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ABSTRACT
This paper reports on the development of a utility-based
mechanism for managing sensing and communication in co-
operative multi-sensor networks. The specific application
considered is that of GLACSWEB, a deployed system that
uses battery-powered sensors to collect environmental data
related to glaciers which it transmits back to a base station
so that it can be made available world-wide to researchers.
In this context, we first develop a sensing protocol in which
each sensor locally adjusts its sensing rate based on the value
of the data it believes it will observe. Then, we detail a
communication protocol that finds optimal routes for relay-
ing this data back to the base station based on the cost
of communicating it (derived from the opportunity cost of
using the battery power for relaying data). Finally, we em-
pirically evaluate our protocol by examining the impact on
efficiency of the network topology, the size of the network,
and the degree of dynamism of the environment. In so doing,
we demonstrate that the efficiency gains of our new proto-
col, over the currently implemented method over a 6 month
period, are 470%, 250% and 300% respectively.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence, Multiagent systems, Coherence and coordination.

General Terms
Algorithms, Design, Experimentation

Keywords
Agents and ambient intelligence, agents and novel comput-
ing paradigms, Agent-based sensor networks.

1. INTRODUCTION
Multi-sensor networks are being deployed in a wide variety
of application areas and, in particular, they have recently
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been advocated for a number of environmental monitoring
applications [8]. Moreover, there is an increasing interest in
controlling these networks using multi-agent system tech-
niques [7]. In this vein, we consider a particular sensor
network, GLACSWEB [8], that we have deployed in the
Brikdalsbreen glacier in Norway, and examine how it can
be modelled as a (cooperative) multi-agent system. In this
case, the two main tasks performed by the sensors (agents)
are gathering data from the environment and communicat-
ing it towards a central sink node (i.e. an agent that harvests
data from all other agents). In general, the agents work to-
wards the predefined system goal of maximising data collec-
tion (hence the cooperative nature of the system). However,
they are invariably constrained in at least one of the follow-
ing dimensions: their available power, their communication
bandwidth, their memory storage and their processing ca-
pability. Of these, power is the most important since it is
required for everything else. Thus, it directly influences the
life-span of the agents and, hence, that of the system as a
whole. Given this, we focus on developing a communica-
tion and a sensing protocol for this network. Nevertheless,
the solution we develop is also more broadly applicable to
networks that have any form of limited power supply.

In more detail, the purpose of the GLACSWEB multi-
sensor network is to monitor sub-glacial behaviour in or-
der to understand climatic change. Figure 1 shows GLAC-
SWEB’s central base station that is located on top of the
glacier and figure 2 shows a typical GLACSWEB node. The
individual nodes each sense their own data and then com-
municate it directly to this sink node. As such, the sys-
tem’s communication protocol is energy inefficient since it
lacks the energy savings that a multi-hop approach would
provide [12] (i.e. one in which agents relay data for one an-
other). Furthermore, at present, sensing in GLACSWEB is
carried out at a pre-determined constant rate which is blind
to the actual variations in the environment. This decoupling
results in unnecessary sampling because, given the same en-
ergy expenditure, the information gained by sensing a slowly
varying environment is less than what could be gained in a
more dynamic situation.

Against this background, this paper develops a Utility-
based Sensing and Communication protocol (called USAC).
This consists of a sensing and a routing protocol that uses
the cost of transmission and the value of observed data as
utility metrics in the agents’ decision-making process. In
doing so, we advance the state of the art in the following
ways :

• We develop a novel mechanism for adaptive sampling.



Figure 1: GLACSWEB base station Figure 2: A GLACSWEB sensor probe

In this, each agent adjusts its rate depending on the
rate of change of its observations and a valuation func-
tion (based on a sound information theoretic founda-
tion) that the agents use for assigning a value to the
data they observe.

• We devise a new routing protocol that finds the cheap-
est cost route from an agent to the centre. Here, the
cost of a link from one agent to another is derived us-
ing the opportunity cost of the energy spent relaying
the data (i.e. the value that a relay could have gained
by using the energy in sensing instead of relaying).

