
PReServ: Provenance Recording for Services

Paul Groth Simon Miles Luc Moreau

School of Electronics and Computer Science
University of Southampton

{pg03r, sm, l.moreau}@ecs.soton.ac.uk

Abstract

The importance of understanding the process by which a result was generated in an exper-
iment is fundamental to science. Without such information, other scientists cannot replicate,
validate, or duplicate an experiment. We define provenance as the process that led to a result.
With large scale in-silico experiments, it becomes increasingly difficult for scientists to record
process documentation that can be used to retrieve the provenance of a result. Provenance
Recording for Services (PReServ) is a software package that allows developers to integrate
process documentation recording into their applications. PReServ has been used by several
applications and its performance has been benchmarked.

1 Introduction

The importance of understanding the process by
which a result was generated in an experiment is
fundamental to science. Without such information,
other scientists cannot replicate, validate, or dupli-
cate an experiment. For generations, scientists have
used lab notebooks to record documentation of the
process by which an experimental result was pro-
duced. Using this process documentation, scientists
are able to retrieve theprovenanceof an experimen-
tal result, where we use provenance to mean the pro-
cess that led to a result. However, with large scale
in-silico experiments, it may be difficult for a scien-
tist to record adequate process documentation espe-
cially when an experiment is conducted using thou-
sands of computers owned and operated by different
organisations.

In order to support the recording and querying of
process documentation for Grid based applications,
such as myGrid or CombeChem, we have argued for
standard mechanisms to record and query process
documentation as well as work with provenance [7].
This work also presents the P-assertion Recording
Protocol (PReP) as a initial method to record pro-
cess documentation in a generic manner for Service
Oriented Architectures (SOA), thede factoarchi-
tecture for designing Grid systems. Fundamentally,
an SOA consists of a set of services that commu-
nicate via sending input and receiving output mes-
sages. By capturing assertions (termed p-assertions)
about the content of these messages (message ex-
change p-assertions) along with causal relationships

between messages and assertions about the internal
states of services (actor state p-assertions), the doc-
umentation of process that led to a result can be
recorded. We use the term actor to denote either a
client or service in a SOA. PReP specifies how p-
assertions can be recorded in a separate entity, the
Provenance Store. This paper presents an imple-
mentation of PReP, which takes the form of an open
source Java-based Web Services implementation of
the protocol, and is named Provenance Recording
for Services (PReServ).

The PReServ software package contains a Prove-
nance Store Web Service, a set of interfaces for
recording and querying, a set of Java libraries
for easily accessing those interfaces, and an Axis1

handler for “automatically” recording message ex-
change p-assertions for Axis based Web Services.
PReServ is not just a proof-of-concept; it has been
used to make a number of applications provenance-
aware. A provenance-aware application is one that
records p-assertions and makes use of those asser-
tions to reason about the provenance of results. PRe-
Serv’s performance has also been evaluated in the
context of one of these applications, namely a bioin-
formatics experiment.

The rest of this paper is organised as follows,
we first describe a Provenance Store implementa-
tion. We then describe the Provenance Store’s inter-
face and how to record and query p-assertions using
the three mechanisms provided by PReServ. A per-

1Axis is a set of commonly used libraries from the Apache or-
ganisation for implementing Web Services in Java. It is available
at http://ws.apache.org/axis/



formance evaluation of PReServ is then presented,
which is followed by a discussion of related work
and a conclusion.

2 The Provenance Store

PReServ’s Provenance Store Web Service2 is a
repository for storing p-assertions. P-assertions are
assertions made by actors about their execution.
This includes assertions about the content of mes-
sages actors send and receive as well as assertions
about their state. The Provenance Store handles re-
quest both to store and query p-assertions. We now
discuss the implementation of the Provenance Store
in the context of a concrete architecture. Each archi-
tectural component is presented along with its imple-
mentation details. Before discussing the individual
components, we briefly describe some implementa-
tion design choices.

