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Abstract the inner interface represent connection poirffered to bigraphs

that may fill sites; those in the outer interface represent free names
exported by the system.

Binding bigraphsextend this basic structure — known as pure
pigraphs — by allowing some of the ports of a node to be ‘bind-
Ing,” meaning that all other points linked to the port must lie inside
the node. A binding port enforces a notion of scope on a bigraph’s

giorgi, which we represent using a novel kind of link sorting called IS resembling in such a way the usual notion of binders intthe
and ther-calculus. Binding interfaces record topological informa-

subsorting Using the theory ofelative pushoutsve derive a la- . : - .
tion (viz., sites and roots), inner and outer namesets, as well as the

belled transition system which yield a coinductive characterisation bindi ¢ | 4 Fig. 1 dei binding bi h with
of a behavioural congruence for the calculus. The results obtained ?'NdiNg of names to locations. Fig. 1 depicts a binding bigraph wit

in this paper constitute a promising foundation for the presentation NNeT interface, (1xz}, 0. 0). {xo, X1, Xz}), reflecting that it consists

; i : : of three sites (shaded in the picture) only the first of which con-
?r:gzggtiunsgtz?gizﬁéirgs for the (polyadieralculus as sortings in tains a local name, the bind&s. The bigraph’souter interfaceis

(2,(0,0), {Yo, Y1, Y2}, with two roots, or locations (drawn in dashed
Categories and Subject Descriptors=.3.2 [Logics and Meanings  lines), and only global names.

of Program$. Semantics of Programming Languages—Process
models

Bigraphs have been introduced with the aim to provide a topo-
graphical meta-model for mobile, distributed agents that can ma-
nipulate their own communication links and nested locations. In
this paper we examine a presentation of type systems on bigraphical
systems using the notion of sorting. We focus our attention on the
typed polyadier-calculuswith capability typesa la Pierce and San-

General Terms Foundation of computation, semantics of concur-
rency, foundations of distributed and mobile systems.

Keywords Bigraphs, typed polyadig-calculus, sortings, subsort-
ing, bisimulation congruences, relative pushouts.

Introduction

Bigraphical reactive system@RS) [8] have been proposed as a
topographical meta-model for mobile, distributed agents that can
manipulate their own communication linkage and nested locations.
Bigraphs generalise both the link structure characteristic ofrthe
calculus and the nested location structure characteristic of the cal-
culus of Mobile Ambients. A bigraph consists of two overlapping
structures: place graphand alink graph The place graph is a tu-

Figure 1. A binding bigraph

Often when representing systems and calculi as bigraphical re-
active systems one needs to constrain the allowable compositions
of nodes and links. Examples of such constraints are Jensen’s rep-
resentation of ther-calculus with guarded sum [6], where for in-
stance nodes of a given contraim must not contain nodes of
the same sort as immediate children, or Leifer and Milner’s treat-
Sment of Petri nets [13], where transitions can only be connected to
“places and vice versa. gortingis used to enforce constraints such
as these on a class of bigraphs.

Thepolyadicr-calculus[14] is a generalisation of the monadic
n-calculus, whereby a single message can carry a tuple of names
rather than a single one. This has the immediate consequence that
communication can go ‘wrong’ in that communicating parties may
not agree on the number of names exchanged in a communication.
A type system is needed to ensure that only well-formed processes
are allowed by the formalism. In his original presentation of the
polyadicr-calculus in [14], Milner introduced a simple sorting dis-
cipline to ensure ‘arity’ safety of communications. Pierce and San-
giorgi presented in [17] a generalisation of Milner’s sorting with
Permission to make digital or hard copieg of all or part of this work for pers_on{il or capability typesand a structural subtype relation on sorts, which in
classropm use is gralnted without fee provided _that copies are r_mt made or dISt.“bL.HedadditiOn can ensure that WeII-typed processes Use names 0n|y for
for profit or commercial advantage and that copies bear this notice and the full citation . X . . SN
on the first page. To copy otherwise, to republish, to post on servers or to redistribute input (resp. output) actions, according to a predefined discipline.
to lists, requires prior specific permission gowh fee. Inspired by this work and following Jensen and Milner's encoding
PPDP’06 July 10-12, 20086, Venice, ltaly. of the #-calculus in binding bigraphs [8], we begin the study an
Copyright© 2006 ACM 1-59593-388/86/0007. ... $5.00. elementary theory of link-subtyping for bigraphical systems.

roots contain nodes which represent locations or process construc
tors. Some of the leaves may $igesto be filled by other bigraphs,

S0 giving rise to bigraphical (multi-hole) contexts. Each node is
typed with acontrolwhich prescribes its number pbrts The link
graph represents the system’s connectivity. It links together ports
and names in the bigraph’s inner and outer interfaces. Names in
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Related work. Place sortings enforce a discipline on the allowed

nesting of nodes in place graphs, and was introduced in [15] to rep-
resent guarded sums using a two-sorted syntax in finite pure CCS.

of pure bigraphs and their constituting place and link graphs is
given in Appendix A.
We define bigraphical reactive systems with respect to a binding

Place sortings have also been examined in [16], where the authorsignature and to an edge signaturebiAding signatureX” consists

puts forward the notion ofind bigraphs, i.e., bigraphs where the
notion of ‘atomic/‘non-atomic’ controls is generalised in order to

specify which kind of controls can be contained inside each other.
In his thesis [6], Jensen utilises place sortings and puts their foun-

of a set ofcontrols K € K, each equipped with a pair of finite
ordinals: abindingarity h and afreearity k, in symbolsK: h — k.
Controls represent the ‘node-types’ that may occur in a bigraph,
and the arities oK indicate respectively the number of binding

dation of a solid footing by means of general requirements on the and of freeports of a bigraph’'sK-nodes. We setr(K) = h + k.
sorting functors which ensure that they respect the behavioural the-Signatures also dictate which controls atemic(i.e. may contain

ory of the unsorted model. In [1] Birkedet al.investigate bigraph-

no nested bigraph), and declare each non-atomic control to be either

ical reactive systems as models for global ubiquitous computing. A active(i.e. allowing internal reactions to occur)passiveAs every

place sorting that partitions the set of controls in the system is de-

ployed to obtain the results in that paper.
Link sortings enforce requirements on the kind of linkage that
can occur in a bigraph. Leifer and Milner [13] introduce link sort-

node in a bigraph is associated with a control, a binding signature
completely prescribes the number of ports of each node, whether
they are binding or not, whether the node can contain other nodes,
and whether reaction can occur within the node. For instance, with

ings to encode condition-event Petri nets; the sorting ensures well-reference to the binding bigraph of Fig. 1, nodg@ndv, have a

formed bigraphs indeed represent Petri nets.

Sewell [20] generalised the capability types of Pierce and San-

giorgi to also contain information about locality, so that one can
distinguish between local, global communication, or no communi-
cation at all. In [5, 4] Hennesssgt al. investigate a distributed-

arity-one control, whilst the control associateditanust have arity
1 — 1 (the binding port being represented by the small circle on
the node).

An edge signatureS is simply a set ofedge controlsAt the
moment we associate no further information to edge controls; they

calculus together with a type system which generalises Pierce andshould therefore be thought as elementary edge-types that we will
Sangiorgi’'s by ensuring that processes only can access resourcesse in§3 to sort edges and express conditions on them.

they are given permission to. Contrary to Pierce and Sangiorgi’s,

the subtype relation iloc. cit. has bounded meets, a property which

A binding interfacés a triple(m, X, X), wherem — thewidth —
is a finite ordinal representing a list of sites or regiokss a finite

is essential to establish our results. Deng and Sangiorgi [3] use sim-set of names, an — thelocality map — is amrtuple of pairwise

ilar capability types and subtyping in order to study tlkeet of
types on the algebraic theory of the (monadi@alculus.

disjoint subsets oK which declares some of the namesXnas
local to specific places im. If x ¢ X thenx is said to beglobal.

Konig [12] presents a graphical approach to the asynchronous g ging interfaces describe bigraphs’ external connectivity in terms

polyadicn-calculus using a hypergraph rewriting semantics in the
double-pushout approach. The representation of prefix@srsli
crucially from ours: whilst Konig represents prefixes by labelling

edges with process graphs, we instead exploit the hierarchical na

ture (viz. nesting) of bigraphs. The work is extended in [11] to also
account for simple sorting in the style of Milner.

Technical contributions. The main technical contributions of this
paper are as follows.

> We lift the theory of [8] to a sorted setting3), and generalise
the definition of reflect pushouts (Definition 4).

> We introduce a sorting (Definition 6) which represents the ca-
pability types, and prove that it satisfies the requirements for
sortings (Theorem 4).

of number of regions and logglobal names. Each bigrajh has
both aninner faceand anouter face the former lists requirements
on bigraphs to be inserted i@, the latter has the dual role of

“describingG as a candidate for insertion in a larger bigraphical

context.

