Flexible Provisioning of Service Workflows

Sebastian Stein and Nicholas R. Jennings and Terry R. Payne!

Abstract. Service-oriented computing is a promising paradigm for attention. In particular, the fact that a type of service might be offered
highly distributed and complex computer systems. In such systemd&y multiple providers is seldom explored, and most research is con-
services are offered by provider agents over a computer network anzerned with finding and invoking the first matching service that helps
automatically discovered and provisioned by consumer agents thétlfil a given goal [6]. Such a rige approach means that a single ser-
need particular resources or behaviours for their workflows. How-vice failure will result in the failure of the whole workflow, which is
ever, in open systems where there are significant degrees of uncérighly undesirable, especially when success is critical to the interests
tainty and dynamism, and where the agents are self-interested, ttoé the consumer agent.

provisioning of these services needs to be performed in a more flex- When it has been considered, this problem is usually addressed re-
ible way than has hitherto been considered. To this end, we devisactively by dynamic replanning in case of failure [5], but this method
a number of heuristics that vary provisioning according to the preis computationally expensive and can lead to long delays when there
dicted performance of provider agents. We then empirically benchare particularly unreliable services. In [1], the authors take a more
mark our algorithms and show that they lead to a 350% improvemerproactive approach by provisioning services that maximise an ex-
in average utility, while successfully completing 5-6 times as manypected utility function. However, they again provision only single

workflows as current approaches. providers, which makes workflows vulnerable to service failures.
To address these shortcomings, we investigate the process of pro-
1 INTRODUCTION visioning service workflows in environments where service success

is not generally guaranteed. We show that the current approach of

Computer systems are becoming increasingly complex, distributegirovisioning single providers is insufficient in such environments,
and open in nature. In so doing, they pose new challenges to conterand then advance the state of the art by developing several strate-
porary software engineering techniques, as applications need to degies that deal proactively with unreliable providers. This is achieved
with many widely distributed and dynamic resources. In this contextpy provisioning several redundant service providers for a single task
service-oriented computing has gained popularity as an appropriaig order to reduce the associated failure probability, and by provi-
paradigm to build such systems [3]. In this approach, resources agoning new providers to those tasks that appear to have failed. We
offered as services, which are advertised to consumer applicatiorso develop a novel heuristic that provisions workflows in a flexi-
using computer-readable descriptions and then provisioned dynamile manner depending on the characteristics of the service providers.
cally when needed, often as part of complex workflows [2]. Specifically, our heuristic provisions more providers to tasks that are

A defining feature of these distributed systems is that partici-particularly likely to fail, while relying on fewer providers when suc-
pants are usually heterogeneous, self-interested agents that act @@ss is more certain. In order to verify our approach, we report our
tonomously in accordance with their own private goals [4]. As suchempirical results that show the value of flexible service provisioning
agents choose actions that maximise their own welfare, and so theyver the nave approach. In particular, we show that our heuristic suc-
cannot be assumed to honour every request, to be available wheeessfully completes over 90% of its workflows in most environments
ever they are needed or even to report their capabilities and statwghere current approaches complete none. Furthermore, the results
truthfully. Additionally, network problems, competition for resources indicate that our heuristic achieves a 350% improvement in average
or even software bugs exacerbate the potential for service failuresitility over the néve strategy.
Thus, when interacting with service providing agents and making The remainder of this paper is organised as follows. In the next
real investments that depend on their performance (whether in terngection we present two simple provisioning strategies, followed by
of money, time or other resources), dealing with service failures bean extended strategy that provisions services in a flexible manner. In
comes a vital issue to consider. Section 3 we describe our experimental testbed and present empirical

Against this background, we believe that flexible service provi-results for our strategies. Section 4 concludes.
sioning (i.e., selecting and allocating service providers to specific
tasks) is the key to handling and controlling service failures. Itallows) PROVISIONING STRATEGIES
the consumer to dynamically select service providers based on their
performance characteristics and provision replacement provider# this section, we outline the type of dynamism and uncertainty that
when services fail. Specifically, provisioning services in the con-service providers display in the complex systems we consider. This
text of a workflow enables a consumer agent to identify particularlyis followed by an overview of the kinds of workflows and associated
failure-prone tasks and invest additional resources in them. To datgéewards that service consumers typically face. We then present two
however, this provisioning process has received comparatively littlgtrategiesigarallel andserial) that provision providers redundantly,
but in an inflexible manner, in order to increase their chance of suc-
! School of Electronics and Computer Science, University of Southamptongess. Finally, we outline a flexible strategy that provisions providers

United Kingdom,{ss04r,nrj,trg @ecs.soton.ac.uk depending on the agent’s assessment of its situation.

