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Abstract. This paper investigates utility maximising bid-
ding heuristics for agents that participate in multiple hetero-
geneous auctions, in which the auction format and the start-
ing and closing times can be different. Our strategy allows
an agent to procure one or more items and to participate in
any number of auctions. For this case, forming an optimal
bidding strategy by global utility maximisation is computa-
tionally intractable, and so we develop two-stage heuristics
that first provide reasonable bidding thresholds with simple
strategies before deciding which auctions to participate in.
The proposed approach leads to an average gain of at least
24% in agent utility over commonly used benchmarks.

1 Introduction

The growing number of online auction sites liberates indi-
vidual shoppers from searching only within their surrounding
community. Moreover, if the item is popular, it is not uncom-
mon to find hundreds of auctions offering the same good?®.
However, it can be difficult for a human to keep track of more
than a few auctions. But, global bidders that can accept in-
formation and participate in a large number of auctions are
likely to receive extra benefit when compared with bidders
that only operate locally in one auction [8]. When all of these
factors are taken together, it is apparent that there is a grow-
ing need to develop autonomous agent bidding strategies that
can operate over multiple auctions.

To this end, we seek to devise a best response bidding strat-
egy for global bidders participating in multiple auctions. Each
such bidder may have a demand for one or more units of iden-
tical private-value goods. Our primary interest is in multiple
heterogeneous auctions, because it is the most prevalent case
in practice, in which the auction format and the starting and
closing times can be different. We assume each seller auc-
tions one item and these items are perfect substitutes. Due to
its complex nature, most analytical studies of heterogeneous
multiple auctions are based on the simplified case of homo-
geneous auction types that either operate sequentially [9] or
completely in parallel [8]. For our more general setting, heuris-
tic approaches are the norm [1, 2, 3, 4, 5] and are the approach
we adopt here.
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3 To illustrate the scale of this problem, within eBay alone, more
than a thousand auctions were selling Apple’s 4GB iPod mini at
the time of writing.

Now, to develop a bidding strategy that maximises the ex-
pected utility, it is theoretically possible to model the multiple
auctions as a Markov Decision Process (MDP) and calculate
the expected utility by backward induction [2, 3]. The utility
evaluation can be simplified by adopting pessimistic estima-
tion [4], in which an agent sets its bids using no information
on the ordering of the future auctions. However, issues associ-
ated with computational intractability limit these approaches
to only a low number of auctions. In contrast, Anthony et
al. [1] devised a heuristic bidding strategy that combines the
effects of the desire to obtain a bargain, the deadline and
the desperateness for obtaining an item into a single formula.
However, their bidding tactic ignores the fact that some of
the remaining auctions can be more favourable to the global
agent (e.g. have fewer local bidders). Relatedly, the bidding
strategy developed by Dumas et al. [5] consists of a probabilis-
tic bid learning and planning stage. However, their algorithm
considers simultaneous auctions as incompatible and would
bid in only one of them.

Against this background, this paper develops a two-stage
heuristic approach to approximate the best response bidding
strategy for a global bidder. In the first stage, a threshold
heuristic is employed to compute a maximum bid or thresh-
old for each auction. Then in the second stage, the agent
decides whether it should participate in each of the available
auctions using an auction selection heuristic that exploits the
bidding thresholds calculated from the first stage. A number
of threshold and auction selection heuristics are developed
under this flexible framework. In developing these heuristics,
this work advances the state of art in a number of ways. First,
we devise several two-stage heuristics that enable the agent
to improve its utility further by bidding in more auctions
than its demand. This tactic requires the agent to manage the
excess procurement risk carefully and is an area ignored by
previous bidding heuristics other than those using MDPs or
exhaustive search approaches. Second, we provide a pseudo-
polynomial time auction selection heuristic that closely ap-
proximates the near optimal solutions of an exponential time
exhaustive search algorithm from the literature [4]. Third, we
extend the use of equal bidding thresholds to maximise the
agent utility from complementary goods [8] to our perfect sub-
stitute setting and verify that the agent’s utility received is
very close to the global maximum (at least for simultaneous
second-price auctions).

