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Abstract—Recent research into artificial neural networks 
(ANN) has highlighted the potential of using compact analogue 
ANN hardware cores in embedded mobile devices, where 
power consumption of ANN hardware is a very significant 
implementation issue. This paper proposes a learning 
mechanism suitable for low-power class AB type analogue 
ANN that not only tunes the network to obtain minimum 
error, but also adaptively learns to reduce power consumption. 
Our experiments show substantial reductions in the power 
budget (30% to 50%) for a variety of example networks as a 
result of our power-aware learning.  

I. INTRODUCTION  
The compact size and low power dissipation of analogue 

ANN has made it an attractive choice for hardware and it has 
attracted considerable research efforts in recent years [1;2]. 
As specialized ANN hardware finds many potential 
applications in mobile embedded devices, the power 
consumption becomes a major issue [3]. Since shrinking 
biasing voltages makes it difficult to process high resolution 
data in voltage-mode, there has been increasing emphasis on 
the low power current mode (CM) implementation of the 
ANN [4], which gives better results at lower bias. The Class 
AB CM implementations are particularly attractive options 
as they remove the necessity to maintain large bias current 
levels (leading to very low-power consumption) and this 
allows the input signal magnitude to exceed the bias current 
(improving calculation precision)[3].  

The power consumption of such class AB CM ANN 
depends heavily on the values of signal currents, which in 
turn depend on the values and distribution of weights of 
synaptic connections. Since the weights are determined by 
the applied learning process, the learning process is very 
likely to affect the power consumption considerably. To the 
best of our knowledge, none of the currently used ANN 
learning algorithms are capable of taking into account of the 
effect of the weight distribution on the power consumption.  
We propose a new power-aware learning algorithm that is 
sensitive to the power consumption of the design. The 

algorithm is based on the variation of weight perturbation [5] 
algorithms; it  adds a penalty term for power consumption in 
the objective function. We have applied our algorithm on a 
sample class AB ANN described in [4] for various 
classification and function approximation tasks. The results 
of these experiments are discussed in this paper. 

II. POWER-AWARE LEARNING 

A.  Complexity Regularization with Penalty-term 
An essential aspect of neural network training is to 

improve generalization. A class of commonly used 
techniques for this are known as complexity regularization, 
which aims to prevent the learning algorithm from over-
fitting the training data by restricting the complexity of the 
ANN function. A popular approach is to include an 
additional penalty-term in the cost function of learning 
algorithms, which penalizes overly high model 
complexity(also known the penalty term pruning) [6;7]. 

 O(w)  =  E(w) +  λc· C(w)  (1) 

O(w) is the objective function that is to be minimized 
with respect to weight vector w, the vector of synaptic 
weights. E(w) is the error function, usually the Mean 
Squared Error (MSE) over the training samples. C(w) is the 
complexity penalty term. λc, the regularization parameter 
determines the influence of the complexity penalty on the 
learning procedure. 

B. On-chip Learning and Weight Perturbation  
On-chip learning can greatly increase the training speed 

and realize the full potential of the massive parallelism of 
analogue VLSI ANN. Moreover, on-chip implementation of 
a learning mechanism is required for adaptive systems. 

Traditional error back-propagation approaches require 
high precision calculations and precise modelling of the 
activation function, which are unsuitable for on-chip 
implementation in analogue VLSI. Alterative Weight 
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Perturbation methods have been developed [2;5] and 
implemented successfully on analogue/mixed mode VLSI.  
In these methods, the effect of random weight perturbations 
on output error is observed and the gradient information is 
measured rather than calculated, thus avoiding the 
complicated derivative calculations and backward error 
propagation. These techniques do not assume any model for 
implemented ANN and hence networks can learn to 
compensate for analogue circuit non-idealities [2].  

C. Power-aware Weight Perturbation  
As explained in section I, the power consumption of class 

AB CM ANN system heavily depends on the values and 
distribution of weights. For power-aware learning in such 
systems, we propose an alternative objective function as 
presented in (2). 

 O(w)  =  E(w) +  λp· P(w) (2) 

P(w) is the penalty term for power consumption during 
the feedforward phase and λp is the power regularization 
parameter. (In most of the practical ANN hardware 
applications, the utilization period of the trained ANN is 
much larger compared to the training period. Hence, we 
assume that only the power consumption of the feedforward 
phase is significant.) There are several difficulties in 
implementing this power aware learning with standard 
Back-propagation offline training. First, the effect of weight 
vector w on power (i.e. P(w) ) is difficult  to estimate. In 
addition, back-propagation is based on the calculation of 
gradient of the objective function with respect to weight wi. 
The expression for partial derivative of the power term 
(∂P(w)/ ∂wi) cannot be defined precisely, making it 
unsuitable for standard back propagation calculations. 

