Agent-Oriented Data Curation in Bioinformatics

Simon Miles

School of Electronics and Computer Science
University of Southampton
Southampton, SO17 1BJ, UK
sm@ecs.soton.ac.uk

Abstract. The practitioners of bioinformatics require increasing sophis-
tication from their software tools to take into account the particular char-
acteristics that make their domain complex. For example, there is a great
variation of experience of researchers, from novices who would like guid-
ance from experts in the best resources to use to experts that wish to take
greater management control of the tools used in their experiments. Also,
the range of available, and conflicting, data formats is growing and there
is a desire to automate the many trivial manual stages of in-silico exper-
iments. Agent-oriented software development is one approach to tackling
the design of complex applications. In this paper, we argue that, in fact,
agent-oriented development is a particularly well-suited approach to de-
veloping bioinformatics tools that take into account the wider domain
characteristics. To illustrate this, we design a data curation tool, which
manages the format of experimental data, extend it to better account for
the extra requirements placed by the domain characteristics, and show
how the characteristics lead to a system well suited to an agent-oriented
view.

1 Introduction

Bioinformatics is a fast-growing field in which biological data is analysed and
shared using software tools. However, due to the field’s success, the size and
complexity of the data being produced is increasing fast. It also means that new,
relatively inexperienced researchers are constantly being recruited. Together,
these characteristics make it hard for organisations to ensure that work is being
undertaken on the best available data and with the best available tools.
Several strands of research aim to support the bioinformatics community in
managing the complexity of their experiments. In our own recent work, we have
focused on recording the provenance of experimental results [8]. The provenance
of a piece of data is the process that led to that data, and process documen-
tation is the documentation of processes from which the provenance of data is
discovered. We have determined a number of provenance-related use cases in
bioinformatics [12] through interviews with scientists, such as the comparison
of two experiment runs to determine why results were different, and justifying
that the experiment was performed in a valid way to others. We have provided
software to record and maintain process documentation in provenance stores.

At a more fine-grained level, one way in which tool developers could help
the bioinformatics community is to design tools that, from the start, take into
account the wider characteristics of the domain. Such characteristics include the
wide variety of data formats available and differences in the level of expertise of
those using the tools. However, providing such flexibility can substantially add
to the complexity of a system.

Agent-oriented software development is an approach to designing complex,
flexible applications in terms of agents [18]. Here, we follow the definition of
agents as autonomous, pro-active, flexible and social entities [11]. In this paper,
we argue that agent-oriented software development is well suited to the design
of manageable, re-usable software in the bioinformatics domain. We believe this
hypothesis is correct because the characteristic demands of the bioinformatics
domain fit well with the problems agent-oriented systems attempt to solve.

Our hypothesis is motivated by our work in designing a tool to solve a specific
bioinformatics problem: managing the heterogeneous formats of data so that it
remains parsable into the future. In this paper, we propose the design of a
data curation tool that trawls a bioinformatician’s provenance store for data
in obsolete formats and converts that data to novel formats. The tool has a
set of conversions, each stating an obsolete format to convert from and a novel
format to convert to. We consider both a non-agent based solution and an agent
based solution, and show that the properties of the latter are necessary for
meeting the wider demands of the bioinformatics domain. Such demands come
from the particular characteristics of the domain and two in particular. The first
domain characteristic is the variation in expertise between novice researchers
who cannot accurately determine which data formats may become obsolete and
experts who wish to gain greater control over the management of their tools. The
second characteristic is the desire to automate the many trivial manual stages
of bioinformatics experiments, to give time for answering more valuable research
questions. We demonstrate that an agent-oriented development method is well-
suited to designing the tool, and that, because the requirements come from the
domain rather than being particular to the tool, the approach applies more
widely to other bioinformatics tools.

The paper is organised as follows. In Section 2, we define a few key char-
acteristics of the bioinformatics domain. Section 3 describes concepts, such as
provenance and workflow, and implementing technologies that support advanced
bioinformatics. We propose a tool that manages the curation of data recorded
during in-silico experiments and specify two different designs in Section 4. We
then examine how the different designs of the tool map to an agent-oriented view
in Section 5, and generalise this to the whole bioinformatics domain. Finally, in
Section 6, we infer the benefits of an agent-oriented development approach for
bioinformatics tools. The specific contributions of this paper are as follows.

