Signal theory for SVM kernel parameter estimation
Signal theory for SVM kernel parameter estimation
149-154
Nelson, J. D. B.
3bef57a7-4c0e-4501-bea7-0e528bcd64a2
Damper, R. I.
6e0e7fdc-57ec-44d4-bc0f-029d17ba441d
Gunn, S. R.
306af9b3-a7fa-4381-baf9-5d6a6ec89868
Guo, B.
6c4581ac-e3e3-4002-992a-3abb7776ec5d
2006
Nelson, J. D. B.
3bef57a7-4c0e-4501-bea7-0e528bcd64a2
Damper, R. I.
6e0e7fdc-57ec-44d4-bc0f-029d17ba441d
Gunn, S. R.
306af9b3-a7fa-4381-baf9-5d6a6ec89868
Guo, B.
6c4581ac-e3e3-4002-992a-3abb7776ec5d
Nelson, J. D. B., Damper, R. I., Gunn, S. R. and Guo, B.
(2006)
Signal theory for SVM kernel parameter estimation.
IEEE International Workshop on Machine Learning for Signal Processing, Maynooth, Ireland.
.
Record type:
Conference or Workshop Item
(Other)
More information
Published date: 2006
Venue - Dates:
IEEE International Workshop on Machine Learning for Signal Processing, Maynooth, Ireland, 2006-09-01
Organisations:
Electronic & Software Systems, Southampton Wireless Group
Identifiers
Local EPrints ID: 262729
URI: http://eprints.soton.ac.uk/id/eprint/262729
PURE UUID: 3e97e922-fb51-4aab-9add-762bbb57ab52
Catalogue record
Date deposited: 19 Jun 2006
Last modified: 14 Mar 2024 07:16
Export record
Contributors
Author:
J. D. B. Nelson
Author:
R. I. Damper
Author:
S. R. Gunn
Author:
B. Guo
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics