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A dynamic tactile sensor on photoelastic effect
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Abstract

Certain photoelastic materials exhibit birefringent characteristics at a very low level of strain. This property of material may be suitable for
dynamic or wave propagation studies, which can be exploited for designing tactile sensors. This paper presents the design, construction and testing
of a novel dynamic sensor based on photoelastic effect, which is capable of detecting object slip as well as providing normal force information. The
paper investigates the mechanics of object slip, and develops an approximate model of the sensor. This allows visualization of various parameters
involved in the sensor design. The model also explains design improvements necessary to obtain continuous signal during object slip. The developed
sensor has been compared with other existing sensors and experimental results from the sensor have been discussed. The sensor is calibrated for
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ormal force which is in addition to the dynamic signal that it provides from the same contact location. The sensor has a simple design and is of a
mall size allowing it to be incorporated into robotic fingers, and it provides output signals which are largely unaffected by external disturbances.

2006 Elsevier B.V. All rights reserved.
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. Introduction

The human hand is adaptive in forming a variety of object
rasps and in most cases the grasp is optimal i.e. the object is
table within the grasp and the forces applied to the object are the
are minimum. This capability can be attributed to the dexterity
f the human hand, coupled with the use of the human senses
nd versatile processing power of the human brain. However, at
ocalized hand-level this can be considered to be achieved by
ncreasing the gripping force to arrest any ensuing object slip,
hus maintaining the minimum gripping force. This simple tech-
ique can be implemented in a mechanical system if the force at
he fingertip and the object slip can be detected simultaneously
y sensors. This can be also useful in implementing object grasp
y robotic end effectors, to minimize the power consumption and
o avoid excessive gripping force over the grasped object without
ausing any damage to it. Hence, the conditions of gentle grasp
an be achieved if the object is grasped with a small force and
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the gripping force is increased when the object starts to slip. This
requires a sensor for detecting object slip. Also in some cases of
object manipulation, detection of slip may be necessary to cause
sliding motions of fingers over the grasped object surface [1].
The need for slip detection of object has long been recognized
for prosthetic applications [2] and has been considered useful in
object manipulation [3]. However, it has also been reported that
detection of slip is ‘difficult to achieve’ and often shadowed by
external disturbances [4,5].

Many techniques have been employed to detect object slip,
however, none have compared or even remotely close to the
sensitivity and robustness of human slip sensing capabilities.
For robotic applications this has been achieved by a number of
different techniques such as interpretation of tactile-array data,
interpretation of touch-sensor data or by employing dedicated
slip sensors [6]. A basic method of slip sensing was based on
the ‘lift and try’ technique, where a change in motor current
was monitored to assess the quality of the grip. This technique
had obvious difficulties of differentiating gripping force from
interaction force and had to start every time with a very small
gripping force to reach to a large force when the object did
E-mail addresses: vdubey@bmth.ac.uk (V.N. Dubey), rmc@ecs.soton.ac.uk
R.M. Crowder).
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not slip. Some other approaches [7] include a sapphire needle
protruding from a sensor surface and touching the slipping object
to generate vibrations, which in turn produces voltage from a
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piezoelectric crystal or from a permanent magnet and coils as a
measure of object slip. Optical interrupt-type slip sensors have
been designed with slotted roller [8] which interrupts an optical
path passing across it, giving an indication of slip. Though this
sensor gives a good indication of the speed and direction of
slip the obvious disadvantages are poor slip resolution and the
jamming of the roller. Additionally, if the sensor is used for
grasping, the rolling contact at the object surface will tend to
slip the object and stable grasp cannot be achieved.