• We empirically evaluate the USAC protocol against
the current GLACSWEB protocol and show that it
introduces a significantly higher gain in information,
whilst reducing power consumption.

The remainder of this paper is organised as follows. Sec-
tion 2 provides some basic background on GLACSWEB and
a discussion about related work in the area of sensor net-
works modelled as multi-agent systems. We then detail the
sensing protocol and the routing protocol of USAC in sec-
tions 3 and 4 respectively. The USAC protocol is then em-
pirically evaluated in section 5 in a wide range of scenarios.
We conclude in section 6.

2. BACKGROUND AND RELATED WORK
GLACSWEB is a deployed pervasive sensor network that
directly monitors sub-glacial movement to determine how it
is affected by climatic changes. In order to do this, it uses a
network of sub-glacial probes which are placed at different
locations inside the glacier as shown in figure 3.

The protocol currently followed by GLACSWEB is a sim-
ple one in which the probes sample the glacier every four
hours and then transmit these readings directly to the base
station located at the top of the glacier daily. At this time,
there are twenty probes in the glacier with an additional
batch of ten deployed every summer. However, as a result
of the hostile environment (due to the low temperatures,
the strain resulting from moving ice and the englacial wa-
ter bodies) and the power hungry protocol, there is a high

probe failure rate of around 50% per year. This provides
the motivation for the research carried out in this paper.

Speaking more generally, it is widely recognised that there
is a strong need for a well defined protocol stack in a sensor
network that helps combine power and routing awareness,
and that integrates data with the networking protocols. To
this end, a number of routing protocols have been inves-
tigated in this area. In particular, flooding [4] is one of
the oldest and most common routing techniques. In flood-
ing, each agent receives an item of data and then repeats
it by broadcasting unless the destination of the packet is
the agent itself. This is a reactive technique and does not
require costly topology maintenance or complex route dis-
covery algorithms. However, it can easily cause data im-
plosion and/or data overlap which results in unnecessary
wastage in communication power. The SPIN [5] routing
protocol adopts a publish-subscribe approach to the prob-
lem in which the agent nodes operate efficiently and conserve
energy by all sending meta-data describing the sensor data
instead of sending the actual data. Thus, this model is use-
ful for those agents interested in the data advertised and is
an effective protocol to minimise energy spent in consump-
tion until the actual data is transmitted. However, it fails
to place a limit on the energy consumed in wasted adver-
tisements (i.e. for which there are no subscribers for the
data). Moreover, the downside of both these models is that
they involve significant amounts of communication and so
consume large amounts of power which is often limiting.

To combat this, a number of researchers have focused on
intelligent adaptive sensing [3]. Such work demonstrates
that an active sensing approach can maximize a mobile sen-
sor network’s lifetime by sensing only during the most infor-
mative situations. However, our research differs from such
approaches in that we focus on the sudden changes in the
observed data rather than simply investigating regular pat-
terns. In addition, our work reuses the utility derived from
the sensing protocol in the communication protocol, thereby
intertwining these two critical aspects of a sensor network.
As a result, our model is sensor-centric, in contrast to the
query-centric model adopted in [3].

The concept of utility has previously been used in the con-
text of sensor networks for both cooperative [1, 6] and selfish



Figure 3: Architecture of the GLACSWEB network.

agents [2, 11]. In the latter case, the concept of selfishness
arises mainly in those applications where agents are individ-
ually owned by different stakeholders (which is not true in
our case). The focus of our work is on cooperative agents
(since all nodes are owned by one stakeholder, the Univer-
sity of Southampton) and differs from existing research by
combining the sensing and communication protocol via the
utility function.

3. THE SENSING PROTOCOL
In this section, we detail the sensing protocol of USAC which
provides the agents with a sensing schedule. We concentrate
here only on the sensing actions of an agent (thereby ignor-
ing the communication actions dealt with in section 4 so as
to simplify the exposition). This focus results in a single
agent model in which the agent has to make optimal local
decisions concerned with the timing of its sensing.