A pure bigraph is a bigraph with nor local names, i.e. whose
faces have trivial locality maps, nor binding ports. It consists of the
superimposition of two graph structures sharing a set nodes: the
place graph and the link graph (cf. Appendix A). Tslace graphs
determined by @arentmap, which describes the nesting of nodes
and gives rise to an ordered forest of trees. The number of trees is
determined by the width of the outer face; the number of sites by
the width of the inner face. Think graphis described by dink
map which connects inner names and nodes’ ports to outer names
and edges. Both nodes and edges are associated to their respective

> We derive and characterise labels (Lemma 3) using the bigraph- controls and& by a functionctrl.

ical theory ofrelative pushoutsand prove that we can limit our

Bigraphs with compatible interfaces and disjoint node and edge

attention to labels that do not introduce redundant subsorting sets can be composed. The compositiiG: | — 1”7 of G: | — I’

(Corollary 3).

Due to space limitation we have placed proofs and additional for-
mal work in the full version of this paper [2].

Structure of the paper. In §1 we recall the notion of binding

andH: I’ — 1” is obtained by replacing the’s ith site withG’s ith
region and by coalescing links as prescribed by the correspondence
of H’s inner andG’s outer names. The tensor produ&t® H is
defined for bigraphs with disjoint node, edge and name sets, giving
rise to the bigraph that can be drawn simply by puti&g@nd H

bigraph and their behavioural theory. The reader is referred to the Side by side. As tensor and composition are partial operations, this

appendix — and ultimately to the relevant literature — for a formal
introduction. We present link-sortings §8. In §4 we review the
polyadicn-calculus with capability types and subtyping, andh

yields a so-calleprecategory(more precisely, &-category[8]).
The following definition lifts these concepts to binding bigraphs.

present it as a sorted bigraphical reactive system. We conclude andPEriNimion 1 (BINpING BIGRAPHS). The precategory “&i(%, &) of

propose further work ii§6.

1. Binding bigraphs

We briefly and informally review the binding bigraphs of Milner
and Jensen [§11] which we generalise to include signatures and
sorts for edges. A more formal introduction including the definition

concrete binding bigraphs over signatut&sand & has binding
interfaces as objects and binding bigraphs as arrows. A concrete
binding bigraph G (m X, X) — (n,Y,Y) consists of an underly-

ing pure bigraphG": (m, (), X) — (n,(),Y) with extra structure

as follows. Define théindersof G to be the binding ports of its
nodes, as defined kgtrl and K, together with the local names of

its outer facel (those in\?). ThenG must satisfy the following:



Score ruLE: If p is a binder located at a node or, in the case of differently from®, are defined even i andg share outer names.
local names, at a root, then everyp’ sharing the same link as  precisely,| works like® but links the common outer names, while
p must be located at a plagé (a site, root or node) such that | merges the multiple regions resulting fromto a single one.
W <gu W, i.e.w is a descendent af in the nesting determined  The denotations of these combinators as operations on concrete
by (the place graph underlyin@. bigraphs are described in Appendix A.

If G and H are concrete binding bigraphs with compatible
interfaces and disjoint support (i.e., node and edge sets), then their
compositiore is defined in terms of composition of the underlying
pure bigraphs. Similarly, for the tensor prodgathen, in addition,
inner and outer name sets are disjoint.

Bigraph terminology. There is quite a lot of terminology to digest
about bigraphs. Here we introduce selectively the main notions we
need in the paper.

N—_———_——

A pointis either a port or a inner name. likk is either a edge Figure 2. A discrete bigraph
or outer name. A link impenif it is a name closedif is a edge. It . o )
is boundif it is a local name or is connected by the link maptoa _The bigraph in Fig. 2 above can be represented in the term
binder; otherwise we say it fsee These terms are extended to the language as below, where for the sake of example we assume that
points in the link. nodey; has controK'.

An inter_face_ isprime if it has _width 1. A binding bigraph (K30®idy1) o K‘yi1 [ Kiz(Z) o (K8 K5)
G: | — Jis prime, if all names inl are local andJ is prime. . ]
A bigraph isground if it has unit inner facee = (0, (), 0); these Or, omittingo andids as customaryy, (Kj,) | K2, (K | K3).

bigraphs represent agents, whereas bigraphs with holes representgeactions and transitions. The dynamics of bigraphical reactive
contexts. A binding blgraph idiscreteif every free_llnk is a name systems is defined in terms of a reaction relation osd (&, &)

and has exactly one point. We call an edde if no point is generated from a set of reaction rut@s Such rules are usually
connected to it. A bigraph isanifit has no idle edges. The bigraph narametric of a very general nature, and may discard and also
in Fig. 2 is ground, lean and discrete, as it has no idle edges and itsy,p|icate their parameters. This must be handled with care, because
free ports are in a 1-1 correspondence with outer names; its only 5t name sharing between parameters. We describe next how to
edge in the bigraph is bound by the binding portvef It is an derive ground reaction rules from parametric ones by instantiating
important result of [8] that bigraphs can be expressed uniquely up- ity ground parameters. As in [8], it fiices to limit ourselves to

to-isomorphism as a composition of a discrete bigraph and awiring giscreteparameters andgineinstantiations, i.e. instantiations that
—i.e. a link graph with no nodes — whose purpose is to reconnect 44 not duplicate parameters.

the free links so as to obtain the original edges and name sharing. A ground (reaction) ruleis a pair (,r'), wherer andr’ are

Ideally, bigraphs that only der from the identity of edges and  ,6,nd bigraphs with the same outer face. Given a set of ground
nodes should be equated, as these are conceptually irrelevant. We a5 the reaction relations over agents is the least relation such
say thalG andH arelean-supporiequivalent, in symbol§ = H, thatD or — D o r’ for each ground ruler(r’) and each active
if they are isomorphic after discarding all idle edges. #stract contextD — i.e., contexts whose hole is nested only inside active
binding bigraphis a lean-support equivalence class of concrete . qnirols.
binding bigraphs. For any signaturésand& we have a category A parametric (reaction) rulehas aredex Rand areactum R
Beg (K, £) and the quotient functor and takes the following form

[-1:" Bea(K,E) — BeG(K,E) . (Ri15IR:1I"> o),

Observe that abstract bigraphs form a category. The reason tha(N
prevents us from working in & (%, &) is that the latter does not

possess relative pushouts (RPOs; cf. Appendix B) which is the fun-

damental notion on which the dynamic theory of bigraphs rests.

The approach developed by Milner, Leifer, and Jensen that we fol- 4 14 the correspondence prescribeddbyrecisely, any discrete
low in this paper is to work in the precategory of concrete bigraphs . € - X®| is a tensor of discrete primes= do ® - - ® Gy 1.

_rghﬁgzgrl:otsh:XISLt_iei??uhhcigﬂ]trinsgigltlr;?aresrlg;scLohzzstt)[aaecrg bi-Essentiallyo(d) is their combination undef (i.e., with sharing of
gev%loped ir?[18 (?LQ 9] based on.thepusdnmbte%%ries outer names) ig-order,o(d) = X || do) I - - - Il A1, worked out
b up to lean-support isomorphism in order to guarantee that the prod-

Bigraph term language. Bigraphs admit an elegant and fruitful ~ uct is well defined. Since son may be dropped, the resulting
representation via a simple term language; this is an alternative outer face may not have all the required names, which is the reason
to their the graphical representation, which in the future may be to add the factoX: € — (0, (), X). Summing up, instantiating the
exploited to develop executable specifications. For each non-atomicparametric rule witld generates the ground reaction rule
controlK: h — kand every choice df + k distinct nameg andX, . -
the term language containsam Ky with inner local nameg, free ((idx @ R) o d, (idx ® R) o o(d)) -
outer name< and one site (hole). Similarly, for an atomic control . . .
K we have ground atoms lik€y. (Note that terms are subject to 2. Basic bigraphical reactive systems
a-conversion of inner local names.) Wiring can be obtained from In [8, §14], basic bigraphical reactive systerase introduced as a
elementary terms lik¢x, x/X, and™X", representing respectively  specially constrained class of BRSs which allow for a simple char-
the closure of a name the substitution ok for a set of nameX, acterisation of the labels of the standard transition systems gener-
and the concretion or ‘globalisation’ of local nanis ated from them via the relative pushout construction. Furthermore,

Besides composition and tensow, terms can be combined by  for basic BRS one can focus attention solely on certain simple tran-
parallel product g|| h and prime parallel product h| g which, sitions without &ecting the resulting labelled bisimilarity.

here the inner facdsandl’ are local with widthsnandnv, ando

is an instantiation function generated by an injective, not necessar-
ily surjective functiono: m’ — m. The latter is meant to map tine
parameters in the redex to th parameters in the reactum accord-



The conditions which define a basic BRS enforce important is then taken to be the smallest equivalence including lean-support
simplifying properties of redexes. Informally, these include ideas equivalence and place equivalence. It is easy to prove that we have
such as flatness (no nesting of nodes), guardedness (no inner nama = ,-quotient functor
is open, no site has a root as parent), simpleness (no inner names are o A
peer, no sites are siblings), and definiteness (no redex involve only -1 Bran (K™, &) — Bra(K. €) ,
a subset of the controls involved in another). Together, they enforce where K stands for the signatur& extended with the fresh
nice categorical properties such as that the parametric redexes areontrol A. Note that we can make any bigraph ined@X, &) into
both epi and mono. We refer the reader to the full paper for a formal a bigraph in” Be, (%, E) by placinga-nodes in all roots and non-
definition of these requirements, and here we content ourselvesatomic nodes which break the hard requirement.
with saying that basic BRS yield a tractable transition system Thanks to the properties of basic BRS we can now transfer
whose bisimilarity is a congruence. And of course, that fortunately the bisimilarity ~.., for free prime engaged transitions from the
they are expressive enough to represent the polyadaiculus of hard concrete setting to the (soft) abstract setting while the induced
this paper. bisimilarity remains a congruence.