In order to emulate the slip sensing capability of the natu-
ral hand, a number of pressure sensing sites have been created
over the sensing surface. As the object slips, a change in pres-
sure detected by sensors gives an indication of slip, however,
it is difficult to differentiate slip of object with applied force
changes to the sensing sites. In a slight deviation from the con-
ventional approaches, Kyberd and Chappell [9] have developed
a slip sensor based on forced oscillations, which detects the
sound produced by vibrations using a microphone. Eghtedari
and Morgan [10] have used photoelastic material and a solid-
state camera with a detailed processing to infer the object slip.
With the rapid development of VLSI chip fabrication technology
many slip sensors have been designed as sensing arrays. A slip
sensor using a piezoelectric bimorph element has been devel-
oped by Nishihara et al. [11]. The sensor is sensitive to dynamic
stress which detects the instant of first slip as well as contact and
release of an object. However, the sensor is easily influenced by
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Fig. 1. A slipping object with system of forces.

faces during slip. Starting from the rest situation, the contact
surfaces form a pressure distribution which cannot be predicted
accurately (this is due to the random irregularity of the con-
tacting surfaces) and when the object slips, this distribution is
disturbed; the contact pressure however remains the same. How
the pressure distribution changes, largely depends on the elas-
tic nature of the objects, slip rate, surface roughness and the
geometric boundary conditions. The change in pressure distri-
bution, however, does not provide any detectable information
(as opposed to the vision systems) about the object slip. In tac-
tile sensing, the associated side effects such as acoustic sound
produced during slip, vibration of the slipping surface or the rel-
ative movement between contact surfaces can only be exploited
to detect the object slip.

The force experienced by an object slipping between two
fingers is shown in Fig. 1.

The two fingers provide a force to hold the object stationary.
It will slip if forces applied on the object including those due to
gravity and acceleration are larger than the frictional forces, in
which case,

Ma > F (µf + µs) (1)

Object will not slip if,

Ma ≤ F (µf + µs) (2)
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ibrations, for which vibration absorbers are used. Holweg et al.
12] have used rubber based tactile matrix sensor to detect slip,
hich rely on the elasticity of the rubber but the response of

he sensor is slow with non-linear characteristics and hysteresis.
f various available sensing technologies, many recent develop-
ents in slip sensing employ the sensing arrays than one-point

ontact sensors [13–17]. Although the research on slip sens-
ng has emphasized the need for detection of incipient slippage
or stable grasping and dexterous manipulation [18–20], such
ocalized slip detection is often compounded by external dis-
urbances. The sensor described in this paper obviates many of
he above problems and is capable of detecting slip as well as
he normal force from the same contact location. The sensor
s based on the photoelastic effect and it produces continuous
ignal during object slip. The signals are so strong that they do
ot require any amplification, leaving it largely immune to the
xternal disturbances. Experiments conducted with the sensor
re reported.

. Mechanics of slip and photoelasticity

In context of grasping and manipulation of objects, slip may
e regarded as the relative movement of one object surface over
nother when they are in contact. The relative motion may be of
ny form ranging from simple translational to a combination of
ranslational and rotational motions. Mechanically, slip can be
hought to be shearing of two object surfaces in contact, in all
ossible forms of motions. Visually it may be easier to detect
elative movement between two slipping objects, however, it
s difficult to exactly analyze various material and geometrical
nteractions in terms of physical behavior of the contacting sur-
here µf, µs are the coefficients of friction between the fin-
er/sensor and the object and a is the vector sum of acceleration
ue to gravity together with that supplied by the inertia. To pre-
ent the object slipping, the applied finger force (F) needs to
e controlled so that the condition shown by Eq. (2) is always
atisfied.

The schematic of the proposed sensor is shown in Fig. 2 where
ight emitted by a source is passed through optical fibers to the

Fig. 2. Key features of the sensor.
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Fig. 3. Sensor dimensions and the boundary conditions.

photoelastic layer located between a polarizer and an analyzer.
On entering the stressed transparent photoelastic material, the
polarized light is split into two components which vibrate in the
two perpendicular planes of principal stresses. The velocity of
propagation of each component of light differs from that in the
unstressed material by an amount which depends on the magni-
tude of the principal stresses. Consequently, the two component
rays emerge from the material out of phase. The difference in
phase depends on the difference between two principal stresses,
the wavelength of light, thickness of the material in the direction
of propagation of light, and the stress optical coefficient of the
material. The two rays emerging from the material are received
by an analyzer, which only transmits the components of two rays
in its plane of polarization causing a change in the intensity of
light at the receiver.

