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ABSTRACT 

 

In this paper, the influence of interface between electrode and polymer or polymer and 

polymer on space charge dynamics has been studied. Planar samples of low density 

polyethylene (LDPE) were subjected to high dc electric stresses for extended periods of 

time and space charge measurements were taken using the pulsed electroacoustic (PEA) 

technique. Common electrode materials used in either laboratory or power cable industry 

were selected (i.e. aluminium (Al), gold (Au) and carbon loaded XLPE (Sc)). 

Experimental results demonstrated that charge injection processes take place in all cases 

once the applied electric stress has exceeded a threshold value. However, the amount of 

charge and polarity of the dominant injected charges showed a significant dependence on 

the electrode materials (under the same applied electric stress). Having establishing the 

influence of electrode materials on charge accumulation, our attention was then focused 

on the effect of polymer/polymer interface on charge dynamics. Unlike our previous 

approach where two different polymeric materials were used, this time the 

polymer/polymer interface was formed by using two layer of LDPE films cut from the 

same sheet. Sc and Al were used as electrodes to form different combinations. The results 

clearly indicated that the interface between two layers of LDPE acts as traps for electrons 

but not for positive charge carriers. The charge distribution in the bulk of the sample 

strongly depends on the electrode materials.  

 

INTRODUCTION 

 

Interfaces are often encountered in practical insulation systems and have become a 

growing area of interest due to their influence on the electrical performance of whole 

system. Unlike the case of semiconductors where transistors and diodes utilize 

characteristics of interfaces (p-n junctions), the interfaces in high electrically stressed 

materials, whether polymer/metal or polymer/polymer, can cause accumulation of space 

charge which can lead to unwanted electric field modification. For example, the interfaces in 

cable joints and terminations of extruded high voltage cables have been identified as crucial 

parts as their failure probability is much higher than cable itself. It has been proposed [1] 

that the accumulated space charge at the interface is a more significant factor with regard to 

electric field enhancement than in the bulk. Despite of increasing interests in the interfaces, 

the underlying mechanisms related to charge formation and electrical ageing are not well 

understood and research into the best interfacial materials and its binding structure is 

becoming increasingly important. Initially, thermally stimulated discharge current (TSDC) 

technique has been used to study polymer/polymer, polymer/mica and polymer/oil 

interfaces [2-5]. Suzuoki et al [4], through their research on the low density polyethylene 



(LDPE)/ethylene vinyl-acetate (EVA) laminates, have proposed that positive charges 

injected from the EVA side accumulate near the interface. Recently, Hozumi et al [6] 

have studied the charge behavior in a similar system using the pulsed electroacoustic 

(PEA) technique. They have found that the heterocharge is dominant at the interface. It 

has been established that PE-based materials may have considerable concerns when used 

for dc power cable, particularly in the presence of voltage polarity inversions [7]. These 

concerns were related to the presence of space charge in the insulation which can increase 

the risk of degradation due to local stress enhancement, ionisation and energy storage [8-

9].  

The present paper describes the charge formation and distribution in a system containing 

both electrode/polymer and polymer/polymer interfaces. Electrode materials considered 

are Al, Au and semiconducting polymer (Sc). Al and Au have been widely used as 

electrodes in laboratory while Sc is employed in polymeric power cables. For 

polymer/polymer interface, we have adopted a different approach from the previous 

research [10] where the interface is formed from different polymers, the interface in the 

present study is formed by laminating similar LDPE films.  

 

EXPERIMENTAL DETAILS AND TEST PROTOCOL 

 

LDPE was chosen because of its relatively simple chemical structure and its wide 

applications in cable insulation. Space charge formation in a material is greatly affected 

by the presence of impurities and additives as they can act either as ionisable centers 

under a high electric stress or as trapping sites. In order to reduce the influence of 

impurities, additive-free low-density polyethylene (LDPE) was selected for the present 

study. The thickness of the sample was typically ~200 µm thick for a single layer, 

consisting of two layers of ~100 µm thick films for two layer arrangement. Al electrodes 

with a diameter of 8 mm was evaporated on the sample under vacuum less than 2x10
-5

 

torr. Au electrode with a similar size to Al electrode was sputter coated on to the sample. 

