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Abstract - A signal construction method that combines
orthogonal design with sphere packing has recently shown
useful performance improvements over the conventional or-
thogonal design. In this contribution, we extend this concept
and propose a novel Sphere Packing (SP) modulated differ-
ential Space-Time Block Coded (DSTBC) scheme, referred
to here as (DSTBC-SP), which shows performance advan-
tages over conventional DSTBC schemes. We also demon-
strate that the performance of DSTBC-SP systems can be
further improved by concatenating sphere packing aided mo-
dulation with channel coding and performing SP-symbol-to-
bit demapping as well as channel decoding iteratively. We
also investigate the convergence behaviour of this concate-
nated scheme with the aid of Extrinsic Information Trans-
fer (EXIT) Charts. The proposed turbo-detected DSTBC-SP
scheme exhibits a ’turbo-cliff’ at Eb/N0 = 6dB and pro-
vides Eb/N0 gains of 23.7dB and 1.7dB at a BER of 10−5

over an equivalent-throughput uncoded DSTBC-SP scheme
and a turbo-detected QPSK modulated DSTBC scheme, re-
spectively.

1. INTRODUCTION

During the late 1990s, space-time coding invoking multiple an-
tennas both at the transmitter and the receiver has become a pop-
ular technique of attaining transmit diversity [1]. Since then, the
pursuit of designing improved space-time modulation schemes
has attracted considerable further attention [2]. However, most
proposed schemes assumed the availability of perfect channel
knowledge at the receiver. In practice the channel impulse re-
sponse (CIR) recorded for each transmit and receive antenna pair
has to be estimated at the receiver using training symbols. How-
ever, channel estimation increases both the cost and complex-
ity of the receiver as well as imposing an undesirable transmis-
sion overhead and wasting some of the valuable transmit power.
As attractive design alternatives, non-coherent schemes that re-
quire no CIR knowledge were developed. For example, Tarokh
and Jafarkhani [3] proposed differential encoding and decoding
for Alamouti’s two-transmitter diversity scheme [4], where the
transmitted signal can be demodulated both with and without
channel state information at the receiver. The non-coherent re-
ceiver performs within 3dB of the coherent receiver. The scheme
advocated in [3] was extended to QAM constellations in [5]. In
2000, Hochwald and Sweldens [6] proposed a differential mod-
ulation aided transmit diversity scheme based on unitary space-
time codes [7], which can be employed in conjunction with an
arbitrary number of transmit antennas. At about the same time,
a similar differential scheme was also proposed by Hughes [8]
that is based on group codes.
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Iterative decoding of spectrally efficient modulation schemes
was considered by several authors. In [9], the employment of the
turbo principle was considered for iterative soft demapping in the
context of multilevel modulation schemes combined with chan-
nel decoding, where a soft demapper was used between the mul-
tilevel demodulator and the channel decoder. Recently, study-
ing the convergence behaviour of iterative decoding has attracted
considerable attention. In [10], ten Brink proposed the employ-
ment of the so-called extrinsic information transfer (EXIT) char-
acteristics between a concatenated decoder’s output and input
for describing the flow of extrinsic information through the soft-
in/soft-out constituent decoders.

The concept of combining orthogonal transmit diversity de-
signs with the principle of sphere packing was introduced by
Su et al. in [11], where it was demonstrated that the proposed
Sphere Packing (SP) aided Space-Time Block Coded (STBC)
system, referred to here as (STBC-SP), was capable of outper-
forming the conventional orthogonal design based STBC schemes
of [4, 12]. The authors of [13] proposed a novel system that
exploits the advantages of both iterative demapping and decod-
ing [9] as well as those of the STBC-SP scheme of [11]. The
STBC-SP demapper of [11] was modified in [13] for the sake of
accepting the a priori information passed to it from the channel
decoder as extrinsic information.

