12). Similarly, in lengthen or shorten events, the neighbouring cellfc+1 is added to the

open listO if it is not in either listO or F (line 15).

Algorithm 3.2 Slice Decomposition II
1: O← initial cell
2: F ← ∅
3: while O , ∅ do
4: fc← f ∈ O
5: move to one (of two) cell boundary offc
6: repeat
7: move sweep line by∆x towards the opposite cell boundary
8: if event occurthen
9: F ← F + fc

10: O← O− fc
11: if event= split or mergethen
12: O← O+ fc+1, fc+2 if fc+1, fc+2 < (O∪ F)
13: end if
14: if event= lengthen or shortenthen
15: O← O+ fc+1 if fc+1 < (O∪ F)
16: end if
17: end if
18: until event occur
19: end while

Figure 3.11 shows an example of slice decomposition II. Here,f1 is the initial cell of the de-

composition. When the sweep line arrives at the obstacle, a split event occurs, and free space

cell f1 is split into f2 and f3 (Figure 3.11(a)). Both the openO and finishF lists are updated.

Then, f2 is selected as the next current cell. Selection criteria is based on distance from the

current cell and will be discussed in Chapter 4. When the sweep line arrives at the bottom cell

boundary (Figure 3.11(b)), cellsf4 and f5 are discovered and added to the open listO. Cell f2
is moved to the finish listF because the sweep line has completely passes over the cell.f5 is

chosen as the next current cell in Figure 3.11(c). When the sweep line arrives at the top cell

boundary, no new cells are added to the open listO. In Figure 3.11(d),f4 becomes the current

cell. When the sweep line reaches the bottom cell boundary off4, a merge event occurs. Two

other cells,f3 and f6, share this cell boundary withf4. However, onlyf6 is added to the open list

O becausef3 is already in the list. In Figure 3.11(e) and Figure 3.11(f),f6 and f3 becomes the

current cell respectively. When the sweep line finishes its pass overf3, the open listO becomes

empty because all cells in the decomposition have been visited. The finish listF now contains

all cells in the decomposition.

52 Slice decomposition

O : (f1)→ (f2, f3)

F : ∅ → (f1)

f2 f3

f1

(a)

F : (f1)→ (f1, f2)

O : (f2, f3)→ (f3, f4, f5)

f2

f1

f3

f5

f4

(b)

O : (f3, f4, f5)→ (f3, f4)

F : (f1, f2)→ (f1, f2, f5)

f2

f1

f3

f5

f4

(c)

O : (f3, f4)→ (f3, f6)

F : (f1, f2, f5)→ (f1, f2, f5, f4)

f2

f1

f3

f5

f4

f6

(d)

O : (f3, f6)→ (f3)

F : (f1, f2, f5, f4)→ (f1, f2, f5, f4, f6)

f2

f1

f3

f5

f4

f6

(e)

O : (f3)→ ∅

F : (f1, f2, f5, f4, f6)→ (f1, f2, f5, f4, f6, f3)

f2

f1

f3

f5

f4

f6

(f)

Figure 3.11: Creating a cell decomposition using slice decomposition II with an infinitesimally small
step size ∆x.

3.3 Effects of step size and sweep direction 53

3.3 Effects of step size and sweep direction

Since slice decomposition is defined with a discrete line sweep process, the step size between

consecutive slices therefore affects the decomposition yield for a given environment. If the step

size is reduced to be infinitesimally small, lim∆x→0∆x, then the sweeping process becomes a

continuous sweep, and slice decomposition forms an exact cell decomposition of the environ-

ment. So far in this chapter, it is assumed that the sweep is continuous.

However, slice decomposition also works for step sizes larger than infinitesimal. In such cases,

slice decomposition forms an approximate decomposition of the environment instead. To cap-

ture all cells in a particular environment, the maximum step size has to be smaller than the

height of the smallest cell

∆x = minih(ci) (3.1)

Here,∆x is the step size of the line sweep and minih(ci) is the height of smallest cell. Equa-

tion (3.1) guarantees that all cells will be present in at least one slice.

Figure 3.12 illustrates the effect of varying step size and the resulting decomposition created.

When the step size is small, all cells in the environment are captured. For example, in Fig-

ure 3.12(a), the step size is small enough to guarantee a sweep line to pass through the small

cell between the two lobes at the top of the obstacle. When the step size is increased to the

height of the smallest cell, ie∆x = minih(ci), the second sweep position in Figure 3.12(a) just

barely touches the cell. If the step size is further increased, the smallest cell may be missed

entirely, as is the case in Figure 3.12(c).

When (3.1) is satisfied, the decompositions created are independent of differences in step size.

Compare the slice decomposition in Figures 3.12(a) and 3.12(b). Although the cells are discov-

ered at different positions, the overall transitions of the listD are the same.

The slice decomposition created is the same whether the sweeping is done in the forward (top to

bottom) or the reverse (bottom to top) direction. This is because the decomposition is dependent

only on the position of the sweep lines. Figure 3.13 illustrates this concept. It shows the same

sweep line positions as Figure 3.12(a), but the obstacle is upside down. It can be seen that the

topology changes in the listDt are essentially the same in both figures. The only change is to

the numbering of cells, since the cells are discovered in a different order.

However, if the environment is rotated, the decomposition created will be different. (3.1) guar-

antees the same decomposition being created only for a particular sweep angle. Figure 3.14

shows the same obstacle as in Figure 3.12, but rotated 90o. It can be seen that the decompo-

sition is different from that given in Figure 3.12 regardless of how small the step size is. This

is not a shortcoming of a discrete sweep algorithm because continuous sweep based exact cell

decomposition, such as trapezoidal decomposition, is also affected by rotational transforms.

54 Slice decomposition

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

f5

f1

f2,o1, f3,o2, f4

f2,o3, f4

Dt

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

f5

f1

f2,o1, f3,o2, f4

f2,o3, f4

Dt

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

f1

f4

f2,o1, f3

Dt

Figure 3.12: Effect of step size on decomposition produced. Slice decomposition I is used in this ex-
ample. All sweep lines are assumed to be slightly above the obstacle surface they are
touching. The list of cells on the right shows where events occur. (a) ∆x = 1

2 ×minh(ci), (b)
∆x = minh(ci), (c) ∆x > minh(ci).

3.3 Effects of step size and sweep direction 55

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

Dt

f1

f2,o1, f3

f5

f2,o2, f4,o3, f3

Figure 3.13: Forward and reverse sweep yield the same slice decomposition. Slice decomposition I is
used in this example.

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

Dt

f1

f2,o1, f3

f4

Figure 3.14: Rotation changes slice decomposition. Slice decomposition I is used in this example.

56 Slice decomposition

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

(a)

� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

(f1,o1)

Dt

(f1,o1, f2)

(f3)

(b)

Figure 3.15: (a) The shaded area shows the reachable surface for a robot tethered to the top right
corner of the environment. (b) To calculate its slice decomposition, the boundary of the
environment is reduced to where the robot can reach.

3.4 Tethered robots

If the robot is tethered, its movement becomes restricted. The resulting reachable surface is de-

pendent on the position where the tether is anchored and the length of the tether. Figure 3.15(a)

shows the reachable surface area for a robot tethered at the top left hand corner. The situation

can be viewed as a change of the boundary of the environment. To calculate the slice decompo-

sition for this robot, only the reachable surface is considered. Figure 3.15(b) shows the resulting

environment when restricted movement is taken into account. The slice decomposition created

is shown on the right of the diagram.

3.5 Discussions

Slice decomposition extends the split and merge concepts introduced by boustrophedon decom-

position. In addition to split (obstacle emergence) and merge (obstacle disappearance), slice

decomposition I has two new events that handle topology changes associated with concave ob-

stacles.

Ordinarily, the sweep line moves through the environment from top to bottom, passing both

obstacle and free space regions. However, online cell decomposition methods have to use a dif-

ferent line sweep process because mobile robots can only move within the free space regions.

Since the aim of this thesis is coverage in unknown environments, slice decomposition is thus

modified to handle this restriction. Firstly, the event free space emergence is removed. Sec-

ondly, the lengthen and shorten events are added to simplify cell boundary detection in online

3.6 Summary 57

decomposition with range sensors. Lastly, instead of using a single list, the decomposition al-

gorithm maintains two lists to remember cells that are detected (open listO) and visited (finish

list F).

Events in exact cell decompositions are usually defined with small features in space. Examples

are vertices in trapezoidal decomposition [29] and critical points in Morse functions in Morse

decomposition [9]. In comparison, criticalities in slice decomposition are defined using large

features, segments, in the environment. These large features have physical attributes that are

detectable over time. Spurious sensor errors are filtered out through averaging. As a result, the

detection becomes robust against noisy and inaccurate sensing [72].

Due to the use of topology changes as events, slice decomposition can handle a larger variety of

environments compared to existing online cell decomposition based coverage algorithms.CCR

is designed for contact sensing robots working in rectilinear environments. Morse decomposi-

tion is more general and can handle obstacles with smooth surfaces. However, it is only defined

for non-rectilinear environments because boundaries parallel to the sweep line are degenerate

cases for Morse functions. In comparison, slice decomposition II can handle environments with

polygonal and smooth-surfaced objects, including rectilinear ones.

3.6 Summary

This chapter introduces the events and algorithms of slice decomposition. It also discusses the

effect of step size and sweep direction have on the decomposition formed.

58 Slice decomposition

Newton’s Second Law of Graduation: The age, a, of a doctoral process
is directly proportional to the flexibility, f, given by the advisor and
inversely proportional to the student’s motivation, m.

Jorge Cham, “Piled Higher and Deeper”, www.phdcomics.com

4
Topological Coverage Algorithm

Chapter 3 introduced slice decomposition II, which creates a cell decomposition of an

environment using a sweep line that is restricted to free space regions only. This re-

striction of the sweep line reflects the inability of mobile robots to move within obsta-

cle regions of environments. This chapter continues the discussion by explaining how a mobile

robot with range sensors can construct slice decomposition IIonline, while simultaneously cov-

ering the unknown space. This is achieved by creating a partial topological map using sensor

information collected, and generating a coverage path using this partial map. The topological

map embeds the slice decomposition of the environment by using the events in slice decom-

position II as landmarks for its nodes. The map is updated whenever relevant new information

becomes available. The path planner then generates a new path based on the updated partial

topological map.

Specifically, the topological coverage algorithm implements the algorithm for slice decompo-

sition II on Page 51 as a finite state machine (Section 4.1). The open and finish lists (O and

F) are stored implicitly within the topological map, introduced in Section 4.3. Event detec-

tion is covered in Section 4.2, and the map updates associated are explained using examples in

Section 4.3.3. The selection of the next cell to cover, and how a path is planned to reach it is

described in Section 4.4. Finally, the chapter concludes with a discussion on the completeness

(Section 4.5) and complexity (Section 4.6) of the topological coverage algorithm.

59

60 Topological Coverage Algorithm

arrived at

uncovered

cell

Normal

Travel all covered exit

start

Boundary

boundary fully explored

new landmark reached

event occurred

Figure 4.1: State transition diagram for the topological coverage algorithm.

4.1 Finite State Machine

The topological coverage algorithm is organised as a finite state machine with three states –

boundary, normal and travel. Figure 4.1 shows the state transition diagram. The boundary state

handles the situation where the robot is on a cell boundary. The algorithm always starts in this

state. This is because the coverage process begins from a corner of the environment, which

is a cell boundary of the initial cell. This restriction on initial condition is not a shortcoming

because it is easy to program a robot to seek a corner by using simple forward and wall following

movements. The first corner found will then become the initial cell boundary.

When the robot finishes exploring the cell boundary, execution of the topological coverage

algorithm switches to the travel state. The robot searches its topological map and moves to the

selected uncovered cell. When it arrives at the selected cell, the algorithm enters the normal

state. This state controls the robot to follow a zigzag path to cover all the surface area in the

cell.

4.1.1 State – Normal

The normal state handles the coverage of individual cells in slice decomposition. This corre-

sponds to line 7 inside therepeat .. until loop in Algorithm 3.2 on Page 51. Its operation

is summarised in Algorithm 4.1.

Normally, the robot follows a zigzag path to cover all surface area in the current cell. This con-

tinues until it arrives at a landmark, which signifies arrival at a cell boundary. The topological

mapG is updated with the information that the current cell is completely covered. Details on

4.1 Finite State Machine 61

Algorithm 4.1 Normal State
1: repeat
2: follow zigzag pattern
3: until at landmark
4: updateG
5: state⇐ boundary

r
∆x

Figure 4.2: To cover all surfaces between two consecutive strips, the inter-strip distance ∆x cannot be
larger than the diameter of the robot 2r.

how landmarks and cell boundaries are detected can be found in Section 4.2, and description of

the map update process can be found in Section 4.3.

The step size∆x of the line sweep needs to be small enough to cover all surfaces between

neighbouring strips in a zigzag. In Figure 4.2, the width of the robot is the same as the step

size, ie∆x = 2r. In this case, the robot can cover all surfaces between strips, without any

overlapping. However, it is usually better to allow for an error margin and the area covered

should slightly overlap instead, as shown in Figure 4.3.

The following equation summarises the choice of step size∆x for a robot with radiusr:

∆x ≤ 2r (4.1)

This equation states that the step size∆x should not exceed the diameter of the robot 2r. If the

robot is rectangular, then12w should be used instead ofr, wherew is the width of the robot.

r
∆x

Figure 4.3: The area covered by neighbouring strips should overlap to provide a good coverage.

62 Topological Coverage Algorithm

4.1.2 State – Boundary

The boundary state handles the situation where the robot is on a cell boundary. The topological

coverage algorithm always starts in this state. This is due to the assumption that the initial

position of the robot is at a corner of the environment. In other words, the initial position is on a

cell boundary of the initial cell. This restriction on initial position is not a shortcoming because

it is easy to program a robot to seek a corner by using simple forward and wall following

movements.

The operation of the boundary state is summarised in Algorithm 4.2.

Algorithm 4.2 Boundary State
1: loop
2: move forward along boundary
3: if at landmarkthen
4: updateG
5: end if
6: if arrive at end of stripthen
7: updateG
8: if boundary fully exploredthen
9: state⇐ travel

10: else
11: turn around 180o

12: end if
13: end if
14: end loop

The aim of the boundary state is to direct the robot to move along the boundary to expose all

cells neighbouring the current border. The topological mapG is updated whenever the robot

arrives at a landmark. It is also updated when the robot reaches either end of the cell boundary.

When the robot reaches one end of the boundary, it checks to see if it has been to both ends (line

8). If it has, then the cell boundary is fully explored, and execution of the algorithm switches

to the travel state. Otherwise, it turns around and moves towards the other end of the boundary.

Section 4.2 describes the operation of the boundary state in detail.

The boundary state corresponds to line 8 - 18 in Algorithm 3.2 on Page 51.

4.1.3 State – Travel

The travel state is responsible for generating and following paths that move the robot from

one cell to another. It implements lines 3 - 5 of Algorithm 3.2 on Page 51. Algorithm 4.3

summarises the operation of the travel state:

4.2 Cell boundaries 63

Algorithm 4.3 Travel State
1: T(n)⇐ searchG
2: if T(n) = ∅ then
3: exit algorithm
4: end if
5: while T(n) , ∅ do
6: move towardsT(0)
7: if atT(0) then
8: T(n)⇐ T(n) − {T(0)}
9: end if

10: end while
11: state⇐ normal

First a graph search is done on the topological mapG to find the closest uncovered cell, repre-

sented by a node in mapG, from the current location. The search returns a list of nodes,T(n),

leading from the current node to the selected uncovered node. Here,T(0) denotes the first node

in the listT(n). If the search returns an empty list, the environment is completely covered and

the algorithm exits (lines 2 - 3). To reach the selected uncovered cell, the robot moves from one

node inT(n) to the next. A node is removed fromT(n) when the robot reaches the correspond-

ing area (lines 7 - 8). When the robot arrives at the last node inT(n), ie the uncovered node,

operation switches to the normal mode. More details on path following and landmark matching

in the travel state can be found in Section 4.4.

4.2 Cell boundaries

A cell boundary occurs when the robot approaches a change in topology of segments. This

change is detected by monitoring obstacles around the robot. The conditions at which the robot

is considered to have arrived at a landmark and thus a cell boundary, and the action it takes

during the boundary state is determined by the type of topology change, the step size∆x and

the detection range of the robot.

This section assumes that landmark detection is achieved using a combination of simple thresh-

olding, temporal sequence comparisons1, and odometry (comparing length of consecutive strips).

An alternative solution that uses a neural network is presented in appendix A.

All the diagrams in this section assume the sweep direction for the current cell is from top to

bottom.

1comparing current sensor reading with previous ones

64 Topological Coverage Algorithm

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �

∆x

xi

xi+1

r + δc

Figure 4.4: Around a split event.

4.2.1 Event – Split

Figure 4.4 shows an example of a robot approaching a cell boundary caused by a split event.

This diagram shows the two closest sweep line positions around the criticality. The sweep line

at xi is the last strip where the robot can move freely along the strip unobstructed. At the next

sweep positionxi+1, the robot’s path will be blocked. This is because the distance between the

strip to the obstacle is smaller than the minimum required for a robot to pass unobstructed:

dmin = r + δc (4.2)

r is the radius of the robot andδc is the minimum clearance the robot kept from obstacles.

A split event can first be detected at the sweep positionxi. In Figure 4.5(a), the distance to the

obstacle dropped below a threshold. At this point, the execution of the topological coverage

algorithm switches to the boundary state. As the robot continues to move forward, the distance

to the obstacle will eventually rises above the threshold, as shown in Figure 4.5(b). Between

the two positions shown in Figure 4.5, the distance to the obstacle stays below the threshold.

Therefore, if the robot missed the first transition where the distance drops below the threshold

(for example, due to sensor error), the split event can still be detected anytime while the distance

stays below the threshold.

If the robot leaves the current cell immediately after exploring the strip atxi, the surface along

the emerging obstacle will remain uncovered. This is illustrated in Figure 4.6. The surface

along the dotted line in the diagram will be missed if the robot follows only the original sweep

positions atxi andxi+1. How much of the surface is left uncovered depends on the length of the

obstacle segment.

To address this problem, the robot will need to execute an extra strip that lies between the

sweep lines atxi andxi+1, as shown in Figure 4.7. The extra sweep position is labelled asxi′. It

is positioned so that the robot can get as close to the obstacle as possible.

4.2 Cell boundaries 65

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �

current cell

cell boundary

(a)

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �

(b)

Figure 4.5: A split event occurs when there are obstacles close to the side of the robot in the direction
it is sweeping towards.

� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �

� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �

∆x

xi

xi+1

(a)

� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �

� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �

∆x

xi

xi+1

(b)

Figure 4.6: By following only the original sweep line positions, surfaces between the boundary strip and
the obstacle will be missed. The area covered by the robot is shaded.

66 Topological Coverage Algorithm

� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �

� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �

xi

xi′

xi+1
dmin

Figure 4.7: To cover the surface next to the obstacle, an extra strip is added between the normal sweep
line positions.

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �

∆x

xi

xi+1

Figure 4.8: Detecting a split event when the robot’s path is obstructed at xi+1.

After the robot covered this extra strip, the current cell is declared to be completely covered,

and execution of the topological coverage algorithm enters the travel state to find a suitable

uncovered cell and travel there.

In the event that the robot fails to detect the split event while following sweep line positionxi,

it will continue with the zigzag path and move on to the next strip at positionxi+1. Eventually,

the robot’s path will be blocked by the obstacle, as shown in Figure 4.8. There are two different

ways to detect a split event from the strip position atxi+1. The first is by the presence of an

obstacle in the lower front of the robot, as shown in Figure 4.8. The other is by the sudden

reduction in length of the current strip compared to the previous one. Also, since a split event

can be detected via odometry (by comparing lengths of consecutive strips), it can be detected

by mobile robots equipped with bump sensors only.

Since the path along the strip is blocked, the robot will need to go around the obstacle to fully

explore the cell boundary. This is shown in Figure 4.9. This is achieved using a wall following

move around the obstacle. When the robot reaches the end of adjusted strip, there will be no

need for the addition of an extra strip since the surface near the obstacle will already be covered.

4.2 Cell boundaries 67

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �

xi+1

xi′

xi

Figure 4.9: This obstacle blocks the movement of the robot along a strip. The robot moves around the
obstacle to fully explore the cell boundary.

4.2.2 Event – Merge

Figure 4.10 shows the two closest sweep positions around a merge event. Atxi, the robot’s path

is blocked by the obstacle which forms one of the side boundaries of the current cell. At the

next strip positionxi+1, the boundary disappears, and the robot can move freely underneath it.

In other words, the strip atxi+1 is non-trivially longer than the strip atxi because of the opening

caused by the disappearing obstacle. More precisely, the length of the strip atxi+1, Lxi+1, is

non-trivially longer thanLxi if

Lxi+1 > Lxi + 2r (4.3)

wherer is the radius of the robot.

In Figure 4.11, the robot travels on the last strip of the current cell in the direction approaching

the disappearing side boundary. While still moving along the strip of its zigzag path, the robot

can first detect the opening in the side boundary by the absence of an obstacle in its lower front

(Figure 4.11(a)). Alternately, it can detect the event when moving from the strip atxi to the

next strip atxi+1, with the obstacle disappearing from its side (Figure 4.11(b)). Similar to the

situation with the split event, an extra sweep position betweenxi andxi+1 is needed to cover the

surface immediately underneath the disappearing obstacle. This extra sweep positionxi′ is put

as close as possible to the obstacle. Since the robot arrives at the cell boundary in the middle of

the strip, it has to travel in both directions from this entry point to fully explore the boundary. In

other words, the robot has to first travel until the end of the strip in one direction, turn around,

and then travel until the end of the other direction. Only after both ends of the strip was visited

can the execution of the algorithm leaves the boundary state.

Figure 4.12 shows the reverse situation where the robot moves away from the criticality on the

last strip of the cell. The robot can first detect the merge event in this situation as an opening

behind itself while moving along the sweep position atxi. When it arrives at the end of the strip,

it moves down to the extra sweep positionxi′ to start exploring the boundary. The move to the

extra strip position does not have to be very accurate. The robot can simply move a distance

less than the normal step size∆x. When the robot approaches the obstacle segment, it adjusts

68 Topological Coverage Algorithm

� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �

� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �

xi

xi+1

∆x

(a)

� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �

� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �

∆x

xi

xi+1

(b)

Figure 4.10: Around a merge event.