Heterogeneity of platforms is common in both
Grids and Web Services. This heterogeneity moti-
vated our choice of Java as an implementation lan-
guage. By using Java, PReServ runs under Win-
dows, Solaris, Linux and Macintosh OS X plat-
forms, unmodified. Another global design choice
was to implement the Provenance Store as a Java
servlet hosted using the Apache Tomcat servlet con-
tainer. This choice is in contrast to a number other
Java based Web Services, such as the Grimoires reg-
istry (www.grimoires.org), that use the Axis con-
tainer. Axis is itself a Java servlet but offers a set
of features in order to automatically bind XML data
structures into Java Objects. However, Provenance
Stores need to store SOAP messages directly. By
implementing the Provenance Store as a servlet, we
can directly retrieve SOAP messages without the ex-
tra overhead of Axis.

2.1 Provenance Store Structure

The Provenance Store presents a structure to the
outside world dictated by PReP, termed the p-
structure. This structure allows for identification
of p-assertions in provenance stores, which facili-
tates both recording and querying of p-assertions.
Each actor is allowed to record p-assertions pertain-
ing to their execution in a Provenance Store of their
choice. However, these p-assertions must be iden-
tified so that they are correctly positioned in the
p-structure. The p-structure is organised hierarchy
as follows. It contains a list of message exchange
records, which reflects an application message be-
tween two actors in a SOA. Each message exchange

2Provenance Store used as a proper noun denotes the Prove-
nance Store Web Service included in PReServ

record is uniquely identified by a group of identi-
fiers. Contained in a message exchange record are
two views one for the client and one for the service
in an message exchange. These views in turn con-
tain the message exchange p-assertions as well as
actor state p-assertions pertaining to that application
message exchange. In addition to these p-assertions,
the p-structure can contain relationships between
data stored in the provenance store. This allows
causal dependencies to be expressed. Likewise, if
p-assertions have been recorded across provenance
stores, the p-structure can contain links that can be
traversed to go from one provenance store to the next
in order to retrieve related p-assertions. We note that
the p-structure is reflected in the interface to the store
and does not mandate any mechanism for the storage
of data.

We now discuss the concrete architecture compo-
nents shown in figure 1.

Message Translator

Plug-Ins

Query Plug-InStore Plug-In …

Backend Storage

Database Filesystem In-memory …

Plug-In Interface

Backend Store Interface

Message In Message Out

Fig. 1: The Provenance Store concrete architecture

2.2 The Message Translator

In order to isolate the Provenance Store’s storage and
query logic from the message layer, we introduce the
Message Translator. The isolation of message pro-
cessing from the Store’s business logic allows the
Store to be easily modified to support different un-
derlying message layers. For example, the Store cur-
rently supports SOAP, however, by developing a new
Message Translator, a Java RMI message layer could
be supported. The Message Translator component is
responsible for three operations.

1. Translating incoming messages into the inter-
nal format of the Provenance Store.

2. Determining the appropriate plug-in to handle
incoming messages.



3. Translating plug-in responses into messages
and sending the message to the appropriate ac-
tor.

Our implementation of the Message Translator
processes incoming SOAP messages by striping
off the HTTP and SOAP message handlers from
the message. It then translates the body of the
SOAP message into a W3C DOMDocument
(http://www.w3.org/DOM/). The internal represen-
tation of the store is XML represented by a W3C
DOM. We expect that all incoming messages will
be either represented in XML or translated to it by
the the Message Translator. The choice of XML
is motivated by its use in the Web Services envi-
ronment as alingua francaand is buttressed by the
development of specifications such as XML Binary
(http://www.w3.org/XML/Binary/) for representing
binary documents in XML. After translating the
SOAP message body into a W3C DOM, the Trans-
lator then passes the document to a Plug-In. The
Translator determines the Plug-In by looking at the
HTTP context of the incoming message i.e. the
URL that the message was passed to. For example,
if the message was sent to http://www.provenance-
store.com/record the context of the message would
be /record. The Translator takes this context and
passes it to a PlugInHandler which passes back a ref-
erence to the Plug-In that maps to the given context.
The final operation the Message Translator performs
is the serialisation of the Plug-In’s returned DOM
Document into a SOAP message. It then sends the
message back to the requester.