 
Figure 1.  Power-aware weight perturbation learning implementation   

However, in an on-chip learning scenario, the power 
consumption can be easily measured and used with the 
measured error to form a new objective function for a power-
aware weight perturbation learning scheme. Since the weight 
perturbation learning is ‘model-free’ and it is driven solely 
by the measured objective function, this modification in the 
objective function does not need any extra calculations and 
can be implemented with minimal overheads as shown in 
Figure 1. With the addition of the power-penalty term, we 
are essentially attempting a multi-objective learning 
problem. Although, there have been previous attempts to 

implement multi-objective learning and regularization in 
ANN, to the best of our knowledge, none of the attempts 
involves reduction in power consumption as one of the 
objectives. 

III. EXPERIMENTS AND SIMULATION RESUTSL 

A. Class AB ANN Implementation and Estimate of Power 
Consumption 
For the experiments, we have considered the low power 

class AB CM ANN analogue cells presented in [3;4].  
Current consumption and power consumption of the 
multiplier cell and the sigmoid activation function cell is 
approximated in equations 3 and 4 respectively [4]. (For the 
multiplier cell, current is represents synaptic weight and 
current iin is incoming current from the previous layer) The 
total power consumption of ANN is assumed to be the sum 
of total power consumption of all the multiplier and 
activation units. 
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 This approximation of power consumption is not very 
accurate and accurate power consumption can be a more 
complex non-linear function of input currents, especially at 
low signal levels.  However, our proposed on-chip learning 
is driven by the actual on-chip power measurement and 
does not require evaluation of any equation to obtain power 
consumption. Hence the choice of the power approximation 
function is not critical for our experiments and for the 
purpose of demonstration, we have used (3) and (4) for the 
simulation experiments described in this paper. Indeed, our 
additional experiments show that adding small non-linearity 
and offsets to (3) and (4) does not alter our results 
significantly. 

B. Experiments and simulation results 
1) The 8-3-8 encoder problem[8] 

The graph in Figure 2 shows the training results for 8-3-8 
encoder problem, which is a widely used example for ANN 
benchmarking.  

Error and Power Variation with Power-aware Learning
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Figure 2.  Power-aware learning for 8-3-8 Encoder problem 



ANN contained (8+3+8=) 19 neurons with bipolar 
sigmoid activation function. Adjacent layers were fully 
connected and no shortcut connections were allowed. Weight 
vector contained =59 elements (48 connections weights plus 
11 biases). Error was measured as the Sum of Squared Error 
(SSE). Percentage power was measured with respect to the 
maximum power during the entire training period. All the 
weights were initialized with zero and the weights were 
restricted within the interval of [-10,10]. The training was 
performed with the parallel weight perturbation with power 
penalty term as per (2) in batch update mode. All simulation 
experiments in this paper were simulated on Stuttgart Neural 
Network Simulator (SNNS). As we can see from the graph in 
Figure 2 that after switching on the power-aware learning, 
power is considerably (47%) reduced without increasing the 
error. 

2) Proben1 benchmark dataset  
We also carried out experiments on the number of 

problem available in the Proben1 benchmark datasets [9] 
(various real-life classification and approximation tasks). 
The experiments where performed on the ‘pivot 
architecture’[9] for each problem with shortcut connections. 
Precision of all the calculations and weights were restricted 
to 0.001 to reflect the limited precision available in the 
analogue hardware, and the weights and calculation results 
were scaled and restricted within the interval of [-10,10] to 
reflect the limitation imposed by limited operating range of 
the transistor devices. 

Each network was first trained to achieve minimum 
validation error with Parallel Weight Perturbation without 
the power penalty term and minimum Mean Squared 
validation Error(MSEmin_valid) achieved was recorded. Those 
trained networks were then further trained with power-aware 
learning such that its Mean Squared validation 
Error(MSEvalid) did not exceed above 5% of MSEmin_valid ( i.e.  
MSEvalid < 1.05* MSEmin_valid). The results of the achieved 
power reduction for each problem are presented in Table 1. 
(further details of each benchmark problems can be found in 
[9]). It can be seen from the table that our proposed approach 
achieves significant power reduction in a variety of complex 
problems without increasing error. 

TABLE I.  RESULTS OF POWER –AWARE LEARNING ON THE PROBEN1 
BENCHMARK PROBLEMS 

Problem 
Type 

Dataset Architecture Power 
reduction (%) 

classification Cancer 9+8+4+2 L 29.3 

Func. Approx Builing 14+16+8+3 L 26.2 

Func. Approx Flare 24+32+3 L 28.3 

classification Glass 9+16+8+6 S 48.8 

classification Diabetes 8+16+8+2 S 39.5 

classification Thyroid1 21+16+8+3 S 30.7 

Error and Power Variation with Power-aware Learning 
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Figure 3.  Training times for Flare3 dataset in proben1 benchmark 

C. Observations 
1) The power regularization parameter λp 

The algorithm is quite sensitive to the value of λp and it is 
difficult to tune. We have tried number of different strategies 
to set λp. The most successful strategy amongst our 
experiments was to first train network with λp = 0 to obtain 
minimum validation error and then slowly increasing λp. 
This strategy is similar to the complexity regularization 
strategies described in [7]. When the training was stared with 
non-zero λp , ANN was generally unable to reduce the error 
to the level with the ANN trained with λp = 0,  even if later in 
the training λp is reduced to zero 