— A (non agent-oriented) design for a tool that provides data curation of pro-
cess documentation in a bioinformatics organisation.

— An agent-oriented view of the tool, in which the properties of the design are
mapped to agent attributes.

— A general mapping from the characteristics of the bioinformatics domain to
the properties of an agent-based system, leading to the argument that many
bioinformatics tools would benefit from agent-oriented development.

2 Bioinformatics Domain Characteristics

The bioinformatics domain has a number of consistently apparent characteristics,
due to both the way in which the field has developed and the nature of the
biological data being processed. One striking characteristic is the willingness of
the community to make the data it has produced through experiment available
in large, publicly accessible databases and biological data analysis tools, such as
those hosted by the European Bioinformatics Institute [4] and National Center
for Biotechnology Information [13]. This has made the rapid development of
the field possible. Other pervading characteristics include the rapid increase in
new tools and databases that small laboratories are making available, and the
complexity and unmanageability that the software involved can reach as analysis
scripts and processes are extended and combined.

For this paper, we highlight three other domain characteristics that help to
illustrate the usefulness of an agent-oriented approach to bioinformatics tool
development. These are named and described below, and referred to throughout
the rest of the paper.

Heterogeneous Data Formats There is a wide range of data formats in use,
with several formats for any one particular type of data, analysis tools that
accept data only in one format and new data formats appearing frequently
as new tools are developed.

Variation in Expertise An increasing number of researchers are being em-
ployed in bioinformatics organisations, including many that are relatively
new to the discipline, coming from biology, computer science, and other
fields such as physics. Organisations are a mixture of established, experi-
enced bioinformatics researchers along with novices, who are yet to discover
which available tools and data sources are best suited to their problems.

Desire for Automation While bioinformatics is based on software tools, there
is a wide range of tasks which require manual effort, including, first, copy-
ing and pasting between tools accessed through websites and, second, using
spreadsheets to sort and filter results. In consequence, there is a strong com-
munity enthusiasm for automating the tedious manual parts of experimental
process, so that more time can be spent on the more interesting and valuable
research questions.

3 Provenance-Aware Experimentation

In order to accurately describe the purpose and design of our bioinformatics data
curation tool, it is first necessary to introduce some key concepts and technolo-
gies, and explain how they have been used to enhance a bioinformatician’s work
in practice.

3.1 Workflow and Grid Computing

Experiments follow particular experimental processes, which can be expressed
as workflows. A workflow coordinates the data and control flow between multi-
ple services to achieve a more complex goal than each can achieve individually.
Services, in this case, could take many forms, such as standardised, remotely de-
ployed components such as Web Services, or locally executed Perl or Tcl scripts.

Grid computing [6, 17] allows the enactment of workflows to take advantage
of the spare capacity on other processors, so that experiments which were pre-
viously infeasible to perform because they would have taken months or years to
run on a single machine can be completed in days or hours. Grid computing is
made possible by a set of software that manages and provides a consistent view of
multiple distributed resources. Commonly used Grid software includes Condor,
which can enact distributed workflows defined as directed acyclic graphs (DAGs),
and the Chimera Virtual Data System [7], which manages the dependencies be-
tween data items and can generate a workflow (DAG) that will produce the most
recent version of a given data item.

3.2 Provenance

The provenance of a piece of data is the process that led to that data, and
process documentation is the documentation of that process [10]. Therefore, the
provenance of an experimental result is represented by the documentation of
the experiment process. Recording process documentation as an experiment is
performed allows many valuable questions to be asked afterwards, such as the
following.

— Given that the results of two runs of an experiment were different, was this
caused by a difference in the input data or because different versions of
analysis tools were used?

— What input data contributed to the production of this result?

— Was any data source used in this experiment licensed such that the result
cannot be patented?

— Did the experimental process follow the plan as originally conceived?