Motivated by the performance improvements reported in [11]
and [9], we propose a novel DSTBC scheme that exploits the
advantages of both sphere packing modulation as well as those
of iterative demapping and decoding. As a benefit of the pro-
posed solution, it will be demonstrated in Section 5 that the pro-
posed turbo detection aided DSTBC-SP scheme is capable of
providing Eb/N0 gains of 23.7dB and 1.7dB at a Bit Error
Rate (BER) of 10−5 over an equivalent-throughput uncoded
DSTBC-SP scheme and over a turbo-detected conventionally mod-
ulated system based on the DSTBC scheme of [3, 5].

This paper is organised as follows. In Section 2, a brief de-
scription to orthogonal design using sphere packing modulation
is presented, followed by a system overview in Section 3. Sec-
tion 4 provides our EXIT chart analysis, while our simulation
results and discussions are provided in Section 5. Finally, we
conclude in Section 6.

2. ORTHOGONAL DESIGN WITH SPHERE PACKING
MODULATION

Orthogonal transmit diversity designs can be described recur-
sively [14] as follows. Let G1(g1) = g1I1, and

G2k(g1, . . . , gk+1)

=

[
G2k−1(g1, . . . , gk) gk+1I2k−1

−g∗
k+1I2k−1 GH

2k−1(g1, . . . , gk)

]
,
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for k = 1, 2, 3, . . .,where g∗
k+1 is the complex conjugate of

gk+1, GH
2k−1(g1, . . . , gk) is the Hermitian of G2k−1(g1, . . . , gk)

and I2k−1 is a (2k−1×2k−1) identity matrix. Then, G2k(g1, g2,
. . . , gk+1) constitutes an orthogonal design of size (2k × 2k),
which maps the complex variables representing (g1, g2, . . . , gk+1)
to 2k transmit antennas. In other words, g1, g2, . . . , gk+1 repre-
sent k + 1 complex modulated symbols to be transmitted from
2k transmit antennas in T = 2k time slots. It was shown in [11]
that the diversity product quantifying coding advantage1 of an
orthogonal transmit diversity scheme is determined by the mini-
mum Euclidean distance of the vectors (g1, g2, . . . , gk+1). There-
fore, in order to maximise the achievable coding advantage, it
was proposed in [11] to use sphere packing schemes that have
the best known minimum Euclidean distance in the 2(k + 1)-
dimensional real-valued Euclidean space R2(k+1) [15].

In this contribution, differential space-time systems [3, 5] em-
ploying two transmit antennas are considered, which are charac-
terised by the generator matrix of [4]

G2(g1, g2) =

[
g1 g2

−g∗
2 g∗

1

]
, (1)

and the rows and columns of Equation (1) represent the temporal
and spatial dimensions, corresponding to two consecutive time
slots and two transmit antennas, respectively. The transmission
is initialised by sending arbitrary symbols g1(1) and g2(1) using
Equation (1) during the 1st and 2nd time slots from the 1st and
2nd transmit antennas. At time 2t+1, t = 1, 2, . . ., a block of B
bits arrives at the encoder, where each B

2
bits are independently

modulated using a 2
B
2 -ary modulation constellation producing

x1(2t + 1) and x2(2t + 1). Now, for t ≥ 1 the transmission
symbols g1(2t+1) and g2(2t+1) are calculated as follows [5]:

g1(2t + 1) = nf · [x1(2t + 1)g1(2t − 1) − x2(2t + 1)g∗2(2t − 1)
]

g2(2t + 1) = nf · [x1(2t + 1)g2(2t − 1) + x2(2t + 1)g∗1(2t − 1)
]
,

(2)

where nf = 1/
√|g1(2t − 1)|2 + |g2(2t − 1)|2. More specifi-

cally, g1(2t+1) and g2(2t+1) are transmitted from the 1st and
2nd transmit antennas, respectively, at time 2t + 1. By contrast,
−g∗

2(2t + 1) and g∗
1(2t + 1) are transmitted from the 1st and

2nd transmit antennas, respectively, at time 2t + 2.