2.1 Modelling Service-Oriented Systems 2.3 Serial Service Provisioning

As discussed in Section l, the inherently Uncertain behaViOUr Of aL;A\n a|ternative approach to re|ying on para”e| provisioning of provi_
tonomous service providers can pose serious threats to the goals ofjars to increase the probability of success, is to re-provision services
service consumer. Providers are generally not guaranteed to exeCy{fhen it becomes apparent that a particular provider has failed. In
services successfully, and even when they do, the time of complehis case, the consumer first provisions a single provider and, after
tion may be influenced by network traffic, other commitments thejnyocation, waits for some time. If the provider has not been suc-
provider has made and the hardware a service is executed on. Heng@ssful, the consumer tries a different provider and so on. However,
we model services probabilistically and we assume that some inforgg providers cannot generally be assumed to notify the consumer of
mation has already been learnt about the performance characterigglure and because they have non-deterministic duration times, the
tics of the service providers for a given task, including their averageonsumer has to choose an appropriate waiting period. This period
failure probability and a distribution function for the duration of a ghgyld give the provider a reasonable time to finish, but should not
successful service execution. waste unnecessary time when the service has already?failed

In service-oriented systems, service consumers often face large with this in mind, let7'(w) be the probability that a randomly
workflows of inter-dependent tasks. For the purpose of this paper, weghosen service provider successfully completes within the waiting

represent such workflows as directed, acyclic graphs with the nodagme « (note thatl"(w) < S:). Then the success probability of serial
N being tasks and the edgésdefining the dependencies between proyisioning withn available providers is:

tasks (i.e., an edgg: — t2) means that task has to complete suc-
cessfully before, can be s.tarted). A workflow is only considered To(w) =1— (1 - T(w))")
complete when all its constituent tasks have been completed.

Furthermore, to evaluate our strategies, we define a utility function This is usually less than the success probability of provisioning
u(t) to capture the value of finishing a workflow at tihé/Ve chose the same number of providers in parallel and the average time taken
to represent this by a maximum utilitynax, awarded for completion, will also be higher for serial provisioning because of the additional
a deadlined, and a penalty charge, to be deducted from the final Wwaiting time that is introduced. On the other hand, the average cost

utility for every time step a workflow is late. Formally, we write: drops, because costs are only incurred at the time of invocation.
This leads us to our second strateggrial(w), which always pro-
Umax ift<d visions exactly one randomly chosen member of the set of available
u(t) = uma—p(t—d) ift > dandt < d Tuma/p (1) providerg. After a waiting period ab time units, if no success has
0 if £ > d + uma/p been registered yet and if there are still more providers, the agent re-

provisions a new, randomly chosen provider. A special case of this
As is common in contemporary frameworks [3], services in ourstrategyserial(cc), is equivalent to the rige strategy.
model are invokedn demandSpecifically, a consumer requests the
execution of a provisioned service when the associated task becomes
available. At that time, the consumer incurs a cost (e.g., financia.4 Flexible Service Provisioning
remuneration or communication cost), which is assumed uniform

among the providers of a certain task. Thus, the overall profit of gl he strategies discussed so far provision services in an inflexible

workflow execution is the difference of the utility of finishing the Manner, as they always select the same number of providers for
workflow (or O if unsuccessful) and its total cost. each task. This approach is insufficient in most scenarios, however,

Having outlined our environment and basic assumptions, we noW€cause some services may benefit from being provisioned redun-
continue to develop several provisioning strategies. As discussed, tfantly; while others have a high degree of certainty and so need not
aim of these is to improve upon the currently predominant strateg® Provisioned in this manner. Furthermore, it is not clear how to
of provisioning a single, randomly chosen service provider for eactfh0sén andw in the above strategies so as to balance the associ-

task in a workflow — a strategy that we refer to asnagvestrategy. ateq cost and maximise'the e).<p.ected utility of a workflow, and it is
desirable to automate this decision.

lel . L To address these shortcomings, in this section we develop a
2.2 Parallel Service Provisioning flexible strategy that combines the above two strategiasallel(n)
Recognising the ease of discovering substitute services in servic@ndserial(w), by automatically finding values for the number of par-
oriented systems, our first strategy uses redundant service provisiogllel invocations 4;) and waiting time {;) for every taskt; in a

ing to control the effect of unreliable providers. In general, if the given workflow. To focus on the basic problem, we assume that this
success probability of a randomly chosen providesiistnen provi- allocation is made once and then used non-adaptively for the entire

sioningn providers for a task results in a success probahflity execution of the workflolx We also assume that the consumer is
risk-neutral — that is, we want our algorithm to choose vatluesnd
Sp=1—(1-5)" (2) wi inorder to maximise the consumer’s long-term expected profit.