In more detail, the model for the sensing protocol is as
follows. From the remaining battery energy, Ei, and the
energy, Esense, each sensing action takes1, agent i can cal-
culate the maximum number of sensing actions, Nr

s , it has
remaining (Nr

s = Ei/Esense). Given this, the agent then
needs to derive an optimal schedule for determining when
to carry out these actions. In order to do this, a metric is
required to determine how well a particular schedule does
compared to another. The metric we use in this case is
derived from information-theory because this enables us to
have a principled means of obtaining maximum information
from the environment.

3.1 The Valuation Function
An optimal sampling rate can only be derived if the agent
has knowledge about the future data. However, this require-
ment is contradictory since in the case that the agent knows
the future data, it does not need to sense the environment.
As a result, an agent can only find an optimal sampling rate

1The sensors within GLACSWEB have the same Esense and
take the same amount of time to carry out one observation.

based on its forecast of the future data. Then, upon observ-
ing previously forecasted data, the agent gains information
by reducing its uncertainty about this data to zero. Here the
representation we use for the uncertainty of the data is the
confidence interval of a predicted data point. Specifically,
the x% confidence interval of a data point is a range of val-
ues centred around the mean of the forecast within which
x% of the data is guaranteed to fall. For example, a 100%
confidence interval is the range of values the data can only
ever take, whereas a 10% confidence interval implies that
only 10% of the forecasted data is guaranteed to fall in this
interval. From this, it can be seen that a lower confidence
interval is more useful since its range is smaller. Therefore, a
good forecast is one that minimises the confidence interval.

The forecasting method we use here is based on a limited-
window linear regression model. This is because it provides a
good forecasting model for data that can be characterised as
piecewise-linear functions of time with added Gaussian noise
(which is the case for data collected in the GLACSWEB
environment). Thus, the data can be represented by a set
of equations of the form:

xTi+τ = αi + βiτ + η (1)

where {T1, T2, . . . , TI} represent the times at which a phase
change (i.e. a sudden variation in the data model) occurs,
αi + βiτ is the equation of the line after the phase change
at time Ti, and η is noise.

Thus, there are three major aspects of the data which are
unknown:

• The current line segment equation (i.e. αi + βiτ).

• The time at which a phase change occurs (i.e.
{T1, T2, . . . , TI}).

• The level of noise in the environment (i.e. η).

Now, given observations (bx1, . . . , bxn) taken at time (t1, . . . , tn),
a linear regression model of window size m would then esti-
mate βi as:

βi =
m
Pm

i=lb
(ti.bxi) −

Pm

i=lb
ti

Pm

i=lb
bxi)

n
Pm

i=lb
t2i −

�Pm

i=lb
ti

�2 (2)

where lb = max(n − m + 1, 1). Furthermore, using this
model, we can estimate αi as:

αi =

Pm

i=lb
bxi − βi

Pm

i=lb
ti

n
(3)

From this, the value at time interval ǫt after the last mea-
surement is predicted as:

xtn+ǫt = αi + βi(tn + ǫt) (4)

along with confidence intervals given by:

ci(tn) = 2σN (c/2) (5)

where σ is the standard deviation of the m samples and N (c)
is the inverse of the positive part of the normal distribution
function and c is the confidence level. Given this, we then
calculate the value of a data point as:

V (data(ts)) =| ci(ts−1) − ci(ts) | (6)



Algorithm 1.

1. Observe data, nsample + +

2. If nsample = 1 then V (data(ts)) = Vmax

3. If nsample = 2 then V (data(ts)) = Vmax, calculate
ci(ts)

4. If nsample > 2 then calculate ci(ts) and V (data(ts))

• if data(ts) ∈ ci(ts−1) then fsample(ts) =
max(αfsample(ts−1), fmin)

• else fsample(ts) = fmax and nsample = 1

5. Go to Step 2

Figure 4: The sensing protocol algorithm.

where ci(ts−1) is the confidence interval before the data was
sampled at time ts and ci(ts) is the confidence interval at
time ts calculated using data(ts). Having defined the sensing
protocol, we now turn to the algorithm to implement it.

