
Accurate BER Analysis of QPSK Modulated
Asynchronous DS-CDMA Systems Communicating

over Rayleigh Channels
Xiang Liu and Lajos Hanzo

School of Electronics and Computer Science, University of Southampton, SO17 1BJ, UK, lh@ecs.soton.ac.uk

Abstract— The accurate average BER calculation of an asyn-
chronous DS-CDMA system using random spreading sequences
is studied in Rayleigh fading channels. An accurate closed-
form expression is derived for the conditional characteristic
function of the multiple access interference. An accurate BER
expression is provided, which only requires a single numerical
integration. Our numerical simulation results verify its accuracy,
and also demonstrate the relative inaccuracy of the Gaussian
approximation.

I. INTRODUCTION

Spread spectrum Code Division Multiple Access (CDMA)
was originally invented for counteracting jamming in military
communications and has experienced a rapid evoluation since
the launch of the first commercial CDMA system in 1995.
The Bit Error Ratio (BER) performance of Direct-Sequence
(DS) CDMA systems has been extensively studied, especially
in the context of BPSK [1]–[19] and QPSK [4], [5], [7], [9],
[16], [19]–[26] modulation.

The accurate average Bit Error Ratio (BER) performance of
a system can be evaluated by typically integrating, i.e. aver-
aging the generic BER formula over all random parameters of
all users, but this requires the evaluation of multiple embedded
integrals [19], which is irrealistic when the number of users is
high. Several techniques have been developed for simplifying
the accurate BER calculation of various modulation schemes,
such as the series expansion of [4], [16]–[18], [25], or the
employment of Moment Generating Functions (MGF) [13]
and Characteristic Functions (CF) [1], [2], [4], [15], [26].
Since the computational complexity of the accurate analysis is
usually excessive, various Gaussian approximation techniques
based on the Central Limit Theorem (CLT) have also been
proposed for simplifying the calculation of the average BER
performance. A few examples are the Standard Gaussian Ap-
proximation (SGA) [1]–[3], [5], [6], [8]–[10], [15], [17]–[19],
[22], [26], the Improved Gaussian Approximation (IGA) [1],
[6], [10], [14], [17], [18], [22], [23], [26], the Simplified
IGA (SIGA) [1], [6], [15], [18], [22], [26], as well as the
Improved Holtzman’s Gaussian Approximation (IHGA) [15].
In addition to the calculation of the average BER performance,
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BER bounds were also derived in [7], [8], [11], [22]. To
avoid the complexity of the accurate BER analysis and the
inaccuracy of various approximations, the SNR performance
was investigated in [12], [20], [24].

In the existing literature, the achievable BER performance
over AWGN channels is the most extensively studied sub-
ject [4]–[12], [16]–[18], [20]–[23], [25], [26], but that over
Rayleigh channels [1], [17] and Nakagami-m channels [2],
[3], [13]–[15] was also lavishly documented. The BER per-
formance attainable using both deterministic spreading se-
quences [4], [7], [11], [13], [20], [21] and random spreading
sequences [1]–[3], [5], [6], [8]–[10], [14]–[19], [22], [23],
[25], [26] was also investigated.

However, to our knowledge, the accurate BER analysis of
asynchronous DS-CDMA systems using random spreading se-
quences and QPSK modulation for transmission over Rayleigh
channels is an open problem. The BER performance of a
similar system using BPSK modulation has been studied in [1].
Since QPSK has been favoured in existing systems [27], we
will extend the results of [1] to the QPSK scenario in this
paper. Due to the multiple access interference (MAI) induced
crosstalk between the in-phase and quadrature-phase branches
of QPSK systems, their BER performance is different from
that of BPSK systems, although they are identical in the
absence of MAI [28].

The organization of this paper is as follows. In Section II
an asynchronous DS-CDMA system using I/Q modulation is
considered in the context of a Rayleigh channel. Then in
Section III an accurate BER expression based on the CF ap-
proach is derived for the BER calculation of the system using
random spreading sequences. In Section IV our numerical
results are presented and finally, in Section V our conclusions
are provided.

II. SYSTEM MODEL

We consider an asynchronous DS-CDMA system over a
Rayleigh fading channel using the I/Q modulation, random
spreading sequences and the rectangular chip waveform. As-
sume that there are K simultaneously transmitting users. Each
user is assigned two random binary spreading sequences,
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{a2k,m}L−1
m=0 and {a2k+1,m}L−1

m=0, having L chips for its in-
phase and quadrature-phase branch, respectively. The kth
user’s spreading sequences along with his/her data sequences,
{b2k,m}∞m=−∞ and {b2k+1,m}∞m=−∞, modulate the phase of
the in-phase and quadrature-phase branch, respectively.