For an agent and a ground reaction rule, (') we aim at de-
riving a standardtransitiona —— a’, as expressed in the diagram
below whereL andD are an idem pushout @fandr (informally,

Tueorem 2 (cf. [8]). Let” Beay (%™, E) be a hard concrete basic
BRS whose all redexes asefree. Then

think pushout; cf. Appendix B). 1. @~ bin Beey(K2,8) iff [@ls ~ws [bl. in Bec(K, &).
L 2. ~ IS @ congruence iBsc(K, E).
a‘ D‘ a 3. Sorted binding bigraphs
We are now ready to define link-sorted binding bigraphs generalis-
r ” ing the idea of [13] to also include sorts to edge signatures. Using

) N the same notation dsc. cit,, we let® denote a non-empty set of
Note thatD must be an active context. We call the transition system sortsand use) to range ove®.

of a BRS consisting of all standard transitions sit@ndard transi-

tion systemdenotedr, and write~; for the associated bisimilarity. We enrich the edge signatugeby ascribing a sort i to each

edge control. We say thdt is ®@-sorted. A binding bigraph ofk
Lemma 1. In any BRS equipped with the standard transition system, and& is @-sortedif both its interfaces are enriched by ascribing
bisimilarity of (concrete) ground bigraphs is a congruence. a sort to each name. Wefl#ir from previous work by say that
- ) a port p has sortS, when p points to a link with sortS, i.e.
We say that one transition systebt is asub-ltsof £ whenever ports inherit their sorting from the link they are connected to. We
the interfaces and transitions #fl are included in the interfaces  denote by’ 88a,(©, K, &) the monoidal precategory of sorted hard
and transitions of. binding bigraphs whose identities, composition, and tensor product

DErINITION 2 (RELATIVE BISIMILARITY, ADEQUACY). Given a transition are defined in terms of the underlying binding bigraphs.

system. and a sub-ItsM. We define aelative bisimulationfor DeriniTION 3 (SORTING DISCIPLINE). A sorting (discipline) is a tuple
M as a symmetric relatio§ such that whenevea S b, then for T = (0, %, &, ), where is ®@-sorted andD is a condition or®-
everytransitioraL» a in MwhereLobis defined, there exists sorted binding bigraphs ové¢ and&. The condition® must be
such thab -+ b’ in £ anda’ S . We defingelative bisimilarity satisfied by the identities and preserved by both composition and
for M, written ~2‘, as the largest relative bisimulation fM (on tensor product. _ ) ) o
£). We say thatM is adequatdor £ when~/)! coincides with~ We say that a binding bigraph ins& (0, K, £) is Z-sortedifit
on the agents iM. satlsfle_sq). Often, wherz is understood from the context, we omit
¥ and just callx-sorted bigraphwell-sorted The X-sorted bind-
We will focus our attention orengaged transitionsf prime, ing bigraphs form a monoidal sub-precategory afs&(®, K, &)

ground bigraphs with free outer face. These are transitions wheredenoted by " &a,(Z). If "R is a set ofZ-sorted reaction rules,
the agenta shares at least one node with the parametric rdtlex ~ Sspap(Z, R) is aZ-sortedBRS.
underlying the ground, and the reason for the restriction is to

match our intuition that in order for a transition to be significant, Together with the sorting we of course have a forgetful functor
a must actually contribute to it. We writee for the sub-lIts ofst which we call asortingfunctorX: ” Ssecn(X) — " Baon(%, €). Like
consisting of engaged transitions ang, for its bisimilarity; we the forgetful functor from binding bigraphs to pure bigraphs the
write ~7= for the relative bisimilarity fore onst. forgetful functor induced by the sorting is faithful.
Tueorem 1 (cf. [8]). In any basic BRSee is adequate fosr and DEFINITION 4 (CREATING RPOS, WEAKLY REFLECTING PUSHOUT). Let F
~e CoINcides with~; and is therefore a congruence. be a functor on a precategddy and leti range ovef0, 1}. ThenfF

. i creates RPO#, wheneverD; boundsA; in’A, any RPO forF (A)
Transferring engaged transitions. In order to transfer~,, to relative to the boundF(D;) has a uniqueF-preimage that is an

abstract bigraphs via a quotient functor, we need to enforce RpQ fora, relative toD;.

more structure on the concrete bigraphs where we derive the be- & weakly reflects pushoutf wheneverD; is an IPO forA in

havioural equivalence. As in [8], we find it convenient to work in ‘A and# (D) is a pushout fofF (A), thenD; is a pushout fo.

"Bsah (K, &), the sub-precategory of B8(%, &) consistinghard

bigraphs These are bigraphs whose place graphs are epi, and can Here we weaken the definition used in [13] by only requiring

be characterised as those where all non-atomic nodes and rootdhat pushouts are reflected for IPOs in the sorted precategory, rather

contain at least one node. than for all possible bounds. In particular, while our sorting does
We defineplace equivalencas the least equivalence which not reflect pushouts for all possible bounds, it does so for IPOs. The

equate bigraphs that onlyftér on nodes with the special atomic reason we need this is to ensure that the codomain of the cospan

controla with zero arity.Soft lean-support equivalenceritten<,, D; is the ‘least’ possible (e.g. in terms of idle links) in order for



D; to be a pushout foA;. This slight change of definition allows

injective monotonic functiorpack S* x Q — S, which takes a

for a greater range of sortings while still enjoying the benefits of a tuple of sorts and a type constructprand returns a sort. Every

tractable transition system based on engaged transitions.

Sorted binding bigraphs support a notion of basic BRS analo-
gous to the one described for (unsorted) binding bigraphs in the

control K € K with ar(K) = n > 0 is associated with a type
constructomgk € Q and a partition ofi into two setsCx andV,
of respectivel}communicatiorandvalueports. Ifq is covariant on

previous section. We can prove that the sorting functor reflects and! @ndK's ith portis a value port, then it must bemdingport. The

preserves this property, and therefore retrace the developmight in
The following theorem matches very closely the one in [13], and
ensures the existence of RPOs and guaranteessthabincides

with st on free prime interfaces when the sorting functor satisfies

the conditions of Definition 4.

THEOREM 3 (USEFUL SORTINGS). IN” SBBGH(Z, R)

e If X creates RPOs, then bisimilarity for the standard transition
systemy~, is a congruence.
If in addition £ weakly reflects pushouts arfdl is basic, then

2 is adequate for,.

ST

As in the previous section we let
[-1s:" SeBGH(K™,E) — SBBG(K, E)

be the quotient functor by,, and we can again transfer the con-
gruential bisimilarity~... from the hard concrete setting to the soft
abstract setting.

CoroLLARY 1. Let” SBa,(K™“, E) be a hard sorted concrete BRS
that is basic and whose all redexes ardree. Then

1. @~ bin” SBBGH(K™,E)  iff [ala ~we [bI. in SBBG(K, E).
2.~ IS @ congruence isssG(%K, E).

edge signatur& delivers an arbitrary assignment of sorts to edge
controls, and the conditio® is as follows:

e For eachinner name: S, if T is the sort of its link, thed < S.

e For eachK-nodev and eaclt € Ck, let S be the sort of/'s cor-
responding port; we require th&t < packSs, ..., Sy, dk),
whereS; is the sort ofv's ith port inV.

Intuitively the first requirement ensures that we can always
use subsumption on sorts, while the second requirement allows
us to express lower bounds on the combination of a tuple of sorts
under the appropriate type constructor. The condition about binding
ports guarantees well-sortedness when subsorting under a covariant
constructor. Itis straightforward to prove that subsorting is satisfied
by identities and preserved by composition and tensor product.