WhenS; > 0, thenlim,_.. S, = 1, which implies that it is Now, many optimisation approaches exist in the literature, but due

possible to increase the probability of success to an arbitrarily highC te complex nature of this particular problem, which includes the

amount as long as .there are Sum,CI,ent providers in the §ystem. H,OV\Q_ When re-provisioning services, we assume that all previously provisioned

ever, as more providers are provisioned, the total cost incurred riseSservices are subsequently ignored (even if they had succeeded at a later

linearly with n. time). This assumption draws a clear distinction between serial and parallel
This result leads us to our first strateggrallel(n), which always provisioning techniques, but does not fundamentally alter our results.

o .3 This simplifies the problem and helps us verify that our algorithm makes
provisions exactly. randomly chosen members of the set of avail- good initial predictions even without receiving ongoing feedback during a

able providers for a given task. The stratggrallel(1), here, is a workflow. However, in future work we will use such information to update
special case that is equivalent to théueastrategy. the agent’s service provisions dynamically.

summation of random variables (the service durations), integer varimnvocations as well as the associated probability. Then we multiply
ables and a non-linear objective function, we have decided to use these durations with their probabilities and sum them to get the over-
local search technique that approximates the expected profit usingadl expected duration.
heuristic function, and searches for a good allocation rather than an More formally, if a task succeeds after exadtlyinsuccessful in-
optimal one. vocations, the expected duratiaf),, is the expected duration for a
Specifically, our local search algorithm begins with a random allo-single invocation added tb waiting time durationsv for the previ-
cation and then applies steepest ascent hill climbing [7] to graduallpusly failed invocations:
improve the allocation until a maximum is found. The heuristic func-
tion we use is based on the utility functiarand we use it to calculate dp = p1+ kw ©)
the estimated profi. _ The probability of the task completing after thth attempt is:
G=p-u(t)-c 4
wherep is the probability of finishing all tasks at some point in time, sk = f*(1—f) (8)
t is the estimated completion time for the workflow, anid the ex-
pected cost.
In the following, we explain how, £ andé are calculated, starting
with appropriate calculations for each individual task in Section 2.4.1

With this, we calculate the overall expected duration, conditional
on at least one provider being successful (assunfirgl):

and then extending this to the whole workflow in Section 2.4.2. - 1
d = g . kSk 9

2.4.1 Local Task Calculations k=0

m—1
We are interested in three performance measures for each; task _ 1 ((M + kw) - f*(1— f)>
the workflow — the overall success probability of the task {ts et
expected cosiz] and its expected duratiod), These are calculated 1 A i 1)t
using the information that the consumer has about each task andthe = =. (M(l — ™+ wf —mf (mf))
relevant providers: s L=f

We have now shown how to calculate various performance char-

d_ac’[eristics of a single task. In the following section, we explain how

this is extended to calculate the overall heuristic function for an allo-
cation over the whole workflow.

p is the number of providers provisioned in parallel for the task.
w is the waiting time before a new set of providers is provisione
a is the number of available providers.

f is the average failure probability of a provider.

c is the cost of a provider. _ _ _ ~ 2.4.2 Global Workflow Calculations
D is the cumulative density function for a single service duration.