Fig. 3 shows the boundary conditions and dimensions of the
photoelastic layer used in the sensor design. The layer has a
fixed boundary forming a cantilever beam. The shaded portion
forms the sensing area. The l, b and t are the length, breath and
the thickness of the layer, respectively.

Under the action of the applied normal force and the shearing
force for the case shown in Fig. 1, the free body diagram of the
sensing material is shown in Fig. 4, where σx is the normal
stress along x-direction and τxy is the shear stress in xy-plane.
The counter couple developed in the material is represented by
the shear stresses τ (opposite to τ ). The normal and shear
s

σ

τ

and,

A = b × t (5)

where F is the applied fingertip force, A the contact area of
the sensor and µs is the coefficient of friction between the
sensor-object surfaces. This is a condition of plane stress in xy-
plane with negligible σy component. The magnitude of principal
stresses σ1 and σ2 (with σy = 0) is given by [21]:

σ1 = σx

2
+ 1

2

√
σ2

x + 4τ2
xy (6)

σ2 = σx

2
− 1

2

√
σ2

x + 4τ2
xy (7)

and the orientation (α) of the principal stresses is given by the
angle between x-axis and the direction of the maximum principal
stress (σ1) as:

α = 1

2
sin−1

⎧⎨
⎩

2τxy√
σ2

x + 4τ2
xy

⎫⎬
⎭ (8)

These stresses are represented in Fig. 5.
These relations are valid for semi-infinite solids but the sen-

sor material considered here is a photoelastic layer which has
finite dimensions so these relations are only an approxima-
tion for this application. Nevertheless, these relations give an
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tresses are expressed as:

x = F

A
(3)

xy = µsF

A
(4)

Fig. 4. Modeling of the sensing medium.
dea of dependence of σ1, σ2 on the normal and the shear
tresses over it. The intensity of light (Io) emerging out of the
nalyzer is expressed in terms of principal stress difference
s [22]:

o = Ii sin2 2θ sin2
{

πt(σ1 − σ2)c

λ

}
(9)

here Ii is the incident intensity of light, θ the angle between
lane of principal stress (σ1) and the plane of polarization, t
he thickness of the layer in the direction of light propagation,

the wavelength of the light used and c is the stress optical
oefficient (which is a known property of the material). The
ngle θ is shown in Fig. 6, where light enters the polarizer along
he optical axis O (perpendicular to the plane of the paper).
ight emerging from the polarizer has amplitude represented by

he vector (Ap) along the axis of polarizer. When this polarized
ight enter the stressed photoelastic material, it splits into two
omponent vectors (Ap1 and Ap2) along the planes of principal
tresses. At analyzer (whose axis is shown to be perpendicular

Fig. 5. Principal stresses and principal planes.
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Fig. 6. Light representation in crossed polarizers.

to the axis of the polarizer), the components of these two vectors
are taken along the axis of analyzer (Aap1 and Aap2), which are
out of phase according to the orientation of the principal planes.
Thus the resultant vector is smaller, changing the intensity of
the emerging light. Angles α and θ govern the sensitivity and
dynamic range of the sensor.

Eq. (9) suggests that change in intensity of light at the receiver
may be obtained only if there is a change in the value of σ1, σ2,
other parameters being constant. Considering slip of an object,
the system of stresses is changed at the very start of the slip
due to sudden energy imparted to the photoelastic material and
so is the case in reverse order when the slip is terminated. But
during the slip with constant rate, the stresses remain constant.
Thus no slip signal is available. However, the sensor could
provide continuous slip signal if the slip motion can be par-
tially converted into transverse motions to change the system
of stresses. The key to achieve this is to improve the surface
characteristics of the slip-surface of the photoelastic layer so
that it can set up a system of vibration whenever an object slips
over it.

