
Flexible Provisioning of Service Workflows
Sebastian Stein and Nicholas R. Jennings and Terry R. Payne1

Abstract. Service-oriented computing is a promising paradigm for
highly distributed and complex computer systems. In such systems,
services are offered by provider agents over a computer network and
automatically discovered and provisioned by consumer agents that
need particular resources or behaviours for their workflows. How-
ever, in open systems where there are significant degrees of uncer-
tainty and dynamism, and where the agents are self-interested, the
provisioning of these services needs to be performed in a more flex-
ible way than has hitherto been considered. To this end, we devise
a number of heuristics that vary provisioning according to the pre-
dicted performance of provider agents. We then empirically bench-
mark our algorithms and show that they lead to a 350% improvement
in average utility, while successfully completing 5–6 times as many
workflows as current approaches.

1 INTRODUCTION

Computer systems are becoming increasingly complex, distributed
and open in nature. In so doing, they pose new challenges to contem-
porary software engineering techniques, as applications need to deal
with many widely distributed and dynamic resources. In this context,
service-oriented computing has gained popularity as an appropriate
paradigm to build such systems [3]. In this approach, resources are
offered as services, which are advertised to consumer applications
using computer-readable descriptions and then provisioned dynami-
cally when needed, often as part of complex workflows [2].

A defining feature of these distributed systems is that partici-
pants are usually heterogeneous, self-interested agents that act au-
tonomously in accordance with their own private goals [4]. As such,
agents choose actions that maximise their own welfare, and so they
cannot be assumed to honour every request, to be available when-
ever they are needed or even to report their capabilities and status
truthfully. Additionally, network problems, competition for resources
or even software bugs exacerbate the potential for service failures.
Thus, when interacting with service providing agents and making
real investments that depend on their performance (whether in terms
of money, time or other resources), dealing with service failures be-
comes a vital issue to consider.

Against this background, we believe that flexible service provi-
sioning (i.e., selecting and allocating service providers to specific
tasks) is the key to handling and controlling service failures. It allows
the consumer to dynamically select service providers based on their
performance characteristics and provision replacement providers
when services fail. Specifically, provisioning services in the con-
text of a workflow enables a consumer agent to identify particularly
failure-prone tasks and invest additional resources in them. To date,
however, this provisioning process has received comparatively little

1 School of Electronics and Computer Science, University of Southampton,
United Kingdom,{ss04r,nrj,trp}@ecs.soton.ac.uk

attention. In particular, the fact that a type of service might be offered
by multiple providers is seldom explored, and most research is con-
cerned with finding and invoking the first matching service that helps
fulfil a given goal [6]. Such a naı̈ve approach means that a single ser-
vice failure will result in the failure of the whole workflow, which is
highly undesirable, especially when success is critical to the interests
of the consumer agent.

When it has been considered, this problem is usually addressed re-
actively by dynamic replanning in case of failure [5], but this method
is computationally expensive and can lead to long delays when there
are particularly unreliable services. In [1], the authors take a more
proactive approach by provisioning services that maximise an ex-
pected utility function. However, they again provision only single
providers, which makes workflows vulnerable to service failures.

To address these shortcomings, we investigate the process of pro-
visioning service workflows in environments where service success
is not generally guaranteed. We show that the current approach of
provisioning single providers is insufficient in such environments,
and then advance the state of the art by developing several strate-
gies that deal proactively with unreliable providers. This is achieved
by provisioning several redundant service providers for a single task
in order to reduce the associated failure probability, and by provi-
sioning new providers to those tasks that appear to have failed. We
also develop a novel heuristic that provisions workflows in a flexi-
ble manner depending on the characteristics of the service providers.
Specifically, our heuristic provisions more providers to tasks that are
particularly likely to fail, while relying on fewer providers when suc-
cess is more certain. In order to verify our approach, we report our
empirical results that show the value of flexible service provisioning
over the näıve approach. In particular, we show that our heuristic suc-
cessfully completes over 90% of its workflows in most environments
where current approaches complete none. Furthermore, the results
indicate that our heuristic achieves a 350% improvement in average
utility over the näıve strategy.

The remainder of this paper is organised as follows. In the next
section we present two simple provisioning strategies, followed by
an extended strategy that provisions services in a flexible manner. In
Section 3 we describe our experimental testbed and present empirical
results for our strategies. Section 4 concludes.