The paper is structured as follows. Section 2 details the
heuristics applied to set the threshold and select the auctions
to participate in. Section 3 empirically evaluates the strate-



gies and compares them with other heuristics proposed in the
literature. Section 4 concludes.

2 The Multiple Auction Bidding Strategy

Before detailing the bidding heuristics, we formalise the mul-
tiple auction setting being studied. Here an auction a can
be characterised by a tuple (¢t°(a),t(a), N(a),0(a)) consist-
ing of the starting time, closing time, number of local bidders
and auction format for auction a. Notice that since N(a) is
the number of local bidders in an auction; the total number
(including the agent itself) is N(a) + 1. The auction format
can be one of the standard four single-sided types, English,
Dutch, first-price (FPSB) or second-price sealed bid (SPSB),
denoted as {ENG, DUT, FPSB, SPSB}. We introduce the de-
gree of overlap A € [0, 1]:
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to characterise a set of M auctions by the starting and closing
times. Purely sequential and purely simultaneous auctions are
the two extreme cases with A = 0 and 1 respectively.

The agent’s valuation V for obtaining multiple items is lin-
ear with random coefficient v per item up to a maximum of
k items: the agent derives value V(z) = v min(k,z) from z
items, and the utility of the agent for obtaining x items at
cost II is quasi-linear: U(z,II) = V(z) — 1L

We assume that all bidders have identically distributed
independent item-valuations v with distribution F(z) =
Prob(v < z), f(z) = F'(z). We will use the uniform dis-
tribution in [0, 1] as an example throughout the text, but the
heuristics themselves are equally applicable to other distribu-
tions unless specified otherwise. For a set of M auctions, our
goal is to devise a bidding strategy b = (b1, b2, -+ ,bar) where
be gives the threshold (i.e. the maximum bid that should be
placed) for auction a. In sealed bid auctions, the threshold is
the bid placed, in Dutch auctions, the agent bids when the
current price falls the threshold, and in English auctions, the
agent bids until the current price reaches the threshold. The
threshold is set to zero if the auction selection heuristic indi-
cates that the agent should not participate in that auction.

At any point in time, the bidding strategy considers the
subset of auctions A%’ that is awailable. An auction is un-
available if it is either closed or is of type ENG and the current
price is already higher than the agent’s threshold. We use
M* = ]A*| for the number of available auctions. The agent
is expected to keep track of the number of acquired items. At
time 7', the agent has an extra capacity of kr items = k — xp
where z7 is the number of items already acquired.

2.1 The Threshold Heuristics

The threshold set required by the auction selection stage is
generated using one of the heuristics developed in this sec-
tion. In all cases, the setting of the threshold is affected by
the differences between individual auctions (e.g. the number
of bidders and the auction format) and by the availability of
the item in future auctions. Since we want to identify the most
influential factors to the received utility, each of our heuristics
examines only a subset of the above factors. Specifically, we

develop two heuristics. The single auction dominant heuristic
assigns different thresholds according to the auction format
and the number of bidders in each auction. The equal thresh-
old heuristic assigns the same threshold to every auction and
adjusts this according to the availability of the item in future
auctions. Some heuristics in the literature have also examined
the bidding history [5] and user preferences [1] when adjusting
the bidding level. But, with our modular two-stage heuristic
design, these external factors can easily be included later by
extending or replacing the existing heuristics.

2.1.1

This heuristic sets a different threshold for each of the auc-
tions according to the auction format and the number of
bidders. Specifically, the threshold is assigned as if it were
the only auction available and the agent had valuation v for
a single item. We choose the single auction dominant bid-
ding heuristic not only because its analytical solution is well
known [7], but also because of its ability to adjust the bid
for different auction types and numbers of bidders with lit-
tle computational overhead. The threshold is the same as the
true value for second price mechanisms (ENG, SPSB) and for
the first price mechanisms (DUT, FPSB), it becomes [7]:

The Single Auction Dominant Heuristic
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which is v N(a)/(N(a)+1) if the private values of the bidders
follow a uniform distribution.

2.1.2 The Equal Threshold Heuristic

This heuristic sets a single threshold, beq, for all auctions.
This choice is justified because the global bidder’s utility in
multiple auctions selling complementary goods can be max-
imised with equal-bid pairs [8] and our brute-force best bid-
ding strategy search upon simultaneous auctions with unit
agent demand (k = 1) seems to suggest that placing equal
bids is also suitable for our perfect substitute setting®.