In the following we will usel(s to denote the subsorting func-
tor which maps a well-sorted bigraph to the underlying binding bi-
graph. Functof{; does not reflect pushout in the sense of [13]. Itis
however possible to prove th@f, weakly reflects pushouts, since
the outer interface of an IPO is the smallest possible. We can show
the following results for subsorting.

Tueorem 4. The subsorting functoids creates RPOs and weakly
reflects pushouts.

Most of the concepts o§l can be transferred to subsorted

We have now taken the theory of sorted binding bigraphs as far bigraphs with only minor changes. Notably, for parallel product

as required to provide a treatment of the polyadizalculus with a
tractable labelled transition system and a congruential bisimilarity.

Sorting for the polyadic n-calculus

In this subsection we present a sorting for binding bigraphb;
sorting where we require that the sort of a point connected to
link is a subsort of the link’s sort, and that lower bounds can be

and prime productwe require that shared names have a common
subsort and in the resulting outer face we associate to them the
meet of their sorts. Instantiation and reaction rules can then be
transferred to the sorted setting mutatis mutandis.

a 4. Polyadic pi-calculus

In this section we briefly introduce the polyadiacalculus of [14]

expressed on sets of sorts. Most of the constructions in this sectionyith a variant of Pierce and Sangiorgi's type system [17], where we

require the existence of bounded meets between pair of sorts.

DeriniTioN 5 (BoUuNDED MEETS). Let S be a set of sorts and a
preorder orS. Themeetof a pair of sortsT andT’, writtenT N T,
isasortS such thatS < T, S < T’, and for all other sort§’ with
the same property, we ha® < S. We say that the preorder has
bounded meeti§ wheneverU < T andU < T’, then there exists a
meet of T andT’.

In the definition below, functiompackis responsible for com-
bining a list of sorts and a type constructor from a eto re-
turn the sort resulting from their combination. A construce Q
can becovariant contravariantor invariant on each of its argu-
ments. We use this information to derive a preorder relaton
on 8* x Q; namely, forS < T and aq covariant oni we set
(.S, ...,q < (..., T,...,q), whereS is theith element in the tuple;
dually, (.., T,....,q) < (..., S, ...,q) if gis contravariant oi. We also
assume a non-commutative partial multiplicatioron Q. This in-
duces a partial multiplication( ) x (S, ') defined asT, S, gxq)
exactly whenq x ¢ is, andS < T componentwise. We then aug-
ment our preorder by stipulating théf,(§, g x q') precedes both
(T.q) and 6, q). Functionpackwill be required to be monotonic
with respect to such a preorder structure.

DeriniTioN 6 (suBsorTING). A subsortingE = (0, K, &, @) is a set
S with a preorder< with bounded meets, together with a partial

have capability types and a subsorting relation with bounded meets
as in [5, 4]. We assume an infinite set of namésind and letn,n
range over\V. We letP andQ range over process expressions, and
S, T, andU over sorts. The s, of process expressioiisdefined

by the following grammar

P:=0|P|P |(n:S)P|
My, ..., m).P | n(my: Sy, ...m: S).P .

We useP,,, to denote the set af-equivalence classes of process
expressions, as we consider processes up-éguivalence. We
write (vii: S)P for the restriction in procesB of a set of names
fi with associated sorts.

For brevity we will not define structural congruence in this
paper. We remark however that we include the following rule, for
m a generic prefixz.(vn: S)P =, (vn: S)#.P, if n ¢ fn(x). An
evaluation contexis a context whose hole is not under a prefix.
substitution ofn¥, for M; in P. Thereaction relation—, is the least
binary relation ovef,,, satisfying the following rule and closed
under evaluation contexts and structural congruence

n(my: Sy, ...m: $).P|i(m, ... m).Q —, Po|Q
whereo = {, ..., m{/my, ..., m}.



T<T/, i=1.,n T<T/, i=1..,n T,<T/ and §;<S/, i=1.,n

Ty, T) < (T, ., T (T1, s TOY < (Tq, o, To)Y (Tes oo Ty S4p ooy S < (T4, o, TE Sy s S)°
T < Ti,’ i=1..,n Ti < Ti/’ i=1,...n
(T1s s T Sty e S)° < (T1, .0, T (St S T, o TP < (T, T

Figure 3. The subsort relation

I'rP:o T+Q:o In:SkFP:o
'+0:o0 I'rP|Q:o C'r(n:S)P:o
r'(n) < (Sy,...,Sn) I,m:Sy,...,my:SyFP:o r(n) < (I'(my), ..., T(my)¥ 'rP:o
Crn(m: Syq,...,my: Sp).P:o I'en{mg, ... mp).P:o

Figure 4. The typing judgement

Now we introduce a sorting mechanism inspired by [5, 4]. We In the following we will writeT', for the empty ground bigraph
usel to range oveinpuyoutput tagslefined ad ::=r | w| b, which with the outer facgl, (), dom(),T’), interpretingl” as a function
represent respectively the receive capability, the send capability, from names to sortssuby: (1, (), X,sorty — (1,(), X, sort') will
and the capability to both send and receive. The set of &df denote the substitution that acts as the identity on the set of names
our type system is defined by the following rules. X, whilst possibly changing the sort of some of them to a subsort,
i.e.sort(x) < sort(x), for all namesx € X. Finally, we write(sort)

T To 2 Type Tu-Tn & Type as a shorthand for the free prime interfdég(), domort), sort).

0'=Type  (To..T) =Type  (To..,To)" :: Type o _ .
DerintTion 7 (sorTING). Sorting is an instance of subsorting in Def-
T...Th  Type S..S, :: Type S<T inition 6. The set of sort§ is the one defined in the previous sec-
(Tt T S1o S)° - Type tion, while Q is the set of tag¢b, r, w} with r x w = b and

- q
The most interesting rule is the one for thetag. In a sort packSo. > Sn. @) = (So.--» Sn)"

(T1,...,Tn;S1,...,Sn)® the first set of componentdy,..., Ty, defined when the target type exists. The signature will have count-
captures the sort’s input capability, whilst the secondSgt,., S, ably manysend andget controls. Allsend controls are associated
captures the output capability. The side-condition on Bile< with w, and their value ports are contravariaggt controls withr,

Ti, which uses the subsort relation (cf. below) ensures that the and their value ports are covariant (and binding).
communicated output on a channel belongs to a subsort of the
expected input sort. We will omit the annotatiSn: Typeon sorts.

A sorting I is a finite partial mapping from names to sorts; SBBG,. = SBBG,_ (X, Ry.)
writing T,a: S we tacitly assume tha ¢ T. Clearly, the order ) el
of bindings inI" is immaterial. We introduce a subsort relation,
<, on sorts as the least preorder satisfying the rules of Fig. 3.
The rules express that thdag (respw-tag) is a covariant (resp.
contravariant) constructor. On the other hand, g operator
is covariant on the first set of components and contravariant on send: 0— (i +1) get:i—1.
the second. The typing judgemdnt- P : o in Fig. 4 says that
the process is well-sorted under the assumptidhwhich must depicted in Fig. 6. The outer namgs. . .,y have sortd, . . ., Tn,

contairr]w allr:he frlee Pames &t Tge rules aLe SEIf-ixplahnatory, beth the local names,, .. ., z, and the edges they are connected to have
note that the rules for input and output checks that the sort of the ¢()" " “and the name has sort(y. .. ..Uy Tp.. ... Ta)".

namen is a subsort of the expected sort. This type system enjoys
the following standard result.

DeriniTION 8 (SORTED BRS). The sorted BRS

has signatureX;,. and&,_ defined as follows. The edge signature
&, provides a set of controls in one-to-one correspondence with
the sorts inS. The node signaturé,_ consists of two infinite
families of non-atomic passive controls, i finite ordinal,

The rule setR,_ consists of a family ofZ-sorted reaction rules

Lemma 2 (sussect RepucTION). If T+ P : o, thenl' + P’ : o for each
P—, P.