2 PROVISIONING STRATEGIES

In this section, we outline the type of dynamism and uncertainty that
service providers display in the complex systems we consider. This
is followed by an overview of the kinds of workflows and associated
rewards that service consumers typically face. We then present two
strategies (parallel andserial) that provision providers redundantly,
but in an inflexible manner, in order to increase their chance of suc-
cess. Finally, we outline a flexible strategy that provisions providers
depending on the agent’s assessment of its situation.



2.1 Modelling Service-Oriented Systems

As discussed in Section 1, the inherently uncertain behaviour of au-
tonomous service providers can pose serious threats to the goals of a
service consumer. Providers are generally not guaranteed to execute
services successfully, and even when they do, the time of comple-
tion may be influenced by network traffic, other commitments the
provider has made and the hardware a service is executed on. Hence,
we model services probabilistically and we assume that some infor-
mation has already been learnt about the performance characteris-
tics of the service providers for a given task, including their average
failure probability and a distribution function for the duration of a
successful service execution.

In service-oriented systems, service consumers often face large
workflows of inter-dependent tasks. For the purpose of this paper, we
represent such workflows as directed, acyclic graphs with the nodes
N being tasks and the edgesE defining the dependencies between
tasks (i.e., an edge(t1 7→ t2) means that taskt1 has to complete suc-
cessfully beforet2 can be started). A workflow is only considered
complete when all its constituent tasks have been completed.

Furthermore, to evaluate our strategies, we define a utility function
u(t) to capture the value of finishing a workflow at timet. We chose
to represent this by a maximum utilityumax, awarded for completion,
a deadlined, and a penalty chargep, to be deducted from the final
utility for every time step a workflow is late. Formally, we write:

u(t) =


umax if t ≤ d
umax− p(t− d) if t > d andt < d + umax/p
0 if t ≥ d + umax/p

(1)

As is common in contemporary frameworks [3], services in our
model are invokedon demand. Specifically, a consumer requests the
execution of a provisioned service when the associated task becomes
available. At that time, the consumer incurs a cost (e.g., financial
remuneration or communication cost), which is assumed uniform
among the providers of a certain task. Thus, the overall profit of a
workflow execution is the difference of the utility of finishing the
workflow (or 0 if unsuccessful) and its total cost.

Having outlined our environment and basic assumptions, we now
continue to develop several provisioning strategies. As discussed, the
aim of these is to improve upon the currently predominant strategy
of provisioning a single, randomly chosen service provider for each
task in a workflow — a strategy that we refer to as thenäıvestrategy.

2.2 Parallel Service Provisioning

Recognising the ease of discovering substitute services in service-
oriented systems, our first strategy uses redundant service provision-
ing to control the effect of unreliable providers. In general, if the
success probability of a randomly chosen provider isS1, then provi-
sioningn providers for a task results in a success probabilitySn:

Sn = 1− (1− S1)
n (2)

WhenS1 > 0, then limn→∞ Sn = 1, which implies that it is
possible to increase the probability of success to an arbitrarily high
amount as long as there are sufficient providers in the system. How-
ever, as more providers are provisioned, the total cost incurred rises
linearly withn.

This result leads us to our first strategy,parallel(n), which always
provisions exactlyn randomly chosen members of the set of avail-
able providers for a given task. The strategyparallel(1), here, is a
special case that is equivalent to the naı̈ve strategy.

2.3 Serial Service Provisioning

An alternative approach to relying on parallel provisioning of provi-
ders to increase the probability of success, is to re-provision services
when it becomes apparent that a particular provider has failed. In
this case, the consumer first provisions a single provider and, after
invocation, waits for some time. If the provider has not been suc-
cessful, the consumer tries a different provider and so on. However,
as providers cannot generally be assumed to notify the consumer of
failure and because they have non-deterministic duration times, the
consumer has to choose an appropriate waiting period. This period
should give the provider a reasonable time to finish, but should not
waste unnecessary time when the service has already failed2.

With this in mind, letT (w) be the probability that a randomly
chosen service provider successfully completes within the waiting
timew (note thatT (w) ≤ S1). Then the success probability of serial
provisioning withn available providers is:

Tn(w) = 1− (1− T (w))n (3)

This is usually less than the success probability of provisioning
the same number of providers in parallel and the average time taken
will also be higher for serial provisioning because of the additional
waiting time that is introduced. On the other hand, the average cost
drops, because costs are only incurred at the time of invocation.