2.3 Plug-Ins
The second component of the concrete architecture
is a set of Plug-Ins. Each Plug-In implements a
specific piece of functionality that the Provenance
Store provides. Such functionality could include
storing submitted p-assertions correctly, searching
through already stored p-assertions via an XPath
(http://www.w3.org/TR/xpath) query, or responding
to requests to move provenance documentation to
another store. Plug-Ins allow for new functionality
to be easily added without having to modify already
existing functionality. This design decision is partic-
ularly important given that PreServ is open source. It
allows third party developers to easily add new func-
tionality to the Store without having to delve into its
inner workings in detail. Every plug-in must imple-
ment the Java interface shown below.

import org.pasoa.prep.service.BackendStore;
import org.w3c.dom.Document;

public interface PlugIn
{

public Document process (Document soapBody,
BackendStore store);

}

The interface means that every Plug-In takes
an XML document represented as a W3C DOM
Document and a BackendStore as parame-
ters and returns aDocument as a result. The
BackendStore parameter contains a reference to
the data repository that the Plug-In can act on. As
mentioned before, each Plug-In is bound to a partic-
ular HTTP context. Therefore, Plug-Ins are respon-
sible for handling the functionality that the Prove-
nance Store’s interface expresses for that particular
context. This means for our Web Services imple-
mentation of a provenance store, each Plug-In has
its own WSDL operations and schema describing
the offered functionality. Likewise, if a Plug-In is
unable to handle an incoming request then it is re-
sponsible for generating an appropriateDocument
containing an error message. The Provenance Store,
currently, implements two Plug-Ins.

1. The Store Plug-In is responsible for handling
p-assertion storage requests.

2. The Basic Query Plug-In is responsible for
handling basic queries on already stored p-
assertions. This Plug-In allows stored p-
assertions in the form of the p-structure to be
traversed.

The interfaces to these two Plug-In make up the
Provenance Store Interface, which will be discussed
in detail later.

2.4 Backend Storage

Backend storage is where p-assertions are finally
stored in the Provenance Store. Therefore, the
third component of the concrete architecture is a
set of backend stores implementing the same inter-
face. The requirement that each backend store im-
plements the same interface allows Plug-Ins to be
implemented without regard to the underlying stor-
age system used by the Provenance Store. For ex-
ample, this allows a Plug-In to work correctly with a
Provenance Store that uses the file system for storage
as well as one that uses a database. However, a com-
mon interface does have one drawback; it hides any
additional capabilities that a backend might provide.
A database, for example, might allow SQL queries
to be performed directly on it. If the common in-
terface does not provide a method for SQL queries
to be issued then Plug-Ins would not have access to
this functionality. Given this drawback, it is critical
for backend stores to be optimised for the common
interface.

In our implementation, the common Java inter-
face that each backend store must implement is



BackendStore . This Application Programming
Interface (API) provides a set of getter and setter
methods that map to the p-structure. It also includes
several basic methods for traversing that structure.
PReServ comes with file system, in-memory and
database backends each of which implements the
BackendStore interface. The file system back-
end stores p-assertions in a hierarchy of directories
directly on the file system. The hierarchy maps di-
rectly to the p-structure. The file system backend
is particularly useful in debugging as it allows the
contents of the Provenance Store to be inspected
by the user. The in-memory backend stores sys-
tem uses hashtables and vectors to model the p-
structure. The database backend is critical because
a large amount of p-assertions can be stored using
it. We use the Berkeley DB Java Edition database.
Using this pure Java transactional object database
maintains the portability of PReServ. The back-
end can be changed by modifying one line of code
in the main servlet class of the Provenance Store.
In the future, we would like to implement other
backends. For example, a backend that uses the
OGSA-DAI Grid data access and integration layer
(http://www.ogsadai.org.uk/) would be of interest.