It was shown in [5] that when the received signals are differ-
entially decoded, the resultant signals will be scaled versions of
x1(2t+1) and x2(2t+1), which are corrupted by complex Ad-
ditive White Gaussian Noise (AWGN) similar to the G2 space-
time block code of [4, 12]. This observation implies that the di-
versity product of DSTBC schemes [3, 5] is determined by the
minimum Euclidean distance of all legitimate vectors (x1, x2),
where the time index is removed for notational simplicity. Ac-
cording to [3, 5] for example, x1 and x2 represent independent
conventional BPSK modulated symbols and no effort is made to
jointly design a symbol constellation for the various combina-
tions of x1 and x2. For the sake of generalising our treatment,
let us assume that there are L legitimate vectors (xl,1, xl,2),
l = 0, 1, . . . , L − 1, where L represents the number of sphere-
packed modulated symbols. The encoder, then, has to choose
the modulated symbol associated with each block of B bits from
these L legitimate symbols, which determines the signals to be
transmitted over the two antennas in two consecutive time slots
using Equation (2), where the throughput of the system is given

1The diversity product or coding advantage was defined as the esti-
mated gain over an uncoded system having the same diversity order as
the coded system [11].

Output

DSTBC

DSTBC

+

+

Source ∏ sc

InterleaverBinary

EncoderEncoder
Packing
Mapper

Sphere

LD,a LM,pLM,e

LM,aLD,eLD,p

Decoder Demapper

Sphere

Packing Decoder

-

- Rx1

RxN

∏

∏-1

Deinterleaver

Interleaver

Conv.

LD,i,p

Decision
Hard

Conv. b
Tx1

Tx2

r

Figure 1: Turbo Detection DSTBC-SP System.

by (log2L)/2 bits per channel use. In contrast to the indepen-
dent design of xl,1 and xl,2 [3, 5], our aim is to design xl,1 and
xl,2 jointly, such that they have the best minimum Euclidean dis-
tance from all other (L − 1) legitimate symbols, since this min-
imises the system’s error probability. Let (al,1, al,2, al,3, al,4),
l = 0, 1, . . . , L − 1, be phasor points selected from the four-
dimensional real-valued Euclidean space R4, where each of the
four elements al,1, al,2, al,3, al,4 gives one coordinate of the complex-
valued phasor points. Hence, xl,1 and xl,2 may be written as

{xl,1, xl,2} = T (al,1, al,2, al,3, al,4)

=
{
al,1 + jal,2, al,3 + jal,4

}
. (3)

In the four-dimensional real-valued Euclidean space R4, the
lattice D4 is defined as a sphere packing having the best mini-
mum Euclidean distance from all other (L − 1) legitimate con-
stellation points in R4 [15]. More specifically, D4 may be de-
fined as a lattice that consists of all legitimate sphere packed
constellation points having integer coordinates [a1 a2 a3 a4]
uniquely and unambiguously describing the legitimate combina-
tions of the modulated symbols xl,1 and xl,2, but subjected to the
sphere packing constraint of a1 + a2 + a3 + a4 = k, where k is
an even integer. Assuming that S = {sl = [al,1, al,2, al,3, al,4]
∈ R4 : 0 ≤ l ≤ L − 1} constitutes a set of L legitimate
constellation points from the lattice D4 having a total energy

of E
�
=

∑L−1
l=0 (|al,1|2 + |al,2|2 + |al,3|2 + |al,4|2), and upon

introducing the notation

Cl =

√
2L

E
(xl,1, xl,2), l = 0, 1, . . . , L − 1, (4)

we have a set of complex constellation symbols, {Cl:0 ≤ l ≤
L − 1}, whose diversity product is determined by the minimum
Euclidean distance of the set of L legitimate constellation points
in S.

