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Abstract—In this contribution, the application of fully connected recur-
rent neural networks (FCRNNs) is investigated in the context of narrow-
band channel prediction. Three different algorithms, namely the real time
recurrent learning (RTRL), the global extended Kalman filter (GEKF) and
the decoupled extended Kalman filter (DEKF) are used for training the re-
current neural network (RNN) based channel predictor. Our simulation
results show that the GEKF and DEKF training schemes have the potential
of converging faster than the RTRL training scheme as well as attaining a
better MSE performance.

I. INTRODUCTION

Adaptive modulation is capable of substantially improving the
achievable system performance, provided that the relevant channel
state information (CSI) can be accurately predicted [1], [2]. In high-
rate broad-band wireless systems the carrier frequency has to be high,
which results in a high Doppler frequency. For systems using CSI
feedback, the outdated information estimated based on the past data
may not be sufficiently accurate. Hence an improved accuracy may be
achieved with the aid of CSI prediction [3].

In the context of channel prediction [4], [5], amongst others, sub-
space based algorithms have been investigated. In [4], [5] the complex-
valued flat fading process was modeled in the baseband as the summa-
tion of a number of sinusoids. Then the ROOT-MUSIC [4] and the
modified ESPRIT [5] algorithms were invoked for estimating the fre-
quencies of sinusoids, followed by determining their amplitudes. The
complex-valued future fading channel can then be linearly predicted.

Another alternative is to model the channel by a tapped delay line
[2], [6], which can be accurately predicted by a linear predictor [3].
However, a specific drawback of the linear predictor is that the chan-
nel’s correlation coefficients must be estimated from the channel-
impaired received data, which degrades the attainable performance of
the linear predictor.

As a design alternative, neural networks have also been proposed
for the task of channel prediction [7], [8], [9], since they can be trained
to learn from the past statistics, which can be exploited for predicting
the future. In [7], the multilayer perceptron (MLP) neural network
was invoked for predicting the future channel using the ITU-T channel
model. By contrast, in [8], [9] a channel predictor based on a hybrid
neural network was proposed, which employed Jake’s channel model
[10] and outperformed the linear Heinonen-Neuvo (H-N) predictor [8].

RNNs [11] constitute a special class of neural networks, which have
the capability of generating feedback information from the outputs.
Hence RNNs may be viewed as being analogous to infinite impulse
response (IIR) filters and have hence found numerours applications in
the field of signal processing [11], [12].

In this contribution we investigate the application of RNNs in terms
of narrowband complex-valued channel prediction. Specifically, in our
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scheme the so-called fully connected RNN (FCRNN) [11], [12] is in-
voked and three different training algorithms, namely the real time re-
current learning (RTRL) [13], [14], the global extended Kalman filter
(GEKF) and the decoupled extended Kalman filter (DEKF) [15], [16]
algorithms are investigated.

The outline of the paper is as follows. Section II describes the RNN-
based channel predictor invoked for predicting the narrowband chan-
nel, while Section III briefly characterises the three different training
algorithms used, namely the RTRL, GEKF and DEKF employed in
FCRNNs. The simulation results are discussed in Section IV, while
our conclusions are offered in Section V.

II. PROBLEM FORMUALTION

For a narrowband fading channel, the sampled received signal r(k)
is given by

r(k) = c(k)b(k) + n(k), (1)

where c(k) is obtained by sampling the complex-valued fading chan-
nel c(t) at the time instant of t = kTb and Tb is the data symbol
duration, b(k) is the kth transmitted symbol value, while n(k) is a
complex-valued discrete AWGN process having a variance of N0/2
per dimension.

As we can see in Fig.1, the received data r(k) of Eq.(1) is fed into a
detector for the sake of generating the detected data b̂(k), which is the
estimate of the transmitted data b(k). Then a decision-directed channel
estimator (DDCE) is invoked for generating the narrowband channel
estimate c̃(k), which can be expressed as

c̃(k) =
r(k)

b̂(k)

= c(k)
b(k)

b̂(k)
+

n(k)

b̂(k)
. (2)

The delayed output of the DDCE constitutes a (P × 1)-dimensional
vector c̃(k), which is expressed as

c̃(k) = [c̃(k), · · · , c̃(k − P + 1)]. (3)

Then c̃(k) of Eq.(3) is fed into the RNN-based channel predictor in
order to generate the complex-valued predicted channel sample ĉ(k +
1).

The internal structure of the RNN-based channel predictor is shown
in Fig.2. The family of FCRNNs constitutes a specific subclass of
RNNs, where every single neuron of the output layer seen in Fig.2
is fed back into the input layer and every neuron of the input layer is
connected to every neuron of the output layer in the network [11], [12].

