161

AREA WORD-LENGTH TRADE OFF IN DSP ALGORITHM
IMPLEMENTATION AND OPTIMIZATION

A. Ahmadi, M. Zwolinski

Electronic System Design Group, School of Electronics and Computer Science, University of Southampton
Southampton, UK, {aa03r, mz}@ecs.soton.ac.uk

Keywords: High level synthesis, word length optimizaticn,
DSP implementation, digital noise.

Abstract

In this paper we propose a platform for High Level Synthesis
of DSP algorithms while emphasising the differences between
DSP systems and other digital systems. Accordingly, we
allow variable word lengths within the system in order to
optimize the system digital noise versus area. Using a
particular target architecture, a suitable cost function, together
with a synthesiser and optimizer and intermediate data bases
have been implemented. Optimization is based on a Genetic
Algorithm.

1 Introduction

Digital Signal Processing (DSP) is an important part of many
systems. As with other digital systems, reducing the time to
market and performance improvement are vital goals in
design and implementation methodologies. Since most of the
input data in signal processing algorithms are digital
representations of floating point values, one of the problems
in implementing signal processing algorithms on digital
hardware is choosing an appropriate word length for
arithmetic units. Traditionally this problem is solved by
making a worst case assumption and choosing a single word
length for all arithmetic units. This cannot be considered as an
optimum choice because there are different types of
arithmetic unit in the system and their accuracy has different
impacts on the overall accuracy.

Several pieces of work have been reported in this respect with
most of them focused on finding an optimal word-length for
the algorithm in the first step and then designing or
optimizing the system within that constraint, [2], [1]. In this
approach the word-length is not considered in the subsequent
optimization process. In other studies in which word-length
has been considered [9], only simplified cases have been
considered such that signals have been categorized into a few
groups to consirain the word-length in all functional blocks.
In view of the fact that finding the optimum choice of word
length for all system sub-blocks and arithmetic units as well
as optimizing other costs is a very difficult and time
consuming task, using High Level Synthesis (HLS) methods
is inevitable. HLS methods mostly use a data path/controller
model as a target structure, The synthesiser has to compile the
high level description of the system to this target, where the

data path represents the computational parts of the algorithm
and the controlier is the hardware implementation of the
controlling statements in the high level specification.
Although this approach may be efficient in some cases; since
it is based on compiler methodologies rather than hardware
implementation methods, it cannot be expected that it
presents the best solutions in specific applications like DSP.
In hardware design, every specific application domain has its
own characteristics and requirements which demand different
approaches. In the case of DSPs, however, there are a vast
variety of DSP algorithms and applications many of which
can be classified as a set of matrix-based operations of which
the majority are very suitable for distributed or parallel
hardware architectures. Accordingly, different types of
architectures and structures have been proposed and
implemented in academic and industry research; classic
examples can be found in [8], [7]. Our work is based on a
single-bus distributed-control structure. Every sub-block of
the system has its own controller which interacts with
controllers at higher and lower levels of hierarchy.

A synthesiser has been designed to generate a synthesisable
RTL description of the input algorithm. The input is C-like
code. The synthesiser changes this input specification into a
data structure with two different parts: the data path graph and
the controller graph.

In order to obtain an efficient implementation of a DSP
algorithm while computational requirements are satisfied as
well as other design costs and constrains, it is vital to have a
comprehensive description of the system and its costs.
Accordingly a parametric relationship between cost functions
based on word length as the controlling parameter has been
provided. The cost function for area is based on empirical
investigations of the basic biocks and controllers which had
previously been done in MOODS [16]. Output digital noise of
the system has been modelled vsing a Linear Time Invariant
(LTI} system model of the algorithm. In this model, each
arithmetic unit produces an additive noise to its output signal
in which its power density depends on the functionality of the
unit and the input and output word lengths. These noise
sources are considered as a set of independent random inputs
with a unified Probability Distribution Function (PDF). As a
consequence of superposition, every noise source has its own
impact on the output and accumulation of all these neises in
the output computes the total digital noise of the system.

The synthesiser and its related data structures have been
implemented in C+ and optimization has been done using
the proposed cost function and with a Genetic Algorithm.