2) Training time 
The training time required to achieve low-power 

(T_power) is typically much larger in comparison with the 
training time to reduce the error (T_error). (i.e. The Low-
power objective is achieved at a much slower rate in 
comparison with the Low-error objective.) Figure 3 shows 
result of the training in Flare3 dataset in Proben1 
Benchmark.   This is not surprising, because initially with 
λp=0, learning has only a single objective; while after the 
power-aware learning is switched-on, the network is 
attempting more complex multi-objective learning. For the 
problems attempted from Prben1 benchmarks, the ratio 
T_power/ T_error is typically 5-10 or greater. This indicates 
that that for the ANN applications requiring relatively quick 
adaptations, our proposed approach may not be able to yield 
significant power saving due to insufficient training time. 

3) Issue of generalization capability  
 ANN can lose the capability of generalization due 

to overtraining. Generally ‘early stopping’ is used to prevent 
overtraining of ANN [6]. Since power-aware learning 
requires a considerably large number of training epochs even 
after early stopping point, there is a danger that we might 
over-train the network for the training dataset and lose its 
generalization capability.  However, since Power-aware 
learning generally restricts the free network parameters (i.e. 
weights) to small values, it acts as a form of complexity 
regularization mechanism and hence prevents the loss of 
generalization. In all our experiments, we found that 



additional training with power-penalty term did not degrade 
the generalization performance in any of the problems and in 
many cases, it actually improved the generalization. Please 
note that the results presented in Table 1 are obtained within 
the tight constrains of the validation dataset error and not the 
training dataset error, which indicates that the networks 
maintained their generalization capability with Power-aware 
training. 

4) Update style 
Parallel weight perturbation with ‘update-by-pattern’ 

learning approach is generally considered better in terms of 
learning speed in comparison with ‘update-by-epochs’[2]. 
However, when ‘update-by-pattern’ was applied with power-
penalty term for power-aware learning, it produced inferior 
results. 

D. Comparison with the weight decay regularization 
scheme 
In class AB CM ANN design, the lower values of 

weights is likely to consume low power due to the direct 
relationship between signal levels and power consumption. 
Hence back propagation learning with a weight decay[6] 
complexity regularization mentioned  in section 2.1 can also 
drive such circuits towards lower power consumption. With 
this in mind we need to consider the potential advantages of 
using the suggested power-aware weight perturbation in 
comparison with the weight decay regularization. Power-
aware weight perturbation has several appealing aspects: 

1) Weight decay using (1) is basically aimed at the 
complexity reduction for improved generalisation and not for 
power reduction.  The relation between P(w) and C(w) can 
be highly nonlinear, especially with the non-linearities and 
offsets involved at the very low weights in analogue VLSI.  

2) On-chip implementation of the weight decay 
mechanism is costly in terms of hardware as it requires an 
additional multiplication for each weight. Moreover, the 
limited precision available in the analogue VLSI can be a 
major limiting factor for implementing an on-chip weight 
decay scheme. The implementation of our proposed power-
aware learning requires a single power measurement unit for 
the whole ANN (Figure 1) and does not require very high 
precision calculations.  
 
3)  There is a fundamental difference between the 
approaches. Weight decay procedure treats all weights in 
Multi-Layer Perceptron (MLP) equally which is not an 
appropriate strategy for power reduction because the power 
consumption not only depends on the weights but also on 
the input patterns. Learning algorithm should adjust weights 
in order to prevent high value signal propagation. Unlike 
our learning process, the weight decay procedure is 
incapable of applying preferential treatment according to 
the input patterns to different weights in order to achieve 
better power reduction.  We tried to reduce the power 

consumption using weight decay in a few Preben1 problems 
and the results presented in Table 2 show that weight decay 
regularization provides inferior results in comparison to the 
proposed Power–aware learning.  

TABLE II.  WEIGHTS-PERTURBATION LEARNING WITH WEIGHT DECAY 

Problem 
Type 

Dataset Architecture Achieved 
Power 

reduction (%) 
classification Cancer3 9+8+4+2 L < 2 

Func. Approx Builing3 14+16+8+3 L < 3 

Func. Approx Flare1 24+32+3 L 4.22 

IV. CONCLUSIONS 
In this paper, we have proposed a novel power-aware 
learning mechanism for class AB analogue neural network 
VLSI which is suitable for on-chip implementation. 
Experiments on the standard Proben1 benchmark problems 
indicate that it is capable of significant power reduction over 
a wide range of problems. Key observations on training 
time, regularization parameter and issue of generalization 
were discussed. The proposed algorithm shows significant 
advantages over the other possible low power training 
method i.e. weight decay regularization. The implications of 
this work are that an on-chip implementation could lead to 
significant benefits for practical ANN applications in mobile 
embedded devices. 
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