Here, we have shown a concrete architecture for
a provenance store and explained an implementation
of it as a Web Service. We now describe the interface
of PReServ’s Provenance Store.

3 The Provenance Store Inter-
face

The Provenance Store Interface describes the func-
tionality that the Store provides and how that func-
tionality can be accessed. The interface is de-
fined in WSDL (Web Service Description Language,
http://www.w3.org/TR/wsdl) and defines two ports
a RecordPort and aQueryPort . Both these
ports take an input message and produce an output
message defined in an external XML schema. Defin-
ing SOAP message contents in an external schema is
known as the document/literal style of Web Services.
One of the helpful attributes of this style is that it
reduces the complexity of the WSDL file, which is
already quite complex for even just two operations.
There are two schemas used by the Provenance Store
Interface, one reflects the recording interface and the
other the query interface. We discuss the recording
interface in detail here. The query interface is still
being refined. Currently, it provides a mechanism
for navigating a Provenance Store’s p-structure. We
are currently investigating an XQuery based inter-
face for retrieving and searching p-assertions.

The recording interface maps directly to the

messages defined by PReP. Below we show the
schema (Record Schema) for both theRecord and
RecordAck messages defined in the Provenance
Store’s WSDL. Therecord element is referenced
by theRecord message in the WSDL and its struc-
ture is defined by thepr:Record type. The type
specifies that the element will contain one or more
elements of typeIdentifiedContent , which
contains an elementidentifiers and an ele-
ment content . The type Identifiers con-
tains the set of ids that the situate the content (a
p-assertion) in the p-structure. Thecontent el-
ement’s type defines a choice between one of the
messages of PReP. It is important to note that the el-
ements in typeContent and Identifiers are
defined using the p-structure schema, which is an
XML Schema file that models the p-structure. The
types that come directly from the p-structure are
prefixed by ps . By representing the p-structure
as XML Schema, we were able to use it directly
in the WSDL interface. Another important prop-
erty of the interface is that it allows more than
one protocol message to be bundled in a record
message. For example, theRecord type allows
more than one element ofidentifiedContent
to be inside therecord element, which means
that a client could record various messages from
different interactions encapsulated in one record
SOAP message. TheIdentifiedContent type
also supports this property, by allowing for multi-
ple content elements. Therefore, a client could
record all of an interaction’s messages, identified by
an identifiers element, at once.

The recordAck element is referenced by the
RecordAck message and its structure is defined by
the RecordAck type, which contains an element
identifiers and an elementcontentName
that contains the name of the message acknowledge-
ment. The names are restricted to the strings listed
in the schema. There can be more than one acknowl-
edgement in theRecordAck message because the
recordAck element contains an unbounded se-
quence ofack elements. ThePRecord schema de-
fines the structure of the messages Provenance Store
clients can use to record p-assertions.
Record Schema
<xs:schema xmlns:pr=... xmlns:ps=...

xmlns:xs=... targetNamespace=pr>

<xs:element name="record" type="pr:Record"/>

<xs:element name="recordAck"
type="pr:RecordAck"/>

<xs:complexType name="RecordAck">
<xs:sequence>

<xs:element name="ack"
minOccurs="1" maxOccurs="unbounded">
<xs:complexType>

<xs:sequence>
<xs:element name="identifiers"



type="pr:Identifiers"/>
<xs:element name="contentName">

<xs:simpleType>
<xs:restriction base="xs:string">

<xs:enumeration
value="messageExchagnePA"/>

<xs:enumeration
value="actorStatePA"/>

<xs:enumeration
value="relationship"/>

<xs:enumeration
value="submissionFinished"/>

<xs:enumeration value="ERROR"/>
</xs:restriction>

</xs:simpleType>
</xs:element>

<xs:element name="moreAckInfo"
minOccurs="0" maxOccurs="1"
type="xs:anyType"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="ERROR" minOccurs="0"

maxOccurs="1" type="xs:anyType"/>
</xs:complexType>

<xs:complexType name="Record">
<xs:sequence>

<xs:element name="identifiedContent"
type="pr:IdentifiedContent"
maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>