16/2

2 Motivation: High Level Synthesis and DSP
Algorithms

HLS has been considered as a key factor in reducing the
distance between initial specification and target design. This
approach tries to hide the intermediate activities of system
synthesis as much as possible to simplify the design process
[3]- Because of the variety of possible applications, this field
is still challenging in terms of the efficiency of the final
system. As a result, domain-specific HLS tools have more
chance to achieve a better efficiency.

There are some distinguishing differences between digital
signal processors and other kind of digital systems that must
be considered in HLS tools for DSP applications. First, many
signal processing applications are not intrinsically digital in
nature which means that the input data to the system will be a
set of numbers which are an approximation of the real
information, not the exact values. In this sort of application,
the existence of the computational error is inevitable but the
value of the computational error is a matter of concern. The
second difference is that signal processing algorithms are
massively computational. Most can be implemented by
matrix-based operations which are simple arithmetic
operations in multi-foided space. On the other hand, these
alporithms are expected to run in a high speed (even real
time} an environment which requires a massive memory
access and management as well as high speed arithmetic
operation blocks. These major differences suggest that
general purpose HLS tools might not be able to give the best
result in such cases. With this in mind, a HLS tool has been
proposed to provide a more suitable mean for DSP synthesis.

3. Target Architecture

A HLS too! can be imagined as a compiler which translates a
high level specification of the system to a low-level-
synthesisable specification. From this point of view, all the
techniques which have been invented in the field of compiler
design can be used to achieve the best performance of the
resulting design. Most synthesis tools split the target structure
into two major parts; controller and data-path. The controller
is a state machine which keeps the sequence of operations and
controls the data-path blocks and the data-path is the part
which does the computation. This structure is very suitable
for implementing small systems but in the case of
complicated systems with a diversity of sub-blocks it will be
difficult to optimize the final hardware.

To achieve a better performance we propose a methodology
which is based on a soft-architecture as the target design
structure. This sofi-architecture is a virtual model of the final
system which could be imagined as a general structure for the
system. Since this architecture must be flexible, to cope with
a variety of possible signal precessing systems, it has four
basic parts: algorithm executers; interfaces; memories; and
controllers. This model gives details of the sub-systems,
interconnections structure, communication protocols and
general aspects of system operation. Details of each sub-
system or their functional blocks will be produced by the

synthesiser according to system specification. Fig. 1 shows
the target architecture and its hierarchical nature.

Systemn Architecture

Algorithm
Executer
The Macro Cell

Figure 1 Target architecture

The HLS tool is based on this architecture and the resulting
RTL VHDL files are low level specifications of the design
matching with this architecture,

4 Cost Functions

There are measures or costs, by which the performance of a
system can be evaluated. The most important examples of
these are: area, speed and power consumption — which are
common to afl digital systems. As mentioned, there are
differences between general purpose systems and specific
application systems which necessitate different emphasises on
costs. In the case of signal processing applications, apart from
the other costs which are important in every digital system,
accuracy has a vital role. Consequently, choosing a proper set
of word-lengths for arithmetic units has a great impact on the
system accuracy and area. This work investigates area-
accuracy trade off in the proposed methodolegy for HLS of
DSPs. Characteristics of area and accuracy parameters have
are discussed in the next section.

4.1 Area

The area of a system can be divided into three parts: data
paths; controllers; and interconnections. Changing the word
length dose not change the controllers’ area so it can be
considered as a constant value in the cost funciion, On the
other hand, changing the word length affects the area of the
data path dramatically. Thus area can be represented by:

E A (W) = AComrolles + ADaraparh(W) + AWires(W) M

16/3

Where F,(W) is the total system area, A.,..ome. i the
controller area (constant value), Apgpey (W) is the datapath

area and Ag,,.. (W) is interconnection area.

As an approximation of the datapath area, the area of units
like adders, registers, buffers and switches can be assumed to
have a proportional relationship to word length while the
multiplier area can be modelled by a second order
relationship with its word length; Table 1 shows such a
simple approximation. Using this rough estimation gives the
area by counting the number of each unit in the datapath.

