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Abstract— In this contribution, we analyze the bit error rate
(BER) performance of fast frequency hopping (FFH) assisted
M -ary frequency shift keying (MFSK) using product combining.
Product combining constitutes an efficient yet low-complexity
scheme that may be employed in FFH-MFSK receiver to combat
the detrimental effects of interference or jamming. We propose
a novel approach to the analysis of this receiver system, which
is based on the Mellin transform. Using this approach, the
probability density function (PDF) of the product combiner
output is expressed in a closed form. Based on the resultant
PDF, the BER of the FFH-MFSK product combining receiver
operating in Rayleigh fading channel is evaluated analytically. It
is shown that the Mellin transform simplifies the analysis of the
product combining receiver.

I. INTRODUCTION

The fast frequency hopping (FFH) product combining
(PC) receiver has been shown to combat both partial band
noise jamming (PBNJ) and multitone jamming (MTJ) ef-
ficiently [1]–[4] In [1]–[4], the authors have analyzed the
product combining based FFH binary frequency shift keying
(BFSK) receiver under various fading and jamming conditions,
employing the characteristic function [5] and using natural
logarithm to convert the product into summation, for the
sake of deriving the probability density function (PDF) of
the product combiner output. The problem associated with
the characteristic function based analysis is that closed form
expressions for PDF of the product combiner output cannot be
readily obtained. Consequently, the symbol error probability is
expressed using a double integral when BFSK is considered.
For M -ary FSK (MFSK), the corresponding expression is
expected to be more complicated, involving multiple integrals.
In [6], the employment of Fox’s H-functions was proposed to
derive the PDF of the diversity combiner output and the BER
of FFH-BFSK PC receiver. In their analysis, the authors of [6]
have exploited the fact that a product of H-functions is also an
H-function [7]. The authors [6] have also employed another
technique which consists of generalized F -variates for the
sake of deriving the corresponding BER expressions. However,
this later method is more computationally demanding. The
methods proposed in [6] have been shown to work well for
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BFSK system, when Rayleigh fading channels are considered.
However, they might lead to more computationally cumber-
some formulae when applied to M -ary systems. Moreover,
as reported by the authors of [6], the H-function may not be
readily invoked for the sake of deriving the PDF of the product
combiner output, when more generalized forms of fading such
as Rician and Nakagami model are considered.
In this paper, we employ the Mellin transform [7], [8] to
analyze PC aided FFH-MFSK. The Mellin transform is an
integral transform, similar to Laplace and Fourier transform.
The Mellin transform of a random variable is related to its PDF
and the Mellin transform of a product of random variables
is the product of the Mellin transforms of the individual
random variables [7], [8]. This fact allows us to derive the
PDF of the product combiner output which can in turn be
used to determine an expression characterising the bit error
rate (BER) of the system. It will be shown that the proposed
Mellin transform based technique substantially simplifies the
BER analysis of the PC aided FFH-MFSK system and hence
facilitates for the first time the analysis of M -ary FSK based
FFH PC assisted receiver.
The remainder of this paper is structured as follows. In
Section II, the system under consideration is briefly described.
In Section III, the proposed Mellin transform based technique
is discussed and both the relevant statistics as well as the
corresponding BER expression are derived. In Section IV our
numerical results are discussed and compared with simulation
results. Finally, in Section V, our conclusions are presented.

II. SYSTEM DESCRIPTION

The system under consideration is similar to that considered
in [2] and [6], except that we consider an M -ary FSK system,
where we have M ≥ 2. In the FFH-MFSK transmitter the
MFSK signal modulates a carrier generated by a frequency
synthesizer, which is controlled by an L-tuple address output
by a pseudo-noise (PN) generator in order to implement
frequency hopping, where L is the number of frequency hops
per symbol. Hence, the FFH frequency is changed L times
within each symbol duration. Thus, the hop or chip interval Th

is related to the symbol interval Ts by the relation Th = Ts/L.
Correspondingly, the bandwidth occupied by the signal trans-
mitted during each FFH chip interval is approximated by that
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Fig. 1. Receiver schematic of the FFH-MFSK system using PC