The rectangular pulse pT (t) having a duration of T is
defined as:

pT (t) =
{

1, t ∈ [0, T ),
0, otherwise.

(1)

Hence the spreading signals {ai(t)}i=2k,2k+1 and the data sig-
nals {bi(t)}i=2k,2k+1 are expressed as follows, respectively:

ai(t) =
∞∑

m=−∞
ai,mpTc

(t − mTc), (2)

bi(t) =
∞∑

m=−∞
bi,mpTs

(t − mTs), (3)

where Tc and Ts are the chip duration and the symbol duration,
respectively, and satisfying Ts = LTc.

The received signal r(t) at the input of the coherent matched
filter receiver is given by:

r(t) =
K−1∑
k=0

hk {a2k(t − τk)b2k(t − τk) cos[ωc(t − τk) + θk]

+ a2k+1(t − τk)b2k+1(t − τk) sin[ωc(t − τk) + θk]}
+ η(t), (4)

where η(t) is the zero-mean stationary Additive White Gaus-
sian Noise (AWGN) having a double-sided power spectral den-
sity of N0

2 , ωc is the common carrier frequency, {θk}K−1
k=0 and

{τk}K−1
k=0 are the phase shift and the time delay, respectively,

both of which are independently and uniformly distributed
in [0, 2π) and [0, Ts), respectively. The amplitude {hk}K−1

k=0

is mutually independent and Rayleigh distributed having a
Probability Distribution Function (PDF) of fhk

(x) expressed
as:

fhk
(x) =


x

σ2
k

e
− x2

2σ2
k , x ≥ 0,

0, x < 0.

(5)

Without loss of generality, we assume that the 0th user’s
signal is the desired one. If the phase and chip synchronization
are perfect, the decision statistic of Z̃ at the output of the
correlation receiver matched to the 0th user’s signal is given
by:

Z̃ =
2
Tc

∫ Ts

0

r(t)a0(t)Ψ(t) cos(ωct)dt

− j
2
Tc

∫ Ts

0

r(t)a1(t)Ψ(t) sin(ωct)dt

= D̃ +
K−1∑
k=1

Ĩk + η̃, (6)

where D̃ is the desired signal component, Ĩk is the co-channel
interference component incurred by the kth user and η̃ is the
noise component.

The desired signal D̃ can be expressed as:

D̃ = DI + jDQ = h0L(b0,0 + jb1,0), (7)

where DI and DQ are the in-phase and quadrature-phase
components of the desired signal, respectively.

The noise component η̃ can be shown to be a zero-mean
complex-valued Gaussian variable having a variance of σ2

η̃ =
2N0L

Tc
. Hence its in-phase and quadrature-phase components,

ηI and ηQ, are mutually independent, zero-mean real-valued
Gaussian variables having a variance of σ2

ηI = σ2
ηQ = N0L

Tc
.

The co-channel interference Ĩk incurred by the kth user can
be expressed as:

Ĩk = II
k + jIQ

k = hk(J2k,0 cos ∆k − J2k+1,0 sin ∆k

+ jJ2k,1 sin ∆k + jJ2k+1,1 cos ∆k), (8)

where II
k and IQ

k are the in-phase and quadrature-phase
co-channel interference components, respectively and ∆k =
−ωc(τk −τ0)+(θk −θ0) is the phase shift difference between
the kth user and the 0th user. The interference terms Ji,i′ ,
i ∈ {2k, 2k + 1} and i′ ∈ {0, 1}, are given by [29]:

Ji,i′ = bi,−1 [ci,i′(ξk − L)(1 − νk) + ci,i′(ξk + 1 − L)νk]
+ bi,0 [ci,i′(ξk)(1 − νk) + ci,i′(ξk + 1)νk] , (9)

where ξk = �τk − τ0

Tc
mod L�, νk = (

τk − τ0

Tc
mod L)−ξk.

The aperiodic cross-correlation function between the pair of
spreading sequences {akm}L−1

m=0 and {aim}L−1
m=0 both having

a length of L chips is defined as:

cki(ξ) =



L−1−ξ∑
m=0

ak,mai,m+ξ, 0 ≤ ξ ≤ L − 1,

L−1+ξ∑
m=0

ak,m−ξai,m,−(L − 1) ≤ ξ < 0,

0, |ξ| ≥ L.

(10)

Equation 10 becomes the aperiodic auto-correlation function
ckk(ξ) when k = i.