Unit Simple model
Multiplier K, - w2
Adder K, W
Register K, W
Buffer KB W

Bus switch KW

Table 1 Area model for basic units

In Table 1, W is the word length of the unit, and K parameters
are constant values.

4.2 Digital Noise

In practice, digital signal processing systems only can offer a
finite number of binary digits to represent the signals to be
processed. Fitting real values in these limited containers
causes ¢ffects which can be categorized in several different
ways. From a mathematical point of view, using a limited
number of bits to represent a real number always means
adding or removing unwanted and indeterminate information
at the input, which 15 usually considered as an error or noise.
To model this problem in our design tool and to inspect its
impact; there are two problems which must be considered:
first is a noise model for computational errors and second is a
mode! of noise propagation through the hardware during
opetation.

Digital noise has been inspected and modelled in literature
like {6]. In general, depending on the interaction of these
computational errors, three major categories are recognizable:
Quantization, Overflow and Round-off noise. Although all of
these errors arise from word length limitation, their behaviour
and effects on system could be different. Fig 2 shows a two
pole IIR filter with its digital noise sources.

Quantization error corresponds to the representation of the
input data and system coefficients by finite length digital
numbers. These errors change the system transfer function, so
some modifications are required to protect the system against
this error [6]. Since the effects of these error sources on the
system behaviour can be anticipated by finite word length
simulations of the system level specification we do not
consider this kind of noise in our work.

Round-off noise, on the other hand, is generated by rounding
or truncation operations that follow the various arithmetic

operations. In ordinary digital systems this error mostly
happens in the case of multiplication where the resuit of
product of two P-bit fixed-point fractions is a (2W-1) bit
number that must eventually be sized for the next arithmetic
unit word length by rounding or truncation as depicted in fig
4. In this study, in which a non-unified word length has been
used, this sort of noise is the major form of the error.
Consequently, our noise cost function is based on it.

bo

Xn] ¥(r)

E, : Quantization Noise
E ., 1 Overflow Noise

Ey : Roundaff Noise

Figure 2 A Two Pole IIR Filter structure with its Noise
Sources

Overflow error comes from this fact that every arithmetic unit
with limited word length has an upper bound for its results
and if a result exceeds this bound, it will be changed fatally.
However a good design must be protected against this kind of
efror, in stream computing systems with feedback (Real Time
IIR system for instance) there is a possibility of overflow
because of accumulation of other noise sources which are
non-deterministic. This efror can cause instability in the
system behaviour [4]. Fig 3 shows a simple structure for this
fatal error,

REG

Overfl
3 e ow

Figure 3 Limit Cycle production

As a common assumptien these noise sources have been
formulated as independent white noise in DSP design [5]. In
this assumption, knowing the variance and mean value will be
enough to provide an acceptable approximation for noise in
the system output(s).

16/4

=
S
-
=

D (N

W=\ —Ws

Wremlr

i
)
j;ﬂ

Built in
Truncation
or Rounding

(@ (b)
Figure 4 Operation output round off a) DFG in synthesiser
data base b) hardware representation

To provide a noise propagation model, it must be recalled that
many DSP algorithms can be considered as LTI systems. This
assumption allows us to use superposition of independent
noise sources to compute the noise effect on the system
output, [21, [5]. The effects of noise sources on the output can
be approximated using Equation (2).
M 2
2
EGurpur =Z°’k (LiH @)
=1
where Hy(z) is the Z-transform of transfer function (2/n})
from the kth noise source to the cutput and Lz{ } is the L-

Norm [5], given by Equation {3).

Lm{H(z)}=[i\Z“{H(z)}[n]]"'r- 3)

In addition, o, can be found in a multi word-length paradigm
as in [2] from Equation (4).

1

oF = Ezlp (272;;2 _g2m)’ 4)

where ny is the present arithmetic unit word length and », is
the next arithmetic unit word length and p is the position of
the decimal point.

This function is a good approximation of the output noise but
not useful as a cost function. The output noise factor is a
linear function of &, , which has an exponential relationship

with word length, as in Equation (5).