of its main spectral lobe occupying Rh = 1/Th. The frequency
separation between adjacent frequency tones is assumed to
be Rh. Thus, the orthogonality of the FFH frequencies is
maintained. The channel is modeled as flat Rayleigh fading
channel for each of the transmitted frequencies. We assume
that the frequency separation between adjacent signalling
frequencies is higher than the coherence bandwidth of the
channel. Therefore, all FH tones conveying the same symbol
experience independent fading. The transmitted signal is also
corrupted by additive white Gaussian noise (AWGN) of one-
side power spectral density N0.

The block diagram of the FFH M -ary FSK receiver is
shown in Fig. 1 which is constituted by a bandpass filter, a
frequency de-hopper, M branches of the noncoherent MFSK
demodulator and finally a decision device. The bandpass filter
(BPF) of Fig. 1 removes any frequencies that fall outside the
spread spectrum bandwidth Wss. The de-hopper consists of a
PN generator, which is identical to and aligned with the PN
generator of the transmitter, as well as a frequency synthesizer
and a multiplier. The de-hopper de-spreads the recieved signal
by exploiting the knowledge of the transmitter’s unique FFH
address. Each of the M demodulator branches corresponds to
an MFSK tone and consists of a BPF, a square-law detector
and a product combiner, as shown in Fig. 1.

III. BER ANALYSIS

We assume without loss of generality that the first of the M
tones is activated by the transmitter. It can be shown that the
PDF of the detector output corresponding to the signal tone
normalized by the noise variance is given by [5], [6]

fU0l
(x) =

1
1 + γh

e
−x

1+γh = ae−ax, x ≥ 0, (1)

where γh = γc/L is the signal to noise power ratio (SNR) per
hop, γc is the SNR per symbol and a = 1/(1+γh). Similarly,
corresponding to all the undesired tones m = 1, 2, . . . ,M −
1, the PDF of the the square-law detector output, which is
normalized by the noise variance, is given by

fUml
(x) = e−x, x ≥ 0,m > 1. (2)

A. Mellin Transform

The Mellin transform of a function f(x) is defined as [9]

M [f(x), z] =
∫ ∞

0

xz−1f(x)dx. (3)

In terms of probability theory, the Mellin transform of a
random variable is defined based on its PDF. Specifically,
the Mellin transforms of the PDFs given by (1) and (2)
characterising the variables U0 and Um,m = 1, 2, . . . ,M − 1
respectively, may be expressed as

M [fU0l
(x), z] =

∫ ∞

0

xz−1fU0l
(x)dx = a1−zΓ(z) (4)

and

M [fUml
(y), z] = Γ(z), m = 1, 2, . . . ,M − 1, (5)

where the results of (4) and (5) have been obtained using the
transform tables [10].
Now, according to the properties of the Mellin transform,
the transform of the product of random variables is equal
to the product of the Mellin transforms of the individual
random variables [7], [8]. Thus, if Zm =

∏L−1
l=0 Uml, m =

0, 1, . . . ,M − 1, represents the output of the mth product
combiner shown in Fig. 1, we have

M [fZm
(y), z] =

L−1∏
l=0

M [fUml
(x), z], m = 0, 1, . . . ,M − 1. (6)

Since the faded random variables in all hops are independent
and identically distributed, from (6) we have

M [fZm
(y), z] =

(
M [fUml

(x), z]
)L

, m = 0, 1, . . . ,M − 1. (7)

Hence, with the aid of (4), for the signal tone we have

M [fZ0(y), z] =
(
M [fU0l

(x), z]
)L

= aL(1−z)ΓL(z), (8)

while, from (5) for m = 1, 2, . . . ,M − 1, we have

M [fZm
(y), z] =

(
M [fUml

(x), z]
)L

= ΓL(z). (9)