In this section we assume that the reader is familiar with the oper-
ational principles of FCRNNs, which have been documented for ex-
ample in [11], [12]. More specifically, Fig.2 shows an FCRNN, which
consists of N activation neurons having P external inputs as well as a
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Fig. 1. Schematic of the RNN-based channel predictor
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Fig. 2. A fully connected recurrent neural network

fixed bias input bbias. The network has two distinct layers consisting of
the external input-feedback layer and a layer of processing elements.
Let the (N × 1)-dimensional vector y(k) = [yl(k), · · · , yN (k)]T

denote the complex-valued output vector of all the neurons at time
index k, where yn(k) is the complex-valued output of the nth neu-
ron, n = 1, · · · , N and the (P × 1)-dimensional vector s(k) =
[s(k − 1), · · · , s(k −P )]T denotes the complex-valued external input
vector at time index k. Furthermore, let the bias be bbias = (1 + j),
where j =

√−1. Then the (P + 1 + N) × 1-dimensional combined
input vector ρ(k) of the network seen in Fig.2 represents the concate-
nation of the vectors s(k), bbias and y(k − 1), which is given by

ρ(k) =




s(k)
bbias

y(k − 1)




= [s(k − 1), · · · , s(k − P ), 1 + j, y1(k − 1), · · · , yN (k − 1)]T

= ρ(r)(k) + jρ(i)(k), (4)

where the superscripts (·)(r) and (·)(i) denote the real and imagi-
nary parts of the argument, respectively. Assuming that the outputs

of the first M neurons are the outputs of the FCRNN, the (M × 1)-
dimensional output vector of the FCRNN yo(k) can be expressed as

yo(k) = [y1(k), · · · , yM (k)]T , 1 ≤ M ≤ N. (5)

In the context of narrowband channel prediction, we have

[s(k − 1), · · · , s(k − P )] = [c̃(k), · · · , c̃(k − P + 1)]. (6)

Furthermore, the number of outputs of the FCRNN is M = 1. There-
fore, in Eq.(5) the output vector yo(k) seen in Fig.2 and representing
the predicted fading channel is reduced to a scalar yo(k), which is
given by

yo(k) = y1(k) = ĉ(k + 1). (7)

Let wn,l denote the complex-valued weight of the FCRNN, which
connects the nth neuron and the lth input, where we have 1 ≤ n ≤ N
and 1 ≤ l ≤ (P + 1 + N). Then the input of the nth node at time
index k is given by

netn(k) =

P+1+N∑
l=1

wn,l(k)ρl(k)

= n
(r)
etn

(k) + jn
(i)
etn

(k), (8)

where n
(r)
etn

(k) and n
(i)
etn

(k) are the real and imaginary parts of
netn(k), respectively, which can be expressed as [13]

n
(r)
etn

(k) =

P+1+N∑
l=1

[w
(r)
n,l(k)ρ

(r)
l (k) − w

(i)
n,l(k)ρ

(i)
l (k)], (9)

n
(i)
etn

(k) =

P+1+N∑
l=1

[w
(r)
n,l(k)ρ

(i)
l (k) + w

(i)
n,l(k)ρ

(r)
l (k)]. (10)

The output of the nth activation neuron can be expressed as [13], [14]

yn(k) = Φ(netn(k))

= f(n
(r)
etn

(k)) + jf(n
(i)
etn

(k))

=
1

1 + e−n
(r)
etn

(k)
+ j

1

1 + e−n
(i)
etn

(k)
, (11)



where Φ is a complex-valued nonlinear activation function, while f(·)
is the real-valued input and real-valued output function, which was
chosen to be the logistic sigmoid function expressed as [11]

f(x) =
1

1 + e−x
, (12)

where x is real-valued.
Let dm(k), 1 ≤ m ≤ M be the correponding desired output of the

mth neuron. Then the (M × 1)-dimensional desired output vector of
the FCRNN do(k) can be expressed as

do(k) = [d1(k), · · · , dM (k)]T , 1 ≤ M ≤ N. (13)

In the context of narrowband channel prediction, the desired output
vector do(k) is reduced to a scalar and physically corresponds to the
actual fading channel sample c(k + 1), which is given by

do(k) = d1(k) = c(k + 1). (14)

Consequently, the error e(k) seen in Fig.3, represents the discrep-
ancy between the actual fading channel sample c(k + 1) and the pre-
dicted fading channel ĉ(k + 1), which is given by

e(k) = c(k + 1) − ĉ(k + 1). (15)

Then the cost function (CF) of

E(k) =
1

2
|e(k)|2 (16)

is invoked by a training algorithm to generate the updated RNN
weights, as shown in Fig.3 until a satisfactorily low mean square error
value (MSE) is obtained.

III. TRAINING ALGORITHMS FOR FCRNNS

The RTRL algorithm is the most widely used technique of training
RNNs, which was first proposed in [18] for real-valued cases, where
all the inputs, outputs, weights and activation functions are assumed
to be real-valued. However, in many practical applications the inputs
and outputs of a dynamic system are best described as complex-valued
signals [17]. In such cases, the real-valued RTRL algorithm has to be
extended to the complex-valued RTRL (CRTRL) [13], [14] .

Although the RTRL algorithm is popular owing to its reasonable
complexity, it is based on the gradient method using first-order deriva-
tives. Hence, it may exhibit an inferior convergence speed in compari-
sion to the more sophisticated learning techniques using second-order
derivatives [19].