3.2 The Algorithm
The algorithm we embed inside each agent for the sensing
protocol is given in figure 4. The core concept behind this
protocol is reflected in step 4. Here the reasoning is that if at
time ts the observed data falls outside the confidence inter-
val, then the agent should set its sampling rate fsample to a
maximum fmax. This is because if the data falls outside the
interval then the agent believes that there has been a phase
change in the environment. Hence it starts sampling at the
most frequent rate in order to better incorporate this phase
change in its forecasting model. However, if data falls within
the confidence interval, it implies that the agent already has
a good regression model. Hence, it can afford to reduce its
sampling rate (represented in step 3 by the multiplicative
factor α ∈ [0, 1)) until the lower bound fmin which has been
set by the requirements of the glaciologists. Steps 2 and 3
enable the agent to obtain the two data points required to
carry out a linear regression.

4. THE ROUTING PROTOCOL
Once a sensor has collected data from the environment, it
needs to transmit it towards the base station. So far, in
GLACSWEB this is done by direct transmission to the cen-
tre [10]. However, as discussed in section 2, this is inef-
ficient since the power required to transmit data from one
node to another is proportional to the square of the distance
between the nodes (from basic radio transmission theory).
As a result, the total energy spent by transmitting data
directly to the centre via a single hop is more than the en-
ergy spent when the data is relayed via successive interme-
diaries to the centre. In order to see this effect, consider the
example shown in figure 5. Here, sensor 1 could transmit
data to the base station (bs) via the following three routes:
1 → 2 → 3 → bs (bold), 1 → 3 → bs (grey) and 1 → bs
(broken line). The total energy consumed for the transmis-
sion of one packet of data would then be 12 (4 + 4 + 4), 20
(16 + 4) and 36 respectively, thereby suggesting the use of
route 1 → 2 → 3 → bs.

Figure 5: Three possible routes via which sensor

1 can transmit its data to the base station. The

concentric semi-circles show the range of sensor 1
with three power levels chosen such that the range

grows linearly. The table shows the energy required

for a sensor to transmit a packet directly to another.

However, an approach based solely on the transmission
power is too näıve since it disregards the two following as-
pects:

1. The opportunity cost of the energy used by

each sensor. If a sensor does not relay data, it could
then use that energy in order to carry out additional
sensing (which contributes towards the value of the
network). Since each sensor is in a different local envi-
ronment (due to the different placement of the sensors
in the glacier), they derive different values by sens-
ing the environment. Hence, it might be preferable
for a sensor to transmit its data via a more energy-
consuming route if the least energy-consuming route
contains a sensor in a highly dynamic environment.

2. The total power required to transmit along a

particular route. The transmission of data also re-
quires the receiving node to be in a listening mode
(i.e. the agent needs to switch on its antenna for re-
ceiving data which also consumes power). Thus the
route 1 → 2 → 3 → bs requires both sensor 2 and 3 to
additionally spend energy receiving the data.

We tackle these two problems by developing a utility-
based communication protocol. This protocol is based on
the value of the data to be routed to the base station (which
is derived according to section 3) and the cost of transmit-
ting the data. We next detail how to calculate the cost of
communication, before going onto the algorithm used for the
communication protocol in section 4.2.

4.1 The Cost of Communication
The multisensor network is modelled as a multi-agent system
consisting of a number of agents, I = {1, . . . , n}, that each
have K different discrete power levels, {pt1i , . . . , ptK

i }, (with
ptk+1

i > ptk
i ) at which they can transmit. At each level,

there is a set of neighbours ni(ptk
i ) ⊆ I to which agent i

can transmit data. Due to the nature of radio transmission,
ni(ptk

i ) ⊆ ni(ptk+1
i ).