B. Inverse Mellin Transform

The PDF of Zm,m = 0, 1, . . . ,M − 1 can be obtained as
the inverse Mellin transform of the expressions given in (8)
and (9). The inverse Mellin transform is defined as [7]

f(x) =
∫ c+i∞

c−i∞
x−zM [f(x), z]dz, (10)

where i =
√−1 and the integration is along any path Re(z) =

c, such that M [f(x), z] exists and is an analytic function of the
complex variable z for c1 ≤ Re(z) ≤ c2 and c lies between
the two real points c1 and c2. Thus, from (8) for the signal
tone

fZ0(y) =
∫ c+i∞

c−i∞
y−zaL(1−z)ΓL(z)dz. (11)

From the Residue Theorem [7], [9], [11], we know that the
complex integral at the right-hand side of the above equation
can be computed by summing the residues of the integrand
associated with all its poles. Thus, we have

fZ0(y) =
∑

j

Res

[
aL(1−z)y−zΓL(z)

]
(z=−j)

, (12)



where Res[.]j represents the residue at the jth pole of the
integrand and the summation is carried out over all possible
values of j. The PDF of Z0 can be determined numerically
from (12) by using symbolic mathematics based softwares
such as Maple or Mathematica, employing the appropriate
function for finding residues of an integrable expression. How-
ever, it is insightful to derive analytical expressions for (12).
It can be shown with the aid of [11], [12] that the function Γ(z)
has an infinite number of poles at z = −j for j = 1, 2, . . ..
The residue of Γ(z) at z = −j is given by [11], [12]

Γ(z)(z + j)|(z=−j) =
(−1)j

j!
. (13)

Now, ΓL(z) in (12) has an Lth-order pole at each integer value
of z = −j. Consequently, using the corresponding relationship
characterising the residues of multiple poles [7], [11], [12] and
the Leibnitz’ rule [12] for higher order derivatives of a product
of functions, the PDF of Z0 may be expressed as

fZ0(y) =
aL

(L− 1)!

∞∑
j=0

L−1∑
r=0

(
L− 1
r

)

×
[
U (r)(z)V(L−1−r)(z)

]
(z=−j)

, (14)

where U(z) = (aLy)−z and V(z) = ΓL(z)(z + j)L, while
U (r)(z) and V(r)(z) denote the rth derivatives of U(z) and
V(z), respectively.
The rth derivative of U , when evaluated at z = −j, can be
readily expressed as

U (r)(z)|(z=−j) = [− ln(aLy)]r(aLy)j . (15)

In order to derive an expression for the rth derivative of V(z),
we first express V(z) as [6]

V(z) = ΓL(z)(z + j)L =
ΓL(z + j + 1)∏j
k=1(z + j − k)L

. (16)

When evaluated at z = −j, V(z) can be expressed as

V(z)|(z=−j) =
(−1)jL

(j!)L
. (17)

Next, we note that we have [6]

dV(z)
dz

= V(z)
d[lnV(z)]

dz
. (18)

Moreover, d[ln Γ(z)]/dz = ψ(z) holds, where ψ(.) is the Psi
function [12]. Thus, it can be shown that

V(1)(z)|(z=−j) = L
(−1)jL

(j!)L

[
ψ(1) −

j∑
k=1

1
(−k)

]
, (19)

where ψ(1) ≈ −0.5772156649, which equals the negative of
the Euler’s constant [12]. The higher order derivatives of V(z)
can be derived from (19). Thus, we have

V(r)(z) =
dr−1

dzr−1
[V(1)(z)]. (20)

Using Leibnitz’ rule [12] in the context of (20), we arrive at

V(r)(z)|(z=−j) = L

{
r−1∑
t=0

(
r − 1
t

)
V(t)(z)|(z=−j)(−1)r−t

× (r − 1 − t)!
∞∑

k=0

[ 1
(1 + k)r−t

]

+
r−1∑
t=0

(
r − 1
t

)
V(t)(z)|(z=−j)

j∑
k=1

1
(k)r−t

}
, (21)

where we have used the rth derivative of ψ(x) given by [12]

ψ(r)(x) = (−1)r+1r!
∞∑

k=0

[ 1
(x+ k)r+1

]
. (22)

