Electronically Querying for the Provenance of
Entities

Simon Miles

School of Electronics and Computer Science
University of Southampton
Southampton, SO17 1BJ, UK
sm@ecs.soton.ac.uk

Abstract. The provenance of entities, whether electronic data or phys-
ical artefacts, is crucial information in practically all domains, including
science, business and art. The increased use of software in automating
activities provides the opportunity to add greatly to the amount we can
know about an entity’s history and the process by which it came to be as
it is. However, it also presents difficulties: querying for the provenance of
an entity could potentially return detailed information stretching back to
the beginning of time, and most of it irrelevant to the querier. In this pa-
per, we define the concept of provenance query and describe techniques
that allow us to perform scoped provenance queries.

1 Introduction

In order to understand, apply, or judge the accuracy or authenticity of an entity,
whether electronic or physical, it is often crucial to know its provenance, i.e.
from where it originated, how it was produced and what has happened to it
since creation [4]. For example, in e-Science, to determine if an experiment’s
results are accurate, we look at the rigour of the experiment’s process.

However, the amount of information making up the provenance of an entity
may be vast. The details of everything that ultimately caused an entity to be
as it is would, generally, be an unmanageable amount. For example, to give the
full provenance of an experiment’s results, we have to describe the process that
produced the materials used in the experiment, the provenance of materials used
in producing those materials, the devices and software used in the experiment
and their settings, the origin of the experiment design etc. Ultimately, if enough
information was available, we would include details of processes back to the
beginning of time. Similarly, given enough information, we could give finer and
finer grained information on the processes that led to an entity, e.g. not just
documenting that a sample was tested to see if a chemical was present, but the
procedure by which this is done, the molecular interactions that took place in
the testing procedure and so on. All the information about the provenance of
an entity is potentially useful for someone with a particular question about that
entity, but providing it all in all cases would be counter-productive.

Instead, anyone requiring the provenance of an entity should be able to get
it by expressing the request as a query and scoping that query so that only the
information relevant to them is returned. The contributions of this paper are
to specify what a provenance query consists of and how it can be expressed, an
algorithm for processing a provenance query to obtain the results and the form
taken by results of a provenance query.

In the next section, we look at earlier work on retrieving provenance. Section 3
examines the properties data must have in order to extract the provenance of an
entity from it, and the delineations used to scope a provenance query. Section 4
specifies a model of a provenance query and its results, illustrated by example
in Section 5. We compare our work with others in Section 6 and conclude in
Section 7.

2 Provenance

From existing work on provenance, we canderive two general properties. First,
the provenance of an entity depends on its relationships to other entities. For in-
stance, the results of an experiment are produced from processing intermediate
data in an experiment, which are in turn produced from the inputs to the exper-
iment. In myGrid [7], an entity is marked as being derived from another entity
which, in turn, is derived from other entities. Using this approach, the prove-
nance of an entity is determined from relations of that entity to other entities it
is directly or indirectly derived from.

Second, the provenance of an entity can vary in scope and, at widest scope,
is everything that has had a causal effect on the entity. Buneman [2] describes
two differently scoped types of provenance, named where and why provenance,
applied to database query results. Applied within the closed world of a database
system, where provenance is the origin of the entity and its components, while
why provenance is all data having a causal effect on the entity.

We argue that the provenance of an entity can be seen as a process that
leads to the entity being in its current state. Full information on that process
would include the origin of and anything having an effect on the entity. To obtain
the provenance, we need documentation of how that process occurred, at some
level of abstraction, e.g. we may infer the process from the database query or
workflow whose execution resulted in the entity, or we may have details of each
action performed by actors in the process. Documentation of past processes is
called process documentation.

In our model, we separate process documentation, documentation of executed
processes, and provenance, a description of the process leading to an entity which
is determined from process documentation. The separation allows us to tailor
systems to best meet the requirements on each. For example, the details of a
process may not be recoverable after it has completed, so should be documented
as completely as possible during or immediately after, while provenance can be
determined as long as process documentation is preserved unmodified, so should
be scoped to include only that relevant to the querier.

