
Automatic Derivation of Statistical Algorithms:
The EM Family and Beyond

Alexander G. Gray
Carnegie Mellon University
agray@cs.cmu.edu

Bernd Fischer and Johann Schumann
RIACS / NASA Ames

{fisch,schumann}@email.arc.nasa.gov

Wray Buntine
Helsinki Institute for IT
buntine@hiit.fi

Abstract

Machine learning has reached a point where many probabilistic meth-
ods can be understood as variations, extensions and combinations of a
much smaller set of abstract themes, e.g., as different instances of the
EM algorithm. This enables the systematic derivation of algorithms cus-
tomized for different models. Here, we describe the AUTOBAYES sys-
tem which takes a high-level statistical model specification, uses power-
ful symbolic techniques based on schema-based program synthesis and
computer algebra to derive an efficient specialized algorithm for learning
that model, and generates executable code implementing that algorithm.
This capability is far beyond that of code collections such as Matlab tool-
boxes or even tools for model-independent optimization such as BUGS
for Gibbs sampling: complex new algorithms can be generated with-
out new programming, algorithms can be highly specialized and tightly
crafted for the exact structure of the model and data, and efficient and
commented code can be generated for different languages or systems.
We present automatically-derived algorithms ranging from closed-form
solutions of Bayesian textbook problems to recently-proposed EM algo-
rithms for clustering, regression, and a multinomial form of PCA.

1 Automatic Derivation of Statistical Algorithms

Overview. We describe a symbolic program synthesis system which works as a “statistical
algorithm compiler:” it compiles a statistical model specification into a custom algorithm
design and from that further down into a working program implementing the algorithm
design. This system, AUTOBAYES, can be loosely thought of as “part theorem prover, part
Mathematica, part learning textbook, and part Numerical Recipes.” It provides much more
flexibility than a fixed code repository such as a Matlab toolbox, and allows the creation
of efficient algorithms which have never before been implemented, or even written down.
AUTOBAYES is intended to automate the more routine application of complex methods in
novel contexts. For example, recent multinomial extensions to PCA [2, 4] can be derived
in this way.

The algorithm design problem. Given a dataset and a task, creating a learning method
can be characterized by two main questions: 1. What is the model? 2. What algorithm will
optimize the model parameters? The statistical algorithm (i.e., a parameter optimization
algorithm for the statistical model) can then be implemented manually. The system in
this paper answers the algorithm question given that the user has chosen a model for the
data,and continues through to implementation. Performing this task at the state-of-the-art
level requires an intertwined meld of probability theory, computational mathematics, and
software engineering. However, a number of factors unite to allow us to solve the algorithm
design problem computationally: 1. The existence of fundamental building blocks (e.g.,
standardized probability distributions, standard optimization procedures, and generic data
structures). 2. The existence of common representations (i.e., graphical models [3, 13] and
program schemas). 3. The formalization of schema applicability constraints as guards.1

The challenges of algorithm design. The design problem has an inherently combinatorial
nature, since subparts of a function may be optimized recursively and in different ways.
It also involves the use of new data structures or approximations to gain performance. As
the research in statistical algorithms advances, its creative focus should move beyond the
ultimately mechanical aspects and towards extending the abstract applicability of already
existing schemas (algorithmic principles like EM), improving schemas in ways that gener-
alize across anything they can be applied to, and inventing radically new schemas.

2 Combining Schema-based Synthesis and Bayesian Networks

Statistical Models. Externally,1 model mog as ’Mixture of Gaussians’;

2 const int n_points as ’nr. of data points’
3 with 0 < n_points;
4 const int n_classes := 3 as ’nr. classes’
5 with 0 < n_classes
6 with n_classes << n_points;

7 double phi(1..n_classes) as ’weights’
8 with 1 = sum(I := 1..n_classes, phi(I));
9 double mu(1..n_classes);
9 double sigma(1..n_classes);

10 int c(1..n_points) as ’class labels’;
11 c ˜ disc(vec(I := 1..n_classes, phi(I)));

12 data double x(1..n_points) as ’data’;
13 x(I) ˜ gauss(mu(c(I)), sigma(c(I)));