Let s;, & andd; be the success probability, the expected cost and
First, we calculate the probability of succesas in equation 3, the expected duration of tagk With this information for each task,
but noting thatl’ = (1 — f) - D(w) and using the total number of we are now interested in calculating the overall probability of suc-

available providers: cesss, the estimated completion time of the workfléwind the total
expected cost.
s=1—-(1-(1-f) D(w))* (5) The overall probability of success is simply the product okall
In showing how to calculate the total cost, we assume that _ H _ (10)
amodp = 0 (i.e., that we can invoke up tox = a/p sets ofp 5= 51

providers with no remaining providers at the ndEach invoked set {ileseny

of providers then has a probability of succéss= 1 — (1 — (1 — The expected total cost is the sum of all task costs, each multiplied
f) - D(w))? and an associated cast. The consumer is guaranteed PY the respective success probabilities of their predecessors in the
to paycp at least once, and may pay again if the previous invocaWOfkﬂOW (Whereri is the probablllty that task; is ever reached):

tion was unsuccessful with probabilify= (1 —). Using this, and

assuming thaf < 1, we can write the expected casas: c= Z TiCi (11)
{ilt;eN}

m—1 rm

— ok -

= =cp—— 6 .

=) It © | 1, - (1 o 1) & B)

- =T s; otherwise (12)
Using the same assumptions and treating the simpler case with {il@j—tirer} 2

amodp = 0, we now investigate how to calculate the expected _ I i h Il timusi he | h of
duration of a taskj. We define this to be the mean time until the first F"ally, we approximate the overall timeusing the length o

provider carries out the task successfully, conditional on an overaffe critical path in the_ workflow. This is the length of thPT longest
success (i.e., at least one provider is successful) path from any node with no predecessors to any node with no suc-

First, we defineu to be the mean duration of a single successful €SSO"S: using the expected _duratidnas weights gttached to the
invocation ofp providers (also conditional on overall success). Then"°d€s- Such an approach will normally underestimate the true ex-
we follow a similar technique for calculatinas we did fore. we ~ Pected duration, because it focusses only on one path, ignoring the
consider all possible outcomes for the invocation by calculating th?@SSibility thatother services outside this path may take longer. How-

expected duration when the task is completed after exacthyjled ever, it provides a fast approxm:_:\tlon and has been used widely in
project management and operations research [8]. Formally, we let

4 Due to space restrictions in this paper, we omit the general case. P = {t; | t; is on the critical path. This gives us:

- (13) (ANOVA) where appropriate to test whether the strategies we tested
produced significantly different results. When this was the case, we
carried out pairwise comparisons using the least significant differ-

_ Using these values and the heuristic function given in equation 4gnce (LSD) test. Thus all results reported in this paper are statistically
it is now possible to use steepest ascent hill-climbing to find a goodjgnificant p = 0.001).

allocation of providers. In practice, we found it useful to perform
this in two iterations — once using a modified utility functian)
which is a linear version of, giving a higher reward than usual for 3.2 Experimental Results

finishing early and a larger loss for finishing late, and then again us- .)
ing the normal utility function:. This approach allows the algorithm In our first experiment, we compared the performance of strategy

to escape from a common local maximum where the agent decidetyﬂrallel(n)5 with the nave approach in environments where service

to concede, allocate minimal resources to the tasks and hence incBF_OV'_d?rS have a varymg_ probab||!ty of faulur_e (see F|gure 1). From
this, it is clear that there is a considerable difference in performance

a low net loss, but also a very low probability of success. Further- he diff ; h Gt gai h
more, we could generally increase performance by adding a constaﬁ?tween the different strategies — the average profit gained by the

amount of extra time této account for the error in the prediction. In Nave strategy falls dramatically as soon as failures are introduced

all our experiments we set this to 20% of the workflow deadline, ad"© the system. In this case, the average utility of provisioning single

this produces good results in a variety of experimental settings. providers falls to below 0 when the failure probability of providers is
only 0.3. A statistical analysis reveals that théveastrategy domi-

nates the other two when there is no uncertainty in the system. How-
3 EMPIRICAL EVALUATION ever, as soon as the failure probability is raised tb parallel(2)
As stated in Section 1, the aim of our work is to deal effectively begins to dominate the other strategies. Between 0.3 anplafa-
with unreliable service providers when provisioning workflows. To lel(6) then becomes the dominant strategy as increased service re-
this end, in this section we empirically compare our proposed stratedundancy leads to a higher probability of success. Above this, the
gies to the currently predominantima approach. In particular, we parallel strategies do not yield better results than theenstrategy
investigate the average utility gained by all strategies, as well as thas they also begin to fail in most cases.
average proportion of successfully completed workflows. In the re-
mainder of this section, we describe our experimental testbed and 1000

Sl
Il
IS
-~

{iltieP}

na'l've‘ —
methodology, followed by the results. %00 parallel(2) o
= parallel(6) ---+---
. B 600 | 1
3.1 Experimental Testbed =
% 400 -~
In order to analyse our strategies empirically, we developed a sim- g 200 |
ulation of a simple service-oriented system. In this simulation, we < N
generate large numbers of random workflows and measure the per- 0 e
formance of our strategies by recording the percentage of workflows =200 0 0'2 0'4 0‘6 ‘0'8' X

that failed (where time steps had elapsed, so thét) < 0) and suc-
ceeded (where all tasks were completed withtime steps, so that
u(t) > 0). We also measure the average profit of a single servicerigure 1. Effect of provisioning different numbers of providers in parallel
consuming agent.