4.2 Cell boundaries 69

� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �

� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �

xi

xi′

xi+1

dmin

(a)

� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �

� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �

xi

xi′

xi+1

dmin

(b)

Figure 4.11: Cell boundary handling for robots moving towards a merge event.

70 Topological Coverage Algorithm

� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �

� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �

xi′

xi

xi+1

dmin

Figure 4.12: Cell boundary handling for robots moving away from a merge event.

its distance to the obstacle. Because the robot enters the extra strip from one of its ends, the

robot enters the travel state when it reaches the other end.

If the robot fails to detect the merge event while at the strip positionxi, it will follow its normal

zigzag path and move on to the next strip positionxi+1. This is shown in Figure 4.13. There

are two ways to detect the merge event in this situation. Using range sensors, the robot can

detect an obstacle in the direction where it has just swept. Otherwise, it can detect the event by

comparing the length of the strips atxi andxi+1. This is because the strip atxi+1 is a lot longer

than the one atxi. After the robot has travelled a certain distance longer than the previous strip,

it will declare that it has entered a cell boundary. Since a merge event can be discovered by

comparing strip lengths, it can be detected by contact sensing robots. To cover the surface close

to the disappearing obstacle, the robot adjusts its path to be closer to the obstacle, indicated as

the extra sweep positionxi′ in Figure 4.13.

4.2.3 Event – End

An end event occurs when there are no more strips left from the current position for the robot to

continue. Figure 4.14 shows a situation where this happens. Here, the robot finishes covering

the current cell and reaches the bottom cell boundary. This cell boundary does not lead to any

other free space cell. Therefore, this is the last free space segment left from the current sweep

position.

The end event can be first detected by the robot while travelling alongxi. Similar to the split

event, an end event is caused by the presence of obstacles in the direction the robot is sweeping

towards. A sweep position becomes the last strip in the cell when the distance from the strip

to the obstacle falls below a threshold. The difference between the two events is that in an end

event, the cell boundary is not shared with any other free space regions. To cover the remaining

surface left in the free space cell, an extra strip is added as shown in Figure 4.15.

If the robot fails to detect the end event fromxi, it will continue with its zigzag path and attempts

4.2 Cell boundaries 71

� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �

� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �

xi

xi′

xi+1

xi+2

dmin

(a)

� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �

� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �

xi′

xi

xi+1

dmin

(b)

Figure 4.13: Detecting a merge event after the side boundary has disappeared.

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

∆x

xi+1

xi

Figure 4.14: Around an end event.

72 Topological Coverage Algorithm

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

xi

xi+1

xi′

dmin

Figure 4.15: An extra strip is added between the last strip in the cell at xi and the obstacle to cover the
remaining surfaces in the cell.

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

xi

xi+1

xi′

dmin

Figure 4.16: The cell boundary blocks the robot’s movement from xi to xi+1.

to move into the next strip position atxi+1. However, the robot will not be able to move into

the strip position atxi+1 because it is too close to the obstacle, as shown in Figure 4.16. When

the robot’s path is blocked while it is moving from one strip to the next, it declares that it has

entered a cell boundary. In other words, an end event can be detected by a contact sensing

robot. To cover the remaining surface in the cell, it can simply follow the obstacle from its

current position to the end of the strip (xi′ in Figure 4.16).

4.2.4 Event – Lengthen

Figure 4.17 shows the sweep positions around a lengthen event. Detection of lengthen events

is identical to that of merge events. As explained in Figure 3.10 on page 50, the merge and

lengthen events appear identical locally to a robot when the event is first detected. Only when

the robot continues along the path will it discover the differences. With a merge event, the robot

4.2 Cell boundaries 73

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �

� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �

∆x

xi

xi+1

Figure 4.17: Around a lengthen event.

� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �

� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

∆x

r + δc
xi+1

xi

Figure 4.18: Around a shorten event.

will detect another cell in the direction of the obstacle that causes the event originally. With a

lengthen event, the obstacle will stay on the side of the robot until the robot reaches the end of

the strip.

4.2.5 Event – Shorten

Figure 4.18 shows the sweep positions around a shorten event. In Figure 4.19(a), the robot

enters the strip atxi above the obstacle emergence. Therefore, the robot can detect that the

distance to the obstacle has dropped below the threshold when it enters the strip. This distance

stays below the threshold until the robot reaches the second position shown in Figure 4.19(a).

To cover the remaining surface in the current cell, an extra sweep positionxi′ is added, as shown

in Figure 4.19(b).

If the robot fails to detect the obstacle emergence atxi, it will continue and move to the next

strip at xi+1. At this position, the robot’s path will eventually be blocked by the emerging

obstacle, as shown in Figure 4.20(a). A contact sensing robot will detect the shorten event at

xi+1. To completely explore and cover the remaining boundary, the robot will need to follow the

obstacle, as shown in Figure 4.20(b).

Figure 4.21(a) shows the reverse situation, where the robot moves along the strip atxi in the

direction towards the obstacle emergence. At the position shown in the diagram, the distance

74 Topological Coverage Algorithm

� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �

� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

xi

xi+1

(a)

� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �

� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

xi

xi+1

xi′

(b)

Figure 4.19: Detecting shorten events by monitoring obstacles in the direction the robot is sweeping
towards.

4.2 Cell boundaries 75

� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �

� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

r + δc

xi

xi+1

(a)

� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �

� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

xi

xi+1

xi′

(b)

Figure 4.20: The obstacle emergence in a shorten event blocks the path of the robot.

76 Topological Coverage Algorithm

� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �

� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

∆x

xi

xi+1

(a)

� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �

� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

xi

xi+1

xi′

(b)

Figure 4.21: Detecting shorten events by monitoring obstacles in the direction the robot is sweeping
towards.

to the obstacle drops below the threshold, and execution switches to boundary state. For the

remaining of the strip, this distance stays below the threshold. To cover the remaining area of

the current cell, an extra sweep positionxi′ is added, as in Figure 4.21(b).

If the robot fails to detect the obstacle emergence atxi, it will continue with its zigzag path.

However, the robot will not be able to move to its next strip atxi+1 since it is too close to

the obstacle, as shown in Figure 4.22. When the robot’s path is blocked while it is moving to

the next strip, it declares that it has entered a cell boundary, and start exploring the rest of the

boundary (same as Figure 4.21(b)).

4.2.6 Combination of split and merge events

The discussion for merge (Section 4.2.2) event assumes the first sweep line after the disappear-

ing obstacle extends beyond the obstacle. However, if there is another obstacle underneath the

disappearing one, no sweep line might pass underneath the disappearing obstacle segment at all.

This situation is shown in Figure 4.23. Here, the two obstacles form a small gap of width 2dmin,

4.3 Topological Map 77

� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �

� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

xi

xi+1

xi′

Figure 4.22: The cell boundary blocks the robot’s movement from xi to xi+1.

which is just wide enough for the robot to pass through. Only if a sweep line is positioned in

the exact middle of the gap will the robot be able to pass through the gap.

In Figure 4.23, the strip atxi is the last one before the right side boundary disappears. The

strip at xi+1 would have extended underneath the top obstacle if the bottom obstacle does not

exist. In Figure 4.23(a), the robot moves along the strip atxi in the direction approaching the

disappearing side boundary. In Figure 4.23(b), the robot moves along the strip atxi in the

direction away from the disappearing side boundary. In both cases, the gap is detected with on

board range sensors while the robot is at eitherxi or xi+1. To detect this gap, the range sensors

must have a detection range larger than the minimum clearance the robot kept from obstacles

δc. Therefore, ifdrange-minis the minimum sensing range needed, then

drange-min> δc (4.4)

Since this combination event cannot be detected using odometry only methods, it cannot be

detected by a contact sensing robot. Unlike the merge event described in Section 4.2.2, there is

no sudden change in strip length before and after the event.

To explore and cover the gap between the obstacle, an extra sweep position is added midway

between the gap, as shown in Figure 4.24.

4.3 Topological Map

A planar graph representing the slice decomposition can be created by assigning nodes to the

thresholds described in Section 4.2, and connecting these nodes with edges. Figure 4.25 shows

examples ofincompleteplanar graphs around the five events in slice decomposition. The planar

graphs are incomplete because only nodes and edges around the events are shown. Moreover,

some edges are shown with only one endpoint.2

2The two nodes that an edge connects are its endpoints.

78 Topological Coverage Algorithm

� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �

� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �

� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �

� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �

2dmin

xi

xi+1

(a)

� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �

� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �

� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �

� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �

2dmin

xi

xi+1

(b)

Figure 4.23: The two obstacles create a very narrow gap. Unless there is a sweep line position in the
exact centre of the gap, no sweep line will extend to the region between the two obstacles.

� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �

� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �

� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �

� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �

dmin ∆x = 2r

Figure 4.24: Similar to the merge event, an extra strip dmin below the obstacle is added.

4.3 Topological Map 79

� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �

� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �

(a)

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

(b)

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �

(c)

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

(d)

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

(e)

Figure 4.25: Events in slice decomposition can be represented with planar graphs: (a) split, (b) merge,
(c) end, (d) lengthen, (e) shorten.

80 Topological Coverage Algorithm

The planar graph constructed is not only a representation of the slice decomposition, but also

a qualitative topological map [64] of the environment. This is because the landmark nodes

are also recognisable3 places of the environment. Here, the term landmark is used to refer to

large features in the environment such as walls and corridors. These landmarks are not features

independent of any particular coordinate system. This use of landmark is similar to Mataric in

[72].

4.3.1 Nodes

Two pieces of information are stored with every node in the topological map — the node type

and the edges incident to it.4

Four node types exist in the topological coverage algorithm — free space, obstacle uncovered

and joint. Free space and obstacle nodes are landmark nodes and are directly related to events in

slice decomposition (see Figure 4.25). Free space nodes have obstacles on two adjacent sides.

They are called free space nodes because corners are related to free space segment disappear-

ance. Obstacle nodes are associated with threshold drops and rises in the middle of strips. They

are called obstacle nodes because of their relationship to obstacle segment changes. Uncovered

nodes represent uncovered cells in the environment. Joint nodes connect the landmark nodes

(free space and obstacle nodes) to the existing map. In other words, they join the graph seg-

ments shown in Figure 4.25 to the existing map. Section 4.3.3 explains the functions of the

different types of nodes in more details using four examples.

Other than its type, each node also remembers the edges incident to it. An uncovered node has

only one edge incident to it, a free space node has two, a joint node has three, and the obstacle

node can have three or four.

4.3.2 Edges

Edges in the map are cell boundaries in slice decomposition. Each edge in the map has a

type and an approximate distance between its two endpoints. The five types of edges are open,

vertical, north, south and corridor. Open edges are horizontal edges that have no obstacles above

or below them. Vertical edges are for the right and left boundaries of a cell. North and south are

horizontal edges that are immediately below or above an obstacle respectively. Corridor edges

are ones with obstacles on both sides.

3Can be reliably detected by robots using sensors.
4An edge isincidentto its endpoints.

4.3 Topological Map 81

Uncovered

Joint

Obstacle

Free Space

Vertical

Open

North

Corridor

South

Figure 4.26: Symbols used for the different types of nodes and edges.

� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �

� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �

Figure 4.27: Sample environment.

4.3.3 Map updates

This subsection is arranged into four examples explaining how the topological map is updated.

It also explains the functions and properties of the various types of nodes and edges. Figure 4.26

shows the symbols used in the diagrams in this subsection.

Example 1

The first example uses the obstacle seen in the examples in Chapter 3. This is shown in Fig-

ure 4.27 and there is only one obstacle in the environment. Cells that are detected but uncovered

are represented on the topological map as a pair of uncovered nodes (×). Therefore, the map in

Figure 4.27 contains only the uncovered free space cell at the top.

In Figure 4.28, the robot has covered the top free space cell and has arrived at the cell boundary.

The distance to the obstacle drops below the threshold. A new obstacle node (�) is created.

82 Topological Coverage Algorithm

� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �

� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �

Figure 4.28: Detects a split event.

Since the obstacle node (�) is located in the middle of a strip, a joint node (•) is added to

connect the obstacle node (�) to the rest of the map. Also, uncovered nodes (×) are connected

to both the obstacle node (�) and the joint node (•). This is because the two nodes lead to the

two side boundaries of the new free space cell underneath. Note that the newly found uncovered

cell is also represented by a pair of uncovered nodes (×).

The type of edge used depends on the situation between the two nodes it connects. For example,

in Figure 4.28, an open edge is used between the obstacle node (�) and the joint node (•)

because there are no obstacles on either side of the edge. Vertical edges are used to connect the

new uncovered nodes (×) as these edges are the side boundaries of the uncovered cell.

As the robot moves along the the cell boundary and reaches the point where the distance to

the obstacle rises above the threshold, the map is updated as shown in Figure 4.29. Note that

a south edge is used to connect the new obstacle node (�) to the existing map because of the

obstacle below the edge. When the robot reaches the end of the strip, the uncovered node (×)

representing the right boundary of the top free space cell is converted to a joint node (•) to

complete the cell boundary. This is shown in Figure 4.30. It can be seen from the diagram that

cell boundaries are represented as a horizontally connected series of nodes and edges. Also,

the map updates that occur during the boundary exploration have converted the two uncovered

nodes (×) in Figure 4.27. Now the nodes surrounding the boundaries of the top free space cell

form a cycle5 in the topological map.

5A cycle in a graph has positive length, its origin and terminus are the same, and its origin and internal nodes
are distinct.

4.3 Topological Map 83

� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �

� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �

Figure 4.29: Reaching the other end of the obstacle segment in a split event.

� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �

� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �

Figure 4.30: Finishing the cell boundary exploration. The nodes representing the top and bottom
boundaries of the first free space cell form a cycle in the map.

84 Topological Coverage Algorithm

� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �

� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �

Figure 4.31: Covering another cell in the environment.

Assume that the robot now chooses to cover the cell to the left of the obstacle, as shown in

Figure 4.31. It can be seen that this uncovered cell is represented by a pair of uncovered nodes

(×). This pair of nodes are connected via a horizontal edge that is the top boundary of this cell.

This arrangement is similar to the one shown in Figure 4.27. It is this configuration of nodes

and edges that indicates the existence of an uncovered cell in the topological map.

When the robot reaches the bottom of this cell, the two uncovered nodes are converted into

other types of nodes, as shown in Figure 4.32. The status of the current cell is now changed

from uncovered to covered, since the nodes representing it now forms a cycle in the map. As

the robot explores the cell boundary, it will discover the other end of the disappearing obstacle

segment that causes the merge event (Figure 4.33). An obstacle node (�) is added for this

landmark. An uncovered node (×) is also added for the new free space cell above the cell

boundary. Figure 4.34 shows the robot completing the exploration and map updating for this

cell boundary. At this moment, there are three uncovered cells in the topological map.

Figure 4.35 shows the robot reaching the top boundary of the free space cell. A free space node

(�) is added here because the landmark is surrounded by obstacles on two adjacent sides. Since

free space nodes are corners by definition, it is therefore always located at ends of cell bound-

aries. This is in contrast to obstacle nodes, which are always in the middle of cell boundaries.

As a result of this, free space nodes are only incident to two edges, while obstacle nodes are

incident to three.

When the robot reaches the other end of this cell boundary, the map is updated to indicate this

cell is completely covered. This is shown in Figure 4.36.

4.3 Topological Map 85

� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �

� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �

Figure 4.32: When the coverage of the current cell is finished, the uncovered nodes are converted to
other types of nodes.

� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �

� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �

Figure 4.33: Discovering another free space cell.

86 Topological Coverage Algorithm

� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �

� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �

Figure 4.34: Just finished exploring the cell boundary.

� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �

� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �

Figure 4.35: A free space node (�) is used here because the landmark is surrounded by obstacles on
two adjacent sides.

4.3 Topological Map 87

� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �

� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �

Figure 4.36: Completing the free space cell.

Example 2

Sometimes both the top and bottom boundaries of an uncovered cell have been exposed during

two different boundary explorations. This happens around a free standing obstacle, when one

side of the obstacles has been covered. Figure 4.37 shows a robot covering a cell where both

top and bottom boundaries are known. Note that there are two sets of uncovered nodes (×),

one for the top boundary, one for the bottom. This duplication of uncovered nodes (×) occurs

because boundary exploration of both the top and bottom borders classify the cell as uncovered.

The robot does not know that both borders belong to the same cell during the earlier boundary

explorations. When the robot reaches the top border and arrives at the obstacle node (�), it is

recognised as previously visited. The two sets of unexplored edges are merged to form a single

cell as shown in Figure 4.38.

Landmark matching is done both metrically and topologically [64]. A list of possible matches

is found by selecting nodes that are metrically close to the robot’s position. Closeness is defined

loosely as a region two to three times larger than the robot. If there is more than one possible

candidate, a topological matching procedure is initiated. This involves comparing directions of

obstacles around candidate nodes with the robot’s current situation. Using the situation shown

in Figures 4.37 and 4.38 as an example, lets assume the metrical match procedure returns the

two obstacle nodes (�) above the obstacle. Using the knowledge that there are no obstacles on

either side of the strip previously, it can be concluded that the obstacle node on the right is a

match by analysing the topology around the two nodes. The node on the right is connected to

an open edge in the direction behind the robot, while the one on the left is connected to a south

88 Topological Coverage Algorithm

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

Figure 4.37: An uncovered cell where both top and bottom boundaries are known.

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

Figure 4.38: The obstacle node (�) is identified as the current landmark by matching metrically and
topologically.

4.3 Topological Map 89

� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �

Figure 4.39: Two obstacle nodes (�) are added for the merge and split events. Because the two events
occur at the same sweep position, the “cell” between the events is considered covered
already.

� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �

Figure 4.40: Completed topological map for this example.

edge.

Example 3

Section 4.2.6 discussed the situation where a merge and a split event happens in the proximity

of one another. Figure 4.39 shows a robot encountering such a situation. Here, the gap between

the top and the bottom obstacle is quite small, and the robot can just pass through. Since the

robot detected both a split and a merge event, two obstacle nodes (�) are added. However,

uncovered nodes (×) are added only for the lower set of joint (•) and obstacle (�) nodes. This

is because the two events actually occur at the same sweep position (there is only one sweep

position through the gap), and therefore the “cell” between the two events is already covered.

Figure 4.40 shows the completed topological map for this example.

90 Topological Coverage Algorithm

� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �

� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �

Figure 4.41: Reaching a new node that does not lead to any uncovered cells.

� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �

� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �

Figure 4.42: The uncovered node (×) is converted to a free space node (�).

Example 4

In the previous examples, all the free space nodes (�) share cell boundaries with only free space

nodes (�). This example shows a situation where a free space node (�) shares a cell boundary

with other types of nodes. This occurs in shorten and lengthen events. Figure 4.41 shows a

robot arriving at a new free space node (�). The uncovered node (×) is converted to a free

space node (�), as shown in Figure 4.41. No uncovered node (×) is added to the free space

node (�) because it does not lead to any free space cell underneath. This is because the free

space segment at that end becomes an obstacle segment in the next sweep line position. The

obstacle segment ends and free space segment from the new uncovered cell underneath starts at

the position shown in Figure 4.43. The representation of the completed cell boundary is shown

in Figure 4.44.

4.4 Travel between cells

When the robot finishes covering the current cell, it searches the topological map for the closest

uncovered node from its current position. Since the goal location is unknown, no heuristic

4.4 Travel between cells 91

� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �

� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �

Figure 4.43: The free space cell underneath is connected from this position.

� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �

� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �

Figure 4.44: The cell boundary is completed.

92 Topological Coverage Algorithm

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

2b

2a1

3
route b

route a

4

Figure 4.45: Results of a breadth-first search on the map in Figure 4.38. The current node is node 1,
and the closest uncovered node found is node 4.

information is available relating each node to the goal node. As a result, a blind search6 has

to be used. A standard breadth-first search assumes that the length of a route from one node

to another is equal to the number of edges in the path. To take advantage of the approximate

distance information stored with the edges, a modified breadth-first search [92] can be used

instead. This modified breadth-first search favours nodes with shorter distances from the start

node.

The graph search returns a list of nodes from the current node to the selected uncovered node.

The robot then moves from node to node until arriving at the chosen uncovered node. Similar to

the landmark matching in the boundary state, the robot determines if it has arrived at the target

node using a combination of metric and topological matching. When the robot moves into the

region close to the target, it uses sensor and temporal information to decide when it has arrived at

the node. Temporal information comes from previous sensor readings and actuator commands.

The match is qualitative and there is no guarantee the robot will arrive at the exact location as

previously. However, an exact match of locations from previous visits is not necessary. This is

because cells in slice decomposition are bounded by obstacle boundaries, not the exact location

of where these obstacles are first detected.

Using the situation in Figure 4.38 as an example, a standard breadth-first search will return

either of the paths shown in Figure 4.45, depending on the search order. This is because both

paths link the current node to an uncovered node (×) via three edges. The only difference

between the two routes is the second node (2a and 2b) on the route.

If route a is returned by the search, the robot turns around and moves forward until arriving at

the left boundary of the environment. It then turns right (from a geocentric point-of-view) and

6A blind search does not use a cost or evaluation function to bias the search to move more quickly toward the
goal.

4.5 Completeness 93

follows the boundary. The length of the edge between node 2a and 3 is estimated by the number

of strips it took the robot to arrive from the bottom to the top of the cell. As a result, it is not very

accurate. The uncovered cell represented by node 4 is assumed to start at the position of node

3. Therefore, after the robot arrives at the approximate position of 3, it turns right again and

starts moving towards the direction of the obstacle. The sweep position should be very close to,

but underneath the obstacle. When the robot gets closer to the obstacle, it can adjust the sweep

position accordingly and starts covering the chosen cell in the normal state of the topological

coverage algorithm.