For a semicon electrode material, a thin tape was removed from the outer screen (made of 

Borealis Semiconducting Compound LE 0592) of a commercial power cable and a 

similar size to the metallic electrode cut from the tape was attached to the LDPE sample. 

The dc resistivity of Sc is less than 100 Ωcm at room temperature.  A typical sample 

structure is shown in Fig. 1.  

 

 



The electrical behaviour of the interfaces is affected by several factors such as contact 

pressure, temperature and smoothness of the surfaces. Interfaces without microscopic 

cavity do not exist and some surface scratches in micron order are inevitable. In order to 

avoid partial discharges arising from the scratches the size of the cavities should be kept 

as small as possible. Care has been taken during sample preparation. The observation 

using the scanning probe microscopy (in the Atomic Force Mode) reveals the scratches 

on the surface of the LDPE films are less than 1µm.   

The sample was stressed at different voltage levels up to 10kV for a period of time at 

room temperature. The voltage profile in the present study is shown in Figure 2.  

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

The space charge measurements were taken at various times during the periods of both 

‘volts on’ and ‘volts off’ (short-circuit condition) using the pulsed electroacoustic (PEA) 

technique. In the PEA technique, acoustic pressure waves are generated due to the 

interaction of pulsed electric field and charge layer. Detection of acoustic pressure waves 

allows one to determine charge distribution across the sample. The principle of the PEA 

is shown in Figure 3. The pulse generator was able to produce a pulse width of 5ns with 

various amplitudes. The sensor used was a 9 µm thick LiNbO3 material that enables the 

 

Figure 3 Schematic diagram of PEA system 
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system to be heated up to 90
o
C although this was not utilized in the present study. A 

constant pressure was maintained during the measurements. The spatial resolution of a 

PEA system is determined by the pulse width, acoustic speed in the material and sensor 

thickness. It was estimated that the spatial resolution of the present PEA system is less 

than 10 µm which is considered adequate in the present study. The calibration of space 

charge was performed at the beginning of 2 kV voltage application. 

 

RESULTS 

 

Samples with the Same Electrode Materials 

 

Figures 4 to 6 show the space charge build up in a single layer of LDPE with 2 kV, 6 kV 

and 10 kV applied to the sample with the same electrode materials. 

 

 
Figure 4 Space charge formations in Al-LDPE-Al with different voltages. 

 

It can be seen that at 2 kV there is little charge formation, especially at the beginning of 

the voltage application. This validates the calibration. At 6 kV, however, observable 

change can be noticed from the changes in the induced charge on the electrodes. Charge 

formation in the bulk of sample at 10 kV with Sc and Al as electrodes is obvious. The 

charge formation in the bulk can be best illustrated when the applied voltage is removed 

(see (d) discharging in figures). It is clear that there is more charge formation in the 

sample with Sc as electrodes. Both positive and negative charges were formed with 

positive charge close to the anode and negative charge spreading from the cathode. On 

the other hand, the sample with Au as electrodes has much less charge in the bulk. 

Since additive-free LDPE was used in this study the charge generated from ionisation of 

impurities in the bulk is not considered. Charges measured in the sample is, therefore, 

considered from electrode injection. The presence of both positive and negative charges 



in the samples with Sc and Al electrodes suggests that the injection occurs at both 

electrodes.  

From the above it is clear that Au injects little charge compared to the other two electrode 

materials. Therefore, in the following sections we only show the results from Al and Sc 

electrode materials. Figures 7 and 8 illustrate the space charge build up in two layer of 

LDPE for various voltages applied to the sample with the same electrode materials. 

  

 
Figure 5 Space charge formations in Sc-LDPE-Sc with different voltages. 