Our simulation is discrete, notifying the consumer of any success- Summarising these trends, it is obvious that redundant provision-

ful sgrvice executign once every iqteger time step, at which pqiqt N€%hg yields a considerable improvement over thévaapproach in a
services are_also invoked acc_ordln_g_ to Fhe consumer’§ prm_nsmmngange of environments. For example, when the failure probability is
strategy. Wh"e Fhe consumeris r_lotlflec_i in case of service failure, ”?).2, provisioning two providers results in an almost 1,100% improve-
|nf_(|)_rmqt|on|.|s gt';]/ en whlen a pro:;lds rfails. h d ment in average profit over the'iwe strategy. However, no redundant

o simplify the analysis and because our approach does nO§trategy dominates the other and both eventually make losses when

dgal d irectly with dl_fferentlat_lng between_ individual providers a_t the probability of failure increases to such an extent that the chosen
this time, we examined environments with homogeneous servicg,

id . I d hare th babilit gdundancy levels do not suffice to ensure success.
providers _(|.e_., all providers share the same success probability and \ve carried out a similar experiment to verify the advantage of
duration distributions).

serial provisioning over the iiae strategy (see Figure 2). Here, again,

For the data presented in this section, we used workflows consis{here is a marked improvement over théueastrategy for failure
ing of 10 tasks in a strict series (i.e., without parallel tasks, becauZEl

; .) robabilities up to and including 0.5. This improvement is due to the
this allowed us to verify some results analytically), we assumed th

th 1.000 ders T task with h ider h ct that serial provisioning responds to failures as they occur, while
ere were ~. providers for every lask with each provider aVbnly paying for additional services when necessary. However, as the

ing a cost of 10 and a gamma Q'St.”bu.tlon with shap_& 2 and_ failure probability rises, this strategy begins to miss its deadlines and
scaled = 10 as the probability distribution of the service duration. hence incurs increasingly large losses

We §et a dez#jline; ;)fof')%o tirge units lfor t?i Oworkfllow, an.as\:/ocizlated Finally, to show how thélexible strategy compares against the
maximum utility of 1, and a penalty o pertime unit. We also 4 o provisioning approach and inflexible redundancy, Figure 3

performed similar experiments in a variety of environments, mclud-Sh ws our experimental data (again, using the same experimental

ing heterogeneous and parallel tasks, and observed the same br iables). The top graph shows the percentage of workflows that
trends that are presented in the following section.

To prove the statistical significance of our results, we averaged Here, we arbitrarily chose = 2 andn = 6 as representative of the general
data over 1,000 test runs and performed an analysis of variancetrends displayed by the strategy as more providers are provisioned.

Failure Probability

Table 1. Summary of results with 95% confidence intervals

Seria‘;g‘(’)‘;] Strategy Mean profit | Profitvs nave | Success ratg
- serial(100) ---»--- nave 103.09+ 5.30 1 0.13+0.01
g 1 parallel(6) | 175.87+5.79 | 1.71+0.20 | 0.61+ 0.01
ﬁ; serial(30) | 221.91+ 7.92 2.15+0.26 0.44+0.01
§° flexible 471.994+ 8.71 458+ 0.49 0.77+£0.01
Z
S O e resentative strategies, averaged over all environments that we tested
—200 . . g (using the same data as in Figures 1-3). These results highlight the
0 0.2 0.4 0.6 0.8 benefits of our strategies, and show that our flexible strategy by far

Failure Probability

Figure 2. Effect of different amounts of waiting times for re-provisioning

+
1
1

outperforms the rige approach. In particular, we achieve an im-
provement of approximately 350% in mean profit and successfully
complete 76-78% of all workflows.