5. Bigraphical representation

We now proceed to represent the polyagicalculus and its sub-
sorting as a bigraphical reactive system. Our encoding slightly ex-
tend Jensen’s presentation of the synchronous momnacdidculus

in [6], which in turn is based upon Jensen and Milner’s encod-

ing of the asynchronous-calculus in [7, 8]. Firstly and foremost, Figure 6. Reaction rules for polyadie-calculus
we straightforwardly extend the presentation from the monadic
calculus to the polyadia-calculus. We then consider thlsorted Thesend andget controls with index and typedJ andT repre-

polyadicr-calculus with capability types and subtyping. sent respectively the output and input prefix exchanging a tuple of



[CFO:o] =T,
[TFP|Q:ol=[TrP:o]|[T+Q:c]
[T+@Wn:S)P:o]=(/n:S)T,Nn:S+P:o]
[T +n(my,...,m).P:o]l =sendym,  m([TFP:cl)
[Crn(m:Sy,....m:S).P:oll =getym my(M,...,m)[T, My :Sy,....m :S;+ P:o])

Figure 5. Translation of a well-typed procefs P : o

lengthi of appropriate type. Observe that in order for the sont of  sorted BRS. As the sorting in B&s,_ is an instance of subsorting
to be well-formed,T; < U; must hold. Note also that we require  we obtain the following results. relating andrpe.

the input and the output sorts to matche precisely the sott thie

name carrying the message. This ‘minimal’ description induce a COROLLARY 2.

large set of reaction rules, since the context of the reaction can use 1 |5 Sgpg,_ the bisimilarity~, is a congruence.

subsumption to obtain reactions where the sorts do not match pre- 5 8~ b in” SeeG,. if and only if[a]l, ~we [l in SeEG,..

cisely. We can @herefore apply the reactl_on_rule to an agent in any 3. The bisimilarity~r, is 8 CONgruence isec,..

well-sorted setting, as long asand node is linked to @et node. =

Even though the rules are specified using a minimal description  The bisimilarity ~ in Sssa,. in turn induces an equivalence
they are not as good as one would desire, as they give rise to too., , in ¢, ,. This is the smallest relation on well-sort€y,, pro-
many transitions, as e.g. transitions that introduce redundant sub-cesses relating, andb;, in symbolsT F @, ~ing b, : o, whenever
sorting. We conjecture that it is not possible to identify a complete 3 andb are related by-,,, and have outer facd).
set of reaction rules which does not give rise to such transitions. An
obvious attempt would be to assume the existence of minimal and Taeorem 6. The relation~,q is a congruence.
maximal sorts and give the outer nanyethe maximal sort, which ) ) i
can then subsort correctly in the context. However this will only ~ We follow the same procedure as in [8] to derive transitions,
work if the sorts ofz are also given the maximal sort, as otherwise with an extension to ensure Well-sortedness_. As mentioned abqve,
the rule will not be well-typed. So even with minimal and maximal ~due to the subsorting and the way the reaction rules are specified,
sorts we could not describe the reaction rules without indexing over the transitions we obtain may contain redundant subsorting in their
the types. Nevertheless, we will prove that we can limit our atten- labels. Howe_ver, we prove that we can limit our attention to a subset
tion to the transitions which introduce no redundant subsorting, and ©f 1abels which do no not contain redundant subsorting. We start
still obtain the same congruence. by chara(_:ter!smg the engaged transitions generated by the RPO

In Fig. 5 we define a translatiop-] of a well-typed process ~ construction in 8sG,_.

I' + P : o to bigraphs inductively on the typing derivation of
P. The target set is the homset — (I') of Ssec,.. We map . L . =
the inactive process to the empty bigraph with the correct outer @n agentinSssc,_ and a— & one of its engaged transitions. We
interface; parallel composition is translated into a prime product; ¢an characterise a, L, and an the following forms

restriction is mapped to a name closure of the appropriate sort; and a=(/Z: S)(ra|b)

prefixes are translated into a node of the respective controls.

LEMMA 3 (CHARACTERISING TRANSITIONS IN SBBG,_). Let a: (sort) be

L={(o)|r_: (sort)y — (sort’)
ProposiTioN 1 (sTaTic CORRESPONDENCE). [ F P o=, T+ P : ofif - - & .
and only i £ P o = [T+ P’ o] &=0(/Z:S)Y1...Vn/(Z1...Z0)C2 | C1 | b): (sort)

where, up to a bijection on names, one of the cases in Fig. 7 holds

Since sorting is preserved by tensor product, and since the ad-(ignore theL for the moment). In the first (resp. second) case we

dition of a namex can be obtained by tensoring with an idte require that xe X and that ¢ (resp. g, respectively) is discrete
weakening of sorting environments follows for free. Also narrow- with names notin X/ Z. In the third case we require thagx; € X
ing comes for free, as sorting is preserved by composition, and nar-and that they have a common subsort.
rowing can be expressed by composing with a substitution. In the  In all the cases the substitutian can introduce subsorting on
following, we write a, to denote ther-calculus process — unique  the names in X (or, in the third case, on the names in{%}).
up-to structural congruence — corresponding to the agent Furthermore in the first case the sort of x is a subsort of(sgrt
(S1,...,Sn)", where S, ..., S, are the sort of the edges pointed to
by z,...,z,. In the second case the sort of x must be a subsort of
sort(x)ri(sort (y1), . . . , sort (y,))". Finally, in the third case the sort
[T+ P:o]] —aifandonlyif P—_ a, of X must be a subsort of s@r) M sort(xy).

THEOREM 5 (DYNAMIC CORRESPONDENCE). FOr every well-typed pro-
cesd + P:oandagentae — (I') we have

The dynamic correspondence between the polyadialculus So for a transitiora —— &', the labelL. may subsort some of
and its presentation as a bigraphical reactive system has beerys outer names unnecessarily, as the only name that might need
achieved by working irsoft abstracbigraphs. In order to examine  sybsorting for the transition to occur is the name communicated

the behavioural theory it would be convenient to tsed con- over. The reason for the redundant subsorting resides in two related

cretebigraphs for their notions of engagedness and RPOs, and thenpoints, which both lead to generate ground reaction rules that could

transfer the resultifback into soft abstract bigraphs. be derived from other rules by subsumption. Firstly, the parametric
i A

We let” SBG,. =" SeBGh(Z;.,"R..) be the preimage of#8c,. reaction rules must be indexed on all possible ddrsndT;, due to
under the goutient functdf-],, so that every rule irk,_ is a lean the requirement on the well-formednesbehg sorts, and since the
preimage of a rule irR,.. This makes " &a,_ a hard concrete sorts of the outer namegsdepend on those of the edges connected



ra r. o L

send xy, y,C1 getyy, 5C2 | Subx X(z1: S1,..Zn: Sn)Cor
g€ty .7 C2 send yy, .y,C1 | Subx X{Y15 -+ -sYn)Cir

send XoY1.-yn €1 | getxl(zlmzn)CZ 1 SUbX\(xT) | X./XI’ Xl/xf

send yy, .y, C1 | g€ty . 2)C2 1 suby T

Figure 7. Characterisation of transitions

to the inner nameg. Secondly, the generation of ground reaction CororLary 3. pRE iS adequate forpe.
rules from parametric ones also adds redundant subsorting. This . o
happens as the grounding of reaction rules maps the parameter’s e can derive a characterisation of the labelsfty, from the
names (and their sort) through without requiring a minimal-sorting °N€ obtained in Lemma 3 for engaged transitions. In the definition
condition. There appears to be no easy fix, as the current sortingbelow, for L an engaged label ins8c,_, label L refers to the
does not allow to ‘minimal-sort’ all bigraphs. Correspondlng cell of the fourth column in Flg. 7.

These additional ground reaction rules agalect the deriva- Derinition 9 (inpucep TRANsITIONS). The induced transition rela-

tion of transitions. The IPO property of a transitian— &, tion —»inq is the smallest relation on typing judgements such that
L TrP ots "+ P :0if [[FP:o] = [["+P :o]isa
precise engaged transition iBeS,_ .
a D a We now can prove that such labels yield a coinductive charac-
— N terisation of the induced equivalence.
r I

LEMMa 4. T + P ~jng Q : oifand only ifT + P R Q : o for some
enforces that the labélis minimalwith respect to the given agent —»j,4-bisimulationRk.
a and the chosen ground reaction rulédaving an infinite number . - . )
of reaction rules, we have no elegant way to ensure that we only use Hence, we have identified a suitably small set of labels using the
theminimalreaction rule (among those that onlyféi on the sorts ~ framework of bigraphical reactive system which corresponds to the

in their outer face), i.e. the one that introduces the least subsorting&XPected set of labels. And we have proved that the derived labelled
when deriving the label. transition system characterises the induced congruence.

In order to examine a specific set of reaction rules, we define .
a sub-lts ofree, denotedere, which has the same agents s 6. Conclusion and future work
but only those transitions fromee that do not introduce redundant  In this paper we have used link-sortings to represent the capability
subsorting. We then prove a proposition stating thakif andrre types of Pierce and Sangiorgi in the setting of bigraphs. To this end
satisfies some simple conditions, then their bisimilarity relations we have conservatively extended the definition of link graphs to
coincide. Following existing terminology, we say that a well-sorted include edge controls, and extended the notion of link-sortings to
bigraph is aresortingif its image under the sorting functor is an  binding bigraphs. We have proven that the theory developed in [8]
identity, and we letp range over resortings. We say that a label can be lifted to a sorted setting with only minor adjustments. Hence,
introduces a redundant subsort if it can be obtained from anotherwe are able to derive a labelled transition system and a congruential
labelM and a non-identity resorting as in the first bullet item of behavioural equivalence for the polyadicalculus with capability
the following proposition. types. We have furthermore proved that we can confine attention to

» labelled transitions that do not introduce any redundant subsorting

Prorosirion 2. LetL be atransition system aniif a sub-lts thereof  of the agent involved in the transition; indeed, this smaller set of
with the following three properties labels induce the same congruence as the full set of labels.