Process documentation is recorded by each client and service in a workflow.
It is stored in a provenance store, which provides structured and persistent stor-
age of process documentation. Each service uses a provenance store it considers
reliable, which means that potentially each service may record process docu-
mentation to a different provenance store. This situation is shown in Figure 1.
However, this is the logical view of provenance recording and there is no reason
why multiple services cannot use the same physical provenance store.

A simplified view of the contents of the provenance store contents after
recording has taken place is shown in Figure 2. For each experiment run, a
set of interactions are documented. Each interaction consists of (at least) a re-
quest and a response message. Each message contains data: the request contains
the input arguments of the service request and the response contains the output

A4

PS

PS

A
A

PS

Experiment
Workflow

Fig. 1. A workflow comprised of multiple services, with each service recording to a
different provenance store

Request Data in
Format A

Request Data in
Format C

Request Data in
Format E

Response Data in
Format B

Response Data in
Format D

Response Data in
Format F

Record of Interaction

Record of Interaction

Record of Interaction

py)

ecord of Experiment Run

Request Data in
Format G

Request Data in
Format |

Request Data in
Format K

Response Data in
Format H

Response Data in
Format J

Response Data in
Format L

Record of Interaction

Record of Interaction

Record of Interaction

Record of Experiment Run

Provenance Store

Fig. 2. The contents of a provenance store after a workflow has executed

results of the service’s processing. The format of each piece of data is explicitly
recorded in the process documentation.

3.3 Protein Complexity Experiment

As part of the PASOA project [15], we have worked with bioinformaticians to
make use of Grid computing resources, to record process documentation and
apply it in solving a number of use cases. The aim of the particular experiment
we focus on is to analyse the information content of different amino acid group-
ings, and was applied to a range of protein sequences from the RefSeq database
[14]. By deploying the experiment in the Virtual Data System, described in the
section above, we allow the bioinformatician to potentially utilise a vast range
of international resources, making the full experiment feasible in a reasonable
timescale.

The experiment includes an instantiation of all the key concepts. The ex-
periment is encoded as a workflow (Condor DAG) of services (mostly Tcl and
UNIX shell scripts) and process documentation is recorded into a provenance
store during or after an experiment’s enactment. The data exchanged between
services uses bioinformatics formats (in particular, FASTA [5] is the original en-
coding of the protein sequences). A single provenance store, implemented as a
Web Service, was used by all services. This work provides a convenient testbed
for illustrating the development of bioinformatics tools and assessing an agent-
oriented approach. The details of the experiment are beyond the scope of this
paper but are explained fully in [9)].

4 Data Curation Tool

Understanding the provenance of a result means, in part, examining the exper-
imental process’ input and intermediate data. However, domain characteristic
Heterogeneous Data Formats means that some data formats will become
obsolete. An example of a data format that has become obsolete in reality is
the Staden data format previously used by the Staden project [16]. Therefore,
when examining the provenance of a result long after an experiment has been
performed, it is possible that no tool will be available to correctly interpret the
data. This is a problem that is solved by good curation. Amongst other goals,
curation should ensure that data always remains available in at least one for-
mat that can be parsed. In practice, this means translating data from obsolete
formats to novel formats, before a situation occurs where no tools available are
capable of parsing the obsolete format.

We propose a data curation tool that trawls the provenance store for data in
obsolete formats and converts that data to novel formats. The tool will have a
set of conversions, each stating an obsolete format to convert from and a novel
format to convert to.

4.1 Scenario

To provide context for the tool’s use, we describe a sample scenario which il-
lustrates the domain characteristics described in Section 2. We define the social
structure of a bioinformatics organisation and the resources available to each
researcher in that organisation. We assume that the researchers are all perform-
ing experiments with similar properties to the Protein Complexity Experiment
described in Section 3.3.