4 CONCLUSIONS

o
)

.
,

a “ parallel(2) -e-
BN . parallel(6) -<-]
\ - flexible — |

oS 2
= o

Proportion Successful

Average Profit

0 0.2 0.4 0.6 0.8 1
Failure Probability

Figure 3. Performance of flexible strategy

L . naive -1 In this paper, we addressed the problem of dealing with unreliable
service providers in complex systems. To this end, we developed
a novel algorithm for provisioning workflows in a flexible manner

‘ and showed that this algorithm achieves a high success probability
L e - in uncertain environments and that it outperforms the curreiitena
strategy of provisioning single providers. This work is particularly
relevant for distributed applications where several services are com-
posed by a consumer agent, and where these services are offered by
autonomous agents whose success cannot be guaranteed. Important
application domains for our approach include scientific data process-
ing workflows and distributed business applications, where services
are sourced from across departments or organisations.

In future work, we plan to extend our approach to cover more
heterogeneous environments, where service providers differ signif-
icantly in terms of cost and reliability within the same service type
and where such qualities are affected dynamically by system-wide
competition and resource availability. Furthermore, we plan to ex-

amine in more detail the computational cost of provisioning and how
succeeded out of all the ones generated. Here, we see that our heutisis can be balanced in a flexible manner with the need to make quick

tic approach initially performs slightly worse thparallel(6) (but al-
ways significantly better than theira approach). This is due to our

decisions in dynamic environments.

technique of using the critical path of the workflow as an estimateACKNOWLEDGEMENTS

for the total time taken. This technique is usually too optimistic and

might result in under-provisioned tasks. However, the graph clearlyl NS work was funded by the Engineering and Physical Sciences Re-
shows that the flexible technique still achieves a success-rate of ovéfarch council (EPSRC) and a BAE Systems studentship.

90% and, more importantly, maintains this up to a failure probability

of 0.8, by which all other approaches have large failure rates. wheREFERENCES

0.9 is reached, the strategy begins to ignore all workflows, becaugg
it cannot find a feasible allocation to offer a positive return. On the
lower graph, we show the average utility that is gained by the same
strategies. Here, it is clear that the flexible approach performs bettd?!
than any of the other strategies. This is due to its utility prediction
mechanism and the fact that it can make choices separately for the
various tasks in the workflow. This flexibility allows the strategy to [3]
provision more providers for latter parts of the workflow, where suc-
cess becomes more critical as a higher investment has already beléh
made. The flexible approach also combines the benefits of the oth
strategies, allowing the agent to choose between parallel (e.g., when
there is little time) and serial provisioning (e.g., when the agent can
afford the extra waiting time) or a mixture of the two. Although per- [6]
formance degrades as providers become more failure-prone, flexible
provisioning retains a relatively high average utility when all other
strategies start to make a loss. Furthermore, the strategy avoids mdkk
ing a loss due to its prediction mechanism, which ignores aworkflon8]
when it seems infeasible.

To conclude, Table 1 summarises the performance of some rep-

J. Collins, C. Bilot, M. Gini, and B. Mobasher, ‘Decision Processes in
Agent-Based Automated ContractingEEE Internet Computings(2),
61-72, (2001).

E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, K. Vahi,
K. Blackburn, A. Lazzarini, A. Arbree, R. Cavanaugh, and S. Koranda,
‘Mapping Abstract Complex Workflows onto Grid Environment®ur-

nal of Grid Computing1(1), 25 — 39, (2003).

M. N. Huhns and M. P. Singh, ‘Service-Oriented Computing: Key Con-
cepts and PrincipleslEEE Internet Computing®(1), 75-81, (2005).

N. R. Jennings, ‘On Agent-Based Software Engineeridgtificial In-
telligence 1172), 277-296, (2000).

M. Klusch, A. Gerber, and M. Schmidt, ‘Semantic Web Service Compo-
sition Planning with OWLS-XPlan’, ifProceedings of the 1st Interna-
tional AAAI Fall Symposium on Agents and the Semantic, (2€105).

S. A. Mcllraith and T. C. Son, ‘Adapting Golog for Composition of
Semantic Web Services’, iRroceedings of the Eighth International
Conference on Knowledge Representation and Reasoning (KR2p02)
482-493, Toulouse, France, (2002).

S. Russell and P. Norvidartificial Intelligence: A Modern Approach
Prentice-Hall, Englewood Cliffs, NJ, USA, 2nd edn., 2003.

W. L. Winston, Operations Research: Applications and Algorithms
Wadsworth Publishing Company, 3rd edn., 1997.