 

 
 

Figure 6 Space charge formations in Au-LDPE-Au with different voltages. 

 



 
Figure 7 Space charge formations in Al-LDPE/LDPE-Al with different voltages. 

 

It can be seen from Figure 7 that even at 2 kV a small amount of negative charge can 

clearly be seen at the LDPE/LDPE interface. As expected, the amount of the injected 

charge increases with the applied voltage. At 6 kV one starts to see the positive charge on 

the both sides of the interface. This becomes even clear at 10 kV. The negative charge 

accumulation at the interface is a key feature. The amount of charge is generally smaller 

compared with that in Figure 8. Charge decay rate seems to be slower. 

 

 
Figure 8 Space charge formations in Sc-LDPE/LDPE-Sc with different voltages. 

 

When Sc is used for the electrodes, the formation of bulk charge is evident even at 2 kV 

as shown in Figure 8 (a). Both positive and negative charges are observed. More charge 



is formed when increasing the applied voltage. At the end of the voltage application of 6 

kV, there is a significant amount of positive charge accumulated in the layer next to the 

anode with its maximum close to the polymer interface. In the layer next to the cathode, 

charge distribution is more complicated. There is a large amount of negative charge 

accumulated adjacent to the polymer interface followed by a small amount of positive 

charge in the middle of the layer. The broad peak due to the charge on the cathode 

indicates the presence of negative charge adjacent to the cathode. The above charge 

distribution becomes much clear when 10 kV was applied to the sample. The charge 

distribution measured immediately after the removal of 10 kV is in agreement with the 

‘volts on’ observation. The charge decreases with time and the rate at which the charge 

decays is very fast. 

 

Samples with Different Electrode Materials 

 

Figures 9 and 10 show the results obtained from single layer samples with different 

electrode materials.  Figure 9 shows the space charge profiles from the sample with Sc as 

the anode and Al as the cathode. A large amount of positive charge is found in the sample 

with its maximum in the middle of the sample at the end of 10 kV applied voltage.  

 

 
Figure 9 Space charge formations in Sc(+)-LDPE-Al(-) with different voltages. 

 

If Sc and Al electrodes are swapped the charge distribution in the sample is quite 

different as shown in Figure 10. Here negative charge is developed close to the cathode 

(Sc) and positive charge close to the anode. The amount of charge is smaller comparing 

with that observed when Sc as the anode. 

Figures 11 and 12 illustrate the space charge formation for the two layer structure. It can 

be seen from figure 11 that at 2 kV there is a small amount of negative charge 

accumulated at the interface. When the applied voltage increases to 6 kV, in addition to 

the increase in amount of negative charge at the polymer interface, there is a clear 

indication of positive charge accumulation in the layer next to the anode. Moreover, it 

can be seen that a small amount of positive charge is present in the layer next to the 



cathode with its maximum close to the polymer interface. Further increase in the applied 

voltage leads to more charge being injected into the bulk. Generally the measurement at 

different times shows that the amount of charge in the bulk also increases with the 

duration of the voltage application. The remaining charge measured is shown in Figure 

11 (d) after the applied voltage is removed. The distribution differs slightly from that 

when the applied voltage is applied. It can be seen that negative charge appears in the 

layer next to the Sc electrode and positive charge in the layer next to the Al electrode. 

Again at the interface there is a large amount of negative charge. Compared with the 

sample that has the same electrodes the amount of negative charge at the interface is 

lower than for Sc electrodes but higher than for Al electrodes. 

 

 
Figure 10 Space charge formations in Sc(-)-LDPE-Al(+) with different voltages. 

 

 
Figure 11 Space charge formations in Sc(+)-LDPE/LDPE-Al(-) with different voltages. 