If route b is returned, the robot will follow the obstacle until it arrives at node 2b, which is at

the bottom of the obstacle. It then turns around and moves towards the left boundary of the

environment. When it arrives at the wall (node 3), it turns around again, switches execution of

the algorithm to normal state and begins covering the cell.

4.5 Completeness

It is important to show that an online coverage algorithm is complete, that it can fully cover

a given environment. This section attempts to prove the topological coverage algorithm can

always find and cover all reachable surfaces in unknown environments.

Slice decomposition subdivides free space in the environment into a collection of disjoint cells.

Two cells are said to bedirectlyconnected if they share a common cell boundary. Two cells are

indirectlyconnected if there is a series of directly connected cells that link the two. A robot can

always find a path between two directly or indirectly connected cells. Therefore, the reachable

surface in an environment is the union of all cells directly or indirectly connected to the initial

cell.

The topological coverage algorithm achieves complete coverage by creating a slice decomposi-

tion of the environment and covering all cells in the decomposition. Since cells in slice decom-

position can be covered by a robot following a zigzag path, the problem of proving complete

coverage can be simplified to showing that all reachable cells are guaranteed to be discovered

and visited. It is assumed that the robot has range sensing ability.

Lemma 4.5.1.All topology changes in the environment are always detected.

Proof. The inter-strip distance∆x is always set to ensure a robot following two consecutive

strips can fully cover all surfaces between the two strips. No surfaces are left uncovered between

consecutive strips. Therefore, even robots equipped with only bump sensors can detect obstacles

that appear within the length of the strips. In other words, all obstacles to the side of the robot

94 Topological Coverage Algorithm

will be detected by following a zigzag path.

For all the events in slice decomposition, on top of detection by range sensors, there is a fall back

to simple detection by odometry. In split (Figure 4.8) and shorten (Figure 4.20(a)) events, an

obstacle appears in the middle of the strip and blocks the path of the robot. This causes a sharp

decrease in the strip length compared to the previous strip. In end (Figure 4.16) and shorten

(Figure 4.22) events, the robot’s path is blocked while moving from one strip to the next. In

merge and lengthen events, the obstacle appears on the side of the robot in the direction where

it has already swept. The obstacle does not “block” the path of the robot, rather, it “opens” the

area underneath. This creates an huge increase in the length of the current strip compared to the

previous one. This increase is larger than can be attributed to sensor (odometry) error.

The only situation where the robot may not pass an obstacle by its side is when two events occur

in the proximity of each other, creating a small opening. This is discussed in Section 4.2.6.

Since the robot will only encounter the criticality on its front or back, there is no fall back to

detection by odometry. In other words, detection has to be done purely via range sensing. If

the robot can pass through the gap, it must be at least of width 2dmin. (4.1) gives the maximum

value of∆x at 2r. (4.2) states thatr is always smaller thandmin. Therefore, the step size∆x is

always smaller than the minimum gap width 2dmin. For this reason, part of the robot will always

pass in front of the gap independent of the sweep line positions. Therefore, a robot is capable

of detecting such a gap even with short range sensors. �

The cell boundary where the robot enters a cell is called theopeningcell boundary. Theclosing

cell boundary is the boundary the robot reaches when it finishes covering a cell.

Lemma 4.5.2.The closing cell boundary of any visited cell is always found.

Proof. This follows directly from Lemma 4.5.1. A robot following the zigzag coverage path

will always be able to detect all topology changes happening in the cell. �

When the robot arrives at the closing cell boundary, it is programmed to fully explore the bound-

ary reached. This full exploration of cell boundary has two goals. First it completes the cov-

erage of the current cell and removes all uncovered nodes associated. Secondly, it exposes all

other cells that are connected to the same boundary. The following Lemma guarantees all cells

sharing the closing cell boundary of a visited cell are added to the topological map.

Lemma 4.5.3. All cells that share the same cell boundary to the closing cell boundary of a

visited cell are detected.

Proof. This also follows directly from Lemma 4.5.1. A robot moving along the strip of the

closing cell boundary can always detect all topology changes at that sweep position. �

4.6 Complexity 95

When the robot finishes exploring a closing cell boundary, it searches the topological map for

any uncovered cells. Since the topological map is a connected graph, travelling to any uncovered

node is a simple matter of finding a path between the current node and the chosen uncovered

node in the connected graph.

Lemma 4.5.4.All cells that are added to the topological map will be visited.

Proof. Topological coverage algorithm continues until the map does not contain any uncovered

cell. Therefore, all cells that are added to the map will be covered before the algorithm finishes.

�

Proposition 4.5.5.All reachable cells in slice decomposition are covered.

Proof. Starting from the initial cell, all reachable cells are either directly or indirectly con-

nected. Lemma 4.5.3 guarantees that all the reachable cells are detected. Lemma 4.5.4 guar-

antees that all these reachable cells will also be visited. Lemma 4.5.2 shows the robot will

always reach the closing boundary of the cell it is covering. Therefore, all reachable cells in the

environment are detected, visited and covered. �

4.6 Complexity

The topological map is a bi-directed graphG(N,E), whereN is a list of n nodes, andE is a

list of e edges. Graphs are generally implemented as adjacency lists [53, 73, 93]. An example

of representing a graph as adjacency lists is shown in Figure 4.46. The space complexity is

thereforeO(n+ e).

Topological map updates involve insertion and deletion operations on graphs. These are con-

stant time operations because insertion and deletion on linked lists are constant time [73].

Searching for an uncovered cell on the topological map is done using breadth-first search. An

implementation of breadth-first search adapted from Tanimoto [92] is shown in Algorithm 4.4.

The algorithm requires the topological mapG(N,E), a start node, and a goal node as input.

In the coverage algorithm, the start node is the current node the robot is situated at, while the

goal node is any node of type uncovered. In the algorithm,predecessoris an array, whileopen,

closedandpath are all linked lists. Initialisation of the predecessor array in lines 1 - 3 takes

O(n). Initialisation of the linked lists in lines 4 - 6 isO(1). There are two nested loops between

lines 7 - 27, with the inner loop starting at line 21. The loop terminates either at line 9 when

no goal node (uncovered nodes) is found; or at line 19, when the first empty node is opened.

Therefore, the outer loop runsO(n) times. The inner loop runs once for each node adjacent

96 Topological Coverage Algorithm

1
2

3

4

(a)

1

4

2

1

1

32 4

2

4

23

(b)

Figure 4.46: (a) A directed graph. (b) Implementation as adjacency lists. Each node in the graph has a
list of nodes it is connected to.

4.7 Summary 97

to the opened noden (line 21). From the adjacency lists, it can be seen that the inner loop

iterates 2e times. Therefore the total time the nested loop iterates isO(max(n,e)). Normally,

there are more edges than nodes in a graph. Thus the time complexity of the nested loop can be

simplified toO(e). Combining the loop and the initialisation, the running time of the algorithm

can be expressed asO(n + e). (In the less common scenario where there are more nodes than

edges, the running time isO(n)).

Algorithm 4.4 Standard Breadth-First Search
Require: G(N,E), start node, goal node

1: for each noden in N do
2: predecessor(n)← −1
3: end for
4: open← start node
5: closed← ∅
6: path← ∅
7: loop
8: if open= ∅ then
9: return∅

10: end if
11: n← open(0)
12: open← open -n
13: closed← closed+ n
14: if n = goal nodethen
15: repeat
16: path← path+ n
17: n← predecessor(n)
18: until n , −1
19: return path
20: end if
21: for each nodem adjacent ton do
22: if m < open andm < closedthen
23: open← open+ m
24: predecessor(m)← n
25: end if
26: end for
27: end loop

4.7 Summary

The topological coverage algorithm enables a robot to completely cover any unknown environ-

ment by incrementally constructing, updating, and storing coverage information in a topolog-

ical map. The topological map shares the same set of landmarks with slice decomposition II.

98 Topological Coverage Algorithm

Therefore, it is both a qualitative representation of landmarks in the environment, and a slice

decomposition of the same space.

It is very difficult to mark particular regions in the environment as covered in a topological map.

This is due to the qualitative nature of the representation. The nodes and edges of the map do not

correspond to specific locations in space. This difficulty in storing coverage information within

a topological map is overcome by embedding slice decomposition within the map. Even though

individual nodes in the map are still not associated with specific areas of space, a combination

of nodes now defines a region (a cell) bounded by obstacles.

Completeness and complexity of the topological coverage algorithm are also discussed. Com-

pleteness is important because an online coverage algorithm must completely and fully cover

all the reachable surface. On the other hand, complexity was not an important issue in prac-

tice. Empirical observation shows that the robot spends a lot more time moving through the

environment than searching the topological map. There was never any noticeable reduction in

performance due to computational requirements of the coverage algorithm.

Newton’s Third Law of Graduation: For every action towards gradua-
tion there is an equal and opposite distraction.

Jorge Cham, “Piled Higher and Deeper”, www.phdcomics.com

5
Performance metrics

Performance metrics allow quantitative evaluation of results from experiments. They also

provide a way to compare different experiments, or algorithms, meaningfully. There are

two questions commonly asked about coverage operations [104]. Firstly, how much of

the environment is covered or missed? Secondly, how much time is wasted on revisiting area

that is covered already?

The first question can be answered with a measure of the effectiveness of the operation. In

simulation, this is commonly measured by calculating the percentage of grid cells covered [45].

In real robot experiments, existing approaches to estimating percentage coverage include sprin-

kling sawdust [97] and using the coverage factor [22]. Neither methods produce a good estimate

of the percentage coverage for real robot experiments.

The second question is an inquiry about the efficiency of the operation. For simulated exper-

iments, Gabrielyet. al. uses the number of repeatedly covered grid cells [45]. There are two

minor flaws with using repeatedly covered cells as a metric. Firstly, a repeatedly covered cell

maybe covered more than twice. Secondly, the figure is not normalised against the total num-

ber of grid cells in the environment. There are no existing measure of efficiency for real robot

coverage experiments.

This chapter presents the two metrics that will be used to measure the performance of coverage

experiments in this thesis. Section 5.1.1 defines the effectiveness metric, which is the same

99

100 Performance metrics

as the one used by Gabrielyet. al. [45]. The efficiency metric defined in Section 5.1.2 is an

improvement over the use of repeatedly covered cells. The metric not only estimates the area

of re-coverage, it is also normalised against the actual area covered by the robot.

These metrics are useless if the data they require is difficult or impossible to obtain. There-

fore, the rest of the chapter describes practical methods for obtaining and estimating the data

needed. Section 5.2 presents methods for estimating the metrics with grid-based simulation en-

vironments. Section 5.3 describes estimation in real robot experiments using computer vision

techniques.

5.1 Metrics

5.1.1 Effectiveness: percentage coverage

The effectiveness of a coverage algorithm is the amount of the total surface covered by a robot

running the algorithm. Therefore,

C =
Area of surface covered

Total reachable surface area
(5.1)

The coverage metricC calculates the percentage coverage of an experiment. It requires the

estimation of the area of surface covered in an experiment and a measure of the area of reachable

surface in the environment.

5.1.2 Efficiency: path length

The efficiency of a coverage algorithm can be measured by the length of the path taken to

completely cover an environment. The path length is related to the time spent on the coverage

task if the robot moves in a fairly constant speed.

To make the metric environment independent, it is necessary to normalise the actual path length

‖Pa‖ travelled by the robot. An ideal solution would be to divide the actual path length‖Pa‖

by the length of the optimal path. The optimal path is the shortest path possible to cover an

environment if the robot starts with a map. Any path generated by an online algorithm, such as

the topological coverage algorithm in this thesis, will be longer than the optimal path.

However, Arkinet. al.has shown that finding the optimal coverage path is an NP-hard problem

[13]. They proved this by formulating coverage as a travelling salesman problem, with each

location in the reachable area as a city. As a result, the actual pathPa taken by the robot

5.2 In simulation 101

is compared to theminimal path Pm instead. The minimal pathPm is the shortest coverage

path for a mobile robot that can teleport with no cost associated with the teleport operation.

All environments can be covered by such a robot with no retracing. The minimal pathPm is

therefore always equal to or shorter than the realisable optimal path. In summary, the path

length taken is normalised by

L′ =
‖Pa‖

‖Pm‖
(5.2)

where‖Pa‖ and ‖Pm‖ are the Euclidean distances for the actual path and the minimal path

respectively.

However, (5.2) does not take into account the amount of coverageC achieved in the experiment.

This is important as the experiment may not attain 100% coverage, andPm is the minimal path

for covering theentire space. If the robot covers only 50% of a given environment, thenPa

should be compared with 50% ofPm instead. The minimal pathPm of the area actually covered

in an experiment is

Pm×
Area of surface covered

Total reachable surface area
= Pm×C

Therefore, (5.2) becomes

L =
‖Pa‖

‖Pm‖ ×C
(5.3)

(5.3) is the path length metric used for measuring efficiency of coverage experiments. The

length of the actual pathPa can be calculated from wheel encoders’ readings. The minimal path

Pm depends on the configuration of the environment.

5.2 In simulation

The simulation environment is assumed to be a uniform grid with square cells. Therefore, area

in simulation can be measured in numbers of grid cells. (5.1) can be rewritten as

C =
Area of surface covered

Total reachable surface area

=
number of grid cells covered

number of reachable grid cells
(5.4)

The number of grid cells reachable is calculated with the distance transform [58]. Figure 5.1

shows the distance transform of a very small and simple environment. It is assumed that the

robot is the same size as a grid cell. Also, the robot keeps a distance of at least one grid cell from

any obstacles. Starting from the initial cell (marked 0), all 8 neighbours of a marked cell are

102 Performance metrics

0 1

11

1 2

2

222

3

3

333

4 4

4

4

41 1 2 3

4

1

1

Figure 5.1: Calculating the total number of reachable grid cells using the distance transform.

tagged with a number one higher than itself. This tagging propagates until all cells not occupied

by an obstacle, or a neighbour of an obstacle, are marked. The total number of reachable grid

cells is then the number of cells marked, or numbered, by the distance transform.

Since the only piece of information needed is whether a path exists between any given grid cell

and the initial grid cell, the distance transform is an overkill for this application. A simple filling

algorithm [40], like the one shown in Figure 5.2, already suffices. However, both the distance

transform and the filling algorithm require similar amounts of computation and coding time.

Therefore, it does not make any difference which of the two methods are used to calculate the

number of reachable grid cells.

The other parameter in (5.4), the number of grid cells covered, is found by counting grid cells

after the simulation is finished. Only reachable grid cells covered are included in the total. If

any non-reachable grid cells are covered, they are simply ignored in the count.

The path length measure from (5.3) is reformulated as

L =
‖Pa‖

‖Pm‖ ×C

=
number of moves

number of reachable grid cells×C
(5.5)

The actual path length is calculated as the number of moves the robot has made. This is similar,

but not the same, as the number of cells in the robot’s path. The difference is in the handling of

multiply visited grid cells. Here, a grid cell that has been visitedn times occupiesn steps in the

path.

The number of reachable grid cells is used as the length of the minimal path. This comes directly

from the definition of the minimal path, which is the path length needed to achieve complete

5.2 In simulation 103

� �
� �
� �
� �

(a)

� �
� �
� �� � � �

� �
� �� �

� �
� �
� �
� � � �� �

� �
� �

� �
� �� �
	 	
	 		 	

� �� �

� �
� �� �

� �
� �� �
� �
� �� �� �

� �
� �
� �

(b)

� �� �
� �
� � � �� �

� �
� � � �� �

� �
� � � �� �

� �
� �

� �� �
	 		 	

� �� �� �� �

� �� �� �
� �� �� �� �� �
� �� �

� �� �
� �� �� �� �� �
� �� �� �

� �� �
� �� �� �� �� �
� �� �� �

� �� �� �
� �� �� �

� �� �
� �� �

(c)

Figure 5.2: Calculating the total number of reachable grid cells with a a simple filling algorithm. (a) The
algorithm starts with marking the initial cell. (b) In the next step, all the neighbours of the
initial cells are marked. (c) Then all the neighbours of the grid cells marked in the previous
steps are marked as well.

104 Performance metrics

coverage with a teleport robot. With no cost to teleportation, such a robot can covern grid cells

in n steps. In other words, if the environment hasn reachable cells to be covered, the minimal

path would also ben.

5.3 In real robot experiments

5.3.1 Creating composite images

To calculate the amount of coverageC, an estimate of the area covered by the robot is required.

It is important not to calculate this area from robot’s positions estimated from dead reckoning.

This is because dead reckoning attempts to estimate the robot’spositionbased on the distance

it travelled in its current direction from its previous position. Consequently, accumulation of

errors, especially in the orientation, can lead to a larger and larger discrepancy between the

estimated and the actual poses.

Therefore, an external, independent perspective of the experiment process is required. A simple

and cheap solution is to use a wall mounted camera to capture a movie of the robot’s progress.

The experiment setup used in this thesis is shown in Figure 5.3 and a sample image from the

camera is shown in Figure 5.4. Computer vision techniques can then be employed on the images

captured to estimate the area covered by the robot. Figure 5.5 shows a flowchart explaining

the process. First, the original frames captured by the camera are combined to form a single

composite image. This composite image illustrates all the surfaces the robot covered. Since

the original images contain perspective distortion, this artefact is removed using a deskewing

operation. The percentage coverage is then estimated from the resulting deskewed composite

image.

In this thesis, a composite image of an experiment refers to a single image that shows the trail or

path of the robot during the experiment. To create such an image, the position of the robot is first

extracted from each frame captured by the camera. These positions are then superpositioned to

form a single image.

Two methods have been devised for creating composite images [105]. The first method, image

subtraction, requires very little computation. However, it suffers from two major disadvantages.

Firstly, it is not particularly reliable as artefacts frequently appear in the background subtraction

process. This is because of environmental factors such as lighting. Additionally, in the case of a

tethered robot (such as the Khepera) the cable motion is computed as part of the final composite

image.

The other method, evidence gathering, improves tolerance to poor lighting by matching a model

5.3 In real robot experiments 105

Figure 5.3: Mounted camera capturing frames of robot’s movements.

Figure 5.4: An image captured by the experimental setup shown in Figure 5.3.

image
deskewed

image

Area=?

coverage

frames
original

composite

Figure 5.5: Estimating the percentage coverage from an image sequence.

106 Performance metrics

of the robot using a Hough accumulator [79]. The major disadvantage of evidence gathering is

the Hough transform used is very computation intensive. More details on the computer vision

techniques employed in evidence gathering can be found in Appendix B.

Image subtraction

The first step in this method is to subtract a reference imager from each of the original images

fi in the sequence. Thus

si = fi − r (5.6)

As the images employed are full colour (RGB) images, this subtraction is computed for each

colour channel separately. The differencesi highlights the movement of the robot in the image

sequence. This is because the robot is the only moving object in a static environment.

It is desirable that the reference imager be an accurate representation of the environment with-

out the robot in it. Any error in the reference image will result in artefacts insi. If the ex-

periments are very short, it is possible to use an image taken immediately before or after an

experiment as the reference imager, as long as the robot is not in the scene.

However, if there are illumination changes within the scene, then a temporal average of the

entire sequence should be used as the reference imager. A näıve approach would suggest using

the average of the images. However, this will result in a ghostlike trail that corresponds to the

motion of the moving object. Instead the median operator was employed. This computes the

reference image as follows

r = median
(
f0, · · · , fn−1

)
(5.7)

for a sequence withn imagesf0 to fn−1.

In implementation, the median operation is computed via a histogram of image intensities at

each point and finding the value corresponding to the 50th percentile.

After the subtraction in (5.6) is computed, the difference imagessi are thresholded pointwise

with a step response. If the value of a pixel is greater than 127, the value is changed to one;

otherwise if the value is smaller than 127, 0 is assigned instead. These thresholded difference

images are then combined by performing a pointwiseOR of the all the images. This method-

ology works as the main point of difference between successive frames is the robot. As the

thresholded images are effectively a binary representation of this difference, then a logicalOR

will yield a resulting image which is a superposition of the robots locations.

5.3 In real robot experiments 107

Evidence Gathering - Hough Transform

The first step of evidence gathering is image subtraction using (5.6). The resulting difference

imagessi are then edge detected to find the edge information for each colour channel. The

edge map is computed using a Canny edge detector [25, 79], for two main reasons. Firstly, it

is considered to have an optimal response for step edge responses, and secondly it can serve to

reduce noise in the image. This noise reduction is useful as it can help remove small artefacts

in si due to estimation problems in the reference image. The final edge map,ei, is computed

via weighted summation and thresholding of the individual colour channels. The weighting in

the summation allows the emphasis of features in particular colour bands. The value of the

threshold is tuned empirically.

The edge mapei is then presented as evidence to a model of the robot. The specific model

used depends on two factors — the shape of the robot; and how this shape changes because of

perspective effects as the robot moves within the environment. For example, the Khepera robot

was modelled as a circle. This is possible as at the extreme end of the enclosure, where the robot

is at the maximum distance from the camera, the Khepera is still circular. In this case the model

fitting must find the diameter that best fits the Khepera in each frame. A Hough transform is

used to fit the model to the edge data. The specific model fitting algorithm is shown below:

Algorithm 5.1 Hough Evidence Gathering
for d = Dmin to Dmax do

for all edge pixels (x, y) do
for θ = 0 to 2π do

xc← x− d
2 cosθ

yc← y− d
2 sinθ

if (xc, yc) is in image and (xc, yc) is an edge pointthen
incrementA(x, y,d)

end if
end for

end for
end for

For a circular fit, the image is initially examined to find all the edge points. For each edge

point, all the points are computed that are in a circle of diameterd and centred on this edge

point. Diameter was employed instead of radius as it is easier to compute this from an image

sequence. If the computed point is another edge point, then an array is incremented with a point

indexed by the original edge point and the diameter.

After evidence is gathered from the entire image, the arrayA(x, y,d) will contain peaks which

correspond to likely circle centre points and diameters. Within this array the peak corresponds to

the circle centre and diameter which occurs most often. This is the best candidate for the robot’s

108 Performance metrics

u

3 2

0 1

3 2

10

y

x

v

Figure 5.6: Quadrilateral to square mapping.

location within the frame. It can be computationally expensive to search all possible diameters

so the possible search space is reduced by examination of the original image sequence. The

purpose of this is to find estimates of the diameters of the robot at the maximum and minimum

distance from the camera. This sets upper and lower bounds to the diameter parameter,Dmin

andDmax.