This leads us to our second strategy,serial(w), which always pro-
visions exactly one randomly chosen member of the set of available
providers. After a waiting period ofw time units, if no success has
been registered yet and if there are still more providers, the agent re-
provisions a new, randomly chosen provider. A special case of this
strategy,serial(∞), is equivalent to the naı̈ve strategy.

2.4 Flexible Service Provisioning

The strategies discussed so far provision services in an inflexible
manner, as they always select the same number of providers for
each task. This approach is insufficient in most scenarios, however,
because some services may benefit from being provisioned redun-
dantly, while others have a high degree of certainty and so need not
be provisioned in this manner. Furthermore, it is not clear how to
choosen andw in the above strategies so as to balance the associ-
ated cost and maximise the expected utility of a workflow, and it is
desirable to automate this decision.

To address these shortcomings, in this section we develop a
flexible strategy that combines the above two strategies,parallel(n)
andserial(w), by automatically finding values for the number of par-
allel invocations (ni) and waiting time (wi) for every taskti in a
given workflow. To focus on the basic problem, we assume that this
allocation is made once and then used non-adaptively for the entire
execution of the workflow3. We also assume that the consumer is
risk-neutral — that is, we want our algorithm to choose valuesni and
wi in order to maximise the consumer’s long-term expected profit.

Now, many optimisation approaches exist in the literature, but due
to the complex nature of this particular problem, which includes the

2 When re-provisioning services, we assume that all previously provisioned
services are subsequently ignored (even if they had succeeded at a later
time). This assumption draws a clear distinction between serial and parallel
provisioning techniques, but does not fundamentally alter our results.

3 This simplifies the problem and helps us verify that our algorithm makes
good initial predictions even without receiving ongoing feedback during a
workflow. However, in future work we will use such information to update
the agent’s service provisions dynamically.



summation of random variables (the service durations), integer vari-
ables and a non-linear objective function, we have decided to use a
local search technique that approximates the expected profit using a
heuristic function, and searches for a good allocation rather than an
optimal one.

Specifically, our local search algorithm begins with a random allo-
cation and then applies steepest ascent hill climbing [7] to gradually
improve the allocation until a maximum is found. The heuristic func-
tion we use is based on the utility functionu and we use it to calculate
the estimated profit̃u:

ũ = p · u(t̃)− c̄ (4)

wherep is the probability of finishing all tasks at some point in time,
t̃ is the estimated completion time for the workflow, andc̄ is the ex-
pected cost.

In the following, we explain howp, t̃ andc̄ are calculated, starting
with appropriate calculations for each individual task in Section 2.4.1
and then extending this to the whole workflow in Section 2.4.2.

2.4.1 Local Task Calculations

We are interested in three performance measures for each taskti in
the workflow — the overall success probability of the task (s), its
expected cost (̄c) and its expected duration (d̄). These are calculated
using the information that the consumer has about each task and the
relevant providers:

• p is the number of providers provisioned in parallel for the task.
• w is the waiting time before a new set of providers is provisioned.
• a is the number of available providers.
• f is the average failure probability of a provider.
• c is the cost of a provider.
• D is the cumulative density function for a single service duration.

First, we calculate the probability of successs as in equation 3,
but noting thatT = (1 − f) · D(w) and using the total number of
available providers:

s = 1− (1− (1− f) ·D(w))a (5)

In showing how to calculate the total cost, we assume that
a mod p = 0 (i.e., that we can invoke up tom = a/p sets ofp
providers with no remaining providers at the end4). Each invoked set
of providers then has a probability of successŝ = 1 − (1 − (1 −
f) ·D(w))p and an associated costcp. The consumer is guaranteed
to paycp at least once, and may pay again if the previous invoca-
tion was unsuccessful with probabilitŷf = (1− ŝ). Using this, and
assuming that̂f < 1, we can write the expected costc̄ as:

c̄ = cp

m−1∑
k=0

f̂k = cp
1− f̂m

1− f̂
(6)

Using the same assumptions and treating the simpler case with
a mod p = 0, we now investigate how to calculate the expected
duration of a task,̄d. We define this to be the mean time until the first
provider carries out the task successfully, conditional on an overall
success (i.e., at least one provider is successful).