3. SYSTEM OVERVIEW

The schematic of the entire system is shown in Figure 1, where
the transmitted source bits are convolutionally encoded and then
interleaved by a random bit interleaver. A rate R = 1

2
recur-

sive systematic convolutional (RSC) code was employed. Af-
ter channel interleaving, the sphere packing mapper first maps
B channel-coded bits b = b0,...,B−1 ∈ {0, 1} to a legitimate
constellation point sl ∈ S from the lattice D4, where we have
B = log2L. The mapper then maps the constellation point sl

to complex symbols xl,1 and xl,2 using Equations (3) and (4).
Subsequently, the DSTBC encoder calculates the symbols to be



transmitted according to Equation (2) over T = 2 consecutive
time slots using two transmit antennas, as shown in Equation (1).

In this treatise, we considered a correlated narrowband Ray-
leigh fading channel, associated with a normalised Doppler fre-
quency of fD = fdTs = 0.01, where fd is the Doppler fre-
quency and Ts is the symbol duration. The complex fading
envelope is assumed to be constant across the transmission pe-
riod of two sphere packing symbols spanning T = 4 time slots.
The complex Additive White Gaussian Noise (AWGN) of n =
nI + jnQ is also added to the received signal, where nI and
nQ are two independent zero mean Gaussian random variables
having a variance of σ2

n = σ2
nI

= σ2
nQ

= N0/2 per dimension,
where N0/2 represents the double-sided noise power spectral
density expressed in W/Hz.

As shown in Figure 1, the received complex-valued symbols
are first differentially decoded by the DSTBC decoder. Then,
the decoded symbols are passed to the sphere packing demapper,
where they are demapped to their Log-Likelihood Ratio (LLR)
representation for each of the B coded bits per sphere packing
symbol. The a priori LLR values of the demodulator are sub-
tracted from the a posteriori LLR values for the sake of gen-
erating the extrinsic LLR values LM,e, and then the LLRs LM,e

are deinterleaved by a soft-bit deinterleaver, as seen in Figure 1.
Next, the soft bits LD,a are passed to the convolutional decoder
in order to compute the a posteriori LLR values LD,p provided
by the Max-Log MAP algorithm [16] for all the channel-coded
bits. During the last iteration, only the LLR values LD,i,p of
the original uncoded systematic information bits are required,
which are passed to a hard decision decoder in order to determine
the estimated transmitted source bits. The extrinsic information
LD,e, is generated by subtracting the a priori information from
the a posteriori information according to LD,p −LD,a, which
is then fed back to the DSTBC-SP demapper as the a priori
information LM,a after appropriately reordering them using the
interleaver of Figure 1. The sphere packing demapper exploits
the a priori information for the sake of providing improved a
posteriori LLR values, which are then passed to the channel de-
coder and in turn back to the sphere packing demodulator for fur-
ther iterations. More detailed discussions on the iterative demap-
ping process and how the sphere packing demapper is modified
for exploiting the a priori knowledge provided by the channel
decoder are provided in [13].

4. EXIT CHART ANALYSIS

The main objective of employing EXIT charts proposed by ten
Brink [10], is to predict the convergence behaviour of the it-
erative decoder by examining the evolution of the input/output
mutual information exchange between the inner and outer de-
coders in consecutive iterations. The application of EXIT charts
is based on two assumptions, firstly that upon assuming a suf-
ficiently large interleaver length, the a priori LLR values be-
come fairly uncorrelated; and secondly that the probability den-
sity function (PDF) of the a priori LLR values is Gaussian, al-
though in practice these assumptions may not always hold.

The mutual information of IAM = I(b; LM,a), 0 ≤ IAM ≤
1, between the outer coded and interleaved bits b of Figure 1 and
the LLR values LM,a is used to quantify the information content
of the a priori knowledge at the input of the demapper [17]. By
contrast, in order to quantify the information content of the ex-
trinsic LLR values LM,e at the output of the demapper, the mu-
tual information IEM = I(b; LM,e) can be used. Considering
IEM as a function of both IAM and the Eb/N0 value encoun-
tered, the demapper’s extrinsic information transfer characteris-
tic is defined as [10] IEM = TM (IAM , Eb/N0).