Our goal is to find the equal bid threshold that approxi-
mately maximises expected utility:

E(Ub) E(V|b) — E(TIjb)
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agcAav

To do this, we adopt a procedure that estimates the likely
number of units won (X) and the likely payments (II) sep-
arately. Now, the expected payment E(II|b) is the sum of
payments for each auction and the expected payment II(a) in
a particular auction a from using threshold b(a) is:

b(a)

B(11(a)[b(a)) = / yFYO ) fydy (@)

Jo
For valuations v that are uniformly distributed in [0, 1] this
gives an expected payment of N(a)b™ @+ /(N(a)+1). How-
ever, the valuation term is non-linear with respect to the num-
ber of units won, and so the situation is more complicated.

4 Tt should be noted that the optimality of equal bids is not uni-
versal even for simultaneous SPSB auctions with identical bidder
distributions. For example, in the extreme case in which the val-
uation approaches the upper range, it is best to bid one’s true
value for k requested items and zero for the rest.



Thus to estimate the number of units the agent might win
by using a particular bid threshold, we replace the available
current and future auctions with simultaneous SPSB auctions.
We believe this is a reasonable assumption for two reasons.
First, the expected revenue of second-price auctions is only
slightly lower than those of first-price ones. Second, unlike cur-
rently running English (or Dutch) auctions in which we know
the closing price must be larger (or smaller for Dutch) than
the current price, we do not have such information regard-
ing future auctions. So, in terms of information availability, it
resembles the situations in simultaneous sealed bid auctions.

Now, to measure the number of bidders N in the set
of available auctions A%Y we use the harmonic mean % =
M% EaeA‘“’ ﬁ because the agent is less likely to win in
auctions with many bidders and so should give less weight to
their consideration.

In so doing, we assume that the events of winning each auc-
tion are independent and identically distributed, so that the
number of items the agent will win has a binomial distribu-
tion. The probability of an agent with threshold b winning
in any second-price auction with n other local bidders (who
will bid their valuation) is p(b) = F™(b). The probability of
winning x items out of MY auctions is:

prob(x =) = (M) w2 pio)

Combining this with:

E(min(k, X)[b) = Y xProb(X = x|b) + kProb(X > k|b)

<k

allows us to estimate the value term in (1).

Since the agent is not compensated for any extra units ac-
quired, its utility drops rapidly if the purchase quota is ex-
ceeded accidentally. However, to identify the equal threshold
beq that approximates the maximum utility, a simple one di-
mensional golden section search [10] is sufficient because the
utility curve has only a single maximum.

2.2 The Auction Selection Heuristics

The auction selection heuristics determine which available
auctions the agent should participate in, on the basis of the
collection of bidding thresholds calculated using a threshold
heuristic. With our flexible architecture, it is possible to in-
troduce heuristics that satisfy different user preferences [1] at
a later stage. But for now, we intend to develop heuristics
that approximate well to the global utility maximum, which
is the goal for most users. Specifically, we describe two such
heuristics: an ezhaustive search heuristic inspired by [4], and
a much more computationally tractable knapsack utility ap-
proximation heuristic.

2.2.1 Ezhaustive Search Selection

Byde et al. [4] describe an exhaustive search procedure for
bid decision making. Their algorithm subsumes the selection
of auctions into the choice of thresholds: ideally all tuples of
thresholds would be tested, which includes the “trivial” zero
thresholds that are equivalent to not participating in an auc-
tion at all. In our context, where thresholds are determined
by a separate process, exhaustive search consists of testing

almost all subsets of available auctions. Nevertheless, some
heuristic properties of different auction formats are exploited
to prune the search space. For example, in English auctions,
we assume that an agent prefers to bid in auction a; if its cur-
rent price is lower than that of as while the expected chance
of winning is higher. In sealed bid auctions, the agent refrains
from submitting a bid until the deadline is imminent so that
it can learn from more auctions before making a decision.