Admirbtor\
@ @

|
(Organisation]

/

\ \ X
Expert | Novice |
{

{ Novice

Expert

Fig. 3. An example human role structure in an organisation

Figure 3 shows the relevant human role structure in the testbed organisation.
There are several researchers, some ezperts, some novices. Experts are researchers
who have plenty of experience of bioinformatics resources and opinions about
which are better or worse. Novices are researchers without this bioinformatics
experience and knowledge. They may take the lead from the organisation to
which they belong, and the experts within it. An administrator coordinates the
dissemination of information and advice amongst researchers.

An individual bioinformatics researcher has access to resources of the form
shown in Figure 4. The researcher has a set of experiments, expressed as work-
flows, that they are modifying and performing to test hypotheses. The inputs and
outputs of workflows are stored in a data store, e.g. a database, and documenta-
tion of the process which led to each experiment result is kept in a provenance
store. In our case, this means storing a record of the execution of each workflow
run.

4.2 Tool Designs

The workflow for performing data curation is shown in Figure 5. For each con-
version in a conversion list, from an obsolete format to a novel format, that the

L]
I .

Services

Data
Store

Provenance
Store

Experiment Workflows

Individual’'s Resources

Fig. 4. The resources available to each bioinformatician

Start
Curation | Get conversions | Conversion Provenance
Tool o List | Store(s)
Record
Provenance
Get data in Format C | Provenance Data

-

Store

Convert each data_ | Converter
itemto FormatG ~ | CtoG

Save data item _ |
inFormatg ™ Data Store

Data Curation Workflow

Fig. 5. A process for converting data in obsolete formats to novel formats

researcher has requested, the curation tool will extract all data in the obsolete
format. For each data item, the curation tool will then use an appropriate con-
verter to translate the data item to the novel format. Several suites of conversion
tools are available, including those contained in BioJava [1] and BioPerl [2]. Fi-
nally, the converted data is stored in the researcher’s data store. On running the
data curation workflow, all interactions are recorded in provenance stores (in
our testbed’s case, a single provenance store). Because the chain of interactions
documents a workflow run in which data in the obsolete format is converted to
data in the novel format, the researcher can later discover the original data that
some novel data is a conversion of, and then the experiment that produced that
original data.

Curation Add conversion
e —
Agent
List

Administration Process

Administrator

Add conversion

Every day at 3am
Y

Conversion | Change policy
Vetter

\u Add conversion

Curation
Process

Start Individual
Researcher
Curation | Get conversions | Conversion .| Provenance
Tool = List | Store(s)
b Record
Provenance
Get data in Format G _| Provenance Data

Store

Convert each data | Converter
item to Format G CtoG

Save data item _ |

in Format G Data Store

Curation Process

Fig. 6. A personalised, automated and cooperative data curation process

Due to domain characteristic Variation in Expertise (specified in Section
2), new researchers may not know which data formats are becoming obsolete
and which formats are likely to remain useful. Also, due to domain characteris-
tic Desire for Automation, we would prefer that the researcher does not have
to repeatedly initiate the tool’s use. Therefore, we can envisage an extension to
the tool, shown in Figure 6. In this extension, the organisation, via the admin-

istrator, sends recommended conversions to the researcher’s curation tools. The
conversions are vetted against an individual researcher’s policy, so that novices’
tools automatically apply the recommended conversions while experts’ tools ig-
nore the advice and use only conversions determined by the expert researcher.

5 Agent-Oriented Systems

A software system can be viewed as a set of interacting agents if it has the
following appropriate properties.

— Agents have localised control, so entities within the system must be perceived
to make decisions on the basis of the information immediately available to
them.

— Agents have social ability, so the same entities must send communications
between each other.

— Agents are pro-active, acting to achieve goals on their own initiative when
the context is appropriate for them to do so.

As a consequence of localised control and social ability, we note that agents
are able to refuse commands from other agents within the system, if the local
information determines this to be the best decision.

In the sections below, we consider the difference between systems that can
be viewed as agent-oriented and those that cannot. We will first examine the
data curation tool, and then the bioinformatics domain more generally.

5.1 Non-Agent-Oriented Data Curation

The initial design of our data curation tool was not readily mapped to a set of
autonomous agents. By itself, Figure 5 describes a system that does not have
agent properties. Specifically, each entity merely follows the commands given by
other entities so there is no localised control, reducing the social communications
to invocations. Each entity only acts in reaction to invocations and the workflow
as a whole has to be externally triggered, so there is no pro-activity.