Thus, the direct communication of data from any agent
i to another agent j, where j ∈ ni(ptk

i ) consumes a certain



amount of energy Etj
i which is given by:

Etj
i (data) = ptk∗

i × tj
i (data)

where ptk∗
i is the lowest power level at which j ∈ ni(ptk

i )
and tj

i (data) is the amount of time a data packet takes to
transmit. Now, in this scenario the size of each sensed data
packet and the bandwidth available to each agent is the
same, so tj

i (data) is constant for all agents and sensed data
packets. Therefore, by slight abuse of notation, we shall
hereafter refer to Etj

i (data) as Etj
i .

The cost of communication of an agent i to another agent j
is then the opportunity cost of that decision. Now, there are
two particular scenarios to consider when communicating
data. If, on one hand, an agent is originating the data, then
its cost of communication is given by:

cj
i (originate) =

Etj
i

Etj
i + Esense

i

× vsense
i (tn) (7)

where Esense
i is the energy spent by i in sensing new data

and vsense
i (tn) is the value of the new data. On the other

hand, if an agent is relaying data, then its cost of transmis-
sion is given by:

cj
i (relay) =

Etj
i + Ereceive

i

Etj
i + Esense

i

× vsense
i (tn) (8)

where Ereceive
i is the energy spent by the agent receiving

the data which it then relays.
Now, since it is not possible to assign vsense

i (tn) before
actually carrying out the observation, we need to estimate
it. Due to the nature of the data (where sudden changes
are possible) we estimate vsense

i (tn) using a moving average
with window size w. Thus at time tn the estimated value of
the data is given by:

vi
sense(tn) =

1

min(n, w)

n−1X
i=max(n−w,0)

vsense
i (ti)

We choose such a forecasting method since it evens out the
changes in value that random noise can introduce, whilst at
the same time updating the value of the data fairly quickly as
time progresses. However, it should be noted that this fore-
casting method (or for that matter any forecasting method)
cannot guarantee to correctly predict the value of the data
all the time. Also, the moving average only starts once the
number of samples collected by the sensor > w. Up to that
point, the estimated value is just an average.

Having thus explained how the cost of communication is
calculated, we now detail the algorithm followed by each
agent when communicating data.

4.2 The Algorithm
The algorithm we use for the communication protocol is
given in figure 6. It consists of four main steps, namely:

1. Initialisation. In this phase, the network topology is
discovered and each agent is made aware of the power
level it must transmit at in order to reach each of its
neighbours. This phase is run each time probes are
deployed within the glacier.

Algorithm 2.

1. Initialisation.

Run a network discovery protocol that establishes
ni(ptk

i ) ∀k, i. Go to step 3.

2. Update transmission power.

At predefined intervals of time, tupdate (> 1/fmin),
the centre broadcasts a message msg0 = 〈P trans

0 , P rec
0 〉

at the highest power level ptK
0 , where P trans

0 is the
power at which the centre has transmitted this message
and P rec

0 is the minimum power at which the centre
can receive data. An agent can then calculate the
minimum power required to transmit to the centre as:

P min
i =

P rec
0 P rec

i (msg0)

P trans
0

assuming that the dissipation of power is symmetric
between 0 and i. From P min

i , an agent can then
determine the minimum power level ptk∗

i (0) required
to transmit to the base station (since 0 ∈ ni(ptk

i ) if
ptk

i > P min
i ). It can then determine Et0i (data) and

thus cj
i (originate).

3. Update cost of transmission to base.

Let I(k∗) ∈ I be the set of agents that require
the minimum power level ptk∗

i to transmit to base
(I(k∗) = n0(ptk∗

0 )−n0(ptk∗−1
0 ))). Note that pt00 = {0}.

Agents i ∈ I(1) can calculate their own cost of relaying
data to the base station, c0

i (relay). Upon calculation,
they broadcast the message 〈c0

i (relay)〉 at power level
ptK

i .
Then for k∗ = 2 to K do

• Agents i ∈ I(k∗) calculate the cost of relaying
data cj

i (relay) to all agents j ∈ I(k ∗ −1).

• They also update their cost of transmission,
c0

i (originate), as min(cl
i(originate) + c0

l (relay))
where l ∈ ∪k∗−1

a=1 I(k ∗ −a)

• They then broadcast the message 〈c0
i (relay)〉

at power level ptK
i where c0

i (relay) =
min(cl

i(relay) + c0
l (relay)).