We note that the expression given by (16) does not hold at
z = j = 0. Thus, for z = j = 0 we denote V(z) by V0(z) =
zLΓL(z) = ΓL(z + 1). Then using the method employed to
derive (21), it can be shown that

V(r)
0 (z)|z=0 = L

r−1∑
t=0

(
r − 1
t

)
V(t)

0 (z)|(z=0)(−1)r−t

× (r − 1 − t)!
∞∑

k=0

[ 1
(1 + k)r−t

]
. (23)

Having derived the expressions for all the derivatives of V(z)
given by (21) for j > 0 and by (23) for j = 0, as well as
those of U(z) given by (15), the PDF of Z0 can be determined
from (14). The PDF of Zm, m > 0 can also be determined
from (14), in conjunction with a = 1 in (15). Finally, the
probability of symbol error can be evaluated as [5]

Ps = 1 −
∫ ∞

0

fZ0(y0)
[ ∫ y0

0

fZm
(ym)dym

]M−1

dy0. (24)

Correspondingly, the BER can be determined using the re-
lation [5] Pb = M/2

M−1Ps. Alternatively, we can express the
probability of symbol error as [5]

Ps = 1 −
∫ ∞

0

fZ0(y0)
[
FZm

(y0)
]M−1

dy0, (25)

where FZm
(y0) is the cumulative distribution function (CDF)

of Zm,m > 0, which is given by

FZm
(y0) =

∫ y0

0

fZm
(ym)dym. (26)

By using the Mellin transform of the integral of a function [9],
[10], we have

M [FZm
(y0), z] = −1

z
ΓL(z + 1). (27)

Upon taking the inverse Mellin transform according to (10),
the CDF of Zm,m > 0 may be expressed employing the
technique used to derive the expression for the PDF of Z0

given by (14). The corresponding expression has not been
included here owing to lack of space. Therefore, Ps can also
be computed using (25), which involves only one integration
rather than two integrations, as seen in (24).
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Fig. 2. The PDF of the product combiner output corresponding to the desired
signal tone for FFH 4-ary FSK communicating in Rayleigh fading channel,
assuming Eb/N0 = 10dB and various values of L.

IV. NUMERICAL RESULTS AND DISCUSSION

The PDF and the CDF given by (14) and (26) respectively
have to be evaluated numerically. Note that the infinite series
seen in (14) should be convergent in order to allow the
computation of the PDF from a finite number of terms. It
has been found that residues for j ≤ 20 are sufficient for
computing the PDF and the BER sufficiently accurately. In
order to perform the infinite integration seen in (24), plotting
the PDF fZ0(y0) can assist us in finding the value of Z0 at
which the PDF converges. In Fig. 2, we have plotted the PDF
of the product combiner output corresponding to the desired
signal tone for FFH-4FSK, assuming Eb/N0 = 10dB and
various values of the diversity order. It can be seen from Fig. 2
that the PDF curve becomes flatter and its tail gets longer upon
increasing the values of L. This is expected, because owing to
the multiplication invoked in the combiner, there is a non-
zero probability of Z0 attaining high values, if L is high.
Thus for high values of L, the PDF converges slowly. The
effects of the SNR on the PDF of the product combiner output
corresponding to the desired signal tone is shown in Fig. 3.
As expected, the results of Fig. 3 show that the convergence
of the PDF is slow when the SNR is high, because it may
result in high symbol energy and, consequently, high expected
combiner output value. Increase of modulation order M has
similar effect (not shown) on the PDF curves. However, the
effect of increasing the modulation order on the shape of the
PDF is not as significant as that of the SNR.
Thus, the evaluation of the PDF from (14) is computationally

cumbersome for large values of M , L and SNR. An influential
factor that facilitates the numerical evaluation of the BER is
the fact that the CDF of the combiner output for non-signal
tones rapidly approaches unity, as seen in Fig. 4, which is
valid for a wide range of L values. Thus, while using (25),
FZ0(ym) may be replaced by unity for the sake of approximate
computation of the symbol error rate. Specifically, we may

SNR=5dB
SNR=10dB
SNR=15dB

 