<xs:complexType name="IdentifiedContent">
<xs:sequence>

<xs:element name="identifiers"
type="pr:Identifiers"/>

<xs:element name="content"
type="pr:Content"
maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>

<xs:element name="clientId"
type="ps:Identity"/>

<xs:element name="serviceId"
type="ps:Identity"/>

<xs:complexType name="Identifiers">
<xs:sequence>

<xs:element name="messageExchangeId"
type="xs:anyURI"/>

<xs:element ref="pr:clientId"/>
<xs:element ref="pr:serviceId"/>
<xs:element name="asserter">

<xs:complexType><xs:choice>
<xs:element ref="pr:clientId"/>
<xs:element ref="pr:serviceId"/>

</xs:choice></xs:complexType>
</xs:element>

</xs:sequence>
</xs:complexType>

<xs:complexType name="Content">
<xs:choice>

<xs:element
name="messageExchangePAssertion"
type="ps:MessageExchangePAssertion"/>

<xs:element
name="actorStatePAssertion"
type="ps:ActorStatePAssertion"/>

<xs:element
name="relationship"
type="ps:Relationship"/>

<xs:element
name="submissionFinished"
type="xs:int"/>

</xs:choice>
</xs:complexType>

</xs:schema>

4 Using the Provenance Store

This section describes how a Provenance Store client
can make use of the Store through the WSDL in-
terface described above. There are three options
an application developer has for accessing the Store
through this interface: direct Web Service calls, the
Java Client Side Library, or the Axis Handler. We
now describe each of these options.

4.1 Direct Web Service Calls

The first option is to call the Provenance Store Web
Service directly. This entails building a SOAP mes-
sage that is compatible with the WSDL interface for
every query or record operation, sending the mes-
sage to the Store and processing the resulting ac-
knowledgement message. This option shows the
promise of Web Services. It allows any implementa-
tion language or platform that can understand XML
to submit and query provenance information. For
example, even though the Provenance Store is im-
plemented in Java, a Perl script, or .Net program can
still record information. This approach provides the
maximum flexibility to a developer, however, it also
requires the maximum amount of work. The devel-
opers must implement all SOAP message construc-
tion and processing themselves. Therefore, PRe-
Serv offers another option for those developers using
Java.

4.2 The Java Client Side Library

The second option to call the Store is to make use of
PReServ’s Java Client Side Library. If a developer is
using Java, the Library provides Java methods that
correspond to the Provenance Store Interface. The
Library produces the correct SOAP message for a
given method and sends it to the specified Prove-
nance Store. However, this option still requires the
developer to implement the business logic for when
to record p-assertions and what assertions to record.

4.3 The Axis Handler

The third option available to developers for record-
ing p-assertions is the Axis Handler, which can
only be used if applications are implemented us-
ing the Axis Web Services libraries. By adding the
Axis Handler Jar file to the application classpath, all
SOAP messages produced or received by a Web Ser-
vice client or service will be recorded in a Prove-
nance Store specified in a configuration file. Essen-
tially, the Axis Handler wraps the specified client
and service and intercepts all Web Service commu-
nication. The Axis Handler is best used for already



existing Axis based Web Service applications. It al-
lows p-assertion recording to be added without mod-
ifying the existing application. There are, however,
some drawbacks to this approach. First, it requires
both the use of Java and Axis. Secondly, it does not
directly support actor state p-assertions and record-
ing relationships, which are key to documenting pro-
cess. In the future, we would like to add more func-
tionality to support these PReP messages.