4. Transmit data.

Send the data packet through the lowest cost
path if Vi(data(ts)) > c0

i (originate). Update
cj

i (originate), cj
i (relay) from the value of newly

sensed data.

5. Repeat Step.

If time to update transmission power levels,

then go to Step 2

else if time to update relay and originate costs

then go to Step 3

else sense data and go to step 4.

Figure 6: The routing protocol algorithm.



2. Update energy band of agent. This step is respon-
sible for dividing the agents into different power level
groups with respect to the base. This segmentation is
then used in the next step in order to update the cost
of relaying data.

3. Update cost of transmission to base. This step
is required so as to find the minimum cost route from
each agent to the centre. In order to do so, agents in
each power level group successively transmit the cost
of their cheapest route to the centre.

4. Transmit data. Having found the cheapest cost of
transmission to the base, the agent then decides whether
or not to transmit its observed data.

5. EMPIRICAL EVALUATION
The aim of these experiments is to determine the relative
performance of USAC when compared to the currently de-
ployed GLACSWEB protocol. Now, the performance of any
protocol in this scenario is contingent on a number of fac-
tors such as the network topology, the number of agents
within the network and the type of environment in which
it is employed. Thus, in order to generalise our results, we
benchmark the performance of USAC against GLACSWEB,
whilst independently varying each of the factors mentioned
above. We also calculate the efficiency (i.e. the value of the
data gained over the energy consumed) of USAC relative to
GLACSWEB in each case.

5.1 Experimental Setup
The GLACSWEB simulator lets each of the nodes take one
of the following actions in a single time period: sense, idle−
listen (where an agent enables its antenna so that it is ready
to receive data), transmit a single packet, receive a single
packet and sleep. With the exception of transmit, all ac-
tions have a set power consumption value affixed to them.
The power consumption of the transmit action is dependent
on the variable transmission power of the agent transmitter.
Each such agent has five levels of transmission power to com-
municate with agents at different transmission ranges. The
radio propagation model in the simulation was assumed to
be symmetric. We decided to ignore the processing action
of the agent due to its near negligible power consumption.
Specifically table 1 shows the typical energy consumption of
each action based on the values obtained from the fielded
system. Furthermore, the energy capacity of the node was
77760 J and the confidence level within the sensing proto-
col was set to 10% (again based on our experience with the
fielded system).

Table 1: Energy consumption of sensor node actions

Sensor Action Energy consumption(Joules)

Transmission per packet 0.47
Reception per packet 0.37

Idle transceiver on 0.086
Sense 0.015

Sleep per second 0.000032

We also decided to use a simple version of the IEEE 802.11
Medium Access Control [9] where RTS/CTS2 control pack-
2Request-To-Send/Clear-To-Send.

ets are only used before transmission of the data packets that
are sent in a burst. Also there was no difference between
overhearing and receiving in terms of power consumption.
However, agents were programmed to ignore packets that
were not destined to them and thereafter lower their power
consumption by switching to the idle transceiver mode. In
order to obtain statistically significant results, we report av-
erage result and standard deviations of 200 simulations in
each of the experiments carried out. The data used in our
experiments are derived from segments of the data collected3

by the fielded probes over the last year.

5.2 Network Topology
In this experiment, we simulated the two protocols for a
fixed number of agents (10) randomly distributed around the
centre. The sensed data model for each agent and number
of agents in the networks were fixed for each instance of
the simulation. The purpose of this was to analyse how the
two protocols fared against each other with the changing
topology of the network. The results of these simulations
are shown in the two plots in Figure 7.

Both plots show the superiority of USAC over GLAC-
SWEB. The big jump at the beginning of USAC’s value
graph is attributed to the maximum rate of sampling in the
initial stages. Once a sufficient number of samples have been
collected, the sampling rate is reduced and adjusted accord-
ing to the change in observed data. The overall graphs of
both protocols are linear. However, the gradient of USAC
is steeper than that of GLACSWEB. This is because USAC
increases its sampling whenever the observed data changes.
The efficiency gain of USAC over GLACSWEB in this ex-
periment was calculated to be 470%.