The extrinsic transfer characteristic of the outer channel de-
coder describes the relationship between the outer channel coded
input LD,a and the outer channel decoded extrinsic output LD,e.
The input of the outer channel decoder is constituted by the
a priori input LD,a provided by the sphere-packing demap-
per. Therefore, the extrinsic information transfer characteris-
tic of the outer channel decoder is independent of the Eb/N0-
value and hence may be written as IED = TD(IAD ), where
IAD = I(c; LD,a), 0 ≤ IAD ≤ 1, is the mutual information be-
tween the outer channel coded bits c and the LLR values LD,a.
Similarly, IED = I(c; LD,e), 0 ≤ IED ≤ 1, is the mutual in-
formation between the outer channel coded bits c and the LLR
values LD,e.

0.0 0.2 0.4 0.6 0.8 1.0
A priori input IAM

of the demapper

0.0

0.2

0.4

0.6

0.8

1.0

E
xt

ri
ns

ic
ou

tp
ut

I E
M

of
th

e
de

m
ap

pe
r

(a)

. . . . . . . . . . .
(Eb/N0 = 6.0dB)
DSTBC-SP, L=16

AGM 5
AGM 4
AGM 3

. AGM 2
AGM 1
GM

0.0 0.2 0.4 0.6 0.8 1.0
IED

becomes IAM

0.0

0.2

0.4

0.6

0.8

1.0

I E
M

be
co

m
es

I A
D

(b)

L=16
DSTBC-SP,
Exit Chart

RSC Code
AGM-4

5 dB
6 dB

7 dBEb/N0 = 8 dB

Figure 2: (a) Sphere packing demapper EXIT characteristics for Gray
mapping (GM) and different bits to sphere-packing symbol Anti-Gray
mapping (AGM)schemes at Eb/N0 = 6.0dB for L = 16. (b) EXIT
chart of a turbo-detected RSC channel-coded DSTBC-SP scheme em-
ploying Anti-Gray mapping (AGM-4) in combination with the parame-
ters outlined in Table 1.

Figure 2a shows the extrinsic information transfer character-
istics of the sphere-packing symbol-to-bit demapper in conjunc-
tion with L = 16 and different mapping schemes between the
interleaver’s output and the sphere packing mapper. Observe
that Gray mapping does not provide any iteration gain upon in-
creasing the mutual information at the input of the demapper,
which was also reported in [9]. The reason for this observation
is that the adjacent Gray-coded symbols differ from the one con-
sidered in a single bit-position and hence no extrinsic informa-
tion is gleamed from the remaining identical bits. This situation
is reversed, when using different Anti-Gray Mapping (AGM)
schemes [9], resulting in different EXIT characteristics, as illus-
trated by the different slopes seen in Figure 2a. The five different
AGM mapping schemes shown in Figure 2a are specifically se-
lected from all the possible mapping schemes for L = 16 in
order to demonstrate the different extrinsic information transfer
characteristics associated with different bit-to-symbol mapping
schemes. There are a total of 16! different mapping schemes.

Figure 2b shows the EXIT chart of a turbo-detection aided,
channel-coded DSTBC-SP scheme employing the Anti-Gray ma-
pping (AGM-4) of Figure 2a in conjunction with the outer RSC
code and the system parameters outlined in Table 1. Ideally,
in order for the exchange of extrinsic information between the
sphere-packing demapper and the outer RSC decoder to con-
verge at a specific Eb/N0 value, the extrinsic transfer curve
of the sphere-packing demapper recorded at the Eb/N0 value
of interest and the extrinsic transfer characteristic curve of the
outer RSC decoder should only intersect at the (IAD , IED ) =
(1.0, 1.0) point. If this condition is satisfied, then a so-called
convergence tunnel [10] appears in the EXIT chart. Even if
there is no open tunnel in the EXIT chart, but the two EXIT
curves intersect at a point infinitesimally close to the IED = 1.0
line rather than at the (1.0, 1.0) point, then a sufficiently low
BER may still be achievable. These types of tunnels are re-
ferred to here as semi-convergent tunnels. The narrower the