14 max pr(x|{phi,mu,sigma}) wrt {phi,mu,sigma};

AUTOBAYES has the look and feel of
a compiler. Users specify their model
of interest in a high-level specification
language (as opposed to a program-
ming language). The figure shows the
specification of the mixture of Gaus-
sians example used throughout this
paper.2 Note the constraint that the
sum of the class probabilities must
equal one (line 8) along with others
(lines 3 and 5) that make optimization
of the model well-defined. Also note
the ability to specify assumptions of

the kind in line 6, which may be used by some algorithms. The last line specifies the goal
inference task: maximize the conditional probability pr(~x|{~φ, ~µ, ~σ}) with respect to the pa-
rameters ~φ, ~µ, and ~σ. Note that moving the parameters across to the left of the conditioning
bar converts this from a maximum likelihood to a maximum a posteriori problem.

Computational logic and theorem proving. Internally, AUTOBAYES uses a class of tech-
niques known as computational logic which has its roots in automated theorem proving.
AUTOBAYES begins with an initial goal and a set of initial assertions, or axioms, and adds
new assertions, or theorems, by repeated application of the axioms, until the goal is proven.
In our context, the goal is given by the input model; the derived algorithms are side effects
of constructive theorems proving the existence of algorithms for the goal.

1Schema guards vary widely; for example, compare Nead-Melder simplex or simulated anneal-
ing (which require only function evaluation), conjugate gradient (which require both Jacobian and
Hessian), EM and its variational extension [6] (which require a latent-variable structure model).

2Here, keywords have been underlined and line numbers have been added for reference in the text.
The as-keyword allows annotations to variables which end up in the generated code’s comments.
Also, n classes has been set to three (line 4), while n points is left unspecified. The class
variable and single data variable are vectors, which defines them as i.i.d.

Computer algebra. The first core element which makes automatic algorithm derivation
feasible is the fact that we can mechanize the required symbol manipulation, using com-
puter algebra methods. General symbolic differentiation and expression simplification are
capabilities fundamental to our approach. AUTOBAYES contains a computer algebra en-
gine using term rewrite rules which are an efficient mechanism for substitution of equal
quantities or expressions and thus well-suited for this task.3

Schema-based synthesis. The computational cost of full-blown theorem proving grinds
simple tasks to a halt while elementary and intermediate facts are reinvented from scratch.
To achieve the scale of deduction required by algorithm derivation, we thus follow a
schema-based synthesis technique which breaks away from strict theorem proving. Instead,
we formalize high-level domain knowledge, such as the general EM strategy, as schemas.
A schema combines a generic code fragment with explicitly specified preconditions which
describe the applicability of the code fragment. The second core element which makes
automatic algorithm derivation feasible is the fact that we can use Bayesian networks to
efficiently encode the preconditions of complex algorithms such as EM.

First-order logic representation of Bayesian net-
classesN

σµ

gauss

c

Npoints

discrete

x

Nclasses

φ

works. A first-order logic representation of Bayesian
networks was developed by Haddawy [7]. In this
framework, random variables are represented by
functor symbols and indexes (i.e., specific instances
of i.i.d. vectors) are represented as functor arguments.
Since unknown index values can be represented by
implicitly universally quantified Prolog variables, this
approach allows a compact encoding of networks involving i.i.d. variables or plates [3]; the
figure shows the initial network for our running example. Moreover, such networks cor-
respond to backtrack-free datalog programs, allowing the dependencies to be efficiently
computed. We have extended the framework to work with non-ground probability queries
since we seek to determine probabilities over entire i.i.d. vectors and matrices. Tests for in-
dependence on these indexed Bayesian networks are easily developed in Lauritzen’s frame-
work which uses ancestral sets and set separation [9] and is more amenable to a theorem
prover than the double negatives of the more widely known d-separation criteria. Given a
Bayesian network, some probabilities can easily be extracted by enumerating the compo-
nent probabilities at each node:

Lemma 1. Let U, V be sets of variables over a Bayesian network with U ∩ V = ∅. Then
V ∩ descendents(U) = ∅ and parents(U) ⊆ V hold 4in the corresponding dependency
graph iff the following probability statement holds:

Pr(U |V) = Pr(U |parents(U)) =
∏

u∈U

Pr(u |parents(u)).