III. BER ANALYSIS

In this section, we investigate the BER performance of an
asynchronous DS-CDMA system conditioned on the 0th user’s
I/Q spreading sequences, {a0,m}L−1

m=0 and {a1,m}L−1
m=0. Hence

we have that {∆k}K−1
k=0 and {νk}K−1

k=0 are independently and
uniformly distributed over [0, 2π) and [0, Tc), respectively, for
the asynchronous system, {ai,m}L−1

m=0, i = 2k, 2k+1 are mutu-
ally independent and symmetrically Bernoulli distributed [30],

i.e. we have P{ai,m = ±1} =
1
2

for random spread-

ing sequences. Furthermore, the data bits {bi,m}∞m=−∞, i =
2k, 2k + 1 are also assumed to be mutually independent and
symmetrically Bernoulli distributed.

In contrast to the performance analysis of [31], we inves-
tigate the average BER rather than the average Symbol Error
Ratio (SER), since the average BER over of the in-phase and
quadrature-phase branches can always be expressed as the
average of the in-phase BER and the quadrature-phase BER



without the assumption of independence between these two
branches.

A. Accurate Analysis

It has been shown in the context of BPSK modulation
in [8] that the interference imposed by the (K−1) interfering
users would be mutually independent, if and only if it was
conditioned on the spreading sequence of the 0th user. It is
readily to show that this is also valid for our system using I/Q
modulation.

We will analyze the average in-phase BER, P I
e , of the 0th

user. The average quadrature-phase BER, PQ
e , of the 0th user

may be derived in the same way. For the sake of simplifying
the expression of II

k in Equation 8, we define a set of (2L+2)
random variables {Yi,m}L

m=0, i = 2k, 2k + 1 by:

Yi,m =


bi,−1ai,m−ξk+La0,m, m = 0, ..., ξk − 1,
bi,0ai,m−ξk

a0,m, m = ξk, ..., L − 2,
bi,−1ai,L−1−ξk

a0,0, m = L − 1,
bi,0ai,L−1−ξk

ao,L−1, m = L.

(11)

Similar to [8], these random variables can be shown to be
mutually independent and symmetrically Bernoulli distributed,
if conditioned on {a0,m}L−1

m=0. Hence the in-phase interference
component II

k in Equation 8 can be rewritten as:

II
k = X2khk cos ∆k − X2k+1hk sin ∆k, (12)

where the random variables {Xi}i=2k,2k+1 are defined as:

Xi =
L−2∑
m=0

Yi,m [(1 − νk) + a0,ma0,m+1νk]

+ Yi,L−1νk + Yi,L(1 − νk), (13)

and where the (L − 1) possible chip combinations of
{a0,ma0,m+1}L−2

m=0 can be categorized into two sets according
to whether there is a chip value change or not. Let B and A
denote the number of chip boundaries both with and without
chip-value transitions within the 0th user’s spreading sequence,
respectively [8]. Then we have A + B = L− 1 and A−B =
L−2∑
m=0

a0,ma0,m+1 = c0,0(1).

Since hk is a Rayleigh distributed random variable as
defined in Equation 5 and ∆k is uniformly distributed in
[0, 2π], the random variables, hk cos ∆k and −hk sin ∆k, are
independently and identically Gaussian distributed with zero-
mean and variance of σ2

k [30]. Hence II
k is also Gaussian

distributed conditioned on X2k and X2k+1 and its conditional
CF is given as follows:

Φ II
k|X2k,X2k+1

(ω) = exp
[
−1

2
(
X2

2k + X2
2k+1

)
σ2

kω2

]
(14)

Following a similar derivation to that in [1], the CF of II
k

conditioned on B can be expressed as:

ΦII
k |B(ω) = 2−2(L+1)

∑
d1∈A

∑
d2∈B

∑
d3∈A

∑
d4∈B

(
A

d1+A
2

)(
B

d2+B
2

)

×
(

A
d3+A

2

)(
B

d4+B
2

) 15∑
l=0

ΦII
k |λ0,λ1,λ2

(ω), (15)

where the sets A, B are defined as:

A= {−A,−(A − 2), ..., A − 2, A},
B = {−B,−(B − 2), ..., B − 2, B}. (16)

The conditional CF ΦII
k |λ0,λ1,λ2

(ω) is defined as:

ΦII
k |λ0,λ1,λ2

(ω) =

exp
(
−1

2
λ0σ

2
kω2

)
, if λ1 = λ2 = 0,

1
λ1σ2

kω2

[
1 − exp

(−λ1σ
2
kω2

)]
exp

(
−1

2
λ0σ

2
kω2

)
,

if λ1 �= 0, λ2 = 0,√
π

σkω
√

2λ2

exp
[
1
2
σ2

kω2

(
λ2

1

λ2
− λ0

)]
×

{
erfc

(
λ1σkω√

2λ2

)
− erfc

[
σkω

√
λ2

2

(
1 +

λ1

λ2

)]}
,

if λ2 �= 0,

(17)

where the complementary function erfc(x) is defined as in [28]
and the coefficients λ0, λ1 and λ2 are given by:

λ0 = (d1 + d2 + Y2k,L)2 + (d3 + d4 + Y2k+1,L)2,
λ1 = (d1 + d2 + Y2k,L)(−2d2 + Y2k,L−1 − Y2k,L)

+ (d3 + d4 + Y2k+1,L)(−2d4 + Y2k+1,L−1 − Y2k+1,L),
λ2 = (−2d2 + Y2k,L−1 − Y2k,L)2

+ (−2d4 + Y2k+1,L−1 − Y2k+1,L)2.
(18)

Since the co-channel interference contributions {II
k}K−1

k=1

conditioned on B are mutually independent [1], [8], the CF

of the total in-phase interference II =
K−1∑
k=1

II
k conditioned on

B is given by:

ΦII |B(ω) =
K−1∏
k=1

ΦII
k |B(ω). (19)

Hence the in-phase BER of the 0th user conditioned on B can
be shown to be [1]:

P I
e|B =

1
2
− σ0L√

2π

∫ ∞

0

ΦI|B(ω)ΦηI (ω) exp
(
−1

2
σ2

0L2ω2

)
dω,

(20)
where ΦηI (ω) is the CF of the in-phase noise ηI :

ΦηI (ω) = exp
(
−1

2
σ2

ηI ω
2

)
. (21)

Then the average in-phase BER of the 0th user is obtained by
averaging P I

e|B over all spreading sequences:

P I
e = 2−(L−1)

L−1∑
B=0

(
L − 1

B

)
P I

e|B . (22)

Following the same approach, we may conclude that the
average quadrature-phase BER, PQ

e , of the 0th user has the
same value as the average in-phase BER, P I

e . Finally, we arrive
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Fig. 1. The BER versus the number of users K in an asynchronous DS-
CDMA system using random spreading sequences and QPSK modulation.
The length of the random spreading sequences is L = 7 and 31, respectively,
the average power of all users at the receiver is equal and the background
noise is ignored, i.e. when γSNR = ∞.

at the overall average BER, Pe, averaged over both the in-
phase and quadrature-phase branches of the 0th user, yielding:

Pe =
1
2
(P I

e + PQ
e ) = P I

e . (23)

B. Standard Gaussian Approximation

Owing to its simplicity, the SGA is widely used for perfor-
mance analysis, when the number of interferers is sufficiently
high, where the MAI is assumed to be Gaussian owing to the
CLT [30].

The variance of the interference II
k in Equation 12 can be

obtained by averaging II
k over νk, hk, ∆k and all spreading

sequences, yielding:

σ2
II

k
=

4
3
Lσ2

k (24)

Hence the average BER approximated by SGA can be
shown to be:

Pe ≈ 1
2

1 − 1√√√√1 +
σ2

ηI

σ2
0L2

+
4

3L

K−1∑
k=1

σ2
k

σ2
0

 . (25)

IV. NUMERICAL RESULTS

We will compare the results obtained by our accurate
analysis provided in Section III-A, by the SGA of Section III-
B, by the BPSK system of [1] and those of our simulations
described in this section.

Figure 1 shows that the results obtained by our accurate
analysis exactly match those obtained by simulations for
two different-length random spreading sequences, when using
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Fig. 2. The BER versus per-bit SNR in an asynchronous DS-CDMA system
using random spreading sequences and QPSK modulation. The length of the
random spreading sequences is L = 7 and 31, respectively, the average power
of all users at the receiver is equal. The number of users is K = 4.

L = 7 and 31. However, the SGA over-estimates the BER,
especially in the scenario, where there is a low number of
interfering users and when short spreading sequences are used.
The BER of QPSK system is higher than that of BPSK systems
due to the cross-talk between the in-phase and quadrature-
phase branches.

Similar to Figure 1, Figure 2 also shows that the results
obtained by our accurate analysis match those obtained by
simulation for both different-length random spreading se-
quences, i.e. for L = 7 and 31. By contrast, the SGA slightly
over-estimates BER, particularly, when the SNR is high and
where short spreading sequences are used. The BER of QPSK
systems is higher than that of BPSK systems due to the cross-
talk between the in-phase and quadrature-phase branches.

V. CONCLUSION

In this paper we investigated the average BER performance
of an asynchronous DS-CDMA system using I/Q modulation
and random spreading sequences, when communicating over
Rayleigh channels. A new closed-form expression was derived
for the conditional CF of the MAI. Furthermore, an accu-
rate expression based on the CF approach was provided for
calculating the average BER of the system, which requires
only a single integration. The accuracy of our accurate BER
expression was confirmed by our simulation results for various
spreading sequence lengths. By contrast, the limited accuracy
of the SGA was also demonstrated, which becomes more
prevalent when a low number of interferers is encountered
and short spreading sequences are used.
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