The output of the model fitting stage will be a series of numbers which describe the central

coordinates of the robot and the model chosen to describe the robot. By examining the results

from all successive frames an accurate representation of the robot’s path can be found. This,

along with the model of the robot, can be used to produce a composite image for estimating the

surface area covered by the robot.

5.3.2 Correcting perspective warp

The images captured by the camera show an effect known as perspective warping. This means

that distant lines are shortened when compared to closer lines. This shortening effect makes it

difficult to estimate the coverage area. Therefore, it is essential to correct for this effect. This

can be performed using an inverse perspective transform to map the quadrilateral into a unit

region as shown in Figure 5.6. This mapping makes the assumption that the original object, in

this case the tray, is square in shape. The perspective transform described in this section follows

the work of [99].

To make the mathematics simpler, this discussion will originally examine the reverse of the

transform shown in Figure 5.6. The forward perspective can be written:


x′

y′

w′

 =

a11 a12 a13

a21 a22 a23

a31 a32 a33



u

v

w

 (5.8)

Herex, y,u andv are coordinates as shown in Figure 5.6.w is the perspective. It can be simply

5.3 In real robot experiments 109

written asx′ = Au. Euclidean coordinates can be computed using equation (5.8) and performing

the following substitutions :

x =
x′

w′
=

a11u+ a12v+ a13w
a31u+ a32v+ a33w

(5.9)

y =
y′

w′
=

a21u+ a22v+ a23w
a31u+ a32v+ a33w

(5.10)

For most applicationsw is generally 1.

For arbitrary systems (quadrilateral to quadrilateral) solving this equation will have 8 degrees of

freedom (two for each point in the quadrilateral). However, for the situation here the uv plane

is a unit square. Thus :

(0,0)→ (x0, y0)

(1,0)→ (x1, y1)

(1,1)→ (x2, y2)

(0,1)→ (x3, y3)

This gives the following values for the elements of the transformation matrix :

A =


x1 − x0 + a31x1 x3 − x0 + a32x3 x0

y1 − y0 + a31y1 y3 − y0 + a32y3 y0
∆x3∆y2−∆y3∆x2

∆x1∆y2−∆y1∆x2

∆x1∆y3−∆y1∆x3

∆x1∆y2−∆y1∆x2
1

 (5.11)

To compute the reverse of this transform requiresA−1 be found. This can be found by observing

thatA−1 =
adjA
detA . Now as detA is a scalar quantity then adjA can be used as an approximation

of A−1 so long as suitable scaling is performed on the coordinates.

To employ this transformation on the image requires that the corner points of the quadrilateral be

known. This could be computed via image processing and the methodology of edge detection.

However, as they are fixed in all frames they were found by empirical examination. Once found,

these points were used to generate a grid of points at which to sample the image. Neighbouring

points yield a quadrilateral in the xy plane and once deskewed they form a rectangle in the uv

plane. For each quadrilateral the intensity was computed using bi-linear interpolation (average

of the intensities of the nearest pixels). So long as the density of points in the grid is sufficiently

large then this method will yield an accurate image with the perspective warp removed.

110 Performance metrics

5.3.3 Computing percentage coverage

After the perspective warping is removed in the composite image, it is very simple to compute

the percentage coverageC. The covered area is estimated by counting pixels in the trail of

the robot in the composite image. Since the covered area is calculated in pixels, the reachable

surface area has to be in pixels as well.

C =
Area of surface covered

Total reachable surface area

=
Number of covered pixels

Total number of pixels in environment− Number of obstacle pixels
(5.12)

For the experiments in this thesis, the tray shown in Figure 5.4 was used. A piece of software is

written especially for calculating the number of pixels within the tray and the obstacles. These

regions are marked manually inside this program, and the software will calculate the number of

pixels in the two categories. The difference between the tray and the obstacles within gives the

total area of reachable surface in number of pixels.

5.3.4 Calculating normalised path length

Unlike in simulation, efficiency cannot be estimated by the number of repeatedly covered pixels

in the composite image. This is because a real robot does not move in a grid. It “re-visits” a

significant number of pixels even when moving forward. Therefore, we measure efficiency as

the distance the robot travels instead.

To obtain the path length metric in (5.3), estimations of the actual distance travelled by the robot

and the minimal path to cover the environment are needed. The actual distance travelled can

be obtained using the wheel encoders on robots. Wheel encoders are reasonably accurate in

measuring distances travelled, with errors arising only when the robot slips, or if a wheel is not

completely circular [39].

The minimal path is estimated using the assumption that the robot moves in a zigzag pattern.

The area to be covered can then be divided as shown in Figure 5.7. The width of each division

is the inter-strip distance∆x of the zigzag. The minimal path length‖Pm‖ to cover the entire

region is the sum of the lengths of these divisions.

With an estimation of the lengths of the minimal path‖Pm‖, the actual path‖Pa‖ and the per-

centage coverageC (from the composite image), (5.3) can be used directly to calculate the path

length metricL.

5.4 Summary 111

∆x

l

7l

Figure 5.7: Estimating the minimal path length in real robot experiments. ∆x is the step size of the
sweep, which is also the distance between consecutive strips in the zigzag.

5.4 Summary

In simulation, the effectiveness metricC is the same as the one used by Gabriely and Rimon

[45]. However, the path lengthL is an improvement over their use of repeatedly covered cells

for measuring efficiency of coverage path. WithL, the length of the actual path taken by the

robot is compared with the minimal path of the environment. In other words, it shows how

much longer the path generated by the algorithm is compared to the minimal path. Moreover,

the metric also takes into account multiply covered cells and actual area covered.

The major contribution of these metrics however lies in the ability to evaluate them from real

robot experiments. Previously, the only real performance metric for non-simulated robots was

the coverage factor proposed by Butler [22]. The problem with the coverage factor is that it is

a poor measure of both efficiency and effectiveness. This chapter outlines practical and simple

solutions for calculating both metrics proposed from real robot experiments. A feature of the

method used for extracting the parameters needed is that it is robot platform independent. The

only on-board sensor required is wheel encoders for recording the actual distance travelled.

Even this requirement can be relaxed since the path travelled by the robot is reconstructed when

creating composite images using Hough transform (evidence gathering). As a result, the path

length travelled can be calculated in terms of pixels from the captured movie of the experiment.

Therefore, the only equipment necessary for evaluating the two proposed metrics is a camera to

record the experiments.

The performance metrics will be employed in Chapter 7 to evaluate experimental results of the

topological coverage algorithm.

112 Performance metrics

If we knew what it was we were doing, it would not be called research,
would it?

Albert Einstein

6
Implementation

The validity of the topological coverage algorithm was verified through testing in simu-

lation and with the miniature robot Khepera [75]. This chapter describes the methods

and tools used for developing, debugging and testing the topological coverage algo-

rithm. The robot used and its command set is introduced first in Section 6.1. This is followed

by a description of the simulated robot and environment, where most of the development took

place (Section 6.2). The next two sections concentrate on the implementation of the cover-

age algorithm itself, with the topological map in section 6.3, and the the robot controller in

Section 6.4.

6.1 Khepera robot

The robot used for testing the topological coverage algorithm is the miniature Khepera robot.

A picture of it is shown in Figure 6.1. The robot is 53mm in diameter. The robot is equipped

with eight infra-red proximity sensors for detecting obstacles. The sensors are placed around

the robot in the layout shown in Figure 6.2. The infra-red sensors can detect objects up to

30mm to 40mm away. The sensors return an integer between 0 and 1023 depending on the

distance between the sensor and the obstacle (with 1023 being the closest). The Khepera is also

equipped with incremental optical wheel encoders for dead reckoning. The resolution of the

113

114 Implementation

Figure 6.1: The Khepera miniature robot.

IR sensors

wheel

Figure 6.2: Layout of infra-red sensors on the Khepera.

wheel encoders is 12 pulses per mm of path of the robot.

The Khepera can be programmed and controlled using either the on-board Motorola 68HC08

microcontroller, or the serial communication protocol via an RS232 serial line. For the ex-

periments in this thesis, control via the serial link is used. This is because implementing the

algorithm on a PC allows for faster development, easier debugging and better code sharing

between the Khepera and simulation experiments.

The serial communication protocol provides complete control of the functionalities of the Khep-

era. Table 6.1 shows a list of commands that are used in implementing the topological coverage

algorithm. The protocol is in the form of commands and responses. Commands are sent from

the host computer to the robot, and the responses are the answer the robot gives for the command

sent.

6.2 Simulation 115

Function Command Response

Set a position to be reached C,left,right c

Set speed D,left,right d

Read speed E e,left,right

Set position to the position counterG,left,right g

Read position H h,left,right

Read proximity sensors N n,sensor 0,· · · ,sensor 7

Table 6.1: Commands in the communication protocol of the Khepera. This list contains only commands
used in the experiments.

The set position (C) command is used to instruct the robot to turn 90o and 180o. Normal nav-

igation, such as move forward and wall following, is done using the set speed (D) command.

The read speed (E) command sends the speed of the wheels back to the host computer, which

can be used to check if the robot is moving. The set position counter (G) command is used to

clear the counters of the wheel encoders; while the read position (H) command is used to read

the values of these counters. The read proximity sensors (N) command is for obtaining range

sensor data.

6.2 Simulation

The simulation environment is modelled as a 50× 50 uniform grid. The robot is circular and

has a diameter of one grid cell. It is programmed to keep a minimum distance of one grid

cell from obstacles. It is equipped with 8 range sensors distributed uniformally around its

circumference. The sensing range can be varied, but it is set to 10 grid cells by default. It is

assumed that the sensors have no blind spots, and can detect everything around the robot up

to the maximum sensing range. Also, the regions of detection for individual sensors do not

overlap. The detection region therefore grows from the simulated robot in a pattern like the one

shown in Figure 6.3. If an obstacle falls within the region of detection of one of the 8 sensors,

the simulated robot will be notified of the index of the sensor that detected the obstacle, and the

distance to the obstacle.

An environment editor was written to ease the creation of environments for testing. It imports

and exports environment description in plain text files. Figure 6.4 shows a screenshot of the

editor. Obstacles can only be drawn as straight lines and circles. By using a combination of

these shapes, more complicated obstacles can be created.

Figure 6.5 shows the main simulator. The environment loaded is displayed twice on the screen.

The left half shows the world view, where the robot moves; the right half shows the map view,

which displays the topological map generated. Figure 6.6 shows another screenshot of the

116 Implementation

Figure 6.3: Region of detection for a simulated robot with a sensing range of 10.

Figure 6.4: Screen shot of the environment editor. The environment in this figure contains only a single
diagonal line.

6.2 Simulation 117

Figure 6.5: The simulator screen is divided into two halves. The world view on the left side displays
the environment the robot moves in. The map view on the right shows the topological map
created.

simulator, taken after the simulation has run for a little while. The world view now displays

surfaces that the robot has covered, marked with a different colour. Grid cells that have been

visited more are shaded with a darker colour.

The map view in Figure 6.6 shows the topological map created so far. The nodes are drawn in

the grid cells where they are first detected, with the exception of uncovered nodes. These are

initially displayed with their adjacent nodes and will be moved once they are converted to free

space, obstacle or joint nodes. Also, all nodes are drawn as identical circles irrespective of their

types. The numbers above the nodes are their internal tags within the topological map and are

displayed for debugging purposes. If multiple nodes exist in the same grid cell, only the tag with

the lowest numerical value is displayed. The edges are drawn in different colours depending on

their types to aid debugging. Clicking anywhere on the map view of the simulator will bring

up an information dialogue. This dialogue shows the nodes present at that position, and edges

that are incident to them. An example of this is shown in Figure 6.7. Here, the grid cell has an

obstacle node (13) and an uncovered node (14). Node 13 is connected to three different nodes,

one of which is node 14 in the downward direction. There is a corresponding entry for node 14

that shows it is connected to node 13 in the upward direction. In the case where there are no

nodes at the location selected, an empty dialogue box is shown.

Statistics for the performance metrics of simulated experiments can be obtained via the “Show

Stats” button in the main window. Figure 6.8 shows the statistics for the simulation in Fig-

118 Implementation

Figure 6.6: Covered area is shaded with multiply covered surfaces in darker colours.

Figure 6.7: Information on nodes present at any location can be obtained by clicking on the map view
of the simulator.

6.3 Topological map 119

Figure 6.8: The statistics dialogue shows various statistics for the simulation.

ure 6.6. Since only a small portion of the environment is covered, a large number of cells are

in thenevercategory (1062 to be exact). The last line in the dialogue box shows the percent-

age coverageC, and the second to last shows the normalised path length without scalingL′

(Section 5.1).

6.3 Topological map

The topological map is implemented using the Graph class in LEDA1 [73]. However, the im-

plementation is not LEDA dependent, and other graph libraries can be used instead. A suitable

alternative is the open-sourced Boost graph library [4, 90]. Both LEDA and Boost libraries are

written in C++. Of course, there is always the option of writing your own graph library.

The graph library should at least provide the functions listed below. The list is included here to

illustrate what is required of the library, and to aid in selection of a suitable library, especially

if the topological coverage algorithm is to be implemented in a language different from C++.

1. Retrieve adjacent and incident nodes or edges.

2. Obtain properties such as degree of a node2, number of edges and nodes in graph, and if

the graph is empty.

1Version 3.7.1 is used for this thesis. A few years ago, the LEDA library had a free license for research use in
academic institutes. The newer versions are non-free only.

2The degree of a node is the number of edges incident with it.

120 Implementation

3. Alter existing graph by addition and deletion of nodes and edges.

4. Store extra data with nodes and edges.

The usefulness of the last item on the list, the ability to store extra data with nodes and edges,

may not be self evident. In robotics, the topological maps usually have information associated

with their nodes and edges. For example, the nodes might have information about the landmarks

they represent, such as sonar signatures [65] or panoramic images [106]; the edges might store

appropriate behaviours or control strategies for traversal [64]. Therefore, it is important for the

library to provide a mechanism for associating extra data of arbitrary types with graphs.

6.4 Robot controller

Based on current sensor inputs, and the internal representation (topological map), the robot con-

troller issues appropriate commands to the actuators. The purpose of the controller is to guide

the robot to carry out the topological coverage algorithm. The mechanism used to communicate

with the robot differs between simulation and the Khepera. With the simulated robot, commu-

nications are achieved through function calls. For the Khepera, the controller communicates

with the robot via a serial link.

The controller employs a hybrid deliberative/reactive architecture. This hybrid architecture

incorporates the deliberative reasoning and planning in symbolic AI with the responsiveness

of behaviour-based execution [24, 68]. The topological coverage algorithm is organised as a

finite state machine with three states (normal, boundary, travel). For each state, a different set of

behaviours is active. The behavioural control for each state is also implemented as a finite state

machine, which is a common way of implementing behaviour-based architectures in sequential

machines [61].

In the normal state, the robot moves in a zigzag path to cover the current cell. The state contains

two behaviours,forward and next strip. Their interaction is shown in Figure 6.9.Forward

moves the robot along the strip of a zigzag. When the robot encounters an obstacle in the front,

it has arrived at the end of a strip.Next stripguides the robot to move into the next strip of

the zigzag. It is composed of three sequential movements – turn 90o, move forward for a fixed

amount of time, and turn 90o again. This series of actions brings the robot into the beginning of

the next strip and faces the correct direction. If a landmark is encountered at any time during the

execution of the normal state, the controller moves onto the boundary state (see Section 4.1.1).

The boundary state guides the robot along a cell boundary. Its operation is carried out by three

behaviours, as shown in Figure 6.10. Theforward andwall follow behaviours move the robot

along the cell boundary for exploration. Every time the robot visits a landmark, it alternates

6.4 Robot controller 121

forward next
strip

finished

front obstacle

Figure 6.9: Following a zigzag path in the normal state.

turn
around

wall
follow

forward

travel
state landmark landmark

front obstacle

front obstacle
explored

explored

Figure 6.10: Behaviours for cell boundary exploration.

between the two states. This is because landmarks appearing in the middle of the strip arise

from obstacle segment topology changes. When the robot reaches the end of the strip, it checks

whether the boundary has been fullyexplored. If it has, the controller leaves the boundary state;

otherwise the robotturns aroundand explores the cell boundary in the other direction.

In the travel state, the robot follows a path that leads it from the current location to a chosen

uncovered cell. This path is generated from a search on the topological map. The behaviours

that guide the robot along this path are shown in Figure 6.11. The edges in the path are followed

using eitherwall follow or forward, depending on the edge type. When the robot arrives at the

next node in the path, it turns to face the appropriate direction (face direction). Then it embarks

on the edge in the path by choosing the appropriate control strategy. This continues until the

robot arrives at the destination node, when the controller returns to the normal state.

122 Implementation

wall
follow

forward

face
direction

normal
state

landmark

landmark

choose arrived

Figure 6.11: Behaviours guiding the robot to move along a path of nodes and edges in the travel state.

6.5 Summary

The development tools and implementation details described in this chapter serve as a link

between the theory presented in earlier chapters and the experimental results in the next chapter.

It explains how the ideas developed in this thesis are transformed into actual prototypes (on

simulated and physical robots).

The topological coverage algorithm is the result of an iterative development process. Other

than verifying the correctness of the algorithm, the experiments are also an integral part of the

development process of the algorithm itself. This iterative process is the reason behind the large

amount debugging help present in the simulation tools.

The information and details included in this chapter will also be of use to anyone wishing to

implement the topological coverage algorithm.

Any sufficiently advanced technology is indistinguishable from magic.

Arthur C. Clarke

7
Results and discussion

This chapter presents results from experiments designed to test the proposed topolog-

ical coverage algorithm. It begins with a description of the sensor detection tests in

Section 7.1. These tests assess the ability of common range sensors in detecting the

topology changes of events in the topological coverage algorithm. This is then followed by

qualitative analyses of results from both simulation and real robot coverage experiments in Sec-

tion 7.2. Section 7.3 discusses the use of zigzag as the coverage pattern in the topological

coverage algorithm. In Section 7.4, the two methods for creating composite images are com-

pared. The evaluation is done because the percentage coverageC is an important parameter for

the two performance metrics. The metrics are then used in Section 7.5 to analyse quantitatively

the experimental results first presented in Section 7.2. Section 7.6 explains how composite im-

ages can be created for robots that are not circular. Lastly, Section 7.7 tests the relationship

between complexity of environment and path length empirically.

7.1 Landmark Detection

Three types of range sensors commonly used in mobile robots were tested for their abilities to

detect landmarks in the topological coverage algorithm. They are laser scanner, ultrasonic trans-

ducers and infra-red proximity sensors. The tests on laser and sonar sensors were conducted

123

124 Results and discussion

Figure 7.1: B21r robot.

with the b21r robot in Figure 7.1. The laser scanner is a SICK model LMS-200 and is mounted

on the front of the b21r. For the experiments in this chapter, the resolution was set to 0.5◦. Each

scan returns 361 readings, thus covering a semi-circle in front of the robot. The sonar sensors

are SensComp 6500 modules. They are evenly distributed around the b21r and there are 24

of them in total. The infra-red sensor tests were done with the Khepera robot. The infra-red

sensors are Siemens SFH900s, and their positions on the Khepera are shown in Figure 6.2 on

Page 114. They return an integer between 0 and 1023 depending on the distance to the closest

obstacle (1023 being nearest).

Two sets of tests were carried out. The first set tests the ability to discover discontinuities on the

side of robots. This is used in the detection of split, end and shorten events at the sweep position

xi. It is also used to detect merge and shorten events at sweep positionxi+1. The second set of

tests examines the ability of the robot to detect a gap or opening in the front or back direction.

This is used to detect merge and lengthen events at sweep positionxi. It is also the only method

to detect combined split and merge events. This is because combined split and merge events

cannot be detected using odometry by comparing lengths of consecutive strips. In comparison,

all the other events can fall back to detection by odometry in case range sensing fails.

7.1.1 Discontinuity on side of robot

Figure 7.2(a) shows the experimental setup used to test the sonar and laser sensors on the b21r.

Two sets of bookcases were used to set up a series of obstacles for this experiment. The gap

between the two set of bookcases was approximately 80cm. The b21r was driven parallel to

the obstacles, in the direction shown in Figure 7.2(b). Laser and sonar sensor readings were

7.1 Landmark Detection 125

(a)

� � � � � � �
� � � � � � �
� � � � � � �

� � � � � � �
� � � � � � �
� � � � � � �

� � �
� � �
� � �

� � �
� � �
� � �

(b)

Figure 7.2: Experimental setup for testing topology changes on the side with the b21r.

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �

xi

xi+1

∆x

(a)

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �

xi

∆x

xi+1

(b)

Figure 7.3: (a) At the last strip before reaching the emerging obstacle. (b) At the first strip passing
below the disappearing obstacle.

recorded. The experiments were repeated 12 times, with the b21r at varying distances from the

obstacles.

In the first 4 experiments, the b21r was placed fairly closed to obstacles. The left edge of the

robot was about 20 to 30cm away from the obstacles. (The b21r has a diameter of 55cm). This

corresponds to strip positionxi in split, shorten and end events, where the robot is on the last

strip before the emerging obstacle blocks its path. This is illustrated in Figure 7.3(a). In merge

and lengthen events, this corresponds to strip positionxi+1, where the robot is on the first strip

to pass underneath the disappearing obstacle. This is shown in Figure 7.3(b).

Figure 7.4 plots the distances measured by the laser scanner from two of the experiments. The

measurements were recorded while the robot was moving along the path shown in Figure 7.2(b).

The plots superimpose readings from the 11 leftmost beam positions (5◦). It can be seen that the

laser scanner can detect the gap between the two bookcases for 7 consecutive time steps. This

126 Results and discussion

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

0 2 4 6 8 10 12 14 16

m
ea

su
re

d
va

lu
e

time step

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

0 2 4 6 8 10 12 14 16

m
ea

su
re

d
va

lu
e

time step

Figure 7.4: Distance to obstacles measured by the laser scanner on the b21r. The plots show mea-
surements from the 11 leftmost beam positions of the sensor. The robot was fairly close to
the obstacles. Distances were measured in millimetres.

confirms that changes in topology are large features and do not rely on detection from a single

specific location. The slight drop in measured distance within the gap was due to the edge of the

bookcase in the background behind the obstacles used for the experiments. Figure 7.5 shows

distances measured by sonar sensors from the same two experiments as before. The plots show

readings from the sonar sensor on the left of the b21r. It can be seen that sonar sensors had no

problem detecting the gap either.