These results are promising, since they provide a foundation for
presenting many of the existing type systems for the (polyadic)
calculus and for similar calculi as sortings in a bigraphical reac-

e If a -+ & is a transition in £, then there exists a resorting
¢ and a transition a-*> a” in M such that L= ¢M and

a= ‘f/la ' tive framework. The advantage of that resides of course in the re-

* Ifa — & is atransition in£, then for any resorting with casting of very successful, yet often incompatible theories, in the
the appropriate inner face there exists a transitio 4> pa uniform, unifying behavioural theory of bigraphical reactive sys-

in L. tems, as well as the development and furthering of the foundational

e pa = & is a transition in£ if and only if a %> & is a framework itself. Technically, we remark that our slight generalisa-
transition in £. tion from ‘reflects pushouts’ to ‘weakly reflects pushouts’ allows us

) to present a wider variety of sortings while enjoying all the benefits
ThenM is adequate for. of the framework of engaged transitions to derive labelled transi-

tions.

We now consider a subset of transitions that introduce no redun-
dant subsorts. This is a subset of the labels of Lemma 3, where theFuture work. An obvious path for further work is to examine

substitutiono- assign tax the sortsort(x) (S, ..., Sy)" in sort, in more advanced type systems presented as sortings in bigraphical
the first case, anslort(x) r (sort (y,), . . . , sort' (y»))", in the second reactive systems. We conjecture that our work here can be extended
one. In the third case is assigned sorort(xy) M sort(x;). We call without major changes to the theory to account aalso for (infinite)
such transitionprecise and we letre denote the resulting transi-  recursive types and linear types. However, we expect that to accom-
tion system and- . be the corresponding bisimulation. A and modate behavioural information such as channel usage [10] would

rpE satisfy the conditions of Proposition 2 we obtain the following. require a more thorough examination.



We have not yet examined how the derived congruence relates [15] R. Muxer. Pure bigraphs: Structure and dynamibrformation and

to the traditional equivalences for the polyadicalculus. In par-

Computation204(1):60-122, 2006.

ticular, it would be important to compare the congruence with the [16] S. 0'Concuuir. Kind bigraphs — static theory. Technical Report TCD-

typed bisimilarity of [4, 3].

The subsorting presented in the paper relies crucially on the

CS2005-36, Trinity College Dublin, Computer Science Department
2005.

existence of bounded meets, that we use to construct RPOs andj;7] g, . Rerce anp D. Sanciorar. Typing and subtyping for mobile

to (weakly) reflect pushouts. The requirement of bounded meets is
only necessary since we consider a type system with subsorts. It

would be interesting to examine more generdlfisient conditions

on type systems and their features that allow to present them as

sortings in a bigraphical reactive system.

Bigraphs are by definition typed with an outer and an inner face;
concrete bigraphs in addition have support sets associated to them.
So far we have only assigned sorts to interfaces and controls, and

processesMathematical Structures in Computer Scien®@):409—
453, 1996.

[18] V. Sassone anp P. SBocivski. Deriving Bisimulation Congruences
using 2-CategoriesNordic Journal of Computingol. 10(2), 163—
183, 2003.

[19] V. Sassone anp P. SBociNski. Locating Reactions using 2-Categories.
Theoretical Computer Scienwel. 333(1-2), 297-327, 2005.

not to the bigraph as a whole, as we traditionally do when we [20] P. SswerL. Globaflocal subtyping and capability inference for a

consider programming languages, as for instancetthelculus,

or some process calculi. We plan to examine sortings that assign
sorts to and express properties of whole bigraphs, not just their

components.
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distributed pi-calculus. I®roc. of ICALP’98 volume1443 of LNCS
pages95—706. Springer1998.
A. Binding bigraphs, formally

This section briefly recalls the main concepts of binding bigraphs,
starting from their constituting place and link graph. We uder

respondence we are indebted to Sgren Debois, Shane O’'Conchuirthe union of sets known or assumed to be disjoint, and for the union

Ole Jensen, James Leifer, and last but not least Robin Milner.

References

[1] L. BirkeDAL, S. DeBors, E. ELsBORG, T. HiLDEBRANDT, AND H. Niss. Bi-
graphical models of context-aware systemsPioc. of FOSSACS’'Q6
volume3921 of LNCS pagesi87—201. Springer2006.

[2] M. Bunpcaarp anp V. Sassone. Typed polyadicr-calculus in
bigraphs. To appear as Technical Report, manuscript available on
request2006.

[3] Y. DenG anp D. Sanciorgr. Towards an algebraic theory of typed
mobile processed heoretical Computer Sciencgso(2—3):188—212,
2006.

[4] M. Hennessy anp J. Ratake. Typed behavioural equivalences for
processes in the presence of subtypiMathematical Structures in
Computer Scienca4(5):651—684, 2004.

[5] M. Hennessy anp J. ReLy. Resource access control in systems of
mobile agentsinformation and Computatign73(1):82—120, 2002.

[6] O. H. Exsen. Mobile Processes in Bigraph®hD thesis, Department
of Computer Science, Aalborg Universitgo6. Forthcoming.

[7] O. H. &En~sen anp R. Muner. Bigraphs and transitions. IRroc. of
POPL'03 pages38—49. ACM Press2003.

[8] O. H. XE~sen anp R. Miner. Bigraphs and mobile processes (revised).
Technical Report UCAM-CL-TR;80, University of Cambridge,
Computer Laboratoryooq.

B. KLiN, V. SassonE anp P. SBociNskl. Labels from Reductions:
Towards a General Theory. In First Internatio@dnference on
Algebras and Coalgebras in Computer Sciemeglume 3629 on
LNCS pages30—50, Springer2005.

N. Koeavasur. Type systems for concurrent programs. Firoc. of
10th Anniversary Colloquium of UNUST, volume2757 of LNCS
pagest39—453, Springerz003.

B. Konig. A general framework for types in graph rewriting. fnoc.

of FSTTCS’0pvolume 1974 of LNCS pages373—384. Springer
2000.

[9

—

(10]

(11]

[12] B. Konia. A graph rewriting semantics for the polyadic pi-calculus.
In Proc. of GT-VMT’00 pagest51—458. Carleton Scientifieooo.

[13] J. J. Lerrer anp R. Miner. Transition systems, link graphs and Petri
nets. Technical Report UCAM-CL-TRg8, University of Cambridge,
Computer Laboratoryoo4.

[14] R. Miner. The polyadicr-calculus: A tutorial. IrLogic and Algebra
of Specificationpage03—246, Springeri993.

of functions where the domains are such. We definesthmportof

a place graph to be the node set, and the support of a link graph
and a pure bigraph to be both the node set and the edge set. We
define bigraphs and more generally bigraphical reactive systems
with respect to a signature.

Derinition 10 (sioNaTURE). A signatureX is a set whose elements
are calleccontrols Each controK € K is assigned an aritgir(K),

that determines its number of ports. A control canabemic and
then not allowed to contain further structure. Non-atomic controls
can beactive Controls which are not active are callpdssive

We begin by defining the two constitutes of a pure bigraph: the
place graph and the link graph.

DerinitioN 11 (PLACE GrAPH). A place graphover a signatureX
with inner width m and outer width n, both finite ordinals, is a
structureGP = (V,ctrl, prnt): m — n consisting of a finite set of
nodes VY a control mapctrl: V — %, which assigns controls to
nodes; and garentmapprnt: mwV — V ¥ n, which assigns each
node and site to parent node or root. The parent mapyislic, i.e.
prnt‘(v) # v for all k > 0 andv € V. An atomicnode may not be a
parent.

The widthsm andn index respectively theitesandroots of A
respectively. Sites and nodes are caliates We writew >, W,
or justw > w, to indicate thatv = prnt‘(w’), for somek > 0.

DerINITION 12 (COMPOSITION OF PLACE GRAPHS). The composition of
two place graph# = (V;, ctrlj, prnt): m — my, is defined when
Ao andA; have disjoint support. Then the compositiéno Aq is
(Vo W V4, ctrlg W ctrly, prnt): my — my, whereprnt is defined as
(idy, ¥ prnt,) o (prnty W idy, ).