Modulation Sphere Packing with L = 16
No. of Transmitters 2
No. of Receivers 1
Channel Correlated Rayleigh Fading
Normalised Doppler
frequency 0.01
Outer channel RSC, (2, 1, 5)
code (Gr, G) = (35, 23)8
System throughput 1 bit/symbol

Table 1: System parameters

tunnel, the closer the system operates to the Shannon limit and
hence a high number of iterations are required for reaching the
intersection point. Observe in Figure 2b that a semi-convergent
tunnel exists at Eb/N0 = 6.0dB. This implies that according to
the predictions of the EXIT chart seen in Figure 2b, the iterative
decoding process is expected to converge and hence a low BER
may be attained at Eb/N0 = 6.0dB. The validity of this pre-
diction is, however, dependent on how accurately the two EXIT
chart assumptions outlined at the beginning of Section 4 are sat-
isfied. These EXIT chart based convergence predictions will be
verified by the actual iterative decoding trajectory in Section 5.

5. RESULTS AND DISCUSSION

Without loss of generality, we considered a sphere packing mod-
ulation scheme associated with L = 16 using two transmit and a
single receiver antenna in order to demonstrate the performance
improvements achieved by the proposed system. All simulation
parameters are listed in Table 1.
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Figure 3: Decoding trajectories of turbo-detected RSC channel-coded
DSTBC-SP scheme employing Anti-Gray mapping (AGM-4) in combi-
nation with the outer RSC code and the system parameters outlined in
Table 1 and operating at Eb/N0 = 6.0dB, when using different inter-
leaver depths.

Since the set of complex constellation symbols, which is con-
structed from the set of legitimate sphere packing constellation
points using Equations (3) and (4) is multiplied by a factor that

is inversely proportional to
√

E, namely by
√

2L
E

, it is desirable
to choose a specific subset of L = 16 points from the entire set
of legitimate constellation points hosted by D4, which results in
the minimum total energy. It was shown in [15] that there is a
total of 24 legitimate symbols2 hosted by D4 having an iden-
tical minimum energy of E = 2. We used a computer search
for determining the optimum choice of the L = 16 points out
of the possible 24 points, which possess the highest minimum
Euclidean distance, hence minimising the error probability.

Figure 3 illustrates the actual decoding trajectories of the turbo-
detected RSC-coded DSTBC-SP scheme of Figure 2b at Eb/N0

= 6.0dB, when using different interleaver depths. The zigzag-
path seen in Figure 3 represents the actual extrinsic informa-
tion transfer between the sphere-packing demapper and the outer
RSC channel decoder. Observe in Figures 3c and 3d that since
long interleavers are employed, the assumptions outlined at the
beginning of Section 4 are justified and hence the EXIT chart
based convergence prediction of the step-wise linear actual de-
coding trajectory is quite accurate. By contrast, the decoding
trajectories shown in Figures 3a and 3b more substantially devi-
ate from the EXIT chart prediction, because shorter interleaver
lengths are used. Observe also the difference between Figures 3c
and 3d, where more iterations are required for approaching the
intersection point, when the interleaver depth drops from 106

bits to 105 bits. The influence of interleaver depth on system’s
attainable performance is further highlighted in Figure 4. More
specifically, Figure 4 illustrates the achievable BER of the turbo-
detected RSC channel-coded DSTBC-SP scheme of Figure 3,
when operating at Eb/N0 = 6.0dB and using different inter-
leaver depths as well as different number of iterations. Accord-
ing to Figure 4, four more iterations are necessitated by the
system employing an interleaver depth of 105 bits in order to
achieve a BER comparable to that of the system employing
an interleaver depth of 106 bits, when operating at Eb/N0 =
6.0dB.
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Figure 4: Achievable BER of turbo-detected RSC channel-coded
DSTBC-SP scheme employing Anti-Gray mapping (AGM-4) in com-
bination with the outer RSC code and the system parameters outlined
in Table 1 and operating at Eb/N0 = 6.0dB with different interleaver
depths and number of iterations.