3. Slip sensor design

In an attempt to produce continuous slip signals during object
slippage the top surface of the photoelastic layer, which forms
t
r
f
s

surfaces in each case stuck to the slipping object at the constant
slip rate.

If sensor’s edges are partially loaded by the slipping object
and are just making contact with the object during slip, vibra-
tion could be generated as reported in [19]. However, in the
present study the object size was bigger than the sensor size
which covers the entire surface area of the sensor, thus the sen-
sor produced slip signals only during start and termination of
the slip. Even abrading the slip surface and changing the top
surface with silicon rubber were found to be unworkable. How-
ever, when the top surface was replaced by a metallic surface,
it was found that the sensor produced continuous slip signal
when the object slipped over it and the signal was found to be a
function of the slip rate. This behavior was exhibited because of
the self-excited vibration induced between the two contacting
surfaces.

The phenomena of self-excited vibration due to dry friction
have been observed when one object surface slides over the other.
The process is caused by the fact that the frictional force does
not remain constant as a function of velocity. It decreases as the
relative velocity increases, giving rise to a negative damping to
sustain the vibration of the system [23]. When the object sur-
faces are in contact and stationary, the relative velocity between
the point of contact and the sliding surface is zero. When one
surface starts sliding, a relative velocity is set and the frictional
force acting at the interface displaces the point of contact which
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he slip surface, was changed with different geometry and mate-
ials as shown in Fig. 7, and tested experimentally. It has been
ound that the sensor did not provide continuous slip signals,
ince the projected edges of the sensor or the changed contact

Fig. 7. The non-enhancing slip surfaces.
hanges the relative velocity, which in turn changes the fric-
ional force. When the relative velocity of the point of contact
ncreases (i.e. when the second object moves against the sliding
bject) the magnitude of frictional force is reduced, as a result
he amplitude of displacement decreases and so is the relative
elocity of the point of contact. This increases the magnitude
f frictional force and eventually increase the amplitude of dis-
lacement and the whole cycle repeats itself setting the system
o vibrate. For such a vibration to take place the relative velocity

ust not cease, also the characteristic of vibration so exhibited
s very much dependent on the material of the contacting sur-
aces which governs the change in frictional force with change
n relative velocity. A complete theoretical analysis of the sen-
or based on frictional characteristics of different materials is
vailable in [24], where it has been shown how vibration can be
ustained and how the sensor can provide continuous signals at
constant slip rate.

The enhanced sensor is shown in Fig. 8, where a thin strip
f stainless steel of 0.3 mm thickness was attached to the
hotoelastic layer. The final size of the sensing element was

Fig. 8. The enhanced sensor.
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Fig. 9. The optical receiver and the filter used in the experiments.

9 mm × 5 mm × 3 mm, with a sensing area of 9 mm × 3 mm.
The metallic strip was glued to the photoelastic layer (which
forms the slipping surface) in such a way that it did not pre-stress
the photoelastic material and with the same care the photoelastic
layer was glued to a U-shaped body to house the sensor (Fig. 8).
Care was also taken to place the polarizer/analyzer sheets in
the U-shape in crossed mode so that it did not stick to the pho-
toelastic layer. The optical fibers were fixed to the two arms
of the sensor-body close to the slipping surface on two close-fit
through holes. The arrow on the sensing area shows the direction
of object slip and should be kept perpendicular to the optical fiber
alignment to have the photoelastic effect [25]. The light source
used is a high radiance emitter of peak spectral output of 850 nm
and the receiver is a PIN photodiode to match the emitter. The
single stage detection circuit used in this experiment is shown
in Fig. 9.