The extended Kalman filter (EKF) [19] forms the basis of a second-
order neural network training method. The essence of the recursive
EKF procedure is that an approximate covariance matrix is generated,
which encapsulates second-order information about the training prob-
lem considered and the elements of the matrix evolve during the train-
ing process. Since Singhal and Wu introduced the EKF training algo-
rithm in [20] in the context of static forward neural networks (FNNs),
the EKF has constituted the basis of computationally efficient neu-
ral network based training techniques that facilitate the application of
FNNs and RNNs in diverse problems such as pattern classification
[15], [16], control [21], [22], channel equalization [23], [24], [25],
[26], etc.

In this contribution, the RTRL [13], [14], the GEKF and DEKF [15],
[16] training algorithms are investigated and compared.

Training algorithm RTRL GEKF/DEKF
Number of activations N 1 2
Number of external inputs P 9 9
Number of training data samples 5000 5000
Maximum Doppler frequency fdm 120 Hz 120 Hz
Data rate fb 4kbits/s 4kbits/s
Sampling rate fs 4kHz 4kHz
SNR 10dB 10dB
Learning rate 0.01

TABLE I
PARAMETERS USED BY THE RTRL, GEKF AND DEKF TRAINING

SCHEMES

IV. SIMULATION RESULTS

In the context of narrowband channel prediction, the range of the
real-valued logistic sigmoid function of Eq.(12) spans the interval of
(0, 1), hence the desired actual channel sample c(k + 1) has to be
adjusted so that it falls within this range. The adjusted desired actual
channel sample cs(k + 1) can be obtained by appropriately shifting
and scaling the original desired actual channel c(k + 1) sample with
the aid of the following equation

cs(k + 1) =
c(k + 1) + αs

ιs

=
(c(r)(k + 1) + α

(r)
s ) + j(c(i)(k + 1) + α

(i)
s )

ιs

= c(r)
s (k + 1) + jc(i)

s (k + 1) ιs �= 0, (17)

where αs is the complex-valued shift coefficient and ιs is the real-
valued scaling coefficient. Furthermore, α

(r)
s and α

(i)
s are the real and

imaginary parts of αs in Eq.(17), respectively. Specifically, in our
simulations, we had αs = 5 + j5 and ιs = 10.

In this paper, the MSE metric is used for quantifying the attainable
performance of the various fading channel predictors. More specifi-
cally, the resultant MSE is given by

MSE =
1

K

K∑
k=1

|c(k + 1) − (ĉs(k + 1)ιs − αs)|2

=
2

K
ι2s

K∑
k=1

E(k), (18)

where K is the total number of the channel samples, which were pre-
dicted after the training has been completed. Furthermore, in our sim-
ulations, BPSK modulation was employed and E(|c(k)|2) = 1 was
assumed.

Additionally, the parameters used by the RTRL, GEKF and DEKF
training schemes are listed in Table I.

In Fig.4 to Fig.5, the cost function value of Eq.(16) versus the num-
ber of training data samples is portrayed for the RTRL and DEKF train-
ing schemes, respectively. By comparing Fig.4 to Fig.5 we can observe
that the cost function value of Eq.(16) recorded for the DEKF train-
ing scheme converges faster to its steady-state value than the RTRL
training scheme. Furthermore, the GEKF training scheme results in a
similar convergence trend to that of the DEKF training scheme.

In Fig.6 the prediction error between the actual channel sample
c(k + 1) and the predicted channel sample ĉ(k + 1) of the three train-
ing schemes is characterized with the aid of their Probability Density
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Fig. 4. Cost function value of Eq.(16) versus the number of training data
samples for the RTRL training scheme. The remaining parameters were sum-
marized in Table I.
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Fig. 5. Cost function value of Eq.(16) versus the number of training data
samples for the DEKF training scheme. The remaining parameters were sum-
marized in Table I.
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The remaining parameters were summarized in Table I.

Training algorithm RTRL GEKF DEKF
MSE 0.0602 0.0556 0.0556

TABLE II
MSE PERFORMANCE

Dunction (PDF), when using the parameters of Table I. We can see
from Fig.6 that the PDF of the GEKF and DEKF training schemes is
higher than that of the RTRL training scheme, when the envelope error
is small and vice versa. In Fig.7 the envelope of the predicted complex-
valued channel samples generated by the DEKF training scheme are
compared to the actual channel samples.

Finally, in Table II, the MSE performance attained by the three train-
ing schemes using the parameters of Table I is characterized. We can
see from Table II that the GEKF and DEKF training schemes achieve
identical MSE performance, which are better than that of the RTRL
training scheme, but depending on the specific combination of system
parameters, these trends may change.

V. CONCLUSIONS

In this paper, the application of FCRNNs was investigated in terms
of narrowband channel prediction . Three different algorithms, namely
the RTRL, the GEKF and the DEKF were used for training the RNN
based predictor. Our simulation results demonstrated that the GEKF
and DEKF training schemes converge faster than the RTRL training
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scheme and obtain a better MSE performance. Our future research
consideres the employment of these techniques in wideband single-
and multi-carrier systems.
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