5.2 Agent-Oriented Data Curation

In constrast, the second, more powerful version of the tool, contains entities
readily mapped to agents. Mapping the agent properties to the design in Figure 6
is valid because each curation and administration process has localised control,
deciding on whether and when to perform suggested conversions or suggest new
conversions respectively. A curation process is initiated pro-actively when the
context is most suitable (at an appointed time of night, though the context
could be refined to be more sensistive to other use of the researcher’s resources).
The adminstration and curation processes are social, in that conversions are
suggested from the former to the latter.

Standard
Adminstration
Agent

Novice's oot Curation oot Expert's
Curation an do Agent anedon Curation
Agent Role Agent

Goals Goals Goals

On suggestion, add Ensure that data s not solely On suggestion, ignore
nnnnnnnnnn i obsolete formats.

Fig. 7. An agent-oriented design of the data curation tool

Figure 7 is an agent-oriented view of the tool designed in Figure 6. We di-
vide the tool’s operation into two roles: administration agent role and curation
agent role, corresponding to the adminstration process and curation process in
Figure 6. Each role can be fulfilled by different concrete agents at different times
or for different researchers. Every administration agent can send suggestions of
conversions to all curation agents and every curation agent has the goal to en-
sure that any data in the researcher’s provenance store is not kept solely in an
obsolete format.

A standard administration agent will adopt the administration agent role
and perform the administration process given in Figure 6. A novice’s curation
agent performs the curation process and accepts all suggestions from the ad-
ministration agent. An expert’s curation agent performs the curation process
but ignores suggestions from the administration agent. Because the definition is
given in terms of roles, it is clear that as a novice becomes more experienced,
they can change the behaviour of their curation agent.

5.3 Domain Characteristics and Agent Properties

Examining the domain in general, we can see that the domain characteristics
given in Section 2 provide requirements for exactly those properties that an
agent-based system provides.

First, due to the Variation in Expertise domain characteristic, many re-
searchers will benefit from using the experience of experts within their organisa-
tion. Each researcher has control over their own resources, which their tools act
on. Therefore, tools will be improved by social ability, where information from
one person can affect the operation of another person’s tool.

Also due to the Variation in Expertise domain characteristic, some re-
searchers will have greater expertise than others, so should have control over
how information from others are applied by their tools. Tools will be better for
having localised control, where decisions are made that match the preferences
and resources of individual researchers even when information and requests for
action come from external sources.

Due to the Desire for Automation domain characteristic, researchers wish
to reduce the amount of time spent initiating trivial manual processes. Pro-active
tools are always applied in a given context should automatically run in that
context without the user having to manually initiate this.

In Table 1, we summarise how the properties of agent-oriented systems meet
the requirements of named domain characteristics and how this property is in-
stantiated in the data curation tool.

System Property|Domain Characteristic|Instantiation
Social ability Variation in Expertise, Organisation suggests
Hetereogeneous Data data format conversions
Formats to researchers
Localised control |Variation in Expertise Ability to set whether
suggested conversions are used
Pro-activity Desire for Automation Automatic curation every
night

Table 1. Mapping of agent properties to bioinformatics tool characteristics

6 Conclusions

The fact that the designs of good bioinformatics tools, i.e. ones that take into
account the wider characteristics of the domain, are readily mapped to agent-
oriented systems is not merely an interesting fact. We can go one stage further
and say that, because bioinformatics tools that can be modelled in terms of
agents will be better than those that cannot, such tools would be more likely
to be well designed if developed in a way that modelled the system in terms of
agents from the start. In this way, the beneficial properties of an agent-based
system are assumed, making the design both simpler and less likely to exclude
the beneficial properties. A range of agent-oriented development approaches exist
(a broad survey can be found in [18]), each taking agents, with their inherent
properties, as the building blocks of the system. Also, approaches such as that
described by Corradini et al. [3], can be applied to wrap and integrate multiple
agent-oriented tools.