3 Process Documentation

A provenance query is executed over process documentation and, in order to
implement a scoped query, documentation must be structured so that it can be
determined whether any piece of information is part of the provenance of an
entity. Below, we the properties and delineations of process documentation that
can be used to answer provenance queries.

3.1 Assertions and Temporality

An actor is anything that performs actions, and each piece of process documen-
tation is created by an actor: by recording data on processes it has taken part in
or inferring what happened from information from other actors. We can provide
no guarantee that documentation accurately reflects what occurred, so docu-
mentation is actually assertions by actors. A p-assertion is an assertion about
a process and process documentation is comprised of p-assertions.

A process includes multiple events and the provenance of an entity as it exists
as one event occurs is different from the provenance of the same entity later or
earlier. For example, the provenance of a hospital patient, the process which led
to that patient being in a particular state, would be different for the patient
up to an operation starting and up to the operation finishing, because after the
latter event the provenance includes data about the operation. An event that an
assertion provides documentation about need not be instantaneous, but entities
documented in the assertion must not change over the course of the event (else
the provenance would be ambiguous). In our approach, the provenance of an
entity is always the provenance of an entity as it exists when an event occurs,
called the entity’s provenance up to the event. In order to determine if a p-
assertion is part of an entity’s provenance up to a given event, it must be clear
which event it documents.

3.2 Relationships

As stated in Section 2, the provenance of an entity depends on its relationships to
other entities and so process documentation must include these relationships to
be used in determining provenance. Relationships are directional, so we identify
one entity in the relationship as the subject and the others as objects, e.g. the
subject “12” was the result of summing objects “5” and “7”. As one p-assertion
may document an event in which several entities were involved, a relationship
is between parts of p-assertions. A p-assertion data item is an entity within a
p-assertion and a relationship is between two or more p-assertion data items. A
p-assertion documenting the relationship of an entity in a p-assertion to entities
in other p-assertions is a relationship p-assertion.

Relationship Types Relationships can be of different types, the most
abstract being a causal relationship, i.e. E was caused by C. While causal rela-
tionships are all that is needed to determine which documentation is part of an
entity’s provenance, they are inadequate for scoping the query. We need more

information on how one entity is related to another to determine if some process
documentation is relevant. Therefore, functional relationships between entities
can be asserted, stating that an entity was produced by performing a function on
other entities, e.g. an actor may assert that a value produced in an experiment is
a product of measuring the weight of a sample (there is a functional relationship
between the value and the sample).

Parameter Names A p-assertion often documents a relationship in the
world in which the entities being related play roles in that relationship, e.g. in
asserting that the results of a divide operation were derived from its inputs, we
must mark the entities involved with the roles they play: divisor and dividend for
the inputs, quotient and remainder for the outputs. The name of an entity’s role
in a relationship is a parameter name, which must be asserted with relationships
for the documentation to be interpretable.

4 Provenance Queries

Below, we specify a model for expressing provenance queries. To execute a query,
a provenance query request is sent to a provenance query engine by a querying
actor. A provenance query request includes a query data handle, identifying the
entity of which to find the provenance, and a relationship target filter, specifying
the query’s scope. These are shown in Table 1, and described in full below.

4.1 Query Data Handles

When a querying actor asks for an entity’s provenance, it identifies the entity
such that a query engine can find documentation of the entity. The identification
is called a query data handle. For the actor, a query data handle identifies an
entity at a given event. For the engine, a query data handle identifies a search
for p-assertion data items in process documentation. A handle comprises three
parts, discussed below.

A p-assertion documents an event in a manner dependent on the way the
system is modelled. Part of a handle is an event search, a search for documen-
tation of the event in which the entity occurred. Within documentation of that
event, an entity search finds p-assertion data items documenting the entity. The
search space of a data handle identifies the set of process documentation to be
searched.

4.2 Relationship Target Filters

A relationship target filter is used to scope a query to the part of a process
of interest to the querying actor. More concretely, we can say that, given that
a p-assertion data item has been identified as part of a query’s results, and
that that data item is related to other data items (by relationship p-assertions),
the relationship target filter specifies which related data items should also be
included in the results.

Provenance Query Request

Query Data A search over process documentation to find the record of an
Handle entity at a given event for which the querying actor wishes to
find the provenance.