Symbolic probabilistic inference. How can probabilities not satisfying these conditions
be converted to symbolic expressions? While many general schemes for inference on net-
works exist, our principal hurdle is the need to perform this over symbolic expressions in-
corporating real and integer variables from disparate real or infinite-discrete distributions.
For instance, we might wish to compute the full maximum a posteriori probability for
the mean and variance vectors of a Gaussian mixture model under a Bayesian framework.
While the sum-product framework of [8] is perhaps closer to our formulation, we have out
of necessity developed another scheme that lets us extract probabilities on a large class of
mixed discrete and real, potentially indexed variables, where no integrals are needed and

3Popular symbolic packages such as Mathematica contain known errors allowing unsound deriva-
tions; they also lack the support for reasoning with vector and matrix quantities.

4Note that U ∩ descendents(U) = ∅ and U ∩ parents(U) = ∅.

all marginalization is done by summing out discrete variables. We give the non-indexed
case below; this is readily extended to indexed variables (i.e., vectors).

Lemma 2. V ∩ descendents(U) = ∅ holds and ancestors(V) is independent of U given
V iff there exists a set of variables U ′ such that Lemma 1 holds if we replace U by
U ∪ U ′. Moreover, the unique minimal set U ′ satisfying these conditions is given by
ancestors(U) /(ancestors(V) ∪ V) .

Lemma 3. Let V ′ be a subset of V/descendents(U) such that ancestors(V ′) is independent
of (U ∪ V)/(V ′ ∪ ancestors(V ′)) given V ′. Then Lemma 2 holds if we replace U by
U ∪ V/V ′ and V by V ′. Moreover, there is a unique maximal set V ′ satisfying these
conditions.

Lemma 2 lets us evaluate a probability by a summation:

Pr(U |V) =
∑

u′∈Dom(U ′)

Pr(U ′ = u′, U |V)

while Lemma 3 lets us evaluate a probability by a summation and a ratio:

Pr(U |V) =
Pr(U ∪ V/V ′ |V ′)

Pr(V/V ′ |V ′)

Since the lemmas also show minimality of the sets U ′ and V/V ′, they also give the minimal
conditions under which a probability can be evaluated by discrete summation without inte-
gration. These inference lemmas are operationalized as network decomposition schemas.
However, we usually attempt to decompose a probability into independent components
before applying this schema.

3 The AUTOBAYES System — Implementation Outline

Levels of representation. Internally, our system uses three conceptually different levels of
representation. Probabilities (including logarithmic and conditional probabilities) are the
most abstract level. They are processed via methods for Bayesian network decomposition
or match with core algorithms such as EM. Formulae are introduced when probabilities of
the form Pr(U | parents(U)) are detected, either in the initial network, or after the appli-
cation of network decompositions. Atomic probabilities (i.e., U is a single variable) are
directly replaced by formulae based on the given distribution and its parameters. General
probabilities are decomposed into sums and products of the respective atomic probabili-
ties. Formulae are ready for immediate optimization using symbolic or numeric methods
but sometimes they can be decomposed further into independent subproblems. Finally, we
use imperative intermediate code as the lowest level to represent both program fragments
within the schemas as well as the completely constructed programs. All transformations
we apply operate on or between these levels.