M
E, = Z ap ¢ B
k=l

where a; is a constant which can be shown to be related to

the system structure and parameters. This relationship means
that the sensitivity of the cost function to the word length, as
the controlling factor, has been reduced exponentially. This
loss of precision causes difficulties in optimization of the
design by reducing the speed of convergence of the
optimization algorithm.

2

)

5 Implementation

The proposed system design methodology starts from a
hierarchical specification of the target system. The design
methodology is based on three parts: the functional blocks
data base; soft-architecture; and the synthesiser and
optimizer; as depicted in Figure 5.

Functional Blocks -
Data Base Sofi- Aot
External IPs I

Figure 5 General description of proposed HLS methodology.

High Level
Specifications &
requircments

L

Designed System

The functional block database is a library of functions and
sub-systems which may be used in a signal processing
system. There are four kinds of such sub-systems in our
method: algorithm executers, interfaces, memories and
controllers, which each contain further functional and sub-
blocks. In addition to sub-system implementation
information, this database provides the required information
for the design optimizer cost functions including: arca,
accuracy, delay and power consumption,

Outputs (Sequence)

(@
Inputs and Outputs

Figure 6 Synthesiser data structures a) input digraph b}
implementation architecture digraph.

16/5

The synthesiser is a synthesis-optimization tool. Its input is a
high level specification of the algorithm in a C-like format.
Basically there is a pre-defined hierarchical architecture for
the target system to which the target system must be mapped.
The starting specification of the systemn and the final
implementation are both represented by a directed graph
(digraph) data structure. Figure 6 shows a general form of the
input and output data structure of the synthesiser.
In Figure 6(a), a simple scheduling diagram of the input
algorithm has been depicted in the form of a digraph where
numbered nodes are arithmetic operations in the algorithm.
Fig 6(b) gives an example of an implemented algorithm in the
form of a digraph. N-type nodes in this digraph are hardware
implementations of functional units which each could be a
nested digraph and represent a sub system. B nodes represent
bus switches; they control the data communication between
levels of architecture or functional units, C nodes are
controllers which control the bus switches and N nodes. Apart
from controlling datapaths, controllers have a hierarchal
relationship with each other which makes them a single
controller in distributed form. From this point of view, this
data structure is divided into two parts: a network of
controllers and a network of data paths.
The synthesiser uses a set of library files to produce
Intermediate Code (ICD) files. The library files contain basic
blocks of the system and their cost relationships (noise, area,
power, and delay) are functions of word length. These cost
parameters can be used in a cost evaluation program after
scheduling, allocation and binding to optimize the design.
As it can be seen from Figure 6(b), units in the data paths are
connected to each other in a form of single bus structure. This
means that the bus length always is equal to the maximum
value of the word lengths. In addition, regardless of the
number of inputs and outputs only one word length (w) has to
be assigned to each unit. Therefore, we define a vector of
word lengths for units in the data paths as in Equation (6)

W= [w, Wy Wy Wi). (6}
The cost functions depend on this word length vector. Here,
the overall cost function is a linear combination of the noise
and area cost functions, Equation (7).

FW)y=dA, F W)+ Ay-Fy(W},
where A4, and A, are constant values.

Optimization has been done using a Genetic Algorithm (GA).
It is a multi-objective optimization of area and noise. From
experience, using a simple random walk might take a very
long time to reach the optimum point in this type of problem.
For example in the case of word length optimization of a
system with 50 units (M=50), the number of feasible solutions

for word length between 4 and 32 (4<w<32) is =107,
Optimization would need a very long time to converge to an
acceptable value. To improve this problem we designed a GA
in such a way that in each generation three new types of
individual are added: first are individuals which result from
cross over between selected (by weighted roulette) last
generation members; second is a set (with random number) of
new randomly-produced members and third are new members
which have been produced by slightly changing selected
single members. Our experience shows that these changes

M

improve the speed significantly. Table 2 gives the parameters
which have been set in this optimizer. In this table X, K,

K, K, are constant values and M is the number of units
with variable word length; P(x) is a random value. These all

are dependent on the number of word lengths which have to
be chose.