0

0.02

0.04

0.06

0.08

0.1

PDF

10 20 30 40 50

Z

Fig. 3. The PDF of the product combiner output corresponding to the
desired signal tone, for FFH 4-ary FSK communicating over a Rayleigh fading
channel, assuming L = 2 and various values of Eb/N0.
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Fig. 4. The CDF of the product combiner output corresponding to the
non-signal tone, for FFH 4-ary FSK communicating over a Rayleigh fading
channel, assuming Eb/N0 = 10dB and L = 2 and 6.

modify (25) as

Ps ≈ 1 −
[ ∫ Z0i

0

fZ0(y0)
[
FZm

(y0)
]M−1

dy0

+
∫ Z0t

Z0i

fZ0(y0)dy0

]
, (28)

where Z0i is a suitably chosen value of Z0, such that[
FZm

(y0)
]M−1

≈ 1 at Z0 > Z0i, and Z0t is an appropriate
substitute for +∞.
Using the approximation seen in (28), we have evaluated the

BER and plotted it in Fig. 5 for M = 4, assuming various
values of L. It can be seen that our analytic technique is
fairly accurate and the results obtained match the simulation
results for most values of the SNR in the range below 15 dB.
In Fig. 6, both analytical and simulation results are provided



for the BER of the system assuming L = 4 and various
values of M . We observe that except for a slight difference
for M = 64 at Eb/N0 = 15dB, all analytical results tally
with the corresponding simulation results. This inaccuracy
accrues from the approximation invoked in (28), as explained
above. In general, for Eb/N0 ≥ 20dB, accurate computation
of BER is difficult and some precision has to be sacrifised.
Some values of the BER at Eb/N0 = 20dB, assuming various
modulation and divesity orders are listed in Table I. As the
results suggest, the BER values obtained analytically differ
from the simulation results, for high M and L values, for
example, when we have M = 2 and L = 5 or M = 4 and
L = 4. Nonetheless, the results are fairly reliable for most
values of Eb/N0, M and L of practical interest.
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Fig. 5. Comparison of the analytical and simulation results of the BER
versus the SNR performance of FFH 4-ary FSK PC receiver communicating
over a Rayleigh fading channel, assuming various L values.
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Fig. 6. Comparison of the analytical and simulation results of the BER versus
the SNR performance of FFH M -ary FSK PC receiver communicating over
a Rayleigh fading channel, assuming L = 4 and for various values of M .

V. CONCLUSION

We have used the Mellin transform to analyze the PC aided
receiver used in a FFH-MFSK system, operating in a Rayleigh
fading channel. Employing the proposed Mellin transform
based technique, the PDF of the product combiner output was
determined in a closed form, as seen in (14). With the aid of

the PDF, the BER of the system was evaluated numerically.
The proposed technique has been shown to be accurate and
the analytical results obtained using (14) and (28) match the
simulation results for most practical values of the modulation
order, the diversity order L ≤ 5 and Eb/N0 ≤ 15dB. For
large values of L and Eb/N0, the PDF of the combiner ouput
corresponding to the desired signal tone becomes flatter and
converges slowly, resulting in less accurate computation of
the BER. The proposed method can readily be applied to a
scenario where the channel is interferred by PBNJ or MTJ.
Furthermore, the analysis of the PC aided receiver in more
generalized fading conditions, e.g. Rician or Nakagami-m
channels, may also be undertaken, since the relevant Mellin
transforms exist [10].

TABLE I

COMPARISON OF THE ANALYTICAL AND SIMULATION BER RESULTS FOR

THE FFH-MFSK PC RECEIVER IN A RAYLEIGH FADING CHANNEL, FOR

Eb/N0 = 20dB AND VARIOUS VALUES OF M AND L.

M L BER
Analytic Simulation

2 2 0.00266 0.00266
2 3 0.001018 0.001013
2 4 0.0004747 0.004628
2 5 0.000331 0.000259
4 2 0.001121 0.0010895
4 3 0.0003013 0.00028983
4 4 0.0001042 9.5066e-5
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