Transformations for optimization. A number of different kinds of transformations are
available. Decomposition of a problem into independent subproblems is always done. De-
composition of probabilities is driven by the Bayesian network; we have a separate system
for handling decomposition of formulae. A formula can be decomposed along a loop, e.g.,
the problem “optimize ~θ for

∏
i f(θi)” is transformed into a for-loop over subproblems

“optimize θi for f(θi).” More commonly, “optimize θ, φ for f(θ) + g(φ)” is transformed
into the two subprograms “optimize θ for f(θ)” and “optimize φ for g(φ).” The lemmas
given earlier are applied to change the level of representation and are thus used for simplifi-
cation of probabilities. Examples of general expression simplification include simplifying
the log of a formula, moving a summation inwards, and so on. When necessary, symbolic
differentiation is performed. In the initial specification or in intermediate representations,

likelihoods (i.e., subexpressions of the form log
∏

i Pr(xi | θ)) are identified and sim-
plified into linear expression with terms such as mean(xi) and mean(x2

i). The statistical
algorithm schemas currently implemented include EM, k-means, and discrete model se-
lection. Adding a Gibbs sampling schema would yield functionality comparable to that of
BUGS [14]. Usually, the schemas require a particular form of the probabilities involved;
they are thus tightly coupled to the decomposition and simplification transformations. For
example, EM is a way of dealing with situation where Lemma 2 applies but where U ′ is
indexed identically to the data.

Code and test generation. From the intermediate code, code in a particular target lan-
guage may be generated. Currently, AUTOBAYES can generate C++ and C which can be
used in a stand-alone fashion or linked into Octave or Matlab (as a mex file). During this
code-generation phase, most of the vector and matrix expressions are converted into for-
loops, and various code optimizations are performed which are impossible for a standard
compiler. Our tool does not only generate efficient code, but also highly readable, doc-
umented programs: model- and algorithm-specific comments are generated automatically
during the synthesis phase. For most examples, roughly 30% of the produced lines are
comments. These comments provide explanation of the algorithm’s derivation. A gener-
ated HTML software design document with navigation capabilities facilitates code under-
standing and reading. AUTOBAYES also automatically generates a program for sampling
from the specified model, so that closed-loop testing with synthetic data of the assumed
distributions can be done. This can be done using simple forward sampling.

4 Example: Deriving the EM Algorithm for Gaussian Mixtures

1. User specifies model. First, the user specifies the model as shown in Section 2.

2. System parses model to obtain underlying Bayes net. From the model, the underlying
Bayesian network is derived and represented internally as a directed graph. For visualiza-
tion, AUTOBAYES can also produce a graph drawing as shown in Section 2.

3. System observes hidden-variable structure in Bayesian network. The system at-
tempts to decompose the optimization goal into independent parts, but finds that it cannot.
However, it then finds that the probability in the initial optimization statement matches the
conditions of Lemma 2 and that the network describes a latent variable model.

4. System invokes abstract EM-
schema(max Pr(U |V)wrt V, C) : −

. . .
C = ”[initialize W];

while([converging(V)]){
/* M-step */ [max Pr(W, U |V) wrt V];
/* E-step */ [calculate Pr(W |U, V)];

}”

family schema. This triggers the
EM-schema, whose overall structure
is shown. The syntactic structure of
the current subproblem must match
the first argument of the schema;
if additional applicability constraints
(not shown here) hold, this schema is
executed. It constructs a piece of code which is returned in the variable C. This code frag-
ment can contain recursive calls to other schemas (denoted by [. . .]) which return code for
subproblems which then is inserted into the schema, such as converging, a generic con-
vergence criterion here imposed over the variables ~µ, ~σ, ~φ. Note that the schema actually
implements an ME-algorithm (i.e., starts the loop with the M-step) because the initial-
ization already serves as an E-step. The system identifies the discrete variable ~c as the
single hidden variable, i.e., W = {~c}. For representation of the distribution of the hidden
variable a matrix ~q is generated, where qij is the probability that the i-th point falls into
the j-th class. AUTOBAYES then constructs the new distribution c(I) ˜ disc(vec(J
:= 1..n classes, q(I, J)) which replaces the original distribution in the following
recursive calls of AUTOBAYES.

5. E-step: System performs marginaliza-
while(converging(~µ, ~σ, ~φ)){
for i = 1 : N
for j = 1 : C

qij = Pr(ci = j|xi, ~µ, ~σ);

max Pr(xi, ci|µci
, σci

, ~φ) wrt {~µ, ~σ, ~φ}
}

tion. The freshly introduced distribution for
ci implies that ci can be eliminated from
the objective function by summing over qi,∗.
This gives us the partial program shown in
the internal pseudocode.