When the polarity of the electrodes is reversed, i.e. Sc as the anode and Al as the cathode, 

charge dynamics are different as shown in Figure 12. At 2 kV there is a small amount of 

positive charge in the bulk with its maximum adjacent to the anode. The amount of 

positive charge increases with the applied voltage and the maximum moves from the 

interface at 6 kV to the region adjacent to the cathode at 10 kV. Compared the results 

with those obtained previously, there are two features: only positive charge is observed 

across the bulk and there is no subtle change in charge distribution at the polymer 

interface. Charge decay in this case is fairly fast. 

 

 
Figure 12 Space charge formations in Sc(-)-LDPE/LDPE-Al(+) with different voltages. 

 

DISCUSSION 

 

Same Electrode Materials 

 

The results presented above clearly demonstrate that the electrode materials have a 

significant effect on charge injection. This will subsequently affect charge trapping and 

transportation in the material. As mentioned earlier, the material used in this investigation 

is additive-free LDPE therefore the impurity effect should not be a major player in the 

charge generation. Bear this fact in mind; the charge formed in the sample can be 

attributed to charge injection from the electrodes. It is generally considered that at the 

electrodes, electron injection or extraction (hole injection) occurs by either thermionic 

emission over a stress-lowered potential barrier (so called Schottky emission) or 

quantum-mechanical tunneling through the barrier (so called the Fowler-Nordheim law). 

From the results obtained from the same electrode materials it is obvious that in the case 

of Al electrodes positive charge can be injected from the anode and electrons from the 

cathode. In the absence of ionization/dissociation in the bulk, charge distribution depends 

on the charge injection rates at both electrodes and the mobilities of charge carriers. From 

the distribution it is evident that the process is dominated by positive charge. In the case 

of Au electrodes, it seems that positive charge can be easily injected from the anode as 



well. Once injected the positive charge can travel through the bulk under the influence of 

the effective electric stress and distribute across the sample. It is also possible that 

negative charge is injected into the sample from the cathode, however, the amount of 

negative charge is so small and is negligible compared with the amount of positive 

charge. Based on the amount of charge accumulated in the sample it indicates Al 

electrode can inject slightly higher amount of holes than Au electrode. In the case of Sc 

electrodes, two features are obvious from the charge distribution; (i) the amount of 

negative charge in the bulk is larger than positive charge, this indicates that electrons 

inject easier than holes from Sc. (ii) electrons distribute broadly toward the anode while 

the holes are close to the anode, this indicates the apparent mobility of electron is higher 

than hole. It is believed that the injected electrons move quickly through the bulk and 

meet the injected holes near the anode where they are recombined with holes. 

From the above results it clearly illustrates that in the case of metallic electrodes hole 

injection from the anode is easier than electron injection from the cathode. It is also clear 

that hole injection from Al anode is easier than that from Au anode as the amount of 

charge in the bulk is higher when the anode is Al.  One may also say that the electron 

injection from Au cathode is extremely difficulty. This may be explained based on the 

work function of the materials. In the case of Al and Au as electrode, it is known [11] that 

the work function of Au (4.70±0.02eV) is higher than Al (4.08±0.05eV) therefore the 

potential barrier of Al/LDPE interface is lower than that of Au/LDPE interface. As a 

result, there should be more injection from Al than Au, leading to a higher conduction 

current. Based on this argument the Sc used in the present study is carbon loaded XLPE 

and should have a very similar structure to the LDPE from the energy-band point of view. 

Consequently, the potential barrier between them is negligible, so the injection should be 

much easier than the metal electrode. The amount of charge trapped within the bulk of 

the sample validates the argument.  