Parameter Value
Number of Individuals | K;-M

in the Population

Number of crossovers K,-M.P(x)
Number of brand new | K;-M.B(x)
Individuals

Number of K, -M.P(x}
Increment/decrement

Mutations

Number of Generations | Kg-M
(Iterations)

Table 2 Genetic Algorithm Parameters

The result of the synthesis is synthesizable RTL VHDL.

6 Results and Discussion

In our experiments we considered two basic examples, an
order-18 FIR filter and a 4x4-DCT, to clarify how word
length choice or optimization can affect the basic costs like
circuit area and output noise, These algorithms use very basic
structures, which have been repeated in many DSP
applications with minor modifications.

Mathematical specifications of the algorithms [4] are used as
the synthesiser input. RTL-Synthesizable VHDL files are
produced by our tool based on target architecture.

Finally, area and noise costs are lincarly combined in a multi-
objective optimization by GA and Table 3 shows the
comparative results for designs with uniform word lengths
and the optimized case. In optimization X, =1 and K, =10"

have been used as the weight parameters in costs combination
of equation 7. The unit area is calculated based on the model
of Table 1 and the noise model is based on Equations 3 and 4.

Design | Costs ;| W=8 | W=1l¢ | W=32 OPti‘f;hed

FIR Area | 13376 | 26873 | 53504 | 35816

Filter gmut 57107 | 22x10° | 9x10° | 93x10°
o1se

DCT | Area | 28688 | 57376 | 114752 | 92246
Output | 3217 | 12x10* | 19x10° | 1L1x107
Noise

Table 3 Results for different word length

7 Conclusions

It is observed from the results that there is a meaningful
relationship between area-noise cost and werd length as a
controliing parameter. In addition, since in a hardware
implementation of an algorithm, uniike general

16/6

programmable CPU or DSP processors, word length can be
chosen for each operational unit independently and these
word lengths can be different; finding an optimized word
length can balance contradictory costs like circuit area and
output digital noise in complicated designs.

In this study, we proposed a methodology and target for
implementing DSP algorithms and, accordingly, models of
circuit area and output noise and their relationship with word
length have been created. However this relationship is
complicated and in a multi-objective optimization it might
take a very long time to find the best choice for word length,
but some modifications to the method make it achievable.
Two basic algorithms have been implemented in our
methodology with different word lengths. By comparison,
word lengths which have been optimized method show a
lower output noise with smaller circuit area in both designs.

References

[1] M. L. Chang and S. Hauck, "Precis: A Usercentric Word-
Length Optimization Tool," IEEE Design & Test of
Computers, 22, 349 - 361, (2005).

[2] G. A. Constantinides, P. Y. K. Cheung, and W. Luk,
Synthesis and Optimization of DSP Algorithms
(Fundamental Theories of Physics S.): Kluwer Academic
Publishers, (2004).

[3] G. De Micheli, Synthesis and Optimization of Digital
Circuits: McGraw-Hill Education, (1994).

[4] P. S. R. Diniz, E. da Silva, S. L. Netto, and E. A. B. da
Silva, Digital Signal Processing: System Analysis and
Design: Cambridge University Press, (2002).

[51 A. V. Oppenheim and C. J. Weinstein, "Effects of Finite
Register Length in Digital Filtering and the Fast Fourier
Transform.," IEEE Proceedings, 60, 957-976, (1972).

[6] A. V. Oppenheim, R. W. Schafer, and J. R. Buck,
Discrete-Time Signal Processing: Pearson US Imports &
PHIPEs, (1998).

[7]1 X. Parhi, VLSI Digital Signal Processing Systems: Design
and Implementation: John Wiley & Sons Inc, (1999).

[8] M. A. Richards, "The Rapid Prototyping of Application
Specific Signal Processors (Rassp) Program: Overview
and Status," presented at Workshop on Rapid System
Prototyping (1994).

[9] W. Sung and K. Kum, "Simulation-Based Word-Length
Optimization Method for Fixed-Point Digital Signal
Processing Systems," IEEE Transactions on Signal
Processing 43, 3087 - 3090, (1995).

{10] A. C. Williams, A. D. Brown, and M. Zwolinski,
“Simultaneous optimisation of dynamic power, area and
delay in behavioural synthesis”, IEE Proc. C&DT, 147,
383-90, (2000).