6. M-step: System recursively decom-
while(converging(~µ, ~σ, ~φ)){
for i = 1 : N
for j = 1 : C

qij = Pr(ci = j|xi, ~µ, ~σ);
for j = 1 : C

max
∑

N

i=1
qij log Pr(xi|µj , σj) wrt {µj , σj}

max
∑

C

j=1
(
∑

N

i=1
qij)φj wrt {~φ}

}

poses optimization problem. AUTOBAYES
is recursively called with the new goal
max log Pr({~c, ~x} | {~φ, ~µ, ~σ}) wrt {~φ, ~µ, ~σ}.
Now, the Bayesian network decomposition
schema applies with U = {~c, ~x}, V =

{~φ, ~µ, ~σ}, revealing that ~φ is independent of
~σ, ~µ, thus the optimization problem can be decomposed into two optimization subproblems:
max Pr(~x |{~c, ~µ, ~σ}) wrt {~µ, ~σ} and max Pr(~c | ~φ) wrt {~φ}.

7. System unrolls i.i.d. vectors. The first subgoal from the decomposition schema,
max Pr(~x | {~c, ~µ, ~σ}) wrt {~µ, ~σ}, can be unrolled over the independent and identically dis-
tributed vector ~x using an index decomposition schema which moves expressions out of
loops (sums or products) when they are not dependent on the loop index. Since ~c and ~x
are co-indexed, unrolling proceeds over both (also independent and identically distributed)
vectors in parallel: max

∏N

i=1
Pr(xi |{ci, ~µ, ~σ}) wrt {~µ, ~σ}.

8. System identifies and solves Gaussian elimination problem. The probability Pr(xi |
{ci, ~µ, ~σ}) is atomic because parents(xi) = {ci, ~µ, ~σ}. It can thus be replaced by the
appropriately instantiated Gaussian density function. Because the strictly monotone log(·)
function can first be applied to the objective function of the maximization, it becomes
max

∑N

i=1

∑C

j=1
qij(− 1

2σj
(xi−µj)

2− log
√

2π− log σj) wrt {~µ, ~σ}. Another application of
index decomposition allows solution for the two scalars µj and σj . Gaussian elimination
is then used to solve this subproblem analytically, yielding the sequence of expressions
µj =

∑N
i=1 qijxi/

∑N
i=1 qij and σj =

∑N
i=1 qij(xi − µj)

2/
∑N

i=1 qij .

9. System identifies and solves Lagrange multiplier problem. The second subgoal
max Pr(~c | ~φ) wrt {~φ} can be unrolled over the i.i.d. vector ~c as before. The specifica-
tion condition

∑C
j=1 φj = 1 creates a constrained maximization problem in the vector ~φ

which is solved by an application of the Lagrange multiplier schema. This in turn results
in two subproblems for a single instance φj and for the multiplier which are both solved
symbolically. Thus, the usual EM algorithm for Gaussian mixtures is derived.

10. System checks and optimizes pseudocode. During the synthesis process,
AUTOBAYES accumulates a number of constraints which have to hold to ensure proper
operation of the code (e.g., absence of divide-by-zero errors). Unless these constraints can
be resolved against the model (e.g., σi > 0), AUTOBAYES automatically inserts run-time
checks into the code. Before finally generating C/C++ code, the pseudocode is optimized
using information from the specification (e.g.,

∑C
j=1 φj = 1) and the domain. Thus, opti-

mizations well beyond the capability of a regular compiler can be done.

11. System translates pseudocode to real code in desired language. Finally,
AUTOBAYES converts the intermediate code into code of the desired target system. The
source code contains thorough comments detailing the mathematics implemented. A reg-
ular compiler containing generic performance optimizations not repeated by AUTOBAYES
turns the code into an executable program. A program for sampling from a mixture of
Gaussians is also produced for testing purposes.