First, we defineµ to be the mean duration of a single successful
invocation ofp providers (also conditional on overall success). Then
we follow a similar technique for calculatinḡd as we did for̄c. We
consider all possible outcomes for the invocation by calculating the
expected duration when the task is completed after exactlyk failed

4 Due to space restrictions in this paper, we omit the general case.

invocations as well as the associated probability. Then we multiply
these durations with their probabilities and sum them to get the over-
all expected duration.

More formally, if a task succeeds after exactlyk unsuccessful in-
vocations, the expected duration,d̄k, is the expected duration for a
single invocation added tok waiting time durationsw for the previ-
ously failed invocations:

d̄k = µ + kw (7)

The probability of the task completing after thekth attempt is:

sk = f̂k(1− f̂) (8)

With this, we calculate the overall expected duration, conditional
on at least one provider being successful (assumingf̂ < 1):

d̄ =
1

s
·

m−1∑
k=0

d̄ksk (9)

=
1

s
·

m−1∑
k=0

(
(µ + kw) · f̂k(1− f̂)

)
=

1

s
·

(
µ(1− f̂m) + w

f̂ −mf̂m + (m− 1)f̂m+1

1− f̂

)
We have now shown how to calculate various performance char-

acteristics of a single task. In the following section, we explain how
this is extended to calculate the overall heuristic function for an allo-
cation over the whole workflow.

2.4.2 Global Workflow Calculations

Let si, c̄i and d̄i be the success probability, the expected cost and
the expected duration of taskti. With this information for each task,
we are now interested in calculating the overall probability of suc-
cesss, the estimated completion time of the workflow̃t and the total
expected cost̄c.

The overall probability of success is simply the product of allsi:

s =
∏

{i|ti∈N}

si (10)

The expected total cost is the sum of all task costs, each multiplied
by the respective success probabilities of their predecessors in the
workflow (whereri is the probability that taskti is ever reached):

c̄ =
∑

{i|ti∈N}

rici (11)

ri =

{
1 if ∀tj · ((tj 7→ ti) /∈ E)∏
{j|(tj 7→ti)∈E} sj otherwise (12)

Finally, we approximate the overall timẽt using the length of
the critical path in the workflow. This is the length of the longest
path from any node with no predecessors to any node with no suc-
cessors, using the expected durationsd̄i as weights attached to the
nodes. Such an approach will normally underestimate the true ex-
pected duration, because it focusses only on one path, ignoring the
possibility that other services outside this path may take longer. How-
ever, it provides a fast approximation and has been used widely in
project management and operations research [8]. Formally, we let
P = {ti | ti is on the critical path}. This gives us:



t̃ =
∑

{i|ti∈P}

d̄i (13)

Using these values and the heuristic function given in equation 4,
it is now possible to use steepest ascent hill-climbing to find a good
allocation of providers. In practice, we found it useful to perform
this in two iterations — once using a modified utility functioňu,
which is a linear version ofu, giving a higher reward than usual for
finishing early and a larger loss for finishing late, and then again us-
ing the normal utility functionu. This approach allows the algorithm
to escape from a common local maximum where the agent decides
to concede, allocate minimal resources to the tasks and hence incur
a low net loss, but also a very low probability of success. Further-
more, we could generally increase performance by adding a constant
amount of extra time tõt to account for the error in the prediction. In
all our experiments we set this to 20% of the workflow deadline, as
this produces good results in a variety of experimental settings.

3 EMPIRICAL EVALUATION

As stated in Section 1, the aim of our work is to deal effectively
with unreliable service providers when provisioning workflows. To
this end, in this section we empirically compare our proposed strate-
gies to the currently predominant naı̈ve approach. In particular, we
investigate the average utility gained by all strategies, as well as the
average proportion of successfully completed workflows. In the re-
mainder of this section, we describe our experimental testbed and
methodology, followed by the results.

3.1 Experimental Testbed

In order to analyse our strategies empirically, we developed a sim-
ulation of a simple service-oriented system. In this simulation, we
generate large numbers of random workflows and measure the per-
formance of our strategies by recording the percentage of workflows
that failed (wheret time steps had elapsed, so thatu(t) ≤ 0) and suc-
ceeded (where all tasks were completed withint time steps, so that
u(t) > 0). We also measure the average profit of a single service
consuming agent.