This section described three mechanisms by
which developers can access Provenance Stores
from their applications. Each option provides vary-
ing degrees of ease of use and flexibility. By pro-
viding three different mechanisms, PReServ caters
to the needs of a broad range of applications.

5 Performance Evaluation

We now evaluate the performance of the Provenance
Store in the context a bioinformatics application, the
Protein Compressibility Experiment. We analyse
the performance of both the recording and query-
ing aspects of the Store. The application is dis-
cussed in detail in another paper [8]. The perfor-
mance evaluations were conducted on two Pentium
P4, 2.8 Ghz, 1.5 GB RAM PCs. The Provenance
Store Web Service was run under Windows XP on
one machine, while the experiment itself was located
on the other PC running Redhat Linux 9.1, running
under a VMWare virtual machine. Like a number
of authors, virtual machines were adopted for vir-
tualising our Grid deployment [9, 4]. While some
application slowdown was observed by running over
VMWare, we note that provenance recording itself
also suffers a similar slowdown. Hence, we conjec-
ture that our results remain valid if similar bench-
marks are run natively on a physical machine. The
PCs were connected by a 100Mb local ethernet.

Before we evaluate the Provenance Store in an
application context we examine a local benchmark.
While running on a Windows XP PC with a Pentium
P4, 2.8 Ghz, 1.5 GB RAM. It takes approximately
18 ms round trip to record one pre-generated mes-
sage in the Provenance Store. These tests were con-
ducted with both the client and server running on the
same host. This benchmark gives us a basic under-
standing of the speed of the Store. We now evaluate
the performance of PReServ’s Provenance Store in
the context of the application implementation.

5.1 Provenance Recording Evaluation

The purpose of this evaluation is to benchmark the
overhead of p-assertion recording in a real scien-
tific application. We note that the actors in this

experiment were not Web Services but command
line programs wrapped by a script that submitted p-
assertions to the Provenance Store. In order to pro-
vide provenance for the scientific experiment, both
message exchange and actor state p-assertions were
recorded

Figure 2 plots the overall execution time (mea-
sured by the time difference between the last and
first activities in the protein compressibility work-
flow), for an increasing size of data input (expressed
as permutations of protein sequences), and for dif-
ferent configurations of p-assertion recording:

1. without p-assertion recording,

2. with asynchronous recording, in which p-
assertions are accumulated locally in a file be-
fore being shipped to the Provenance Store af-
ter execution,

3. with synchronous recording by direct Web Ser-
vice invocation of the Provenance Store, and

4. with synchronous recording with extra in-
formation being recorded as actor state p-
assertions (such as the scripts that a service was
running).

Our observations are as follows:

1. overall, the different execution times remain
linear (each plot has a correlation coefficient
greater than 0.99) with the number of permu-
tations to be processed;

2. accumulating p-assertions to be submitted
asynchronously has an overhead over no
recording;

3. asynchronous recording has an overhead
smaller than synchronous recording;

4. overall, the overhead of asynchronous perfor-
mance recording remains less than 10%.

Like a scheduler requires a granularity coarse
enough to offset the overhead of automatic schedul-
ing, automatic p-assertion recording has an accept-
able cost if the granularity of workflow activities is
coarse enough. In this experiment, the run of a work-
flow for one 100Kb sample with 1 permutation takes
approximately 4.5s and; each permutation involves
the creation of 6 provenance records and their sub-
mission (averaged over a long running workflows).

5.2 Query Performance Evaluation

We now evaluate the Provenance Store’s query per-
formance. One use case for the query of prove-
nance in this application was categorising scripts.