5 Range of Capabilities

Here, we discuss 18 examples which have been successfully handled by AUTOBAYES,
ranging from simple textbook examples to sophisticated EM models and recent multino-
mial versions of PCA. For each entry, the table below gives a brief description, the number
of lines of the specification and synthesized C++ code (loc), and the runtime to generate the
code (in secs., measured on a 2.2GHz Linux system). Correctness was checked for these
examples using automatically-generated test data and hand-written implementations.

Bayesian textbook examples. Simple textbook examples, like Gaussian with simple prior
B1, Gaussian with inverse gamma prior B2, or Gaussian with conjugate prior B3 have
closed-form solutions. The symbolic system of AUTOBAYES can actually find these solu-
tions and thus generate short and efficient code. However, a slight relaxation of the prior
on µ (Gaussian with semi-conjugate prior, B4) requires an iterative numerical solver.

Gaussians in action. G1 is a Gaussian change-detection model. A slight extension of
our running example, integrating several features, yields a Gaussian Bayes classifier model
G2. G2 has been successfully tested on various standard benchmarks [1], e.g., the Abalone
dataset. Currently, the number of expected classes has to be given in advance.

Mixture models and EM. A wide range of k-Gaussian mixture models can be handled by
AUTOBAYES, ranging from the simple 1D (M1) and 2D with diagonal covariance (M2)
to 1D models for multi-dimensional classes M3 and with (conjugate) priors on mean M4

or variance M5. Using only a slight variation in the specification, the Gaussian distribu-
tion can be replaced by other distributions (e.g., exponentials, M6, for failure analysis) or
combinations (e.g., . Gaussian and Beta, M7, or k-Cauchy and Poisson M8). In the algo-
rithm generated by M7, the analytic subsolution for the Gaussian case is combined with the
numerical solver. Finally, M9 is a k1-Gaussians and k2-Gaussians two-level hierarchical
mixture model which is solved by a nested instantiation of EM [15]: i.e., the M-step of the
outer EM algorithm is a second EM algorithm nested inside.

Mixtures for Regression. We represented regression with Gaussian error and Legendre
polynomials with full conjugate priors allowing smoothing [10]. Two versions of this were
then done: robust linear regression R1 replaces the Gaussian error with a mixture of two
Gaussians (one broad, one peaked) both centered at zero. Trajectory clustering R2 replaces
the single regression curve by a mixture of several curves [5]. In both cases an EM algo-
rithm is correctly integrated with the exact regression solutions.

Principal Component Analysis. We also tested a multinomial version of PCA called latent
Dirichlet allocation [2]. AUTOBAYES currently lacks variational support, yet it manages to
combine a k-means style outer loop on the component proportions with an EM-style inner
loop on the hidden counts, producing the original algorithm of Hofmann, Lee and Seung,
and others [4].

Description loc Ts # Description loc Ts

B1 µ ∼ N(µ0, τ
0.5
0) 12/137 0.2 B2 µ 13/148 0.2

σ2 σ2 ∼ Γ−1(δ0
2

+ 1, δ0
2

σ.5
0)

B3 µ ∼ N(µ0, (
σ2

κ0
)0.5) 16/188 0.4 B4 µ ∼ N(µ0, τ0) 17/233 0.4

σ2 ∼ Γ−1(δ0
2

+ 1, δ0
2

σ.5
0) σ2 ∼ Γ−1(δ0

2
+ 1, δ0

2
σ.5

0)
G1 Gauss step-detect 19/662 2.0 G2 Gauss Bayes Classify 58/1598 4.7
M1 k-Gauss mix 1D 17/418 0.7 M2 k-Gauss mix 2D, diag 22/599 1.2
M3 –”–, multi-dim 24/900 1.1 M 4 –”– 1D, µ prior 25/456 1.0
M5 –”–, σ prior 21/442 0.9 M 6 k-Exp mix 15/347 0.5
M7 Gauss/Beta mix 22/834 1.7 M8 k-Cauchy/Poisson 21/747 1.0
M9 k1, k2-Gauss hierarch 29/1053 2.3 mix
R1 rob. lin. regression 54/1877 14.5 P1 PCA mult/w k-means 26/390 1.2
R2 mixture regression 53/1282 9.8

6 Conclusion

Beyond existing systems. Code libraries are common in statistics and learning, but they
lack the high level of automation achievable only by deep symbolic reasoning. The Bayes
Net Toolbox [12] is a Matlab library which allows users to program in models but does not
derive algorithms or generate code. The BUGS system [14] also allows users to program
in models but is specialized for Gibbs sampling. Stochastic parametrized grammars [11]
allow a concise model specification similar to AUTOBAYES’s specification language, but
are currently only a notational device similar to XML.