Our simulation is discrete, notifying the consumer of any success-
ful service execution once every integer time step, at which point new
services are also invoked according to the consumer’s provisioning
strategy. While the consumer is notified in case of service failure, no
information is given when a provider fails.

To simplify the analysis and because our approach does not
deal directly with differentiating between individual providers at
this time, we examined environments with homogeneous service
providers (i.e., all providers share the same success probability and
duration distributions).

For the data presented in this section, we used workflows consist-
ing of 10 tasks in a strict series (i.e., without parallel tasks, because
this allowed us to verify some results analytically), we assumed that
there were 1,000 providers for every task with each provider hav-
ing a cost of 10 and a gamma distribution with shapek = 2 and
scaleθ = 10 as the probability distribution of the service duration.
We set a deadline of 400 time units for the workflow, an associated
maximum utility of 1,000 and a penalty of 10 per time unit. We also
performed similar experiments in a variety of environments, includ-
ing heterogeneous and parallel tasks, and observed the same broad
trends that are presented in the following section.

To prove the statistical significance of our results, we averaged
data over 1,000 test runs and performed an analysis of variance

(ANOVA) where appropriate to test whether the strategies we tested
produced significantly different results. When this was the case, we
carried out pairwise comparisons using the least significant differ-
ence (LSD) test. Thus all results reported in this paper are statistically
significant (p = 0.001).

3.2 Experimental Results

In our first experiment, we compared the performance of strategy
parallel(n)5 with the näıve approach in environments where service
providers have a varying probability of failure (see Figure 1). From
this, it is clear that there is a considerable difference in performance
between the different strategies — the average profit gained by the
näıve strategy falls dramatically as soon as failures are introduced
into the system. In this case, the average utility of provisioning single
providers falls to below 0 when the failure probability of providers is
only 0.3. A statistical analysis reveals that the naı̈ve strategy domi-
nates the other two when there is no uncertainty in the system. How-
ever, as soon as the failure probability is raised to0.1, parallel(2)
begins to dominate the other strategies. Between 0.3 and 0.6paral-
lel(6) then becomes the dominant strategy as increased service re-
dundancy leads to a higher probability of success. Above this, the
parallel strategies do not yield better results than the naı̈ve strategy
as they also begin to fail in most cases.

Figure 1. Effect of provisioning different numbers of providers in parallel

Summarising these trends, it is obvious that redundant provision-
ing yields a considerable improvement over the naı̈ve approach in a
range of environments. For example, when the failure probability is
0.2, provisioning two providers results in an almost 1,100% improve-
ment in average profit over the naı̈ve strategy. However, no redundant
strategy dominates the other and both eventually make losses when
the probability of failure increases to such an extent that the chosen
redundancy levels do not suffice to ensure success.

We carried out a similar experiment to verify the advantage of
serial provisioning over the naı̈ve strategy (see Figure 2). Here, again,
there is a marked improvement over the naı̈ve strategy for failure
probabilities up to and including 0.5. This improvement is due to the
fact that serial provisioning responds to failures as they occur, while
only paying for additional services when necessary. However, as the
failure probability rises, this strategy begins to miss its deadlines and
hence incurs increasingly large losses.

Finally, to show how theflexible strategy compares against the
näıve provisioning approach and inflexible redundancy, Figure 3
shows our experimental data (again, using the same experimental
variables). The top graph shows the percentage of workflows that

5 Here, we arbitrarily chosen = 2 andn = 6 as representative of the general
trends displayed by the strategy as more providers are provisioned.



Figure 2. Effect of different amounts of waiting times for re-provisioning

Figure 3. Performance of flexible strategy

succeeded out of all the ones generated. Here, we see that our heuris-
tic approach initially performs slightly worse thanparallel(6)(but al-
ways significantly better than the naı̈ve approach). This is due to our
technique of using the critical path of the workflow as an estimate
for the total time taken. This technique is usually too optimistic and
might result in under-provisioned tasks. However, the graph clearly
shows that the flexible technique still achieves a success-rate of over
90% and, more importantly, maintains this up to a failure probability
of 0.8, by which all other approaches have large failure rates. When
0.9 is reached, the strategy begins to ignore all workflows, because
it cannot find a feasible allocation to offer a positive return. On the
lower graph, we show the average utility that is gained by the same
strategies. Here, it is clear that the flexible approach performs better
than any of the other strategies. This is due to its utility prediction
mechanism and the fact that it can make choices separately for the
various tasks in the workflow. This flexibility allows the strategy to
provision more providers for latter parts of the workflow, where suc-
cess becomes more critical as a higher investment has already been
made. The flexible approach also combines the benefits of the other
strategies, allowing the agent to choose between parallel (e.g., when
there is little time) and serial provisioning (e.g., when the agent can
afford the extra waiting time) or a mixture of the two. Although per-
formance degrades as providers become more failure-prone, flexible
provisioning retains a relatively high average utility when all other
strategies start to make a loss. Furthermore, the strategy avoids mak-
ing a loss due to its prediction mechanism, which ignores a workflow
when it seems infeasible.