The experiments were then repeated 4 times with the b21r placed slightly further away (about

50cm away). However, the distance between the robot and the obstacles remains smaller than

the diameter of the robot. Therefore, the robot is still on the last strip before the emerging

obstacle (Figure 7.3(a)), or the first strip after a disappearing one (Figure 7.3(b)).

7.1 Landmark Detection 127

200

300

400

500

600

700

800

900

1000

0 2 4 6 8 10 12 14 16

m
ea

su
re

d
va

lu
e

time step

(a)

100

200

300

400

500

600

700

800

900

1000

0 2 4 6 8 10 12 14 16

m
ea

su
re

d
va

lu
e

time step

(b)

Figure 7.5: Distance to obstacles measured by the ultrasonic sensor mounted on the left hand side
of the b21r. The robot was fairly close to the obstacles. Distances were measured in
millimetres.

128 Results and discussion

500

1000

1500

2000

2500

3000

0 2 4 6 8 10 12 14 16 18

m
ea

su
re

d
va

lu
e

time step

500

1000

1500

2000

2500

3000

0 2 4 6 8 10 12 14

m
ea

su
re

d
va

lu
e

time step

Figure 7.6: Distance to obstacles measured at about 50cm away with the laser scanner. The plots
show measurements from the 11 leftmost beam positions of the sensor. Measurements are
in millimetres.

Figure 7.6 plots the distances measured by the laser scanner from two of the experiments. The

plots superimpose readings from the 11 leftmost beam positions (5◦). The sonar sensor mea-

surements from the same experiments are shown in Figure 7.5. It can be seen that both the laser

and sonar range finders can detect the gap easily.

In the last 4 experiments, the b21r was placed even further away, at approximately 80cm from

the bookcases. As a result, the robot is now situated at one strip away from the cell boundary.

This is illustrated in Figure 7.8.

Figure 7.9 shows readings from the laser scanner from two of the experiments. Figure 7.10

shows readings from the sonar sensor from the same two experiments. Both sensors can still

7.1 Landmark Detection 129

400

500

600

700

800

900

1000

0 2 4 6 8 10 12 14 16 18

m
ea

su
re

d
va

lu
e

time step

400

500

600

700

800

900

1000

0 2 4 6 8 10 12 14

m
ea

su
re

d
va

lu
e

time step

Figure 7.7: Distance to obstacles measured at about 50cm away with the sonar sensor mounted on the
left of the b21r. Measurements are in millimetres.

130 Results and discussion

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �

xi

xi+1

∆x

(a)

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �

xi

xi+1

∆x

(b)

Figure 7.8: (a) At the second last strip before reaching the emerging obstacle. (b) At the second strip
passing below the disappearing obstacle.

detect the gap easily at this distance.

The experiments were repeated with the Khepera robot to test the infra-red proximity sensors.

Figure 7.11(a) shows the experimental setup used. A round plastic container and two square

blocks are used to set up two sets of obstacles. The Khepera was driven parallel to the obstacles,

in the direction shown in Figure 7.11(b). Two sets of experiments were carried out, at different

distances from the obstacles. Each set of experiments was repeated 4 times.

In the first four experiments, the Khepera was placed fairly close to the obstacles, at about 20mm

away. (The diameter of the Khepera is 53mm). This means the robot is on the strip nearest to

the cell boundary, as in Figure 7.3. Figure 7.12 plots the readings returned by the infra-red

sensor mounted on the left from two of these experiments. The first peak corresponds to the

circular plastic container, and the second one corresponds to the square blocks. The infra-red

sensor successfully detected the topology changes in all four experiments.

In the next four experiments, the Khepera was placed slightly further away at about 35mm from

the obstacles. The distance is still smaller than the diameter of the robot. Figure 7.13 shows the

infra-red sensor readings from two of the experiments. They show that the sensor successfully

detected the topology changes.

No experiments were done at distances two strips away from the cell boundaries. This is because

the diameter of the Khepera is larger than the reliable detection distance of the infra-red sensors

(40mm). This means that ifxi in Figure 7.3(a) (orxi+1 in Figure 7.3(b)) is between 40mm and

53 mm away from the obstacle, the infra-red sensors will not be able to detect the emerging (or

disappearing) obstacle. However, this does not imply that the discontinuity cannot be detected.

All the events that lead to discontinuities on the side can also be detected with strip length

comparisons with data collected from wheel encoders.

7.1 Landmark Detection 131

1000

1500

2000

2500

3000

3500

0 2 4 6 8 10 12 14

m
ea

su
re

d
va

lu
e

time step

500

1000

1500

2000

2500

3000

3500

0 2 4 6 8 10 12 14 16

m
ea

su
re

d
va

lu
e

time step

Figure 7.9: Distance to obstacles measured at about 80cm away with the laser scanner. The plots
show measurements from the 11 leftmost beam positions of the sensor. Measurements are
in millimetres.

132 Results and discussion

800

820

840

860

880

900

920

940

960

980

1000

0 2 4 6 8 10 12 14

m
ea

su
re

d
va

lu
e

time step

800

820

840

860

880

900

920

940

960

980

1000

0 2 4 6 8 10 12 14 16

m
ea

su
re

d
va

lu
e

time step

Figure 7.10: Distance to obstacles measured at about 80cm away with the sonar sensor mounted on
the left of the b21r. Measurements are in millimetres.

(a)

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �

� �
� �
� �
� �
� �

(b)

Figure 7.11: Experimental setup for testing topology changes on the side with the Khepera.

7.1 Landmark Detection 133

0

200

400

600

800

1000

0 5 10 15 20 25 30 35 40

m
ea

su
re

d
va

lu
e

time step

0

200

400

600

800

1000

0 5 10 15 20 25 30 35 40

m
ea

su
re

d
va

lu
e

time step

Figure 7.12: Distance to obstacles measured by the infra-red proximity sensor mounted on the left hand
side of the Khepera. The robot was about 20mm away from the obstacles.

134 Results and discussion

0

100

200

300

400

500

600

0 5 10 15 20 25 30

m
ea

su
re

d
va

lu
e

time step

0

100

200

300

400

500

600

0 5 10 15 20 25 30

m
ea

su
re

d
va

lu
e

time step

Figure 7.13: Distance to obstacles measured by the infra-red proximity sensor mounted on the left hand
side of the Khepera. The robot was about 35mm from the obstacles.

7.1 Landmark Detection 135

(a)

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

(b)

Figure 7.14: Experimental setup for testing topology changes in the front with the b21r.

7.1.2 Topology changes in front of robot

Figure 7.14(a) shows the experimental setup used with the b21r. Two partitions were used to

create an opening of about 80cm wide. In the experiments, the b21r was driven towards the

opening, as in Figure 7.2(b). While the robot was moving towards the partitions, laser and

sonar sensor readings were recorded. Four of these experiments were carried out.

The experimental setup corresponds to strip positionxi in combined merge/split events. This

is illustrated in Figure 7.15(a). In merge and lengthen events, the situation is slightly different

from the experimental setup. This is because only one of the two obstacles are present, as in

Figure 7.15(b). However, the sensor tests are still relevant as detection of merge and lengthen

events atxi relies on partial presence of obstacles in front of the robot. The emergence of

another obstacles in proximity merely reduces the width of the opening.

When the robot is facing such an opening, some of the front range sensors will detect a much

longer distance to obstacle than others. This is illustrated in Figure 7.16. Sensors pointing

towards the opening will return longer distance readings than those facing the obstacles next to

the opening. Figure 7.17 shows 3 sets of readings from the laser scanner as the b21r approached

the partitions in Figure 7.14. The opening was in front of the robot, slightly towards the right

hand side. As a result, there was a large difference in measured distances between the left and

right fronts. This difference remained as the robot moved closer to the partitions.

Figure 7.18 shows distances measured by the laser scanner in two different experiments with

the b21r. The values were recorded while the robot followed the path shown in Figure 7.14(b).

For each graph, five sensor readings from beam positions 10◦ on the right of the centre front are

plotted, together with five from the left. It can be seen that the distances measured on the right

136 Results and discussion

� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �

∆x

xi

xi+1

(a)

� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �

∆x

xi+1

xi

(b)

Figure 7.15: Moving towards an opening on the side boundary in (a) combined merge/split event, (b)
merge and lengthen events.

� �
� �
� �
� �
� �
� �
� �
� �
� �

�
�
�
�
�
�
�
�
�

� �
� �
� �
� �
� �
� �
� �
� �
� �

�
�
�
�
�
�
�
�
�

Figure 7.16: An opening in front of the robot is indicated by a large difference in measured distances.

7.1 Landmark Detection 137

Figure 7.17: Laser sensor readings as the b21r moved towards and opening.

138 Results and discussion

front of the robot are much larger than those from the left front. Therefore, the opening was

successfully detected.

Figure 7.19 shows distances measured by sonar sensors as the robot moved towards the obsta-

cles. For each graph, measurements from the first sensors to the left and right of the centre front

are plotted. The distance measured by the left front sensor stayed at the threshold (1000mm). In

comparison, the distance measured by the right front sensor dropped as the robot moved closer

to the partitions. In other words, the sensor on the right front detected the obstacle, while the

one on the left front did not. Therefore, the opening was successfully detected by the sonar

sensors.

The experiment was repeated with the Khepera to test the infra-red proximity sensors. The

experimental setup was the same as the one shown in Figure 7.14(b). Two square blocks were

used to create the opening required. Four experiments were carried out.

Figure 7.20 shows the results from two of the experiments with the Khepera. For each graph,

measurements from the sensors on the immediate left and right of the centre front are plotted. As

the robot moved closer to the obstacles, the values returned by the right front sensor increased,

indicating the appearance of an obstacle. On the other hand, the left front sensors never detected

any obstacles throughout the experiments. In other words, the infra-red sensors successfully

detected the opening between the obstacles.

7.2 Coverage Experiments

7.2.1 Simulation

To test the correctness of the proposed topological coverage algorithm, 11 environments popu-

lated with various standalone obstacles were created. The obstacles can be located either in the

middle of the region or put against the boundary. The complexity of these environments ranges

from 6 to 14 free space cells. Environments with standalone obstacles are the norm in testing

coverage algorithms [8, 23, 30].

Figure 7.21 shows three screenshots from simulation with one of these normal environments.

This figure shows how the topological map is incrementally constructed as the environment is

being covered. Notice that the horizontal edges of the topological map correspond to the cell

boundaries of the decomposition. Also, some of the vertical edges cross over the obstacles.

This is because they are simply drawn as straight lines linking their incident nodes. The vertical

edges merely represent the side boundaries of cells in the decomposition, and there are no

restrictions on possible shapes of these boundaries.

7.2 Coverage Experiments 139

1000

2000

3000

4000

5000

6000

7000

0 5 10 15 20 25 30

m
ea

su
re

d
va

lu
e

time step

1000

2000

3000

4000

5000

6000

7000

0 5 10 15 20 25 30 35 40 45

m
ea

su
re

d
va

lu
e

time step

Figure 7.18: Distances measured by the laser scanner as the b21r moved towards a set of partitions.
Values from 5 beam positions 10o off the centre front on both sides are plotted. Distances
to obstacles measured by beams on the right front are much larger than those on the left.

140 Results and discussion

200

400

600

800

1000

0 5 10 15 20 25 30 35 40

m
ea

su
re

d
va

lu
e

time step

200

400

600

800

1000

0 5 10 15 20 25 30 35

m
ea

su
re

d
va

lu
e

time step

Figure 7.19: Distances to obstacles measured by sonar sensors as the b21r moved towards a set of
partitions. The graphs show measurements from the sonar sensors on the immediate left
and right of the front one. The two sensors are mounted at 15o off the centre front.

7.2 Coverage Experiments 141

0

200

400

600

800

1000

0 1 2 3 4 5 6 7 8 9

m
ea

su
re

d
va

lu
e

time step

0

200

400

600

800

1000

0 1 2 3 4 5 6 7 8

m
ea

su
re

d
va

lu
e

time step

Figure 7.20: Distances to obstacles measured by infra-red sensors as the khepera moved towards two
square blocks. The graphs show measurements from the two infra-red sensors mounted
on the front (see Figure 6.2 on page 114).

142 Results and discussion

Figure 7.21: Coverage of one of the normal environments in simulation.

7.3 Zigzag as coverage pattern 143

Figure 7.22 shows the coverage of another normal environment. Here two of the obstacles are

put next to the boundary. As a result, the shape of the external boundary is altered.

The topological coverage algorithm was also tested in environments that differs from the normal

ones. Figure 7.23 shows the coverage of a spiral. Figure 7.24 has a non rectilinear boundary.

Figure 7.25 shows two office-like environments with long thin obstacles representing partitions.

All of these were completely covered.

7.2.2 Real Robot

The correctness of the topological coverage algorithm was also tested with the Khepera robot.

Four different environments were used. The environment in Figure 7.26(a) has a rectilinear

boundary and no free standing obstacles. The environment in Figure 7.26(b) has a rectangular

boundary and one square obstacle. The environment in Figure 7.26(c) has a rectangular bound-

ary, one circular and one elliptical obstacle. Lastly, the environment in Figure 7.26(d) has a

non-rectilinear boundary and a circular obstacle.

The pictures in Figure 7.26 are composite images displaying coverage results from the experi-

ments. The composite images have been rotated so the robot always started at the top left corner

and faced right. Moving on an average of 0.012 m/s (1.2 cm/s), the robot takes approximately

5 minutes on average to cover the environments inside the tray.

The output of the Hough accumulator used in evidence gathering contains a list of centres and

radii of the robot throughout the video sequence. A composite image that shows the area cov-

ered (like the ones in Figure 7.26) is created by drawing a series of filled circles corresponding

to the list is drawn over the reference image. If only the centres are plotted, a composite image

showing the path taken by the robot is created instead. Examples of this are shown in Fig-

ures 7.27. These images show the route the robot took in the experiments. It can be seen that

the strips in the zigzag path were not perfectly horizontal. However, the robot still found and

covered all the free space cells.

7.3 Zigzag as coverage pattern

Compared to other online coverage algorithm based on cell decomposition, the proposed topo-

logical coverage algorithm employs a more general technique for boundary detection. This is

because cell boundaries are detected through topology changes, which are large features. As a

result, a robot with range sensors can detect new cells all around itself, not just on its sides.

Existing cell decomposition based coverage algorithms require wall following on both side

144 Results and discussion

Figure 7.22: Coverage of another normal environment in simulation.

7.3 Zigzag as coverage pattern 145

Figure 7.23: Coverage of a spiral.

Figure 7.24: Environment with a non-rectilinear boundary.

146 Results and discussion

Figure 7.25: Two office-like environments with long thin obstacles.

7.3 Zigzag as coverage pattern 147

(a) (b)

(c) (d)

Figure 7.26: Coverage with the Khepera robot.

148 Results and discussion

(a) (b)

(c) (d)

Figure 7.27: Path taken by the Khepera robot.

7.4 Evaluating composite images 149

(a) (b)

Figure 7.28: Environment with a gap on the right wall that falls between strips of the zigzag, but large
enough for the robot to enter: (a) approaching the opening, (b) gap found and entered.

boundaries to detect openings such as the ones in Figure 2.24 on Page 26. In topological cov-

erage algorithm, this kind of opening is handled as a combined merge and split event. Sec-

tion 7.1.2 demonstrates the ability to detect this event with different range sensors.

Figure 7.28(a) shows the simulated robot approaching a gap that lies between consecutive strips

of the zigzag. The robot detects the gap while moving towards the side boundary. When it

arrives at the side boundary, operation switches to boundary state. The robot enters the gap to

continue exploring the new cell boundary (Figure 7.28(b)). In the figure, the inter-strip distance

∆x has been increased. This is because normally consecutive strips are on consecutive rows

in the uniform grid of the simulated environment. Therefore, there are no gaps between strips.

Only by increasing the inter-strip distance∆x, can an environment with an opening in the side

boundary that lies between consecutive strips can be created.

As the proposed topological coverage algorithm does not require a coverage pattern that in-

cludes retracing, the path length required to cover a given environment is shorter than existing

cell decomposition based online algorithms.

7.4 Evaluating composite images

Two methods for creating composite images are introduced in this thesis. The first method,

image subtraction, is efficient and simple to perform, but suffers from two major disadvantages.

Firstly, it is not particularly reliable as artefacts frequently appear in the background subtraction

process; this is because of environmental factors such as lighting. Additionally, in the case

of a tethered robot (such as the Khepera) the cable motion is computed as part of the final

composite image. The second method, evidence gathering, includes more post-processing after

the subtraction step. The images are edge detected and then a Hough transform is used to find

the most likely match of the robot in each frame. As a result, evidence gathering is very tolerant

to different lighting conditions. However, the Hough transform is computationally intensive.

150 Results and discussion

(a) (b)

(c)

Figure 7.29: Frames taken under good lighting condition. (a) Reference background image. Composite
image created using (b) image subtraction, (c) evidence gathering.

Therefore, the two methods are a tradeoff between speed and accuracy.

Figure 7.29 shows composite images created from frames taken on a sunny day with good

lighting conditions. Figure 7.29(b) is created using image subtraction, and Figure 7.29(c) with

Hough transform. The good lighting produces good contrast between the robot and the back-

ground. Therefore, the resultant composite images created from the two methods look similar.

Figure 7.30 shows composite images created from frames taken on a rainy day. With poor

lighting conditions, it can be seen that the contrast in the original images (Figure 7.30(a)) is

a lot lower. Figure 7.30(b) is created with image subtraction, and Figure 7.29(c) is produced

with Hough transform. It is obvious that the resultant composite image created by evidence

gathering is better. For example, in the composite image created using subtraction, areas that

7.4 Evaluating composite images 151

(a) (b)

(c)

Figure 7.30: Frames taken under poor lighting condition. (a) Reference background image. Composite
image created using (b) image subtraction, (c) evidence gathering.

the robot could not possibly reach are classified as covered, like the boundary of the tray or on

top of the obstacles.

The tiny gaps present in the top part of the tray in Figure 7.30(b) are artefacts from the image

subtraction method. Examining the original frames showed that the region was properly covered

by the robot. This occurs because the robot extracted using image subtraction sometimes is

incomplete. This effect is illustrated in Figure 7.31. Figure 7.31(b) shows the result of extraction

using image subtraction. The robot is incomplete and does not appear solid. In comparison,

Hough transform does not suffer from this problem, as seen in Figure 7.31(c).

To evaluate the two methods for creating composite images quantitatively, a sequence of 100

frames was hand marked to provide the ground truth. One image from this hand marked se-

152 Results and discussion

(a) (b)

(c)

Figure 7.31: (a) Extraction from a single frame. (b) Robot extracted using image subtraction appears
“porous”. (c) Hough transform does not suffer from this effect.

7.4 Evaluating composite images 153

Figure 7.32: A sample image from the hand marked sequence. The position of the robot is coloured
manually.

Mean Std. dev. Combined

Subtraction 269.81 45.80 740

Hough transform 155.18 41.12 594

Table 7.1: Misclassification (in number of pixels) compared with a sequence of hand marked images.
There are 100 frames in the image sequence. The table shows the mean number of mis-
classified pixels, its standard deviation, and the combined total in a composite image.

quence is shown in Figure 7.32. The position of the robot in each frame from the hand marked

sequence was then compared to that extracted with background subtraction and Hough trans-

form.

All pixels in the images belong to one of two classes - the robot or the background. Comparison

was done by tallying the number of pixels classified into the wrong category. For example, if a

pixel is classified as being part of the robot by the Hough transform (or background subtraction),

but belongs to the background in the hand marked frame, then it is a wrong classification;

similarly, a pixel classified as part of the background by Hough transform, but belonging to the

robot in the hand marked frame is also a misclassification.

Table 7.1 shows the results of comparison. It can be seen that background subtraction has a

higher average number of misclassified pixels. This is also evident in the difference images

in Figure 7.33, which highlights the misclassified pixels in a frame. The last column in the

table shows the total number of misclassified pixels in the composite images created with all

100 frames. The difference composite images are shown in Figure 7.34. The results in Ta-

ble 7.1 prove that Hough transform is a more accurate method for extracting robot positions

from images.

A disadvantage of the Hough transform is its high computational cost compared to the image

subtraction method. For a sequence of around 3000 frames, image subtraction takes only a few

154 Results and discussion

(a) (b)

Figure 7.33: Misclassified pixels are coloured to highlight the differences between the hand marked
image and the robot position extracted using (a) image subtraction, (b) Hough transform.

(a) (b)

Figure 7.34: Misclassified pixels in the composite image of 100 frames using (a) image subtraction, (b)
Hough transform.

7.5 Performance Metrics 155

Complexity Path lengthL Std. dev.

Normal (11) 6 - 14 1.08 0.04

Spiral 9 1.12 -

Irregular Boundary 4 1.03 -

Office (2) 9, 13 1.10 0.03

Table 7.2: Results from simulation for the normal, spiral, irregular-shaped and office-like environments.
The complexity refers to the number of free space cells. The path lengths listed for normal
and office are the averages of all environments in the category.

minutes, while evidence gathering takes several hours. However, since performance metrics are

used offline for data analysis, the speed of the evidence gathering method is still acceptable as

processes can be left running on a computer cluster overnight.

There are two possible ways to improve computation efficiency. First, the current implementa-

tion used Python, a scripting language. The speed of computation may be improved by imple-

mentation using a compiled language such as C. Secondly, in the current implementation, three

parameters (x,y and radius) are used for model fitting with the Hough accumulator. Since the

robot size does not vary much from one side of the tray to the other side, the dimension of the

model can be reduced by varying only the centre of the model (x,y). However, neither method

will make Hough evidence gathering real time.

7.5 Performance Metrics

In this section, performance metrics proposed in this thesis will be used to evaluate the results

from simulated and real robot experiments quantitatively.