The expected value E(V]S,b) of bidding only in a set of
auctions S is calculated using the sum over all possible sets
W C S of auctions that might be won:

E(V(X)|S,b) =
3 (V<|W> IT »a(b(0)) H<1—pa<b<a>>>) )
wcs acw agWw

where p,(b(a)) is the probability of winning auction a given
threshold b(a). Expected payments are given by (2) as above.

Clearly this heuristic is expensive to calculate both because
of the exhaustive search over the set of auctions S in which
to bid, and because of the exponential complexity of (3).

2.2.2  Knapsack Utility Approzimation

The development of this heuristic is inspired by our observa-
tion that the utility is non-linear with respect to the number
of wins. Specifically, each additional acquired item provides
extra utility until the maximum demand k is reached. Beyond
that point, each additional item incurs a large marginal loss
because the agent does not receive any extra compensation
for the increased payment. Now, since the number of wins is
a random variable and the utility plummets if the agent ac-
quires more than k items, it is crucial to carefully control the
risk of exceeding the demand limit. Given this, the rationale
for the heuristic proposed is to identify a subset of available
auctions that minimises the expected payment (i.e. locally
maximises the utility), while maintaining the expected num-
ber of wins within a certain safe level. The knapsack algo-
rithm was chosen because its solution can be approximated
in pseudo-polynomial time by dynamic programming [6].

In more detail, the heuristic works as follows. First, the
agent (re)-evaluates its capacity for extra items. For planning
purposes, the extra capacity kr = kr — H should be reduced
by the number of holding auctions H. A holding auction is any
sealed bid auction that the agent has submitted a bid to and
has yet to receive the results or any English auction in which
it is currently leading. The intuition here is that the agent has
a chance to win once it holds a bid in an auction. Therefore,
it should temporarily reduce the demand limit to prevent ac-
cidentally exceeding its purchase quota. Second, by making a
similar argument to that of Section 2.1.2 when we simplified
the auction setting, we model the multiple auctions as if they
are all SPSB and run simultaneously. Given this, the thresh-
old set generated by the threshold heuristics is converted into
a M -tuple b = (b(a1),b(az),...,b(anev)) with its first ele-
ment corresponding to the threshold of the auction with the
least number of bidders, and so on. If the agent selects n auc-
tions to participate in, it will submit n non-zero bids out of
a choice of M’ assuming the agent has a preference for auc-
tions with fewer bidders. The expected utility is calculated
for K < n < M*’. The number of auctions to participate in,



Nopt, that gives the highest expected utility is then identified:

b = (b(a1),b(az), ... ,b(an),0, ... ,0)
N 2 NGRS
n Mav —n
Nopt = arg max E(U|by) (4)

n>kp

Now, the agent could just decide to participate in the ngpt
auctions with the least number of bidders. However, this is not
likely to be a good enough strategy because the simplified
model ignores the differences between auction formats and
discards a lot of useful information obtained after the auction
starts (such as the current price of the English and Dutch
auctions). On the other hand, with the exception of the case
when M is small, it is impractical to calculate the exact utility
as it requires the probability calculation to be repeated for
each of the 2 possible winning combinations. In contrast,
if we assume the outcomes of the auctions are independent,
the expected number of wins can easily be calculated as the
sum of the winning probabilities of the individual auctions.
By maintaining the expected number of wins at a sufficiently
low level, we can mitigate the risk of accidentally purchasing
too many items even if we place more than kr bids.

We now turn to the issue of finding the optimal expected
number of wins. Assuming the agent bids in nep: auctions
with threshold bop: = (b(a1),b(az2),...,b(an,,,),0,...,0), the
expected number of wins that gives highest utility® can be
calculated as:

Nopt

Fopt = E(Xbopt) = Z Pa(b(ai)) + 21

Finally, we can apply a knapsack algorithm to find the
combination of auctions that minimises the payment, while
keeping the predicted number of winning items less than or
equal to the optimal number of winning items Z,p:. Generally
speaking, the goal of the knapsack algorithm is to maximise
the combined value of items packed into a bag, providing the
size constraint has not been violated. Here the optimal win-
ning number Z,;; is taken as the weight constraint and each
auction in the subset A*Y is a candidate item available for
selection. For auction a, the weight is the chance of winning
Pa(be) if bidding with the threshold b(a) found by the heuris-
tics in Section 2.1. The value for participating in auction a is
defined as minus the expected payment, so that maximising
value minimises payment. The knapsack algorithm sets the
bidding thresholds to zero to indicate the auctions that the
agent should not participate in. The best selection of auctions
to participate in is re-evaluated at each time step.