0

1000

2000

3000

4000

5000

6000

100 200 300 400 500 600 700 800

O
ve

ra
ll 

ex
ec

ut
io

n 
tim

e 
(in

 s
ec

on
ds

)

Number of permutations

Synchronous recording with extra actor provenance
Synchronous recording

Asynchronous recording
No recording

Fig. 2: Recording Performance

The bioinformatician wanted to know which scripts
were used by which service in a given workflow run.
The categorisation is performed by querying each
activity in the Provenance Store for actor state p-
assertions containing the script and creating a map-
ping from each set of exactly equivalent scripts to
the workflow run in which that script is used for a
given service.

As we analyse all message exchange records in
the Provenance Store, the time taken to perform the
categorisation is dependent on the size of the store.
In Figure 3, we plot the time to query the store for
all relevant actor state p-assertions and perform a full
comparison against the number of records contained
in the store. We observe a linear behaviour (the plot
has a correlation coefficient greater than 0.99) with
the size of the store; on average, it takes about 15ms
to retrieve a script (through one store invocation) and
categorise it.

0

10000

20000

30000

40000

50000

60000

70000

0 500 1000 1500 2000 2500 3000 3500 4000

O
ve

ra
ll 

E
xe

cu
tio

n 
T

im
e 

(m
ill

is
ec

on
ds

)

Number of Interaction Records

Script Comparison

Fig. 3: Query Performance

5.3 Performance Analysis

The performance of the Provenance Store degrades
linearly with the size of the data being stored or with

the number of queries needing to be processed. For
queries, it takes on average 15ms to retrieve a 100Kb
data item from the store no matter the Store’s size.
The ability for the Provenance Store to record asyn-
chronously is an advantage in that it allows actors
to wait until an experiment is finished or there is a
lull in processing to submit p-assertions. However,
the Provenance Store could become a bottleneck if it
had to handle a large number of connections simul-
taneously. Therefore, the support for multiple linked
Stores in the PReP protocol is necessary. We will
continue to investigate the performance of the Prove-
nance Store in larger versions of this application but
these first results show that p-assertion recording has
a reasonable overhead given the use cases that prove-
nance supports.

6 Related Work

Along with the protein compressibility experiment,
two other applications have made use of PRe-
Serv. One application used PReServ to develop a
provenance-aware fault tolerance system [14]. The
other application used it in a prototype scenario [2].

There have been other systems that have been de-
veloped for capturing the provenance of a result.
There have been several systems that are domain
specific including work in Geographical Informa-
tion Systems [10], bioinformatics[6] and sensor net-
works [11]. There has also been indepth study of
provenance in database systems [1, 3]. Other work
has been done in e-notebooks [12], metadata cat-
alogs [5] and workflow centric systems [13]. Our
work is different from all these in that it provides a
technology and domain independent mechanism for
recording process documentation that can be applied
to any system modelled by a SOA.

7 Conclusion

PReServ provides a cross-platform means for
recording and querying p-assertions to determine the
provenance of a result. It is cross-platform because
it is written in pure Java and has been tested on
Mac OS X, Windows, and Linux. The Provenance
Store has a flexible architecture allowing function-
ality to be added or changed. The architecture sup-
ports multiple backend storage systems including in-
memory, file system, and database backends. Even
with a change in the backend of a Provenance Store,
queries are isolated from any changes through the
use of the p-structure. Another benefit of PRe-
Serv is the three different options a developer has
to make use of the Provenance Store. A developer
can quickly add p-assertion recording to their Axis



based applications by using the Axis Handler. They
can have fuller control using the Java Client Side Li-
braries and with the direct Web Service interface any
implementation can use the Store, even command
line programs. We demonstrated PReServ’s appli-
cation independent nature in its use in three differ-
ent applications ranging from fault-tolerance [14], to
bioinformatics [8], to baking[2]. Lastly, we showed
that p-assertions could be recorded and queried in an
acceptable amount of time for a real application.