The output from the amplifier contains both the normal force
as well as the slip signals. When this signal is filtered, an ac
signal is available which gives measure of slip and when the slip
signal is subtracted from the main signal a dc signal is available
(this has been achieved digitally in the software). This provides
absolute information on the normal force.

4. Experimental results

The test-rig used for conducting experiments with the devel-
oped sensor is a three link articulated finger [26], shown in
Fig. 10. A small dc servomotor controls slip of the object in
vertical direction under gravity. The experiment uses objects of
different mass and materials to compare the resulting slip sig-
nals. These test objects are a well machined aluminum block of
average surface roughness 0.8 �m and a plastic block of average
surface roughness 0.5 �m. These objects do not have a surface
roughness which can be exploited for the detection of slip. The
objects are allowed to slip over the sensor surface under grav-
ity and the applied force from the fingertip. The finger contact
surface has a silicon rubber pad to provide a better closed-loop
control of the object slip [27].

Fig. 11(a) shows the initial condition of signals as seen on
an oscilloscope when no object is held. The upper plot in all the
following figures (Figs. 11–13) is the dc (normal force) signal
while the lower is the ac (slip) signal in a time frame of 50 ms/div.
In order to see the smaller slip rates, the ac signal has been set
at 20 mV/div while due to the initial offset of the dc signal, it
has been set at 2 V/div. Since the dc signal has been set at a high
voltage, small change in the signal cannot be seen in the plots.
Fig. 11(b) shows the change in signals when a plastic block
of 155 g is slipping. Due to the applied force, the dc signal is
seen to increase from the previous value and the ac signal is
s
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(
f

xperim
Fig. 10. The e
een to be perturbed. The variation exists throughout the time-
ange indicating that the slip signal is available continuously.
he object slip rate in this case was 2.7 mm/s.

When the same object is allowed to slip at a lower rate
0.72 mm/s), the amplitude as well as the frequency of the sig-
al is seen to decrease, Fig. 12(a). The same experiment was
epeated with an aluminum block of 105 g slipping at a rate of
.61 mm/s, Fig. 12(b). Other conditions being the same, it can
e seen that for approximately the same slip rate as in Fig. 12(a)
for the plastic block), the amplitude of the slip signal is higher
or the metallic object as compared to the plastic object. It can

ental set-up.



222 V.N. Dubey, R.M. Crowder / Sensors and Actuators A 128 (2006) 217–224

Fig. 11. (a and b) Initial conditions of slip and normal force signals.

Fig. 12. (a and b) Slip signal for different materials at the same slip rate.

Fig. 13. (a and b) Slip signal for the same materials at different slip rates.

be concluded that the slip signal has high amplitude with metal-
lic objects than with non-metallic objects at the same slip rate,
since the friction–velocity relations are different for different
materials.

Fig. 13(a) shows the signals obtained when the aluminum
block slips at 3 mm/s. It can be seen that the amplitude, in this
case is very high which also affects the applied force signal
(upper plot), since the signal has both ac and dc components as
seen on the oscilloscope. The slip signal is seen to be irregular
and the frequency of the signal is found to be higher than the
previous case in Fig. 12(b), means that for the same material
at different slip rates the sensor provides different signals. The
sensor is found to be capable of detecting slip rates as small
as 0.1 mm/s for certain metallic objects as can be seen from

Fig. 13(b). In all the above cases a change in dc signal provides
the normal force information. Due to high initial offset, the dc
signal cannot be easily differentiated in these plots for different
forces applied to the object. However, the sensor has been cali-
brated for the normal force to fully characterize it. Further, the
sensor has been tested against external disturbances by impart-
ing artificial jerks and shocks to the test rig. It has been found
that the sensor is immune to such disturbances and the signals
remain spike-free.