Figure 5 compares the attainable performance of the proposed
RSC-coded DSTBC-SP scheme employing both Anti-Gray Map-
ping (AGM-4) and Gray Mapping (GM) against that of an iden-

2In simple terms, the sphere centred at (0, 0, 0, 0) has 24 spheres
around it, centred at the points
(+/ − 1, +/ − 1, 0, 0), where any choice of signs and any ordering of
the coordinates is legitimate [7, p.9].
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(BPS) uncoded DSTBC-SP scheme using L = 4 and against RSC-coded
QPSK modulated DSTBC scheme, when employing the system param-
eters outlined in Table 1 and using an interleaver depth of D = 106

bits.

tical-throughput 1 Bit Per Symbol (1BPS) uncoded DSTBC-SP
scheme using L = 4 and against an RSC-coded QPSK mod-
ulated DSTBC scheme, when employing the system parame-
ters outlined in Table 1 and using an interleaver depth of D =
106 bits. The QPSK modulated DSTBC system employs a set-
partitioning mapping scheme reminiscent of Trellis Coded Mod-
ulation (TCM) [18]. Observe in Figure 5 by comparing the two
Gray Mapping (GM) DSTBC-SP curves that no BER improve-
ment was obtained, when 10 turbo-detection iterations were em-
ployed in conjunction with Gray Mapping. This phenomenon
was also reported in [9] and it becomes evident from the hor-
izontal curve characterising Gray mapping in Figure 2a. By
contrast, Anti-Gray Mapping (AGM-4) of Figure 2a achieved
a useful performance improvement in conjunction with iterative
demapping and decoding. Explicitly, Figure 5 demonstrates that
a coding advantage of about 23.7dB was achieved at a BER of
10−5 after 10 iterations by the RSC-coded AGM-4 DSTBC-SP
system over the uncoded DSTBC-SP for transmission over the
correlated Rayleigh fading channel considered. Additionally, a
coding advantage of approximately 3.3dB and 1.7dB were at-
tained over the 1BPS-throughput RSC-coded GM DSTBC-SP
scheme and the RSC-coded QPSK modulated DSTBC scheme,
respectively.

6. CONCLUSION

In this paper we proposed a novel system that exploits the advan-
tages of both iterative demapping and turbo detection [9], as well
as those of the sphere packing modulation proposed in [11]. Our
investigations demonstrated that significant performance impro-
vements may be achieved, when the AGM DSTBC-SP scheme
is combined with outer channel decoding and iterative demap-
ping, as compared to the Gray-Mapping based systems. Subse-
quently, EXIT charts were used to search for the optimum bit-
to-symbol mapping schemes that converge at the lowest possi-
ble Eb/N0 values. Several DSTBC-SP mapping schemes cov-
ering a wide range of extrinsic transfer characteristics were in-
vestigated. When using an appropriate bit-to-symbol mapping
scheme and 10 turbo detection iterations, Eb/N0 gains of about
23.7dB and 1.7dB were obtained by the RSC-coded DSTBC-

SP scheme over the identical-throughput 1 bit/symbol uncoded
DSTBC-SP benchmarker scheme and over a turbo-detected sys-
tem based on the DSTBC scheme of [3, 5]. Our future research
includes the employment of novel precoding techniques between
the outer channel code and the sphere packing mapper for the
sake of improving the system’s performance while, maximising
its throughput and minimising its delay.
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