5.3 Network Size
In this experiment, we conducted simulations by varying
the number of agents in the network from 1 to 20. Figure 8
illustrates the performance of USAC against GLACSWEB
with varying network size. Due to the variability of the data,
we concern ourselves with the average of the final total at
the end of each simulation to ensure an effective comparison.

As can be seen, USAC consistently consumes less energy
and still manages to collect more valued data at the sink
node (even as the size of the network is increased). How-
ever, the random placement of the agent nodes results in a
greater variance in the total value of data collected using
USAC. This is due to the way that USAC reallocates the
energy saved, when not relaying, to the task of sensing. In
particular, the network topology in an instance of the exper-
iment determines the amount of energy an agent spends on
communication and therefore the amount of sensing it per-
forms. In other words, an agent closer to the base station
might relay and communicate more data since the value of
the data derived might often be more than the cost of com-
munication. On the other hand, an agent further away from
the base station might be forced to communicate and relay
less data because the cost of communication may now have
surpassed the value of data it has sensed. The efficiency gain
of USAC over GLACSWEB in this part of the experiment
was calculated to be 250%.

3http://leo.ecs.soton.ac.uk/glacsweb/plotter.php
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Figure 7: The total energy spent and total data value gathered over a 6-month period plotted against time.
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Figure 8: The total energy spent and total data value gathered at the end of a 6-month period plotted against

number of agents in the network
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Figure 9: The total energy spent and total data value gathered at the end of a 6-month period plotted against

a measure of dynamism of data.



5.4 Dynamism of the Environment
In this experiment, simulations were carried out by vary-
ing the data model of the agent nodes whilst keeping the
topology and size of the network constant. The degree of
dynamism in the data model is defined as the number of
phase changes that occur in the piecewise linear data model
of the environment used by the agent. The results of these
simulations are shown in figure 9.

The results from sub-figure 9(a) show that USAC adapts
its power consumption based on the dynamism of the data
(in contrast to GLACSWEB where the sensing protocol is
static and unaffected by the type of data it is measuring).
This results in the higher total value of data collected at
the sink for USAC as shown in sub-figure 9(b). The high
variance observed with USAC is due to the random times at
which phase changes occur. Thus, if two phase changes oc-
cur very close to each other, there is a possibility of misrep-
resenting the changes which leads to low power consumption
and low value. This experiment showed that USAC has an
efficiency gain of 300% over GLACSWEB.

6. CONCLUSIONS AND FUTURE WORK
The protocol we have developed in this paper allows agents
to act in a decentralised (based on the nature of their local
environment) manner, while self-organising to form a net-
work whose performance is high in terms of minimising en-
ergy consumption and maximising the value of data gained.
It makes use of the localisation ability of individual agents
to determine the cheapest cost path to the sink and incorpo-
rates the value of the observed data to calculate the cheapest
path. We have also shown that our protocol is superior to
the currently deployed GLACSWEB protocol, even when
the distribution of agents around the sink and the nature of
observed environment is varied.

Whilst we have specifically considered evaluating the ef-
fectiveness of our protocol in the GLACSWEB sensor net-
work, the challenges involved here are very similar to those
that occur in the design of many other sensor networks. For
example, we are currently exploring the possibility of using
it in the FloodNet system (a sensor network for monitoring
river levels in which the sensors are solar powered)4. Also, in
the current work, we have considered just one particular way
of calculating the value of information. In future work, we
wish to investigate whether more complicated information
theoretic measures, such as Kullback-Liebler divergence and
Mahanalobis distance, would be a better basis for measuring
information and whether these more sophisticated measures
would improve the system’s efficiency. It would also be inter-
esting to introduce additional factors in the simulation such
as network openness and scalability (where agents come and
leave the system) and extend our protocol to accommodate
this aspect of dynamism in the network.
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