7.5.1 Simulation

All 15 simulated environments tested were fully covered, with percentage coverageC = 100%.

This is calculated using (5.4) on page 101. Since the simulated robot is programmed to keep

a minimum distance of one cell from obstacles, cells immediately next to obstacles are non-

reachable, and thus ignored in calculating the percentage coverageC. Table 7.2 summarises the

path length metricL for these experiments. The complexity in the Table refers to the number of

free space cells in the environment.

Icking et. al.proved an upper bound of 2N for complete coverage paths for unknown grid maps

with N cells [56]. Using (5.5) on Page 102, the path lengthL for the upper bound can be found:

156 Results and discussion

Average Std. dev.

Subtraction 92.9 2.94

Hough evidence gathering 91.2 1.13

Table 7.3: Coverage percentages C for experiments with the Khepera.

L =
number of moves

number of reachable grid cells×C

=
2N

N × 1
= 2

Therefore, the path lengthsL achieved in the simulated experiments are all within the theoretical

upper bound.

7.5.2 Real robot experiments

Percentage coverage

The amount of coverage achieved in an experiment is estimated from its composite image using

pixel counts. Before doing a pixel count, the composite image is de-skewed and cropped, and

the obstacles in the image are coloured. Figure 7.35 shows the result of such processing on the

composite images. The obstacle is coloured blue because none of the original colours present

(red, white and yellowish green) have blue in their RGB space.

Table 7.3 summarises the experimental results over 9 experiments. The figures in the table

show the topological coverage algorithm performed the coverage tasks successfully. It can

be seen that the average percentage coverageC calculated using image subtraction is slightly

higher. This is evident from the composite images in Figures 7.30 and 7.35. Artefacts occurring

from misclassification of background as part of the robot are more pronounced than incomplete

extraction of the robot. However, this might not always be the case because it is not possible to

predict the distribution of artefacts arising from the background subtraction process.

Path length

To calculate the path length metricL defined in (5.3) on Page 101, three parameters – coverage

C, actual distance travelled‖Pa‖ and minimal path distance‖Pm‖ – are needed. The percentage

coverageC is already calculated for the effectiveness metric. The actual distance travelled‖Pa‖

7.5 Performance Metrics 157

(a) (b)

(c) (d)

Figure 7.35: Before conducting a pixel count to estimate the percentage coverage, composite images
are de-skewed, cropped and false coloured. (a) and (b) are created using image subtrac-
tion and evidence gathering from the same video sequence. (c) and (d) are from another
video sequence.

158 Results and discussion

Figure 7.36: The distance between consecutive strips can be found using a pair of images from the
captured video sequence. The Hough accumulator returns the centre and radius of the
robot extracted from the image. Since the real world radius of the robot is also known, the
real world distance between the two centres can be calculated.

Average Std. dev.

un-scaled with percentage coverage (L′) 0.99 0.04

subtraction 1.19 0.047

Hough evidence gathering 1.22 0.037

Table 7.4: Path length metrics for experiments with the Khepera.

by the robot is calculated using odometry information from the wheel encoders on the Khepera.

The minimal path‖Pm‖ depends on both the total area of the environment and the inter-strip

distance∆x. The total area can be obtained easily with a measuring tape. To estimate the inter-

strip distance∆x, I use the list of radii and centres of the model fitted by the Hough accumulator.

The inter-strip distance∆x is measured empirically because the Khepera is commanded to move

between strip by turning on the motor for a specific amount of time. Two images from the ends

of consecutive strips are used, as illustrated in Figure 7.36. The distance between the centres of

the robot in the two images gives the inter-strip distance∆x in pixels. Since the radius of the

robot is known both inside the image (from the radius of the model fitted) and in real life, the

real world distance between the two strips can thus be calculated. This procedure was repeated

with multiple pairs of images. It is found that the inter-strip distance∆x is the same throughout

all the experiments, with only a variance of 1 pixel.

Table 7.4 shows the path length metric for the experiments carried out. The first row is the un-

scaled path length measureL′ = ‖Pa‖

‖Pm‖
in (5.2) on Page 101. The averageL′ is smaller than unity,

which implies that the actual pathPa is shorter than the minimal pathPm. This is of course

impossible. It illustrates the importance of scaling the path length with the actual percentage

coverageC achieved to obtain a meaningful metric. The next two rows are the path length

metricL in (5.3), scaled with the percentage coverageC obtained from pure image subtraction

and Hough evidence gathering respectively. The path length is now over unity, which means

that the actual path taken is longer than the minimal path.

The path lengthsL from experiments with the Khepera are longer than all the environments

tested in simulations. There are two reasons behind this increase in path length. Firstly, the

7.6 Composite image for non-circular robots 159

percentage coverageC is below the 100% achieved in simulation. According to (5.3), a cov-

erageC below unity will increase the path length metricL. Secondly, not all free space cells

can be covered by an integer number of strips. In other words, the height of a free space cell

may not be an integer multiple of the inter-strip distance∆x. As a result, the last strip in a free

space cell maybe closer to the previous strip then normal. This can be seen at the bottom of

Figure 7.27(b).

7.6 Composite image for non-circular robots

To extract a non-circular robot using Hough transform, a different model from the one used

in Algorithm 5.1 on Page 107 is required. For example, for the B21r robot in Figure 7.37, an

ellipse would be used as a model for the robot. The centres of the elliptical model fitted was

drawn over each image in Figure 7.37. Note that the cylindrical robot does not appear circular

because the camera is not mounted directly above the environment. If pure image subtraction is

used to create the composite images, no changes are required because the method is not model

based.

To extract an odd shaped robot or a tool carried by a robot, a marker has to be used. With

Hough evidence gathering, a model is fitted for the marker, not the robot itself. With the image

subtraction method, the entirety of the robot is extracted and centres are never found. This

means that image subtraction cannot be used to create composite maps for coverage with tools

that present partial views of the robot. In comparison, evidence gathering can fit a model to find

the position of the tool instead of the robot position.

7.7 Path lengthL and complexity of environment

Figure 7.38 shows a plot of the path length metricL against the number of free space cells for

the 15 environments in Table 7.2. The graph shows that environments with the same number of

free space cells are not covered with the same path lengthL. For example, the path lengthsL

for the four environments with 9 free space cells range from 1.03 to 1.12. This difference arises

because the re-coverage needed to completely cover an environment depends on the layout

of the obstacles. However, it can be seen that there is a trend of increasing path length with

an increase in the number of free space cells. This is because more travelling is required in

environments with more free space cells.

The section investigates empirically the relationship between path length and the number of

free space cells. Five simulated environments were created. The environments were essentially

160 Results and discussion

Figure 7.37: Extracting the location of a B21r robot using Hough evidence gathering. The white dots
correspond to where the centres are found.

1.02

1.04

1.06

1.08

1.1

1.12

1.14

4 6 8 10 12 14

pa
th

le
ng

th
L

number of free space cells

+

+

+

+

+

+
+

+
+

+

+
+

+

+

+

Figure 7.38: Path length L vs number of free space cells in random environments.

7.7 Path lengthL and complexity of environment 161

Figure 7.39: Simulated environments used to study effect of number of free space cells on path length
L.

identical apart from the number of obstacles present. Rectangular obstacles were placed in a

regular fashion as shown in Figure 7.39. The five environments have 2 to 10 obstacles, creating

5 to 21 free space regions. Results from these experiments are plotted in Figure 7.40. With

nearly identical environments, the path lengthL appears to increase linearly with the number of

free space regions.

The reason behind this linear increase can be explained using Figure 7.41. Consider the envi-

ronment in Figure 7.41(a). Let’s assume that the free space cells are covered in the sequence

shown in the diagram. Also assume that the travel required to get from cella and cellb is ta−b

in length. Then the total travel required in Figure 7.41(a) is

T = t1−2 + t2−3 + t3−4

162 Results and discussion

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

1.18

4 6 8 10 12 14 16 18 20 22

pa
th

le
ng

th
L

number of free space cells

+

+

+

+

+

Figure 7.40: Path length L vs number of free space cells in environments with identical layouts.

2

1

3

4

(a)

1

2 3

4

5 6

7

A

B

(b)

Figure 7.41: The two environments are essentially identical other than the number of obstacles present.

The environment in Figure 7.41(b) is essentially the same as that in Figure 7.41(a), but has two

obstacles. Another way to view this is that the new environment contains two blocks — A and

B. The two blocks are of the same configuration and share free space cell number 4. The total

travel required is

T = (t1−2 + t2−3 + t3−4) + (t4−5 + t5−6 + t6−7)

= (t1−2 + t2−3 + t3−4) + (t1−2 + t2−3 + t3−4)

= 2× (t1−2 + t2−3 + t3−4)

In summary, both the layout and the number of obstacles affect the lengthL of a coverage path.

With more free space cells, there is an increase in the number of times the robot needs to move

7.8 Summary 163

between cells. However, the distance the robot need to travel to get from one cell to another

depends on the placement of obstacles in the environment.

7.8 Summary

The landmark detection experiments show that events in the topological coverage algorithm are

easily and accurately detected by range sensors. The tests also confirm that landmarks are large

features that appear across multiple time steps.

Coverage experiments in simulation tested the correctness of the proposed topological cover-

age algorithm. The tests confirm that the algorithm can correctly and completely cover un-

known environments, using a partial topological map created during the coverage process. The

experiments also show that the topological coverage algorithm can handle a wider variety of

environments than previous cell decomposition based coverage algorithms. This includes non-

polygonal obstacles (not possible in boustrophedon decomposition andCCR) and obstacles with

surfaces parallel to the sweep line (not possible in Morse decomposition).

In addition, sensor tests and simulation experiments show that unlike existing online cell de-

composition based coverage methods, the topological coverage algorithm does not require wall

following on the side boundaries of cells. Therefore, a shorter coverage pattern that does not in-

clude retracing can be used. The overall coverage path generated from the topological coverage

algorithm is thus shorter compared to existing algorithms.

Tests on the Khepera robot empirically demonstrate that the proposed algorithm is indeed viable

under real, inexact conditions with sensor and actuator errors.

Accuracy of the composite map used in the proposed performance metrics was compared with

a hand marked sequence of 100 frames. Hough evidence gathering was found to be the better

method for extracting positions of the robot in a video sequence. The performance metrics were

then used to evaluate the simulated and real robot experiments empirically. In the simulated

experiments, all environments were completely covered (ieC = 100%), with an average path

lengthL of 1.08. In the real robot experiments, the average coverageC was 91.2%, with an

average path length of 1.22. The path lengthL achieved in both real and simulated experiments

was lower than the upper bound of 2 proved by Ickinget. al..

164 Results and discussion

The fool doth think he is wise, but the wise man knows himself to be a
fool.

William Shakespeare, “As You Like It”, V.i.31

8
Future Work and Conclusions

8.1 Future work

8.1.1 Tethered robot

Slice decomposition is defined for both free-moving and tethered robots. However, the current

simulation environment can only handle free-moving mobile robots. Therefore, an obvious area

for future development is to add support for tethered robots in the simulation. This extension

would allow development and testing of the online topological coverage algorithm with such

restricted movement.

One addition required to the simulation engine is the calculation of whether a robot can reach

a target location given its present location and the configuration of its tether. A visibility graph

can be used for this purpose. It allows for rapid calculation of the minimum length of the

tether between the anchor point and the robot, around a given set of obstacles. This use of the

visibility graph is slightly different from its normal use in navigation [66] to find the shortest

path. This difference is illustrated in Figure 8.1. In Figure 8.1(a), the shortest path between the

robot and the anchor point is highlighted. However, if the robot moves between the obstacle

to reach the current point, the minimum tether length required to reach the current location is

actually the distance shown in Figure 8.1(b). This is because the tether is “tangled” between

165

166 Future Work and Conclusions

robot

anchor

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

(a)

robot

anchor

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

(b)

Figure 8.1: A visibility graph. (a) Shortest path between robot and anchor point. (b) Minimum tether
length to reach current location if robot passes between the obstacles. This is different from
the shortest path because the tether is ”tangled” between the obstacles.

the obstacles. To determine whether the robot can reach a certain location, the minimum tether

length is compared with the actual tether length.

8.1.2 Simultaneous localisation and coverage (SLAC)

Although topological maps are tolerant to errors in pose estimation, the performance of the

coverage operation is still affected. This is because the amount of coverage achieved within a

cell is dependent on the direction of the zigzag. Therefore, incorporating localisation correction

within the framework will improve coverage performance.

Recent advances in SLAM (simultaneous localisation and mapping) have greatly improved mo-

bile robot localisation. SLAM uses statistical techniques to correct the robot’s pose (position

and orientation) estimation. By adapting existing SLAM methods to coverage navigation, lo-

calisation in the topological coverage algorithm can be improved. Of particular interests are

SLAM techniques designed for topological maps, such as the work on Generalised Voronoi

graph by Choset and Nagatani [31], and the hybrid topological map with laser signatures (sig-

natures stored with the nodes) by Tomatiset. al.[96].

8.2 Conclusions 167

8.1.3 Multi-robot coverage

Another interesting extension is to develop a multi-robot version of the topological coverage al-

gorithm. For small domestic environments, it is more appropriate to use a single robot solution.

For large scale foraging and demining, a multi-robot team could significantly shorten the time

required to finish the task.

The major issue here will be the coordination of the robot team to perform this complex, global

task (mapping and complete coverage). Simply increasing the number of robots in the team

does not improve efficiency of achieving the operational goal.

There are three main approaches to coordinating multi-robot teams — fully centralised, fully

distributed and auction/negotiation-based [34]. In fully distributed frameworks [43, 83], robots

do not explicitly work together, but group-level cooperation behaviour emerges from their inter-

action with each other and the world. This type of architecture is popular in the field of swarm

robotics. Since the effort of the team is not coordinated, complete coverage cannot be guaran-

teed until one member of the team has fully covered the environment. Thus a fully distributed

approach is not suitable for this application.

In a fully centralised multi-robot team, a single robot or central computer acts as the leader of

the team. Team members report their findings and status to the leader. The leader is completely

responsible for planning the actions of all team members. A fully centralised architecture will be

the easiest way to implement a multi-robot version of the topological coverage algorithm. This

is because a single topological map can be maintained by the leader. This type of architecture is

good for a small robot team, but does not scale well with increases in team size. The bandwidth

and computational requirements of the leader grow very rapidly as the number of robots in the

team increases. The leader also represents a single point of failure.

The most common approach to coordinating multi-robot teams is the auction/negotiation-based

architecture [47, 112]. Here, tasks are traded among team members, but the individual robots

are responsible for their own planning. Communications are limited to offers, bids and awards

of tasks. To implement the topological coverage algorithm into an auction-based framework,

further work needs to be done to find an appropriate task decomposition scheme, a suitable cost

function and a negotiation protocol.

8.2 Conclusions

Topological maps represent features in the environment using topological relationships between

landmarks. This is similar to the way animals represent their spatial environments [77, 82].

168 Future Work and Conclusions

Topological maps are robust against sensor and odometry errors because only a global topolog-

ical consistency, rather than a metric one, needs to be maintained [94]. However, due to their

qualitative nature, it is difficult to store coverage information in a topological map. This is be-

cause nodes and edges in the map do not correspond to specific locations in space. This thesis

tackles the representation problem by embedding a cell decomposition, called slice decomposi-

tion, within the topological map. This is achieved by using landmarks in the topological map as

cell boundaries in slice decomposition. As a result, even though individual nodes in the topo-

logical map are not associated with specific areas of space, a combination of nodes now defines

a region (a cell) bounded by obstacles.

Although the starting point of this thesis is to investigate coverage with landmark-based topo-

logical maps, the method proposed ultimately creates a cell decomposition similar to the split

and merge concept in boustrophedon decomposition [30]. However, the work on boustrophe-

don decomposition is conceptual in nature. It does not provide a detailed algorithm for the

decomposition, nor does it define the criticality precisely. It is also unclear if, or how, concave

obstacles are handled. Lastly, boustrophedon decomposition is defined for known environments

only.

Slice decomposition,CCR [23] and Morse decomposition [8] all extend the use of split and

merge events to unknown environments.CCR is different in that it is designed for contact

sensing robots operating in rectilinear environments. Similar to slice decomposition, Morse

decomposition is for range sensing robots covering general unknown environments. The differ-

ence between Morse decomposition and slice decomposition is in the choice of cell boundaries.

Morse decomposition uses surface gradients of obstacles as cell boundaries. An event occurs

when a surface gradient is perpendicular to the sweep line. As obstacles parallel to the sweep

line are non-differentiable, rectilinear environments cannot be handled by Morse decomposi-

tion. In comparison, slice decomposition uses topology changes in segments to define cell

boundaries. Due to the use of simpler landmarks, slice decomposition can handle a larger va-

riety of environments than Morse decomposition, including ones with polygonal, elliptical and

rectilinear obstacles.

Moreover, as landmarks are large features, they can be easily detected via range sensor thresh-

olding. As a result, events can be detected from all sides of the robot. This is confirmed with

the landmark detection tests in Section 7.1. In comparison, events in Morse decomposition can

only be detected if the critical point on the obstacle is closest to the robot than any other point

on the obstacle. This is due to the difficulty in detecting surface gradients. Therefore, an U-

shaped coverage pattern that includes wall following on both side boundaries is used to cover

individual cells. This U-shaped pattern includes retracing. The topological coverage algorithm

can use the simpler zigzag pattern for covering individual cells. Without any retracing in the

coverage pattern, the topological coverage algorithm generates shorter, and thus more efficient,

8.2 Conclusions 169

coverage paths.

It is important to have a quantitative measure on how well an algorithm performs. While there

are metrics that measure the performance of coverage experiments in simulation, there are no

satisfactory ones for real robot tests. The only existing metric for real robot experiments is

the coverage factor [22]. However, it is a poor measure of both effectiveness and efficiency.

Thus, this thesis proposed two performance metrics for evaluating coverage experiments. The

metrics are for both simulation and real robot experiments. The methods used to extract data

needed are robot platform independent. The first metric is percentage coverage, which measures

the effectiveness of an experiment. In simulation, this is the percentage of grid cells covered

(same as the one used by Gabriely and Rimon in [45]). In real robot experiments, a composite

image of the experiment is created using computer vision techniques. Then, the percentage

coverage is estimated using the number of pixels the robot has appeared in the composite image.

The second metric measures the efficiency of the experiment in path length. Since finding the

optimal coverage path is an NP-hard problem, the concept of minimal path is introduced. The

minimal path is the shortest coverage path for a mobile robot that can teleport with no cost

associated with the teleport operation. The actual path taken by the robot is normalised against

the minimal path and the percentage coverage. In simulation, the path lengths are measured in

number of grid cells. This metric is an improvement over the use of repeatedly covered cells

by Gabriely and Rimon because it takes into account multiply covered cells and actual area

covered. In real robot experiments, the actual path length is taken from wheel encoder readings;

while the minimal path is estimated using the area of the environment and the diameter of the

robot.

The two performance metrics are applied to results from both simulated and real robot exper-

iments. In simulation tests, 100% coverage was achieved for all experiments, with an average

path length of 1.08. In real robot tests, the average coverage and path length attained were

91.2% and 1.22 respectively.

In summary, this thesis has made the following major contributions to the area of complete cov-

erage path planning for mobile robots. Firstly, it developed an online coverage algorithm that

uses a partial topological map of large features in the environment for path planning. Secondly,

it introduced slice decomposition, a cell decomposition for covering unknown environments.

It can handle a larger variety of environments than existing cell decomposition based cover-

age algorithms. Thirdly, due to the use of simpler landmarks as cell boundaries, the proposed

coverage algorithm employs a shorter navigation pattern than existing methods. Lastly, new

performance metrics for evaluating real robot coverage experiments are developed. These new

metrics measure the experiments more reliably and accurately than existing metrics.

170 Future Work and Conclusions

Oh, yes. The important thing about having lots of things to remember is
that you’ve got to go somewhere afterwards where you can remember
them, you see? You’ve got to stop. You haven’t really been anywhere
until you’ve got back home. I think that’s what I mean.

Terry Pratchett, “The Light Fantastic”

A
Landmark Recognition using Neural

Networks

This chapter outlines how supervised neural networks can be trained to correctly recognise

and classify the topology changes used in the topological coverage algorithm. The chapter

starts with a description of how classification works in the neural networks paradigm (Sec-

tion A.1). Then the architectures and training algorithms for two supervised neural networks

are explained. The two networks are multi-layer perceptron (Section A.2) and learning vec-

tor quantisation (Section A.3). Finally, Section A.4 presents the implementation and testing of

these two networks in the landmark recognition task.

A.1 Pattern classification with Neural Networks

Classification is the problem of assigning new inputs to one of a number of discrete classes. A

simple way to achieve this is to analyse sample data manually, and then establish a set of rules

that captures the distinctive features of the different classes. For example, we might use the

rules in Figure A.1 to distinguish between dogs, tables and vases.

In general, the classification problem is a non-linear mapping from several input variables to

several output variables. In the previous example, the input could be video, sound and/or tactile

171

172 Landmark Recognition using Neural Networks

has
four legs?

has head? vase

dog table

Y N

Y N

Figure A.1: Simple rules to classify dogs, tables and vases.

samples of the objects; the output variable has three values, one for each class.

Neural networks offer a very powerful and very general framework for mapping arbitrary in-

put variables to another set of output variables, where the form of the mapping is governed by

a number of adjustable parameters [17, 50]. Figure A.2(a) shows a hypothetical classification

problem involving two independent input variablesx1 andx2. Neural networks perform classi-

fications by creating decision boundaries in the input space. For the example in Figure A.2(b),

new samples that lie to the left of the decision boundary are classified as belonging to classC1;

while samples to the right of the decision boundary are classified as belonging to classC2.

Training neural networks therefore involves creating decision boundaries to minimise misclas-

sification errors. The decision boundary is altered with the adjustable parameters of the neural

network. The training is done with appropriate machine learning algorithms, and is dependent

on the type of network used.

By using a neural network, the designer of a classification system no longer has to manually de-

vise a set of rules to separate the input samples into their designated classes. The computer can

automatically extract the relevant features to create the classification system required. Examples

of classification using neural networks in robotic systems include detecting defective areas in

waste pipes and drains [36], and classifying outdoor road scenes with panoramic images [110].