The expected payment is given by (2), but, for current En-
glish (or Dutch) auctions, the expected payment is set to the
current price z; plus (or minus for Dutch auction) the min-
imum bid increment. It is because the current price update
at each round presents a prime opportunity for the agent to
hunt for bargains. For example, if there is a more favourable
auction later in which the agent is planning to bid up to b(L)
with an expected payment of (L), there is no harm in bid-
ding lower than b(L) for the current English or Dutch auction.
It may get an even better deal by chance.

3 Empirical Evaluation

This section evaluates the heuristics we have devised. We have
introduced two threshold heuristics — single auction dominant
(DOM) and equal threshold (EQT), and two auction selection
heuristics — exhaustive search selection (ES) and knapsack
utility approximation (KS). In particular, we are interested in
evaluating how the combined heuristics (DOM-ES, DOM-KS,
EQT-ES, EQT-KS) perform. As benchmark, we use a random
strategy (RND) that chooses k auctions at the start then bids
locally in them and a greedy strategy (GRD) that participates
in the kr auctions with the least number of bidders at time T'.
Both RND and GRD place bids following the dominant strat-
egy for a single auction. In our experiment, we consider two
scenarios: (1) simultaneous SPSB auctions, (2) unrestricted
settings, in which the number of bidders, the auction types,
and the starting and closing times are all randomised. The
first scenario is considered because simultaneous SPSB auc-
tions require only one round of decision. Thus this simplified
setting allows us to search for the optimal bidding strategy us-
ing a global maximisation technique® and compare that with
our heuristics. The second scenario is actually our focus be-
cause it is the one that most closely represents reality.
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Figure 1. Agent utility for simultaneous SPSB

auctions(M = 8, N = 5).

The first environment evaluates the agent utility for a set of
8 simultaneous SPSB auctions. Specifically, Figure 1 shows the
average utility as agent demand k varies from 1 to 8. As can be
seen, the combined heuristics using EQT (EQT-ES and EQT-
KS) perform better than those using DOM and are within 3%
of the optimal. Now, the DOM heuristic adjusts the bidding
level in accordance to factors affecting each single auction
(i.e. number of bidders and auction format), whereas EQT
considers the future item availability from all the remaining
auctions. Thus the latter effect dominates, especially for larger
M, and so explains the observed improvement when using
EQT. Although DOM is less successful, by using our ES or
KS decision heuristics, 15-25% of the utility loss can still be
recovered when compared with either GRD or RND heuristics.

The second scenario evaluates the unrestricted setting. We
examine the received agent utility for the various heuristics
with M = 12 and k£ = 3. For our results to generalise well to
practical scenarios, M should be as large as possible. However,
as we shall see later (see Figure 3), ES rapidly becomes compu-
tationally intractable as M increases; thus we set M = 12 as
a compromise value that has a reasonable number of auctions
but that is still tractable for ES. According to the ANOVA 2-
factor test, all of our heuristics (DOM-KS, DOM-ES, EQT-KS,

5 It is important to note that the expected number of wins E(X)
is different from the upper demand limit k. For example, the
expected number of wins can be much smaller than the upper
demand limit if the buyer has a low valuation.

6 Simulated annealing is applied as a global maximisation technique
to identify the best bids. However, since it requires up to 1000
seconds to run even for this simplified setting, it is not a practical
solution to our problem.



EQT-ES) are significantly better than the benchmark heuris-
tics”. Amongst our heuristics, DOM-ES is significantly better
than DOM-KS, whereas EQT-ES performs similarly to EQT-
KS8. On average, our best strategies (EQT-KS, EQT-ES) im-
prove the agent utility by 24% and 27% when compared with
the GRD benchmark.