Relationship [Criteria by which the querying actor specifies whether any given
Target Filter |entity in the documentation, and its relations, should be
included in the query results.

Starting Search|The process documentation set from which to start searching
Space for the provenance of the entity.

Query Data Handle

Event Search |A search for the relevant event involving the entity.
Entity Search |A search in p-assertions for data items documenting the entity.
Search Space |The process documentation set that will be searched over.

Relationship Target

Event The event which the p-assertion is documenting.

Global P-Assertion Key |The globally unique identifier for the p-assertion.
Parameter Name The role played by the object in the relationship.
Provenance Store Address| The address where the p-assertion is stored.

Data Accessor The location of the data item within the p-assertion.
Relationship The relation (name) of which this target is an object.
Asserter The asserting actor’s identity, if known.

P-Assertion Content The content of the p-assertion (the actual documentation).

Table 1. Data comprising a provenance query request

A relationship target is a set of properties of a data item that is the object
of a relationship p-assertion. The properties, e.g. the event that the p-assertion
documents or the asserter’s identity, are those described in Section 3 and are
listed in Table 1. A relationship target filter is a function over a relationship
target returning a boolean value specifying whether the relationship target is
within scope. For example, a relationship target filter may return false for re-
lationship targets where the asserter is a particular, untrusted, source. In this
case, the provenance query results exclude all p-assertions by that asserter and
p-assertions iteratively related to those assertions.

4.3 Provenance Query Results

A provenance query request is processed as follows. First, perform the search
expressed by the query data handle to find a set of p-assertion data items. For
each relationship of which one of those items is a subject, execute the relationship
target filter on the information about each object of the relationship (i.e. each
relationship target). Where an object is accepted by the relationship target filter,
recursively apply the filter to objects of its own relationships. The final results of
the query are comprised of two parts: the p-assertion data items from the query
data handle search (the start data items); and, for every relationship object
accepted by the filter, the relationship between that object and the subject in
that relationship.

A query engine, with instantiations of the above model in XML, has been
implemented as part of an open source distribution. Due to space restrictions, we
do not describe it here, but refer readers to www.pasoa.org, from which it can
be downloaded, and a link to a functional specification of the engine’s interface
can be found.

5 Case Study

To demonstrate provenance queries completely but concisely, we use a simple,
contrived example. A workflow, shown in Figure 1, is run and process documen-
tation generated: a GUI actor calls an Averager service with two values (7, 5);
Averager sums them and calls Divider with 12 as divisor, 2 as dividend; Divider
sends the answer 6 to Averager, which sends it to the GUI; the GUI sends 6 to
Store, along with the file location, e.g. filel, at which to store it.

Average (7,5) Divide (12, 2)
| Averager |

| GUI | '| Divider |

<l <l
-w -w

Answer (6) Answer (6)

' Store (6, file 1)
| Store | f Entity for which we want to

find the provenance

Fig. 1. An example workflow

Two types of p-assertion are recorded by actors in the scenario. An interaction
p-assertion is a copy of the message sent between two actors. A relationship p-
assertion asserts a relationship between data items exchanged in messages (and
so documented in interaction p-assertions). A querying actor can derive a causal
relationship from an interaction p-assertion: a message being received is caused
by the same message being sent. The events to which p-assertions are declared
to apply are the sending or receiving of messages. Each actor in the workflow
makes interaction p-assertions about every message it sends and receives.

For this scenario, we show the results of a provenance query scoped in dif-
ferent ways. The query data handle represents a search for the “data requested
to be stored at location filel (entity search) at the event of the Store actor
receiving a message (event search).” The query returns results in which the start
p-assertion data item is the 6 in the message from GUI to Store, and, if unre-
stricted in scope, includes all relationships recorded. The relationships form a
directed acyclic graph linking data items in exchanged messages, shown in Fig-
ure 2, with the start data item shown at the bottom. Broken lines between data
items depict asserted relationships, labelled with their functional relationships.