In this paper, we have presented the design of a bioinformatics data cu-
ration tool, converting data in obsolete formats to formats more likely to be
interpretable in the future. The tool was extended to take into account charac-
teristics of the bioinformatics domain: the mixture of novices and experts within
an organisation and the push for automation of process initiation. We demon-
strated that the extra requirements that this extension demanded were exactly
those met by a system that can be viewed in terms of autonomous agents.

The properties of agents, and the abstraction that agent-oriented develop-
ment provides by assuming them, are those required by a bioinformatics tool to
ensure it can be re-used and relied upon by a range of researchers. The social
ability of agents means that novices can take advantage of the expertise of more

experienced researchers. The localised control of agents means that tools can
be personalised to the researcher and experienced researchers can have control
over their use. Finally, the pro-activity of agents means that tasks are performed
automatically in the appropriate context, rather than requiring the scientist to
manually trigger them. In conclusion, agent-oriented software development is
very applicable to the development of bioinformatics tools.

7

Acknowledgements

This research is funded by the PASOA project (EPSRC GR/S67623/01).

References

o

10.

11.

12.

13.

14.
15.
16.

BioJava. http://www.biojava.org/, 2006.

BioPerl. http://www.bioperl.org/, 2006.

Flavio Corradini, Leonardo Mariani, and Emanuela Merelli. An agent-based ap-
proach to tool integration. International Journal on Software Tools for Technology
Transfer (STTT), 6(3):231-244, August 2004.

European Bioinformatics Institute. http://www.ebi.ac.uk/, 2006.

FASTA Format Description. http://en.wikipedia.org/wiki/FASTA format, 2006.
I. Foster, C. Kesselman, and S. Tuecke. The Anatomy of the Grid: Enabling Scal-
able Virtual Organizations. International Journal of Supercomputer Applications,
15(3):200-222, 2001.

I. Foster, J. Vockler, M. Wilde, and Y. Zhao. The virtual data grid: A new model
and architecture for data-intensive collaboration. In In Proc. of the CIDR 2003
First Biennial Conference on Innovative Data Systems Research, January 2003.
Paul Groth, Michael Luck, and Luc Moreau. A protocol for recording provenance
in service-oriented grids. In Proceedings of the 8th International Conference on
Principles of Distributed Systems (OPODIS’04), Grenoble, France, December 2004.
Paul Groth, Simon Miles, Weijian Fang, Sylvia C. Wong, Klaus-Peter Zauner,
and Luc Moreau. Recording and Using Provenance in a Protein Compressibility
Experiment. In Proceedings of the 14th IEEE International Symposium on High
Performance Distributed Computing (HPDC’05), July 2005.

Paul Groth, Simon Miles, Victor Tan, and Luc Moreau. Architecture for prove-
nance systems. Technical report, University of Southampton, October 2005.

N. R. Jennings, K. Sycara, and M. Wooldridge. A Roadmap of Agent Research
and Development. International Journal of Autonomous Agents and Multi- Agent
Systems, 1(1):7-38, 1998.

Simon Miles, Paul Groth, Miguel Branco, and Luc Moreau. The requirements of
recording and using provenance in e-science experiments. Technical report, School
of Electronics and Computer Science, University of Southampton, UK, January
2005.

National Center for Biotechnology Information. http://www.ncbi.nlm.nih.gov/,
2006.

NCBI Reference Sequences. http://www.ncbi.nlm.nih.gov/RefSeq/, 2006.
Provenance-Aware Service-Oriented Architecture. http://www.pasoa.org, 2006.
Staden DNA sequence analysis tool. http://staden.sourceforge.net/, 2006.

17. Robert Stevens, Hannah Tipney, Chris Wroe, Tom Oinn, Martin Senger, Phillip

18.

Lord, Carole Goble, Andy Brass, and May Tassabehji. Genome science performed
with e-science tools. In Proceedings of the UK e-Science All Hands Meeting 2004,
Nottingham, UK, August 2004.

G. Weiss. Agent orientation in software engineering. Knowledge Engineering Re-
view, 16(4):349-373, 2002.