Benefits of automated algorithm and code generation. Industrial-strength code. Code
generated by AUTOBAYES is efficient, validated, and commented. Extreme applications.
Extremely complex or critical applications such as spacecraft challenge the reliability lim-
its of human-developed software. Automatically generated software allows for pervasive
condition checking and correctness-by-construction. Fast prototyping and experimenta-
tion. For both the data analyst and machine learning researcher, AUTOBAYES can function
as a powerful experimental workbench. New complex algorithms. Even with only the few
elements implemented so far, we showed that algorithms approaching research-level results
[4, 5, 10, 15] can be automatically derived. As more distributions, optimization methods
and generalized learning algorithms are added to the system, an exponentially growing
number of complex new algorithms become possible, including non-trivial variants which
may challenge any single researcher’s particular algorithm design expertise.

Future agenda. The ultimate goal is to give researchers the ability to experiment with the
entire space of complex models and state-of-the-art statistical algorithms, and to allow new
algorithmic ideas, as they appear, to be implicitly generalized to every model and special
case known to be applicable. We have already begun work on generalizing the EM schema
to continuous hidden variables, as well as adding schemas for variational methods, fast
kd-tree and N -body algorithms, MCMC, and temporal models.

Availability. A web interface for AUTOBAYES is currently under development. More
information is available at http://ase.arc.nasa.gov/autobayes.

References
[1] C.L. Blake and C.J. Merz. UCI repository of machine learning databases, 1998.

[2] D. Blei, A.Y. Ng, and M. Jordan. Latent Dirichlet allocation. NIPS*14, 2002.

[3] W.L. Buntine. Operations for learning with graphical models. JAIR, 2:159–225, 1994.

[4] W.L. Buntine. Variational extensions to EM and multinomial PCA. ECML 2002, pp. 23–34, 2002.

[5] G.S. Gaffney and P. Smyth. Trajectory clustering using mixtures of regression models. In 5th KDD, pp. 63–72, 1999.

[6] Z. Ghahramani and M.J. Beal. Propagation algorithms for variational Bayesian learning. In NIPS*12, pp. 507–513, 2000.

[7] P. Haddawy. Generating Bayesian Networks from Probability Logic Knowledge Bases. In UAI 10, pp. 262–269, 1994.

[8] F. R. Kschischang, B. Frey, and H.-A. Loeliger. Factor graphs and the sum-product algorithm. IEEE Trans. Inform. Theory,
47(2):498–519, 2001.

[9] S.L. Lauritzen, A.P. Dawid, B.N. Larsen, and H.-G. Leimer. Independence properties of directed Markov fields. Networks,
20:491–505, 1990.

[10] D.J.C. Mackay. Bayesian interpolation. Neural Computation, 4(3):415–447, 1991.

[11] E. Mjolsness and M. Turmon. Stochastic parameterized grammars for Bayesian model composition. In NIPS*2000 Work-
shop on Software Support for Bayesian Analysis Systems, Breckenridge, December 2000.

[12] K. Murphy. Bayes Net Toolbox for Matlab. Interface of Computing Science and Statistics 33, 2001.

[13] P. Smyth, D. Heckerman, and M. Jordan. Probabilistic independence networks for hidden Markov models. Neural Compu-
tation, 9(2):227–269, 1997.

[14] A. Thomas, D.J. Spiegelhalter, and W.R. Gilks. BUGS: A program to perform Bayesian inference using Gibbs sampling.
In Bayesian Statistics 4, pp. 837–842, 1992.

[15] D.A. van Dyk. The nested EM algorithm. Statistica Sinica, 10:203-225, 2000.