[cul I;ZﬂAveragerll GUI I;f’:ﬂAveragerl

—-_——

ity Al 1 A
- = =1 Sum of
v

|Averager|“12::| Divider | |Averager|’“2";| Divider |

W
~-o —

-

divisor T~ dividend
~. B4 Division of
Sso | Divider |_>|§ Averager|
~ ~ -
Average of \\\\ /,,’ Copy of
[Averager| 6] GUI]
1
1 Copy of

v
[Gul | 63 Store |

Fig. 2. The provenance of the data stored in filel

Parameter names, “divisor” and “dividend” are shown for the objects of the
“Division of” relation.

One way to scope the provenance is to exclude a type of relationship, e.g. by
excluding “Average of”, that relationship is removed from the graph returned
by the query. As a comparable practical example, in asking for the provenance
of a journal article, we may want to include the origins of its content and not the
origins of the paper on which it is printed: these are types of relation from the
journal paper to other entities. Another scope excludes the internal operations
of an actor, such as Averager. This removes the documentation shown in box
A in Figure 2 from the results. Comparably, we may want to know from which
database we downloaded data, but not the database query: we make the results
more coarse-grained by hiding part of the process. Finally, we can scope on the
role that data plays in the process by excluding all “divisors” from the results (as
specified in the parameter name), so removing the relationships shown in box B.
Comparably, in querying for the provenance of compressed data, we may wish
to know the data before compression but not the compression algorithm used:
two roles in the compression function. The true benefits of the scoping process
require a more detailed example than is possible to give in this paper, and will
be in future work.

6 Related Work

In related work, provenance queries of a form are executed, but the approaches
differ considerably from ours. In most systems, the mechanism is assumed to be
an unspecified query of a database containing documentation [1,6], but a few
specify another mechanism. Some systems, e.g. lab information management
systems (LIMS) and work on deriving provenance data from database queries
[2], operate in closed systems, allowing extra positive assumptions to be made

on the quality of the query results, but preventing determination of an entity’s
provenance where the process that led to it spans multiple systems. Also, results
cannot be scoped to arbitrary levels.

myGrid [7] and CombeChem [3] have advocated storing process documen-
tation as functional and derivation relations between entities, named by URIs,
as RDF triples. This has the advantage that query languages, e.g. SPARQL [5],
exist to query relationship-based data, but there is no distinction between events
in an entity’s lifetime, e.g. in asking for the provenance of an experiment result,
is an actor asking for how the result was produced, how it has been used as
input to other processes (such as publication) since, or both? This means that
the data on which a query can be scoped is limited.

7 Conclusions

The provenance of an entity is essential, in many domains, for understanding
and evaluating that entity, but the amount of information that makes up the
provenance of an entity could be huge, so the results need to be scoped to re-
trieve only what is relevant for the querier. To execute a scoped provenance
query, documentation over which the query is executed must have particular
characteristics. In this paper, we have specified how a scoped provenance query
can be expressed and executed. We exposed the necessary characteristics of the
documentation over which the query is processed, criteria available for scoping,
a data model for query requests and the algorithm used to execute a query.
This research is funded by the PASOA project (EPSRC GR/S67623/01).

References

1. R. Bose, J. Frew. Lineage retrieval for scientific data processing: A survey. ACM
Computing Surveys, 37(1):1-28, 2005.

2. P. Buneman, S. Khanna, W. Tan. Why and where: A characterization of data
provenance. In Int. Conf. on Databases Theory (ICDT). 2001.

3. G. Hughes, et al. The semantic smart laboratory: a system for supporting the
chemical escientist. Organic and Biomolecular Chemistry, 2(2):1-10, 2004.

4. S. Miles, et al. The requirements of recording and using provenance in e-science
experiments. Tech. rep., University of Southampton, 2005.

5. E. Prud’hommeaux, A. Seaborne. Sparql query language for rdf.
http://www.w3.org/ TR /rdf-spargl-query/, 2006.

6. Y. Simmhan, B. Plale, D. Gannon. A survey of data provenance in e-science. SIG-
MOD Record, 34(3):31-36, 2005.

7. J. Zhao, et al. Annotating, linking and browsing provenance logs for e-science. In
Proc. of the Workshop on Semantic Web Technologies for Searching and Retrieving
Scientific Data. 2003.