A.2 Multilayer Perceptron (MLP)

Figure A.3 shows a picture of a multi-layer perceptron (MLP). It is the most common type of

neural network used. The network is made up of several layers of artifical neurons. Each neuron

is connected to every neuron in the immediately adjacent layers. The network can have many

A.2 Multilayer Perceptron (MLP) 173

x2

x1

(a)

x2

x1

C1

C2

(b)

Figure A.2: (a) A classification problem with two variables. Circles (�) denote samples from class C1

and crosses (×) denote samples from class C2. (b) Neural networks perform classification
by forming decision boundaries. (Adapted from [17]).

hidden layers, but only one input and one output layer.

An MLP estimates the decision boundary in terms of composition of the activation function(s)

of the network. The hidden layer(s) usually uses a sigmoid function,

g(a) ≡
1

1+ exp(−a)
(A.1)

while the output layer normally uses a linear activation function1

g̃(a) = a (A.2)

However, other functions can also be used. This concept of estimating a non-linear function

with a composition of simpler functions is not unique to the MLP. For example, the Fourier

series represents arbitrary periodic functions with sines and cosines.

A.2.1 Forward propagation

A new data sample is classified with a forward propagation through the MLP. This subsection

describes the operation of this forward propagation. Figure A.3 shows an example of a two-

1Using linear activation functions in the output layer does not restrict the class of functions that can be approx-
imated by the MLP. Also, sigmoidal activation functions limit the range of possible outputs to the range attainable
by the sigmoid. [17]

174 Landmark Recognition using Neural Networks

z1z0

outputs

inputs

x0 x1

y1

units
bias

xd

yc

zM

xi

yk

zj

Figure A.3: A multi-layer perceptron with d inputs, M hidden units, and c outputs.

layer2 MLP with d inputs,M hidden layer neurons, andc outputs.

The output of thejth hidden neuron is obtained by a weighted linear combination of thed inputs

aj =

d∑
i=0

w ji xi (A.3)

Herew ji is one of the weights in the first layer, connecting inputi to hidden neuronj. w j0

denotes the bias for hidden neuronj with x0 permanently set at 1.

The activation of hidden neuronj is then obtained by transforming the linear sum in (A.3) with

the sigmoidal activation function in (A.1)

zj = g(aj) (A.4)

The outputs of the MLP are obtained similarly. For each output neuronk, the activation is given

by

ak =

M∑
j=0

wk jzj (A.5)

yk = g̃(ak) (A.6)

wk j is the weight connecting hidden neuronj and output neuronk. zj is the output of hidden

neuronj. g̃(a) is the linear activation function defined in (A.2).

2It has two layers of adaptive weights.

A.2 Multilayer Perceptron (MLP) 175

By combining (A.3), (A.4), (A.5) and (A.6), the result of forward propagation of input sample

x through an MLP can be summarised as

yk = g̃

 M∑
j=0

wk jg

 d∑
i=0

w ji xi


 (A.7)

A.2.2 Error back-propagation

MLP is trained using an algorithm known as error back-propagation. It involves propagating

errors in the output layer backwards to adjust the weights in the network.

Initially, the weights in the network are set to some random values. For each iterationt, an input

vectorx(t) from the training set is applied to the network to find the activations in the hidden

and output layers using (A.4) and (A.6). Ifyk(t) is the output of neuronk in the output layer, and

tk(t) is the target (or desired) output of the same neuron, then thelocal error gradientof output

neuronk is defined as

δk(t) = yk(t) − tk(t) (A.8)

The error gradient for the hidden layer neuronj is found using

δ j(t) = zj(t)(1− zj(t))
c∑

k=1

wk j(t)δk(t) (A.9)

It can be seen that the error gradients from the output layerδk(t) are propagated backwards to

the hidden layer.

Using the error gradientsδk(t) andδ j(t), the weights in the output and hidden layers are updated

with

∆wk j(t) = −ηδk(t)zj(t) + α∆wk j(t − 1) (A.10)

∆w ji (t) = −ηδ j(t)xi(t) + α∆w ji (t − 1) (A.11)

Hereη is the learning rate, andα the momentum term. The update equations specify that the

updates to weightswk j andw ji with the current input samplex(t) is dependent on the update

from the previous sample.

Training continues until the stopping criterion is met, with repeated forward presentation of

input samples (A.7), and backward propagation of error gradients (A.10) and (A.11).

176 Landmark Recognition using Neural Networks

Decision boundary

Figure A.4: Classification using LVQ.

A.3 Learning Vector Quantisation (LVQ)

A.3.1 Vector Quantisation

Classification in LVQ is done via a set of reference vectors. A subset of these reference vectors

are placed into each of the classes of the data samples. A sample is considered to be of the

same class as its closest reference vector. Figure A.4 shows an example of an LVQ for a set

of samples with two classes. The reference vectors are divided into the two classes, labelled

◦ and•. The region that belongs to each reference vector is shown in Figure A.4. This is the

same as the Voronoi tessellation, which is based on nearest neighbourhood on a set of vectors.

The class region is the union of the Voronoi sets for the reference vectors belonging to the same

class. Therefore, the decision boundary of the LVQ is the borders of the Voronoi tessellation

that separate Voronoi sets into different classes. As a result, the decision boundary in LVQ is

piecewise linear.

A.3.2 Learning the reference vectors

The reference vectors are initially distributed randomly within the classes, with an equal number

of vectors in each class. The learning process thus involves using the training set to move these

vectors to form a good decision boundary.

Let x(t) be an input sample in the training set, andmi(t) represent sequential values of themi

A.4 Landmark recognition 177

reference vector. Letc be the index of the nearestmi to x:

c = arg min
i
‖x−mi‖

‖x−mc‖ = min
i
{‖x−mi‖}

Then the following equations define the basic learning algorithm LVQ1 [62]:

mc(t + 1) =

mc(t) + α(t)[x(t) −mc(t)] if x andmc belong to the same class,

mc(t) − α(t)[x(t) −mc(t)] if x andmc belong to different classes.
(A.12)

mi(t + 1) = mi(t) for i , c (A.13)

αt is the learning rate and its value is limited to between 0 and 1. Also, the learning rate

decreases monotonically with time during learning.

The update equations basically moves the nearest reference vector for a data sample either closer

to or further away from the sample, depending on whether the sample and the nearest reference

vector belong to the same class. All other reference vectors are unchanged.

If individual learning ratesαi(t) are assigned to each of the reference vectormi, then the update

equation (A.12) become:

mc(t + 1) =

mc(t) + αc(t)[x(t) −mc(t)] if x andmc belong to the same class,

mc(t) − αc(t)[x(t) −mc(t)] if x andmc belong to different classes.
(A.14)

This is known as the optimised learning rate LVQ1, or OLVQ1. It is the learning method used

in the experiments in this thesis. The number of time steps needed to learn the LVQ is generally

30 to 50 times the number of reference vectors [62].

A.4 Landmark recognition

The Maxifander robot was used for the training and testing of the two neural networks in the

landmark recognition task. A picture of the mobile robot is shown in Figure A.5. It has a single

ultrasonic transducer on the top. A stepper motor is used to rotate the transducer around to

178 Landmark Recognition using Neural Networks

Figure A.5: Maxifander in a university laboratory.

detect obstacles from all directions of the mobile robot. A vector of 48 readings is returned

from a single 360-degree scan.

Sonar data collected were categorised into three groups — free space nodes, obstacle nodes and

everything else. The tasks of the two neural networks were thus to learn this classification and

to predict which group a new sonar data sample belonged to.

A.4.1 Preprocessing

Both free space and obstacle nodes are local features. To reduce the influence of far away

objects on the recognition process, the measured sonar range data was cut if it was over a

certain threshold.

To make the classification independent of the orientation of the robot, each vector of 48 range

readings was virtually rotated into the orientation most occupied by obstacles [65]. After this

virtual rotation, index 0 of the vector would always be pointing towards the direction where the

sonar range sensor measured the shortest distances. An example explaining this virtual rotation

is shown in Figure A.6. This most occupied orientation was calculated using the following

equation:

~dMOO =
1
n

n∑
i=1

~di (A.15)

wheren = 48 is the number of readings in each vector,~di is a vector originating from the centre

of the robot denoting sonar sensor reading for directioni, and~dMOO is the vector for the most

A.4 Landmark recognition 179

12

047

36

24

(a) (b) (c)

Figure A.6: Rotation of sonar reading to most occupied direction. (a) Index to the sonar data vector,
(b) Original data, (c) Rotated most occupied direction to index 0.

occupied orientation.

Using (A.15), all 48 points in the vector were used to calculate the most occupied orientation.

This made the process of finding the most occupied orientation more robust to noise than if only

the shortest range in the vector was used.

A.4.2 Results

Multi-layer perceptron (MLP)

The training and testing of MLPs was done using the free Stuttgart Neural Network Simulator

(SNNS) [3]. MLPs with various configurations were trained multiple times on this recognition

problem using the training set to find the network that achieved the lowest mean square error

on the test set3. The parameters that were varied in the networks were number of hidden layer

neurons, learning rate, momentum term and initial weight values.

The lowest mean square error achieved was 0.0955 with 8 hidden neurons, learning rateη = 0.4

and momentum termα = 0.25. Classification accuracy achieved in the test set is shown in

Table A.1, where accuracy is defined as the number of accurate predictions divided by the total

number of samples in the test set. The result of classification using MLP on a test environment

is shown in Figure A.7(a).

3A test set contains input samples for testing the classification accuracy of neural networks. The samples in the
test set are not in the training set.

180 Landmark Recognition using Neural Networks

MLP LVQ
concave 90% 90%
convex 60% 100%
others 95% 88%

Table A.1: Accuracy achieved on the test set for MLP and LVQ.

(a) (b)

partitions

desks and chairs

obstacle

free space

Figure A.7: Classification with (a) MLP (b) LVQ.

Learning vector quantisation (LVQ)

LVQs for testing the landmark recognition problem were implemented using the free LVQPAK

[5]. Networks with different numbers of neurons, or reference vectors, distributed among the

three classes were trained for 40 epochs4. A network with 30 neurons yielded good results. The

accuracy achieved is shown in Table A.1. The result of classification using LVQ on the test

environment is shown in Figure A.7(b).

A.5 Summary

Supervised neural networks were chosen for this task because the landmark types to be recog-

nised were predefined. The neural networks were trained to generate rules statistically to clas-

sify sonar range data into three pre-defined classes. A different use of neural networks for

topological maps is to let unsupervised neural networks partition environments into separate

regions according to similarity of input sensory data [65, 111].

It can be seen from Table A.1 that the two neural networks give different accuracy rates for the

three categories to be classified. Despite the difference in accuracies, the resultant classification

is quite similar, as in Figure A.7. This is due to the fact that misclassification occurs mostly at

the boundaries between different zones. Misclassification at boundaries is insignificant because

4An epoch is a complete presentation of the training set.

A.5 Summary 181

it does not affect the implementation of the topological coverage algorithm. This shows that

accuracy alone is not a good indication on how well a neural network performs for a target

application. Overall, both neural networks are capable of recognising free space and obstacle

nodes in the environment.

182 Landmark Recognition using Neural Networks

One of the problems of taking things apart and seeing how they work
– supposing you’re trying to find out how a cat works – you take that
cat apart to see how it works, what you’ve got in your hands is a non-
working cat. The cat wasn’t a sort of clunky mechanism that was sus-
ceptible to our available tools of analysis.

Douglas Adams, “Hitchhiker’s Guide to the Galaxy”

B
Computer Vision

This chapter describes two of the computer vision techniques used for creating composition

images in Chapter 5 in greater detail. Section B.1 explains the Canny edge detector, which

is perhaps the most popular edge detection technique at present [79]. This is followed by a

description of the Hough transform in Section B.2, which is used for locating and extracting

shapes in images.

B.1 Canny Edge Detection

Edge detection is an important operation in computer vision applications. Edges are employed

as primitive features which guide applications to make more complex suppositions about the

visual information. Edges are also important in preprocessing an image to yield regions of

interest.

Figure B.1 shows an image of a light box on a dark background. In this image, the edges are

clearly defined as the external boundary of the box. Figure B.2 shows the intensity profile of the

image across the row of pixels where the y-coordinate is 50. Note that there is a large change in

intensity at the point where the box starts (atx = 20). This trend is reversed where the box ends

(at x = 70). In summary, the change in intensity is directly related to the edges in the image.

183

184 Computer Vision

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100

Figure B.1: An image with strong edges.

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

Figure B.2: The intensity profile of the image across y=50.

B.1 Canny Edge Detection 185

In computer vision terms, an edge is characterised by significant step changes in intensity.

Detection of edges within images are based on mathematical methods which can be applied to

detect such rapid changes in slope. For instance, the first derivative of the intensity function

should have a maxima at the midpoint of the left edge and a minima at the midpoint of the

right edge (Figure B.3(a)). The second derivative is zero at the beginning and end of each edge

(Figure B.3(b)). The first and second derivatives are the basis for the design of many edge

detection techniques [48, 70].

The Canny edge detector was designed to be an optimal edge detector. It has the following

properties:

• Optimal detectionBy smoothing the image, spurious responses are reduced, and the edge

map is made less noisy.

• Good localisationTo improve accuracy in detection, edges must be found in the correct

location.

• Single responseA single response is found for each valid edge in an image. For instance,

a edge detector based on the second derivative will have two responses for every edge in

the image. This was considered non-optimal by Canny.

These three goals are achieved using the following steps:

1. Gaussian smoothing

2. Sobel edge detection

3. Non-maximal suppression

4. Hysteresis thresholding

These steps will now be discussed in turn. The image shown in Figure B.4 will be used to aid

in this discussion.

B.1.1 Gaussian smoothing

Canny demonstrated in [25] that Gaussian smoothing was the optimal method for image smooth-

ing. Application of Gaussian smoothing requires convolution of the imageI (x, y) with a suitable

Gaussian maskg(x, y):

I ∗ g =
∑

j,k

I (j, k)g(x− j, y− k)

The coefficients of the Gaussian mask can be defined by the Gaussian function:

186 Computer Vision

0 10 20 30 40 50 60 70 80 90 100
−40

−30

−20

−10

0

10

20

30

40

(a)

0 10 20 30 40 50 60 70 80 90 100
−20

−15

−10

−5

0

5

10

15

20

(b)

Figure B.3: (a) First derivative, and (b) second derivative of the edge profile in Figure B.2.

B.1 Canny Edge Detection 187

Figure B.4: An image of the Khepera robot moving in its environment.

(a) (b) (c)

Figure B.5: Gaussian blurring of an image (a) 3× 3 (b) 5× 5 (c) 7× 7

g(x, y) = e−
x2+y2

2σ2 (B.1)

The larger the mask that is employed, the more accurately it fits the ideal Gaussian. However,

this accuracy comes at a cost of increased computation. Generally, for real applications, a mask

of size 5× 5 or 7× 7 is employed. Theσ term in (B.1) is chosen to make sure the coefficients

drop to 0 near the edge of the mask. Figure B.5 shows increasing Gaussian blur on a sub region

of the image in Figure B.4.

B.1.2 Sobel edge detection

The Sobel edge operator is a widely used edge detection operator. It is an example of a gra-

dient/derivative based edge detector. It approximates the gradient operation by a pair of 3× 3

masks:

188 Computer Vision

Figure B.6: The result of edge detection after Gaussian blurring.

Mx =


1 0 −1

2 0 −2

1 0 −1

 , My =


1 2 1

0 0 0

−1 −2 −1


The masks are aligned in the horizontal (Mx) and vertical directions (My). Operation of the

Sobel edge detector involves computing a pair of gradient images,Sx andSy, by first convolving

the imageI with each of the masks:

Sx = I ∗ Mx, Sy = I ∗ My

Each point in the two gradient images,Sx andSy are then combined using sum of squares1 to

generate a candidate edge mapM for the original imageI :

M =
√

S2
x + S2

y

A candidate edge map is shown in Figure B.6. Brighter intensities in this image relate to

stronger edges.

B.1.3 Non-maximal suppression

The next stage in the processing of the edge data is to use non-maximal suppression. Non-

maximal suppression serves to find the highest points in the edge information and follow the

1Alternately, the sum of absolute values can be used.

B.1 Canny Edge Detection 189

Figure B.7: The result of applying non-maximal suppression.

contours that they belong to. This process is performed via the use of the edge gradient images,

Sx andSy. For a 3× 3 region, the gradient is maximal if the gradient on either side of it is less

than the gradient at the centre point. Thus, in order to find this value the value of the gradient at

points normal to the actual gradient are required. As the image is defined upon an integer grid,

interpolation is required for this. Thus:

G1 =
Sy

Sx
M(x+ 1, y− 1)+

Sx − Sy

Sx
M(x, y− 1)

G2 =
Sy

Sx
M(x− 1, y+ 1)+

Sx − Sy

Sx
M(x, y+ 1)

If the value of the gradient at the pointM(x, y) exceeds bothG1 andG2, then the point is marked

as a peak; otherwise it is set to 0. The result of non-maximal suppression applied to the Sobel

edge image is shown in Figure B.7.

B.1.4 Hysteresis thresholding

The final step in the Canny edge detector is the use of hysteresis thresholding. This uses a

hysteresis function to threshold the image. Figure B.8 shows an example of hysteresis thresh-

olding. In the example, the underlying function (as given by the smooth curve), is hysteretically

thresholded. A maximum value is kept until the value of the curve drops below a minimum

value (lower threshold). This value is kept until the value of the data exceeds the upper thresh-

old. In this way, values which exceed the upper threshold are considered to be definite edge

points; while values below the lower threshold are definitely not edge points. Points which lie

190 Computer Vision

upper threshold

lower threshold

Figure B.8: Hysteresis thresholding. The smooth curve is the underlying function. The square curve is
the output of hysteresis thresholding.

Figure B.9: Hysteresis thresholding applied to the non-maximally suppressed image.

in between are indeterminate and generally depend on their neighbours. In implementation,

any edge point can be used as the starting seed. The neighbours of the seed are then searched

to see if they exceed the lower threshold. If they do, then they are also labelled as an edge

point and become a new seed. The process terminates when there are no neighbours above the

lower threshold and no seeds remaining. Figure B.9 shows the result of applying hysteresis

thresholding to the non-maximally suppressed image in Figure B.7.

The image in Figure B.9 is the final result of the Canny edge detector. The Canny edge detector

is generally a very clean looking edge map with little noise. Furthermore, it preserves fine detail

in the image. These features make the edge map very useful for subsequent processing.

B.2 Hough Transform

The Hough transform is a computer vision technique for finding shapes in images. Generally it

is used to find lines, circles, and ellipses, though it has been extended to more arbitrary shapes

B.2 Hough Transform 191

[79]. It owes its popularity to the fact that it achieves the same result as template matching2

without the computation overhead. The reduction in computational overhead is due to the way

in which it reformulates template matching as an evidence gathering technique where votes are

cast in an accumulator array. To achieve this, it uses a mapping from the image space to the

accumulator. The mapping is computationally efficient as it is based upon a description of the

shape that is being searched for.

In this thesis, a circular object was required to be identified. This was the Khepera robot. For

this reason, the Hough transform was employed as a circle finder. The general equation for a

circle is:

(x− x0)
2 + (y− y0)

2 = r2

This defines a circle centred on point (x0, y0) with a radiusr. This definition implies that the

circle is a locus of points, centred on point (x0, y0), with a radiusr. However, there is an alternate

view in that it is also the locus of circles, centred at (x, y) with a radiusr. The two cases are

illustrated in Figure B.10. Geometrically, the two cases are equivalent. For the Hough transform

the latter of the two views is used for the accumulator space. The reason it is employed is as

follows. For any point that is on the circle in Figure B.10(a), a unique circle can be drawn in

the accumulator space as shown in Figure B.10(b). Other concyclic points also result in another

circle in the accumulator space. However, the key point to note is that in the accumulator space,

all these circles pass through one point in common. This is the point which corresponds to the

centre point of the original circle. In employing the Hough transform, a count is kept of the

number of times a circle is drawn though this centre point for each candidate edge point in the

original image. As only valid edges are used in this process, the computational requirements of

the matching process is significantly reduced compared to template matching.

An example of this notion applied to the Canny edge image from Figure B.9 is shown for several

different radii in Figure B.11. Figure B.11(a) shows the accumulator space where the radii is

too small for the feature of interest. There is no main peak though the highest peak lies in the

robots general vicinity. This is probably due to the fine details on the top surface of the robot.

In Figure B.11(b), the radii is set to the same as the Khepera. Notice the distinct peak found

centred on the robots’ centre. In Figure B.11(c), the radii is set to be equal to that of the round

obstacle. This gives a nice peak centred on the centre of the obstacle. Generally, the exact

radius of the object to be found is not known and a range of candidate radii are employed. The

peak finding process in this case requires a three dimensional search in (x, y, r).

2In template matching, a template is centred on an image point, and the number of points in the image that
match the template is counted. The procedure is repeated for the entire image. The point which led to the best
match, the maximum count, is deemed to be the point where the shape (given by the template) lies within the image
[79].

192 Computer Vision

(x0,y0)

x

y

r

(a)

x0

(x0.y0)

y0

(b)

Figure B.10: Definition of a circle (a) a locus of points (b) a locus of circles.

It is possible to use a parametric form of the circle as follows:

x = x0 + r cosθ, y = y0 + r sinθ

This is useful as it directly allows the parameters to be solved for :

x0 = x− r cosθ, y0 = y− r sinθ (B.2)

These equations directly define the points in the accumulator space (as seen in Figure B.10). In

(B.2),θ is not a free parameter but defines the trace, or point spread function, of the curve. These

notions put together allow us to define the algorithm for the Hough transform (Algorithm B.1).

Figure B.12 highlights the position and size of the robot in Figure B.9 as found by the Hough

transform.

B.2 Hough Transform 193

(a) (b)

(c)

Figure B.11: Scaled accumulator space for Figure B.9 with radii of (a) 5 pixels (b) 12 pixels (c) 32 pixels.