To conclude, Table 1 summarises the performance of some rep-

Table 1. Summary of results with 95% confidence intervals

Strategy Mean profit Profit vs näıve Success rate
näıve 103.09± 5.30 1 0.13± 0.01

parallel(6) 175.87± 5.79 1.71± 0.20 0.61± 0.01
serial(30) 221.91± 7.92 2.15± 0.26 0.44± 0.01
flexible 471.99± 8.71 4.58± 0.49 0.77± 0.01

resentative strategies, averaged over all environments that we tested
(using the same data as in Figures 1–3). These results highlight the
benefits of our strategies, and show that our flexible strategy by far
outperforms the naı̈ve approach. In particular, we achieve an im-
provement of approximately 350% in mean profit and successfully
complete 76-78% of all workflows.

4 CONCLUSIONS

In this paper, we addressed the problem of dealing with unreliable
service providers in complex systems. To this end, we developed
a novel algorithm for provisioning workflows in a flexible manner
and showed that this algorithm achieves a high success probability
in uncertain environments and that it outperforms the current, naı̈ve
strategy of provisioning single providers. This work is particularly
relevant for distributed applications where several services are com-
posed by a consumer agent, and where these services are offered by
autonomous agents whose success cannot be guaranteed. Important
application domains for our approach include scientific data process-
ing workflows and distributed business applications, where services
are sourced from across departments or organisations.

In future work, we plan to extend our approach to cover more
heterogeneous environments, where service providers differ signif-
icantly in terms of cost and reliability within the same service type
and where such qualities are affected dynamically by system-wide
competition and resource availability. Furthermore, we plan to ex-
amine in more detail the computational cost of provisioning and how
this can be balanced in a flexible manner with the need to make quick
decisions in dynamic environments.

ACKNOWLEDGEMENTS

This work was funded by the Engineering and Physical Sciences Re-
search Council (EPSRC) and a BAE Systems studentship.

REFERENCES
[1] J. Collins, C. Bilot, M. Gini, and B. Mobasher, ‘Decision Processes in

Agent-Based Automated Contracting’,IEEE Internet Computing, 5(2),
61–72, (2001).

[2] E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, K. Vahi,
K. Blackburn, A. Lazzarini, A. Arbree, R. Cavanaugh, and S. Koranda,
‘Mapping Abstract Complex Workflows onto Grid Environments’,Jour-
nal of Grid Computing, 1(1), 25 – 39, (2003).

[3] M. N. Huhns and M. P. Singh, ‘Service-Oriented Computing: Key Con-
cepts and Principles’,IEEE Internet Computing, 9(1), 75–81, (2005).

[4] N. R. Jennings, ‘On Agent-Based Software Engineering’,Artificial In-
telligence, 117(2), 277–296, (2000).

[5] M. Klusch, A. Gerber, and M. Schmidt, ‘Semantic Web Service Compo-
sition Planning with OWLS-XPlan’, inProceedings of the 1st Interna-
tional AAAI Fall Symposium on Agents and the Semantic Web, (2005).

[6] S. A. McIlraith and T. C. Son, ‘Adapting Golog for Composition of
Semantic Web Services’, inProceedings of the Eighth International
Conference on Knowledge Representation and Reasoning (KR2002), pp.
482–493, Toulouse, France, (2002).

[7] S. Russell and P. Norvig,Artificial Intelligence: A Modern Approach,
Prentice-Hall, Englewood Cliffs, NJ, USA, 2nd edn., 2003.

[8] W. L. Winston, Operations Research: Applications and Algorithms,
Wadsworth Publishing Company, 3rd edn., 1997.