DeriniTioN 13 (TENSOR PRODUCT OF PLACE GRAPHS). The tensor prod-
uct of place graphs is defined as follows. On widtisn is the sum

of mandn. For two place graph8;: m — n;, their tensor product
Ao ® Ar: My ® My — Ny ® Ny is defined whe, andA; have dis-
joint support. The tensor product is then defined by ‘shifting’ the
sites and roots of\; upwards bym, andng, respectively, and then
taking the union of the two parent maps.

Informally the tensor product of two place graphs is the juxta-
position of the two graphs.

DeriniTioN 14 (HARD PLACE GRAPHS). A hard place graph is a place
graphs in which every root and non-atomic node has a child. Ob-



serve that they are closed under both composition and tensor prod-h + k. A control can beatomic Non-atomic controls can keective

uct.
The definition of link graphs follows the pattern of place graphs.

DeriniTioN 15 (LINK GrAPH). A link graphover a signaturé< with
finite setsX andY of respectively ofinner and outer names is a
structureG- = (V, E, ctrl, link) : X — Y consisting of a finite set of

nodes V a finite set ofedges Eacontrolmapctrl: V — K; and a

link maplink: XwP — EwY, whereP £ ¥, ., ar(ctrl(v)) is called

the set ofportsof G.

The inner nameX and the port$ are collectively referred to
as thepointsof G', the edge<€ and outer name¥ as itslinks. A
link is idle if it has no preimage under the link map; a link graph is
leanif it has no idle edges. A link ispenif it is an (outer) name;
it is closedif it is an edge. A point i©openif its (image under) the
link map is open, otherwise it dosed

DeriniTioN 16 (COMPOSITION OF LINK GRAPHS). The composition of
two link graphsA; = (i, E;, ctrl;, link;): X; — Xi,1 is defined when
Ay and Ay have disjoint supports. Then the compositigno A is
(Mow V1, EgWE;, ctrlpwectrly, link): Xy — X, wherelink is defined
as follows. For evernp € Xy w Py w Py, whereP; is the set of ports
of A

linkg(p) if p e XoWw Py andlinky(p) € Eg
link(p) = {linky(p) if pe Xow Pyandlinke(p) = xe X;
link;(p) if peP; .

DeriniTioN 17 (TENSOR PRODUCT OF LINK GRAPHS). The tensor prod-
uct of link graphs is defined as follows. On name s¥t® Y is
defined as the union, whenevérandY are disjoint. For two link
graphsAi: X — Y;, their tensor produddy®A; : Xo®X; — Yo®Y1

is defined when both interface products are defined and when
andA; have disjoint support. The tensor product is then the union
of the two link maps.

DeriniTioN 18 (PURE BIGRAPHS). A pure bigraphis the superimposi-

Controls which are not active are callpdssive If K is atomig
thenh = 0.

In order to enforce a discipline of containment for links the no-
tion of interface must be extended to also assign names to localities,
as below.

DeriniTION 22 (BINDING INTERFACE). A binding interfaceis a tuple
I = (mloc, X), wherel" = (m, X) is a pure interface andc: X —
mis a partiallocality map which associates nameswith sites. If
loc(x) = sthenxis locatedat s, or islocal to s. If loc(x) = L then
X is global.

Given an interfacém, loc, X), we often denote the locality map
loc as a vectotX of length m of pairwise disjoint subsets of,
corresponding to thiec-preimages of each site. The nameXinot
occurring in this way are of course global. We say that an interface
| is local (resp. global) if all its names are local (resp. global).

DeriniTion 23 (BINDING BIGRAPHS). A binding bigraphG: | — J
consists of arunderlying pure bigraphG": I¥ — J“ with extra
structure as follows. Declare th@ndersof G to be the binding
ports of its nodes together with the local names of its outer Jace
ThenG must satisfy the following:

Score Rute: If pis a binder located at a node or, in the case of
local names, at a roat, then every peep’ in the same link as
p must be located at a plagé (a site, root or node) such that
W <gu W.

A bigraph isgroundif its inner interface iss = (0, (), 0y, the
unit interface. We remark that bigraphs as defined above are usually
referred to as ‘concrete’ bigraphs, as opposed to ‘abstract’ bigraphs
than can be obtained by forgetting the identities of nodes and edges
via a quotient construction (cf. below).

In order to express sorting disciplines that involve also condi-

tion of a place and a link graph sharing the set of nodes and the ions on edges, we find it convenient to extend the definition of

control map. NamelyG = (V, E, ctrl, prnt, link): (m, X) — (n,Y)
whereGP = (V,ctrl,prt): m — nis a place graph, an@" =
(V, E,ctrl, link): X — Y is a link graph.

Sometimes we will write a pure bigraf asG = (G°,G'), a
combination of its two constituents. We define the composition an

the tensor product of two pure bigraphs in terms of the underlying

place and link graph.

DeriniTioN 19 (COMPOSITION OF PURE BIGRAPHS). The composition of
two pure bigraphss;: I; — lj,, is defined wherG, andG; have
disjoint support. We defin@,0Gg as(G} o G5, G o Gy): 1o — 1.

Derinition 20 (TENSOR PRODUCT OF PURE BIGRAPHS). The tensor prod-
uct of two pure bigraphs is defined as follows. On interfaces,
MX) @ (n,Y) is (m+n,XwY) when X and Y are disjoint.
Given two bigraphsG;: I; — J; their tensor producGy ® G; is

(G ®G},GyeGh) 1 1g® 11 = Jo® Ji, when the interfaces are
defined and5, andG; have disjoint support.

We now enhance pure bigraphs with a primitive mechanism of

scoping and binding for names and edges. The first ingredient is to

equip nodes with binding ports; the definition of binding bigraphs
will then enforce that all points linked to it must lie inside the node.

DeriniTioN 21 (BINDING SIGNATURE). A binding signatureX assigns
to each controK a pair of finite ordinals, théinding arity hand
the free arity k written K: h — k, which determine respectively
its number ofbinding and non-bindingports. Of coursear(K) =

bigraphs with the addition of edge controls. Adge signatur& is

a set whose elements are calésthe controlsEdge controls will be
ranged over by.. Each bigraplG will therefore be equipped also
with anedgemapedgectr}: E — & analogous to the control map

g ctrl. As a matter of notation, since any ambiguity can be solved

from the context, in the following we shall simply denote both the
‘control’ and ‘edge’ maps with the symbotrl.

Concrete binding bigraphs are the arrows of a so-called pre-
category, that is a category but for a partial composition operation.
More precisely, they give rise to a particularly well-behaved precat-
egory, an s-category, which support a suitable quotient construction
to translate results from concrete to abstract bigraphs. We refer the
reader to [13] for the details. A parallel approach has been proposed
in [18, 19, 9] based on the notion of bicategories.

Derinition 24. The precategory ‘#8 (K, €) of concrete binding bi-
graphs over signaturek’ and& has binding interfaces as objects
and binding bigraphs as arrows.@: | — JandH: J — K are
concrete binding bigraphs with disjoint support, then their compo-
sition is defined directly in terms of composition of the underlying
pure bigraphs.

HoGEH'oGY
In the same manner, the identitids: | — |, wherel = (m, loc, X)
are defined in terms of the underlying identities. We denote by

" Bganh (K, &) the subprecategory of 88(%K, E) consisting ofhard

binding bigraphs.



There exists a forgetful functor from the precategory of binding
bigraphs to the precategory of pure bigraphs

U: " Beo(K,E) - Bi(K,E) ,

B (K, E) and the quotient functdr] : " Bec (K, E) — Bes (K, E),
and similarly for hard binding bigraphs.

DErINITION 29 (WIRING, CLOSURE, SUBSTITUTION). A bigraph with in-

which sends each interface (and b|graph) to the under|ying inter- terfaces of zero width is Called\ﬂiring. Since the interfaces are

face (and bigraph), e.d.to I¥ andG to G". Likewise, we have a
forgetful functor for hard binding bigraphs to hard pure bigraphs.

Prorosiion 3. On interfaces the forgetful functor is surjective (but
not in general injective); it is alséithful, i.e. injective (though not
in general surjective) on each homset of binding bigraphs.

Derintrion 25 (rensor propuct). We define the tensor product of
two interfaced = (m, X, X) andJ = (n,V,Y), whereX andY are
disjoint as

l®@J=(m+nXY,XwY) .
We then define the tensor product of two binding bigraphsl; —
Ji (i = 0,1) with disjoint support in terms of the underlying pure
bigraphG" = Go" ® G;", whenevel = lo ® I; andJ = Jp ® J;
are defined.

of zero width the bigraph cannot have nodes, and takes the form
w: X — Y. There are two basic forms of wirings, closures and sub-
stitutions. Aclosure(/x: C): x — e maps the inner nameto the
single edge (with contral) that the bigraph contains.

A substitutiono: X — Y is a function that is not necessarily
surjective. We denote by: e — x the empty substitution froma
to x. We writey/X, whenevery andX are vectors of equal length,
to denote the surjective substitution — v;. Both closure and
substitution can be generalised to an arbitrary set of names by
tensoring together one operation per name in the set.