194 Computer Vision

Algorithm B.1 Hough transform
I ← m× n image
a← m× n array of zeros
E← set of edge points inI
for (x, y) ∈ E do

for r ∈ [rmin, rmax] do
for θ ∈ [0,2π) do

x0← x− r ∗ cosθ
y0← y− r ∗ sinθ
if (x0, y0) in imagethen

a(x0, y0)← a(x0, y0) + 1
end if

end for
end for

end for

Figure B.12: The drawn circle on this image shows the position and size (x, y, r) of the robot as extracted
by the Hough transform.

Bibliography

[1] Press release for World Robotics 2003.http://www.unece.org/press/pr2003/

03stat_p01e.pdf.

[2] Roomba, robotic floorvac.http://www.roombavac.com.

[3] Stuttgart neural network simulator (SNNS). http://www-ra.informatik.

uni-tuebingen.de/SNNS/.

[4] Boost C++ libraries.http://www.boost.org.

[5] LVQ PAK for the learning vector quantization algorithms.http://www.cis.hut.fi/

research/som-research/nnrc-programs.shtml.

[6] E. U. Acar, H. Choset, and P. N. Atkar. Complete sensor-based coverage with extended-

range detectors: a hierarchical decomposition in terms of critical points and voronoi

diagrams. InProceedings IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS), volume 3, pages 1305–1311, 2001.

[7] Ercan U. Acar and Howie Choset. Critical point sensing in unknown environments. In

Proceedings IEEE International Conference on Robotics and Automation (ICRA), vol-

ume 4, pages 3803–3810, April 2000.

[8] Ercan U. Acar and Howie Choset. Sensor-based coverage of unknown environments:

Incremental construction of morse decompositions.International Journal of Robotics

Research, 21(4):345–366, April 2002.

[9] Ercan U. Acar, Howie Choset, Alfred A. Rizzi, Prasad N. Atkar, and Douglas Hull.

Morse decompositions for coverage tasks.International Journal of Robotics Research,

21(4):331–344, April 2002.

[10] Ercan U. Acar, Howie Choset, Alfred A. Rizzi, and Jonathan Luntz. Exact cellular

decompositions in terms of critical points of morse functions. InProceedings IEEE

International Conference on Robotics and Automation (ICRA), pages 2270–2277, April

2000.

195

196 BIBLIOGRAPHY

[11] Ercan U. Acar, Howie Choset, Yangang Zhang, and Mark Schervish. Path planning

for robotic demining: Robust sensor-based coverage of unstructured environments and

probabilistic methods.International Journal of Robotics Research, 22(7–8):441–466,

2003.

[12] Ercan Umut Acar. Complete Sensor-based Coverage of Unknown Spaces: Incremen-

tal Construction of Cellular Decompositions. PhD thesis, Carnegie Mellon University,

Pennsylvania, 2002.

[13] Esther M. Arkin, Sandor P. Fekete, and Joseph S. B. Mitchell. Approximation algorithms

for lawn mowing and milling.Computational Geometry, 17(1-2):25–50, 2000.

[14] Ronald C. Arkin.Behavior-based robotics. MIT Press, 1998.

[15] Prasad N. Atkar, Howie Choset, and Alfred A. Rizzi. Towards optimal coverage of 2-

dimensional surfaces embedded r3: Choice of start curve. InProceedings IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS), volume 4, pages

3581–3587, 2003.

[16] O. Burchan Bayazit, Jyh-Ming Lien, and Nancy M. Amato. Better flocking behaviors

in complex environments using global roadmaps. InProceedings of the Workshop on

Algorithmic Foundations of Robotics, December 2002.

[17] Christopher M. Bishop.Neural Networks for Pattern Recognition. Oxford University

Press, 1995.

[18] Rodney A. Brooks. A robust layered control system for a mobile robot.IEEE Journal of

Robotics and Automation, RA-2(1):14–23, March 1986.

[19] Rodney A. Brooks. A robot that walks; emergent behavior from a carefully evolved

network.Neural Computation, 1(2):253–262, 1989.

[20] Rodney A. Brooks. Elephants don’t play chess.Robotics and Autonomous Systems,

6:3–15, 1990.

[21] Rodney A. Brooks. Intelligence without representation.Artificial Intelligence, 47:139–

159, 1991.

[22] Zack J. Butler.Distributed Coverage of Rectilinear Environments. PhD thesis, Carnegie

Mellon University, Pennsylvania, 2000.

[23] Zack J. Butler, Alfred A. Rizzi, and Ralph L. Hollis. Contact sensor-based coverage of

rectilinear environments. InProceedings IEEE International Symposium on Intelligent

Control/Intelligent Systems and Semiotics, pages 266–271, 1999.

BIBLIOGRAPHY 197

[24] Lola D. Cãnamero. Designing emotions for activity selection in autonomous agents. In

Robert Trappl, Paolo Petta, and Sabine Payr, editors,Emotions in Humans and Artifacts,

pages 115–148. MIT Press, 2002.

[25] J. Canny. A computational approach to edge detection.PAMI, 8(6):679–698, November

1986.

[26] John Canny. Constructing roadmaps of semi-algebraic sets i: Completeness.Artificial

Intelligence, 37(1–3):203–222, 1988.

[27] John F. Canny and Ming C. Lin. An opportunistic global path planner.Algorithmica,

10:102–120, 1993.

[28] J. A. Castellanos, J. D. Tardós, and G. Schmidt. Building a global map of the environment

of a mobile robot: The importance of correlations. InProceedings IEEE International

Conference on Robotics and Automation (ICRA), volume 2, pages 1053–1059, 1997.

[29] B. Chazelle. Approximation and decomposition of shapes. In J. T. Schwartz and C. K.

Yap, editors,Algorithmic and Geometric Aspects of Robotics, pages 145–185. Lawrence

Erlbaum Associates, 1987.

[30] Howie Choset. Coverage of known spaces: The boustrophedon cellupdar decomposition.

Autonomous Robots, 9(3):247–253, December 2000.

[31] Howie Choset and Keiji Nagatani. Topological simultaneous localization and mapping

(slam): toward exact localization without explicit localization.IEEE Transactions on

Robotics and Automation, 17(2):125–137, 2001.

[32] Howie Choset and Philippe Pignon. Coverage path planning: The boustrophedon decom-

position. InProceedings of the International Conference on Field and Service Robotics,

Canberra, Australia, 1997.

[33] Frank H. Clarke. Generalized gradients and applications.Transactions of the American

Mathematical Society, 205:247–262, 1975.

[34] M. Bernardine Dias and Anthony Stentz. A comparative study between centralized,

market-based, and behavioral multirobot coordination approaches. InProceedings

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), volume 3,

pages 2279–2284, October 2003.

[35] Tom Duckett and Ulrich Nehmzow. Mobile robot self-localisation and measurement of

performance in middle-scale environments.Robotics and Autonomous Systems, 24:57–

69, 1998.

198 BIBLIOGRAPHY

[36] O. Duran, K. Althoefer, and L.D. Seneviratne. Pipe inspection using a laser-based trans-

ducer and automated analysis techniques.IEEE/ASME Transactions on Mechatronics,

8(3):401–409, September 2003.

[37] Alberto Elfes. Sonar-based real-world mapping and navigation.IEEE Journal of

Robotics and Automation, RA-3(3):249–265, June 1987.

[38] N. Elkmann, T. Felsch, M. Sack, J. Saenz, and J. Hortig. Innovative service robot systems

for facade cleaning of difficult-to-access areas. InProceedings IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), volume 1, pages 756–762, 2002.

[39] H. R. Everett.Sensors for Mobile Robots: Theory and Application. A K Peters, 1995.

[40] James D. Foley et al.Computer graphics : principles and practice. Addison-Wesley,

second edition, 1990.

[41] United Nation Economic Commission for Europe.World Robotics 2003 (Survey Report).

ISBN No. 92-1-101059-4, 2003.

[42] J. J. Fox and A. A. Maciejewski. Utilizing the topology of configuration space in real-

time multiple manipulator path planning.International Journal of Robotics and Automa-

tion, 16(1):1–13, 2001.

[43] Jakob Fredslund and Maja J. Matarić. A general, local algorithm for robot formations.

IEEE Transactions on Robotics and Automation, 18(5):837–846, 2002.

[44] Yoav Gabriely and Elon Rimon. Spanning-tree based coverage of continuous areas by a

mobile robot.Annals of Mathematics and Artificial Intelligence, 31:77–98, 2001.

[45] Yoav Gabriely and Elon Rimon. Spiral-STC: An on-line coverage algorithm of grid

environments by a mobile robot. InProceedings of the IEEE International Conference

on Robotics and Automation, pages 954–960, Washington, DC, May 2002.

[46] S. S. Ge and Y. J. Cui. Dynamic motion planning for mobile robots using potential field

method.Autonomous Robots, 13(3):207–222, 2002.

[47] Brian P. Gerkey and Maja J. Matarić. Sold!: Auction methods for multi-robot coordina-

tion. IEEE Transactions on Robotics and Automation, 18(5):758–768, 2002.

[48] Rafael C. Gonzalez and Richard E. Woods.Digital Image Processing. Prentice Hall,

second edition, 2002.

[49] Eric Haines. Point in polygon strategies. InGraphics Gems IV, pages 24–46. Academic

Press, Boston, 1994.

BIBLIOGRAPHY 199

[50] Simon Haykin.Neural Networks: A Comprehensive Foundation. Prentice Hall, second

edition, 1999.

[51] Martin Held. On the Computational Geometry of Pocket Machining. Springer-Verlag,

1991.

[52] Susan Hert, Sanjay Tiwari, and Vladimir Lumelsky. A terrain-covering algorithm for an

auv. Autonomous Robots, 3:91–119, 1996.

[53] John Hopcroft and Robert Tarjan. Algorithm 447: efficient algorithms for graph manip-

ulation. Communications of the ACM, 16(6):372–378, 1973.

[54] Arjang Hourtash and Mahmoud Tarokh. Manipulator path planning by decomposition:

algorithm and analysis.IEEE Transactions on Robotics and Automation, 17(6):842–856,

2001.

[55] Wesley H. Huang. Optimal line-sweep-based decompositions for coverage algorithms.

In Proceedings IEEE International Conference on Robotics and Automation (ICRA), vol-

ume 1, pages 27–32, 2001.

[56] Christian Icking, Thomas Kamphans, Rolf Klein, and Elmar Langetepe. On the compet-

itive complexity of navigation tasks. InSensor Based Intelligent Robots, Lecture Notes

in Computer Science, pages 245–258, 2000.

[57] Markus J̈ager and Bernhard Nebel. Dynamic decentralized area partitioning for cooper-

ating cleaning robots. InProceedings IEEE International Conference on Robotics and

Automation, pages 3577–3582, May 2002.

[58] Ray Jarvis. Distance transform based path planning for robot navigation. In Yuan F.

Zheng, editor,Recent Trends in Mobile Robots, pages 3–31. World Scientific Publishing

Co., 1993.

[59] Margaret E. Jefferies, Wenrong Weng, Jesse T. Baker, and Michael Mayo. A hybrid

approach to finding cycles in hybrid maps. InProcessings Australasian Conference on

Robotics and Automation (ACRA), Brisbane, Australia, 2003.

[60] Margaret E. Jefferies, Wenrong Weng, Jesse T. Baker, and Michael Mayo. Using context

to solve the correspondence problem in simultaneous localisation and mapping. InPro-

ceedings PRICAI 2004: Trends in Artificial Intelligence: 8th Pacific Rim International

Conference on Artificial Intelligence, volume 3157/2004 ofLecture Notes in Computer

Science, pages 664–672, Auckland, New Zealand, August 2004. Springer-Verlag Heidel-

berg.

[61] Joseph L. Jones, Bruce A. Seiger, and Anita M. Flynn.Mobile Robots: Inspiration to

Implementation. A. K. Peters, second edition, 1999.

200 BIBLIOGRAPHY

[62] Teuvo Kohonen.Self-Organizing Maps. Springer, second edition, 1997.

[63] Erwin Kreyszig. Advanced Engineering Mathematics. John Wiley and Sons, sixth edi-

tion, 1988.

[64] Benjamin J. Kuipers and Yung-Tai Byun. A robust, qualitative method for robot spatial

learning. InProceedings Seventh National Conference on Artificial Intelligence AAAI-

88, pages 774–779, St Paul, Minnesota, August 1988.

[65] Andreas Kurz. Constructing maps for mobile robot navigation based on ultrasonic

range data.IEEE Transactions on Systems, Man and Cybernetics - Part B: Cybernet-

ics, 26(2):233–242, April 1996.

[66] Jean-Claude Latombe.Robot Motion Planning. Kluwer, 1991.

[67] Philip D. Loewen. Optimal Control via Nonsmooth Analysis. American Mathematical

Society, 1993.

[68] Amol Dattatraya Mali. On the behavior-based architectures of autonomous agency.

IEEE Transactions on Systems, Man, and Cybernetics: Part C - Applications& Reviews,

32(3):231–242, 2002.

[69] L. Marques, M. Rachkov, and A. T. de Almeida. Mobile pneumatic robot for demining.

In Proceedings IEEE International Conference on Robotics and Automation (ICRA), vol-

ume 4, pages 3508–3513, 2002.

[70] David Marr. Vision: A Computational Investigation into the Human Representation and

Processing of Visual Information. W.H. Freeman and Company, 1982.

[71] Mohamed Marzouqui and Ray Jarvis. Covert path planning for autonomous robot navi-

gation in known environments. InProceedings Australasian Conference on Robotics and

Automation (ACRA), Brisbane, Australia, 2003.

[72] Maja J. Mataric. Integration of representation into goal-driven behavior-based robots.

IEEE Transactions on Robotics and Automation, 8(3):304–312, June 1992.

[73] Kurt Mehlhorn and Stefan N̈ahe.LEDA : A Platform for Combinatorial and Geometric

Computing. Cambridge University Press, 1999.

[74] Lee Middleton and Jayanthi Sivaswamy. A framework for practical hexagonal-image

processing.Journal of Electronic Imaging, 11:104–114, 2002.

[75] F. Mondada, E. Franzi, and P. Ienne. Mobile robot miniaturisation: A tool for investiga-

tion in control algorithms. In T. Yoshikawa and F. Miyazaki, editors,Proceedings of the

Third International Symposium on Experimental Robotics, pages 501–513, 1993.

BIBLIOGRAPHY 201

[76] Luis Moreno and Eladio Dapena. Path quality measures for sensor-based motion plan-

ning. Robotics and Autonomous Systems, 44:131–150, 2003.

[77] Ulrich Nehmzow. Animal and robot navigation.Robotics and Autonomous Systems,

15:71–81, 1995.

[78] Ulrich Nehmzow. Quantitative analysis of robot-environment interaction - on the differ-

ence between simulations and the real thing. InProceedings Eurobot, 2001.

[79] Mark S. Nixon and Alberto S. Aguado.Feature Extraction& Image Processing.

Butterworth-Heinemann, 2002.

[80] Joon Seop Oh, Yoon Ho Choi, Bae Jin Park, and Yuan F. Zheng. Navigation of cleaning

robots using triangular-cell map for complete coverage. InProceedings IEEE Interna-

tional Conference on Robotics and Automation (ICRA), pages 2006–2011, 2003.

[81] Atsuyuki Okabe, Barry Boots, and Kokichi Sugihara.Spatial Tessellations: Concepts

and Applications of Voronoi Diagrams. John Wiley & Sons, 1992.

[82] J. O’Keefe and J. Dostrovsky. The hippocampus as a spatial map: Preliminary evidence

from unit activity in the freely moving rat.Brain Research, 34:171–175, 1971.

[83] Chris A. C. Parker, Hong Zhang, and C. Ronald Kube. Blind bulldozing: Multiple

robot nest construction. InProceedings IEEE/RSJ International Conference on Intel-

ligent Robots and Systems (IROS), volume 2, pages 2010–2015, Las Vegas, Nevada,

2003.

[84] P. Ranganathan, Hayet J. B., M. Devy, S. Hutchinson, and F. Lerasle. Topological naviga-

tion and qualitative localization for indoor environment using multi-sensory perception.

Robotics and Autonomous Systems, 41:137–144, 2002.

[85] Elisha Sacks. Path planning for planar articulated robots using configuration spaces and

compliant motion.IEEE Transactions on Robotics and Automation, 19:381–390, 2003.

[86] S. Sakamoto. Mechanical planning and actual test results of a robot for painting the

exterior walls of high-rise buildings.Advanced Robotics, 5(4):457–466, 1991.

[87] C. Santos, N. Monteiro, J. Fonseca, P. Garrido, and C. Couto. Control of a robot paint-

ing system using the multi-resolution architectural principle-a summary. InProceedings

IEEE International Symposium on Industrial Electronics (ISIE), volume 2, pages 672–

676, 1997.

[88] Raimund Seidel. A simple and fast randomized algorithm for computing trapezoidal

decompositions and for triangulating polygons.Computational Geometry Theory and

Applications, 1:51–64, 1991.

202 BIBLIOGRAPHY

[89] M. Shimrat. Algorithm 112: Position of point relative to polygon.Communications of

the A.C.M., 5(8):434, 1962.

[90] Jeremy G. Siek Siek, Lie-Quan Lee, and Andrew Lumsdaine.The Boost Graph Library:

User Guide and Reference Manual. Addison-Wesley, 2001.

[91] Thierry Siḿeon, St́ephane Leroy, and Jean-Paul Lauumond. Path coordination for multi-

ple mobile robots: a resolution-complete algorithm.IEEE Transactions on Robotics and

Automation, 18:42–49, 2002.

[92] Steven L. Tanimoto.The Elements of Artificial Intelligence Using Common Lisp, chap-

ter 5. Computer Science Press, second edition, 1995.

[93] Robert Tarjan. Depth-first search and linear graph algorithms.SIAM Journal on Com-

puting, 1:146–160, 1972.

[94] Sebastian Thrun. Learning metric-topological maps for indoor mobile robot navigation.

Artificial Intelligence, 99:21–71, 1998.

[95] Sebastian Thrun. Robotic mapping: A survey. In G. Lakemeyer and B. Nebel, editors,

Exploring Artificial Intelligence in the New Millenium. Morgan Kaufmann, 2002.

[96] Nicola Tomatis, Illah Nourbakhsh, and Roland Siegwart. Hybrid simultaneous localiza-

tion and map building: a natural integration of topological and metric.Robotics and

Autonomous Systems, 44:3–14, 2003.

[97] Iwan R. Ulrich, Francesco Mondada, and J. D. Nicoud. Autonomous vacuum cleaner.

Robotics and Autonomous Systems, 19(3–4):233–245, March 1997.

[98] Steven A. Wilmarth, Nancy M. Amato, and Peter F. Stiller. MAPRM: a probabilistic

roadmap planner with sampling on the medial axis of the free space. InProceedings

IEEE International Conference on Robotics and Automation (ICRA), volume 2, pages

1024–1031, 1999.

[99] George Wolberg.Digital Image Warping. IEEE Computer Society Press, 1990.

[100] Sylvia Wong, George Coghill, and Bruce MacDonald. Landmark-based world model for

autonomous vacuuming robots. InProceedings International ICSC Congress on Intelli-

gent Systems and Applications (ISA), Wollongong, Australia, 2000.

[101] Sylvia Wong, George Coghill, and Bruce A. MacDonald. Natural landmark recognition

using neural networks for autonomous vacuuming robots. InProceedings of 6th Interna-

tional Conference on Control, Automation, Robotics and Vision, Singapore, 2000.

BIBLIOGRAPHY 203

[102] Sylvia C. Wong and Bruce A. MacDonald. A topological coverage algorithm for mobile

robots. InProceedings IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS), volume 4, pages 1685–1689, Las Vegas, Nevada, 2003.

[103] Sylvia C. Wong and Bruce A. MacDonald. Complete coverage by mobile robots using

slice decomposition based on natural landmarks. InProceedings PRICAI 2004: Trends

in Artificial Intelligence: 8th Pacific Rim International Conference on Artificial Intelli-

gence, volume 3157/2004 ofLecture Notes in Computer Science, pages 683–692, Auck-

land, New Zealand, August 2004. Springer-Verlag Heidelberg.

[104] Sylvia C. Wong, Lee Middleton, and Bruce A. MacDonald. Performance metrics for

robot coverage tasks. InProceedings Australasian Conference on Robotics and Automa-

tion (ACRA), pages 7–12, Auckland, New Zealand, 2002.

[105] Sylvia C. Wong, Lee Middleton, and Bruce A. MacDonald. Creating composite images

for estimating the effectiveness of mobile robot coverage algorithms. InProceedings Aus-

tralasian Conference on Robotics and Automation (ACRA), Brisbane, Australia, 2003.

[106] David C. K. Yuen and Bruce A. MacDonald. Natural landmark based localisation system

using panoramic images. InProceedings IEEE International Conference on Robotics and

Automation (ICRA), pages 915–920, 2002.

[107] David C. K. Yuen and Bruce A. MacDonald. An evaluation of sequential monte carlo

technique for simultaneous localisation and map-building. InProceedings IEEE In-

ternational Conference on Robotics and Automation (ICRA), pages 1564–1569, Taipei,

September 2003.

[108] A. Zelinsky, R. A. Jarvis, J. C. Byrne, and S Yuta. Planning paths of complete coverage

of an unstructured environment by a mobile robots. InInternational Conference on

Advanced Robotics ICAR, Tokyo, Japan, November 1993.

[109] Alexander Zelinsky. A mobile robot exploration algorithm.IEEE Transactions on

Robotics and Automation, 8(6):707–717, December 1992.

[110] Zhigang Zhu, Shiqiang Yang, Guangyou Xu, Xueyin Lin, and Dingji Shi. Fast road

classification and orientation estimation using omni-view images and neural networks.

IEEE Transactions on Image Processing, 7(8):1182–1197, August 1998.

[111] Uwe R. Zimmer. Robust world-modelling and navigation in a real world.Neurocomput-

ing, 13(2–4):247–260, 1996.

[112] Robert Zlot, Anthony Stentz, M. Bernardine Dias, and Scott Thayer. Multi-robot explo-

ration controlled by a market economy. InProceedings IEEE International Conference

on Robotics and Automation (ICRA), volume 3, pages 3016–3023, May 2002.