In more detail, the set of auctions can be characterised by
the degree of overlap A and the percentage that are sealed-bid
(%SB). To assess how these factors affect our heuristics, the
auction sets are classified into one of the four categories, C1 —
C4°, in terms A and %SB. The agent utility follows the order
of EQT-ES > EQT-KS > DOM-KS > DOM-KS > GRD > RND
and the ranking is the same for each of the four categories.

0.16 mRND EGRD

0.14 DOM-KS I DOM-ES
EQT-KS MEQT-ES

Figure 2. Agent utility for unrestricted auction setting.
(M =12,k =3, N = [5,10] uniformly distributed)

In addition, our heuristics compare increasingly favourably'®
to the GRD/RND benchmarks when A > 0.5 and/or %SB
< 0.5. This is because many auctions are started or closed
at about the same time if A is large. Thus an agent can hunt
for bargains by bidding in many auctions, while not taking
too large a risk of accidentally purchasing too many items.
When the percentage of English and Dutch auctions is high
(i.e. when %SB is low), the agent receives more information in
the bidding process. In short, both the careful management of
excess procurement risk and improved utilisation of available
information require much intelligence, and, thus, the more
sophisticated heuristics are beneficial.

The DOM and EQT threshold heuristics require compara-
tively little computation because they adopt a simplified auc-
tion setting. However, the time taken to evaluate the more
complex auction selection heuristics is an important practi-
cal consideration, especially when many decisions have to be
made at the same time (which often occurs near the closing
time of a set of simultaneous auctions). To this end, Figure 3
shows the average computation time for the heuristics when
running on a modern PC. The ES heuristic is known to have
exponential time complexity and it fails to keep up with prac-
tical requirements when M is larger than about 12. In con-
trast, the KS heuristic has been shown to remain acceptable
for M up to at least 200 auctions with its pseudo-polynomial
time complexity.

To summarise our results, the agent’s utility is affected
strongly by the threshold heuristic and EQT is the preferred

7 Comparing our worst heuristic (DOM-KS: @ = 0.113) to the best
benchmark heuristic (GRD: @ = 0.101), the null hypothesis that
they perform the same is rejected at the 95% confidence level
(CI) (F = 46.6 > critical value F. = 3.86).

8 The null hypothesis that DOM-ES (2 = 0.120) and DOM-KS
(@ = 0.113) perform the same is rejected (F' = 9.28 > F. = 3.86).
But, for EQT-ES (u = 0.129) and DOM-KS (@ = 0.125), the null
hypothesis that they perform the same is accepted at the 95% CI
(F =332 < F. = 3.86).

9 Cl: A < 0.5 and %SB> 0.5, C2: A > 0.5 and %SB > 0.5, C3:
A < 0.5 and %SB < 0.5, C4: A > 0.5 and %SB < 0.5.

10 Our worst heuristic, DOM-KS, gains 3, 8, 14 and 24% higher
utility than GRD for category C1-C4 respectively.

choice because it is better than DOM for each of the four cat-
egories of multiple auctions examined in the second scenario.
For the auction selection heuristic, the computation time is an
extra factor to consider in addition to the received agent util-
ity. Here the ES heuristic can tolerate bad selection of bidding
thresholds and its use should be considered if its computation
time is deemed acceptable. But for a larger number of auc-
tions (M > 12) the KS heuristic is more suitable because
the sacrifice in performance when compared with ES is small
(DOM-KS) or in some cases insignificant (EQT-KS).

VTS K
————— x e
z m
% m
£ & .~ EQT-ES
=X~ EQT-KS
v GRD
O RND
100 150 200 M

Figure 3. Average computation time for different heuristics.

4 Conclusions

This paper has developed and evaluated a novel two-stage
heuristic as a bidding strategy for multiple heterogeneous auc-
tions. In the first phase, a set of bidding thresholds is gener-
ated by the threshold heuristics, before a more sophisticated
decision heuristic is applied to decide which subset of auctions
to participate in. Our empirical evaluation shows that EQT
is a better threshold heuristic than DOM and for the auc-
tion selection heuristic, KS is an acceptable choice especially
for larger numbers of auctions. At present, the heuristics de-
veloped assume that there is only one global bidder in the
market. However, as a future direction, we intend to examine
the Nash equilibrium strategy and analyse the change in best
response when more global agents operate in the system.
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