Derinition 30 (PRIME BIGRAPH). An interface igprimeif it has width
1. Abinding bigraptG : | — Jisprime if | is local andJ is prime.

Derinition 31 (concreTiON, ABSTRACTION). We define aconcretion
asaprimeéX™: (1,(XwY),XwY) - (1 (Y), XwY), which glob-

Here we define the most important concepts behind s-categoriesalises a subset if its local inner names. Dual to the concretion we

we refer t he reader to [15] for the full definition of s-categories.

DEerINITION 26 (S-CATEGORY). AN S-categoryA is a strict symmetric
monoidal precategory with the following structure:

e for each arrowf we have a finite sgf| called the support of,
such thatid,| = 0. We define the composition of two arroviis
andg iff their domain and codomain match afilg| N [f| = 0,
we define the support of their composition|g$| = |g| @ |f].
Similar we define the tensor product of two arrofvandg if
their support is disjoint and define the support of their product
aslf®gl =Iflwlgl

e for any arrowf : | — J and any injective map with a domain
including |f| we have an arrow-f: | — J and satisfying the
following rules:

1. p|d| = |d| 4. idm'f = f
2. p(@f) = (o-9)(o- ) 5. (p10po)f = p1(oof)
3 p(feg=pfopg 6. pf=(If])f

7. lo-fl=p(f]) ,

wherep | [f| is the functionp restricted to the support df.
All the equations are required to hold only when both sides are
defined.

An s-categoryA is wide if it is equipped with a functor
width: A — Ord, the category of finite ordinals, such that
width(e) = O and each bijectiomr on width(l) is the image of
an isomorphisnx; : | — | in“A.

Tueorem 7. For any node signaturé( and edge signaturé& the
precategorie$Bsg (%, ) and” Bsay (K, E) are wide s-categories,
with the origine = (0, (), ) and where the interfacén, loc, X) has
width(l) = m and for a bigraph G the width mapidth(G) sends
each site s in G to the unique root r such thatsr.

A link is boundif it contains a binder, otherwise it feee

DerintTioN 27 (DISCRETENESS, LEANNESS). A binding bigraph isdis-
creteif every free link is a name and has exactly one point. A bind-
ing bigraph ideanif it has no idle edges.

There exists aléan-support equivalentgquotient functor from
concrete to abstract binding bigraphs.

DerINITION 28 (ABSTRACT BINDING BIGRAPHS). An abstract binding
bigraph is a lean-support equivalence class of concrete bind-
ing bigraphs. For any signaturgé and & we have the category

define theabstractionon a primeP, which localises a subset of the
global names oP. So forXw Y C Z and primeP: | — (1,(Y),Z)
we may create the abstractio)P: | — (1, (XwY),Z). Since
these notions are dual, we have the following

(X ®id) o (X)P=Pand X)" Xy YT ="YT .

Also we can defindocal wirings which work on local names. We
define theclosure/(X) as (X ® id) o "X™; the substitutiony/(X) as
(Y/X®id) o "X 7; and thelocal substitution(y)/(X) as §)y/(X).

DeriNiTioN 32 (IONS, ATOMS, AND MOLECULES). FOr a non-atomic con-
trol K: h — k, let Xandy be sequences of distinct names of length
handk. Let X = {X}, Y = {y} and define thdree discrete ion
Ky : (L (X),X) = (L,(0),Y) to have local inner nameg and
global outer nameg linked to respectively thé binding and the

k non-binding ports of a singl&-node. For any prime discrete
with outer face(l, (X), X & Z) we call Ky ® idz) o P afree dis-
crete moleculgits outer face i1, (0), Y w Z). For atomicK afree
discrete atomis justKy: € — (1,(0),Y).

DeriniTioN 33 (PARALLEL PRODUCT). Theparallel productof two in-
terfaces) = (ni, X, Y;) (i = 0,1) is defined, when the local names
of each are disjoint from all names of the other, Zg.NY; =

Z1 N Yo = 0, whereZ = (X} (i = 0,1), as

Jo Il 31 = (g + 1y, XX, Yo U Y

LetGi = I; —» J (i = 0,1) be two binding bigraphs with disjoint
support and wheré, ® 1, andJo || J; are defined, then their
parallel productis

GollGLE or(Go®1Gy): lg® 11— Jo Il 3y,

where the substitutions andr involve only global names and are
defined as followsz (i € n) are the names that are shared between
Go and Gy, andw; are fresh names in bijection with tleg then
7(z) = w ando(w) = o(z) = z (i € n).

DerinitioN 34 (PRIME PRODUCT). The prime productof two inter-
facesd = (n, X, X) andl = (mY,Y) is defined, when the local
names of each are disjoint from all names of the other, as

I E(Zowzy), XU Y)
whereZg = Xg W - & X1 andZy; = Yo W -+ - & Y1
LetG; = I; — J (i = 0, 1) be two binding bigraphs with disjoint
support and wherk ® |, is defined andh is the sum of the widths



of Jp andJ;, then theprime productis
Go | Gy ='mergg o (Goll Gy): lo® 11— Jo | &

wheremerge is defined as a bigraph with no nodes nor edges
which maps tha sites to a single root with the appropriate mapping
of names.

DerinitioN 35 (iNstanTIATION). We define arinstantiationo from

I = MX,X)toJ = (nY,Y) (both interfaces local), written
o . | — J,in terms of an underlying functiop: n — m. For
any set of namea this function defines the following map between
ground bigraphs

0:(1®2)-> U2 .
First decomposg: | ® Zintog = w(dh ® -+ ® dy1) With
w: W — Z awiring and eacld; prime and discrete. Then define

def

0@ =w(ell-Ilev) ,

wheree; = dyj), for j € n. An instantiation isaffine whenever the
underlying functiong is injective, meaning that the instantiation
does not replicate any of its parameters.

B. RPOs and IPOs

We define a bigraphical reactive system (BRS) as in [8, Defini-
tion 12.2], where the following results were proved.

DeriniTION 39 (BIGRAPHICAL REACTIVE sYSTEM). We define a bigraph-

’ ical reactive system (BRS) over signatuf€sand& to consist of

"Beg(K,E) and a set of reaction rule® “closed under support
equivalence. We then write 8B(%, &,"R) for the bigraphical reac-
tive system.

CoroLLARY 4 (CONGRUENCE OF WIDE BISIMILARITY). In any concrete
BRS equipped with the standard transition systeymvide bisimi-
larity ~ of agents is a congruence.

PropoSITION 4 (TRANSITIONS RESPECT EQUIVALENCE). In any concrete
BRS with all redexes lean, equipped with

1. In every transition label L, both components are lean.

2. Transitions respect lean-support equivalencg (That is, for
every transition at+, &, ifa = bandL= M, where M is
another label with Mo b defined, then there exists a transition
b M., b for some bsuch that 4= b'.

COROLLARY 5 (BEHAVIOURAL CONGRUENCE IN ABSTRACT BRS). Let’A be
a concrete BRS with all redexes lean, equipped withand let
[-1:’A — A be the quotient functor by lean-support equivalence.

In this section we define the notions of relative pushout and idem Then

pushout, as stated in [8], and the most important definitions and

results regarding binding bigraphs.

Derinrtion 36 (RELATIVE PUsHOUT). Suppose that the outer diagram
commutes. We say thald, hy, h) is a bound forf; relative tog; if

h; is a bound forf; andh o h; = g;. Such a triple is universal if for
any other boundkp, ki, k) for f; relative tog; there exists a unique
mediating arrowj such thatj o h; = k; andko j = h. In such a case,
we will call the triple arelative pushoufRPO).

80 h 81
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Derinrrion 37 (ipem pustout). Given a spanf;, a boundh; is an

idem pushou(IPO) for f; if the triple (ho, hy,id) is an RPO for
fi to hi.

DeriniTioN 38 (REACTION RULES FOR BINDING BIGRAPHS). A ground re-
action ruleis a pair ¢,r’), wherer andr’ are ground with the same
outer face. Given a set of ground rules, the reaction relatiaver
agents is the least relation, closed under support equivalence (
suchthaD or — Dor’ for each active contex® and each ground
rule (r,r’).

A parametric (reaction) rulehas aredex Rand areactum R,
and takes the following form

R:1->JIR:I"> Jo)

where the inner facelsand!” are local with widthanm andnY, and

o :: | — I’ is an dfine instantiation, as defined in Definition 35.
For every set of names and discrete parametdr e » X ® | the
parametric rule generates the ground reaction rule

((idx ® R) o d, (idx ® R) 0 o(d)) .

1. a~ bin‘Aifand only iffa] ~ [b] in A.
2. Bisimilarity is a congruence iA.