As for samples consisted of two layer LDPE films, the polymer interface seems to 

dominate charge dynamics in the sample. According to the electromagnetic theory [12], 

charge density, σ, at an interface between two dielectrics is determined by the following 

equation 
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where γ1 and γ2 represent the conductivities of material 1 and material 2, ε1 and ε2 the 

dielectric constants of material 1 and material 2 respectively. This theory has been 

employed to describe charge formation and decay at the interfaces between different 

polymeric materials [13], however, it experienced a difficulty in explaining quantitatively 

the amount of charge present at the interfaces. An attempt has been made to explain the 

charge formation at the interface formed between different materials such as EVA and 

LDPE in our earlier research [10] using the theory. It only agreed in terms of charge 

polarity. In the present study, as the same material is involved, therefore we have 
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i.e. the charge density at the interface formed by the same material should be zero. The 

observed charge at the interface clearly defies the theory. There are two main reasons for 

this discrepancy. Firstly, in the field range the material cannot be viewed as a linear 



system. It is well known that the conductivity of insulating materials is dependent on the 

electrical stress [14], while the permittivity of the materials is less influenced by the 

electric stress. Secondly, charge transportation in the material is influenced by the 

presence of traps and trapping characteristics. In particular, due to broken bonds and 

chain folds at the surfaces of the materials the traps originated from the surface states 

play an important role in forming charges. The charge polarity is determined by the 

nature of surface states. In my opinion, the surface states dominate the nature of charge 

trapped. 

 

Different Electrode Materials 

 

Charge distributions in the samples with different electrode materials are interesting. The 

amount of charge and polarity in single layer LDPE samples are mainly determined by 

the Sc electrode. In the case of Sc and Al electrode combination the charge distributions 

are quite different from the pure metallic electrodes. In Figure 9 where the Sc is the 

anode and Al the cathode, the maximum positive charge occurs at the centre of the 

sample. It is believed that positive charge is injected from the anode. As mentioned 

earlier that Al cathode can actually inject electrons, the injected electrons tend to move 

towards the anode and neutralise with the coming holes. However, the amount of 

electrons is significantly lower than holes. As a consequence, the front of positive charge 

approaches the cathode slowly. The process can be accelerated by electric field as shown 

in Figure 9 (c) where 10 kV was applied. As more positive charge is injected into the 

bulk the interfacial stress at the anode is reduced, therefore, the amount of injected charge 

becomes less.  

When Sc acts as the cathode and Al as the anode, electrons dominate with the maximum 

at the polymer interface. The electric field in the layer next to the Al electrode is 

enhanced, resulting in an increase in positive charge carrier injection. The positive charge 

carriers may be able to cross the interface but will be recombined with the large amount 

of electrons from the Sc electrode, hence the charge distribution as shown in Figure 10. 

In the case of two layer samples the charge distribution is determined by Sc as well as 

polymer interface. When Sc is served as the anode as shown in Figure 11, no negative 

charge is observed. Considering possible electron injection from Al electrode and 

trapping characteristic of the polymer interface, it may be possible that a small amount of 

negative charge presents at the polymer interface. The PEA measurement can not 

distinguish positive and negative charge and only give a net charge. When Sc is served as 

the cathode, charge distribution is dominated by negative charge and concentrated at the 

polymer interface.  

The accumulation of space charge in polymeric materials has serious effect on electric 

field distribution. Although not presented in this paper, the electric field enhancement 

caused by the presence of bulk charge can be comparable with the applied electric field. 

This is indeed a factor that needs to be taken into consideration in practice. Growing 

evidence shows that space charge plays an important role in electrical aging and 

breakdown in polymeric materials [15, 16].  Our results from ac ageing study of the same 

material [17] also support the importance of proper interfaces in high voltage insulation 

systems.  

 



CONCLUSIONS 

 

The effects of interfaces of electrode material/polymer and polymer/polymer on the 

charge trapping characteristics in low-density polyethylene have been investigated, the 

following conclusions may be drawn: 

The electrode material has a significant effect on the charge injection therefore on the 

trapping characteristics of LDPE. From carrier injection point of view the results indicate 

that for electron the order is as follows: Sc > Al while Au injects very little; for hole the 

order is Sc > Al > Au. The injection rate in the case of Al electrodes is hole > electron 

while with Sc electrodes the injection rate is electron > hole.  

The interface between two layers of LDPE acts as traps for electrons but not for positive 

charge carriers. The charge distribution in the bulk of the sample strongly depends on the 

electrode materials.  
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