5. Sensor calibration for normal force

The sensor has been calibrated for the normal force. The plot
of applied force against voltage (which is proportional to the
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Fig. 14. The sensor calibration graph for the normal force.

light intensity at the receiver) is shown in Fig. 14. It can be seen
that the variation closely follows the sine-squared function as
has been predicted theoretically [22]. For the present sensor the
voltage increases up to a force of 1.7 N, after that the voltage
drops to the initial condition providing a total force range of
6 N. The sensor can be used until 1.7 N for absolute applied force
measurement; however, the full range of 6 N can be exploited
by suitably processing the signal to track the increasing or the
decreasing trend of the voltage.

A limitation of the sensor, as is true in case of any other
pressure sensors, is due to the contact localization of the applied
force. Since the sensor works on the stress developed in the pho-
toelastic material, the reading could be misleading if the contact
is localized at one end and is detected at the centre or at the
other end of the sensor. In order to improve the sensor on this
account, more optical input/output fibers can be used through-
out the specified breadth of the sensor and the resulting signal
should be averaged-out and calibrated accordingly. The range
of the applied force can be improved by increasing the contact
area of the sensor, however, for many applications area enlarge-
ment may not be allowed. The other possibility is to change the
photoelastic material from polyurethane to acrylic or epoxy to
provide higher force range [28]. Further for compactness, the
optical fibers can be discarded and U-shaped combined emitter-
receiver package (typically used for end of tape detection) could
be used.
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lic surface of the sensor is wear resistant which can be an added
advantage from an application point of view. It offers immunity
to the external mechanical vibrations which has the potential for
use in robotics and prosthetic applications.

As the sensor works on the change in the coefficient of friction
between the sensor surface and the slipping object, the slip sig-
nal in case of some materials may be more pronounced than
others. Particularly the metallic objects are expected to pro-
vide stronger signals as compared to the non-metallic objects
since the variation of the coefficient of friction due to relative
velocity is higher in metal–metal contacts as compared to that
in metal–non-metal combinations. While attempting to improve
the sensor compactness, the sensor design was changed to incor-
porate the emitter and the detector directly into a U-slot with the
photoelastic layer. The new design was however found to be
unworkable. This was due to the available size of emitter and
detector which had a larger diameter (6 mm) as compared to the
optical fibers diameter (2 mm) used in the earlier experiment.
When these optoelectronic devices were placed directly into the
U-slot, the center for signal detection was shifted away from
the top surface. Since slip is a surface phenomenon, the effect
of object slip far away from the surface was very much dimin-
ished. As a result, the stress change in photoelastic material due
to vibration was not received at the detector. The application
however, would improve if the emitter detector of smaller size
(1–2 mm) can be directly placed closed to the slipping surface.
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. Discussion and conclusions

In this paper mechanism of slip has been investigated to
evelop a sensor on the principles of photoelasticity for pro-
iding continuous signal during slip. The paper presented theo-
etical aspect as well as the experimental results of the developed
ensor. The theoretical model helps identify various parameters
nvolved in the sensor design. The sensor is novel in the sense
hat it provides information on slip as well as normal force with
significant improvement of delivering continuous signal dur-

ng slip. Such sensors could be advantageous for grasping and
anipulation tasks since they can extract slip and applied force

nformation from a single contact location. The sensor is capa-
le of detecting fine scratches available on the object surface,
hich can be exploited for quality assessment of object sur-

aces. Besides this, the overall size of the sensor is so small that
t can be easily incorporated into robotic fingers. The top metal-
The presented design is compact, simple and yet robust
s compared to the other existing designs. We are currently
esearching on creating a photoelastic fingertip with integrated
mitter and detector pair and in-built polarizer and analyzer to
nvestigate how the system parameters affect the sensor behavior.
ven though the sensor provides different signals for different
aterials and slip rates, the signals from the sensor can be intel-

igently processed [29] to obtain useful information for grasping
nd manipulation tasks. It is our belief that an integrated sys-
em will be viable for a number of applications in robotics and
rosthetics.
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