In terms of future work, we plan to investigate
in more detail the performance and issues related
to distributed Provenance Stores. We will add
more support for asynchronous recording to the Jave
Client Side Library. In addition to these improve-
ments, we intend on adding more functionality to the
Axis Handler and implement an XQuery interface to
the Provenance Store.
Acknowledgements
This research is funded in part by EPSRC PASOA
project GR/S67623/01.

References

[1] P. Buneman, S. Khanna, and W. Tan. Why
and where: A characterization of data prove-
nance. InInt. Conf. on Databases Theory
(ICDT), 2001.

[2] L. Chen, V. Tan, F. Xu, A. Biller, P. Groth,
S. Miles, J. Ibbotson, and L. Moreau. A
proof of concept: Provenance in a service
oriented architecture. InProceedings of the
UK OST e-Science Second All Hands Meeting
2005 (AHM05), 2005.

[3] Y. Cui. Lineage Tracing in Data Warehouses.
PhD thesis, Stanford University, December
2001.

[4] R. Figueiredo, P. Dinda, and J. Fortes. A
case for grid computing on virtual machines.
In In Proceedings of the 23rd Internatinal
Conference on Distributed Computing Systems
(ICDCS 2003), 2003.

[5] I. Foster, J. Voeckler, M. Wilde, and Y.Zhao.
Chimera: A virtual data system for represent-
ing, querying and automating data derivation.
In Proc. of the 14th Conf. on Scientific and Sta-
tistical Database Management, July 2002.

[6] M. Greenwood, C. Goble, R. Stevens, J. Zhao,
M. Addis, D. Marvin, L. Moreau, and T. Oinn.
Provenance of e-science experiments - experi-
ence from bioinformatics. In S. J. Cox, editor,
Proc. UK e-Science All Hands Meeting 2003,
pages 223–226, September 2003.

[7] P. Groth, M. Luck, and L. Moreau. A protocol
for recording provenance in service-oriented
grids. In T. Higashino, editor,Proceedings
of the 8th International Conference on Prin-
ciples of Distributed Systems (OPODIS’04),
volume Lecture Notes in Computer Science,
pages 124–139, Grenoble, France, December
2004. Springer-Verlag.

[8] P. Groth, S. Miles, W. Fang, S. C. Wong, K.-P.
Zauner, and L. Moreau. Recording and using
provenance in a protein compressibility exper-
iment. In Proceedings of the 14th IEEE In-
ternational Symposium on High Performance
Distributed Computing (HPDC’05), 2005.

[9] K. Keahey, K. Doering, and I. Foster. From
sandbox to playground: Dynamic virtual envi-
ronments in the grid. InIn Proceedings of the
5th International Workshop in Grid Computing
(Grid 2004), Pittsburgh, PA, November 2004.

[10] D. Lanter. Lineage in gis: The problem and a
solution. Technical Report 90-6, National Cen-
ter for Geographic Information and Analysis
(NCGIA), UCSB, Santa Barbara, CA, 1991.

[11] J. Ledlie, C. Ng, D. A. Holland, K.-K.
Muniswamy-Reddy, U. Braun, and M. Seltzer.
Provenance-aware sensor data storage. In
NetDB 2005, April 2005.

[12] P. Ruth, D. Xu, B. K. Bhargava, and F. Reg-
nier. E-notebook middleware for acccount-
ability and reputation based trust in distributed
data sharing communities. InProc. 2nd Int.
Conf. on Trust Management, Oxford, UK, vol-
ume 2995 ofLNCS. Springer, 2004.

[13] M. Szomszor and L. Moreau. Recording and
reasoning over data provenance in web and
grid services. InInt. Conf. on Ontologies,
Databases and Applications of Semantics, vol-
ume 2888 ofLNCS, 2003.

[14] P. Townend, P. Groth, and J. Xu. A provenance-
aware weighted fault tolerance scheme for
service-based applications. InIn Proc. of
the 8th IEEE International Symposium on
Object-oriented Real-time distributed Comput-
ing (ISORC 2005), May 2005.


