
Dynamic Discovery of Composable Type Adapters for Practical Web Services
Workflow

Martin Szomszor, Terry R. Payne and Luc Moreau
School of Electronics and Computer Science

University of Southampton
Southampton, SO17 1BJ, UK

{mns03r, trp, L.Moreau}@ecs.soton.ac.uk

Abstract

As the Web Services and Grid community adopt Semantic
Web technology, we observe a shift towards higher-level
workflow composition and service discovery practices.
While this provides excellent functionality to non-expert
users, more sophisticated middleware is required to hide
the details of service integration. By investigating
a common Bioinformatics use case, we observe the
need for Type Adaptor components to be inserted
into Workflows to harmonise syntactically incompatible
interfaces. In this paper, we propose a generic Type Adaptor
description approach that can be used in conjunction with
existing service registries to facilitate automatic syntactic
mediation. We demonstrate our implementation before
evaluating both the translation approach we employ, and
the relative cost of using a registry for Type Adaptor
discovery.

1. Introduction

Workflow technology has been adopted by e-Science
Grid applications to encode scientific processes, allowing
users to performin silico science [7]. TheMY GRID

(www.mygrid.org.uk) project supply an example of such a
system, supporting Bioinformaticians in the construction,
execution and sharing of Workflows through the Taverna
(http://tavera.sf.net) graphical workbench. Recent advances
in the MY GRID have focused on supporting users in the
discovery and composition of services by using rich service
annotations. FETA [9] has incorporated Semantic Web
[3] technology into service descriptions using ontologies
to capture the semantics of Web Services - essentially
supplying users with conceptual definitions of what the
service does using domain specific terminology. This has
proven to be a valuable commodity in a system potentially

making use of thousands of services where searching over
service descriptions alone is a cumbersome and tedious
task.

With the introduction of semantically annotated Web
Services, Workflow composition inMY GRID has shifted
to a higher-level design process: bioinformaticians can
choose to include services in a Workflow to achieve
particular goals based on the conceptual service definitions.
While this makes Workflow design more accessible to
untrained users, it does lead to more complex architectural
requirements. Indeed, the situation often arises where users
wish to connect two services together that areconceptually
compatiblebut have differentsyntactic interfaces. To
harmonise any data incompatibilities in a Workflow,
additional processing is required, often taking the form
of translation script, bespoke application, or Web Service.
Within MY GRID, theseType Adaptorcomponents must be
discovered manually and inserted into the Workflow by
hand, enforcing additional effort on the Bioinformatician.
Consequently, the Bioinformatician is distracted from
the scientific process at hand, spending additional time
understanding why an incompatibility has been encountered
and how it can be harmonised.

In this paper, we present a generic approach for
describing Type Adaptors, which separates abstract
functionality (i.e. the data types converted) from
implementation (translation script, executable code, Web
Services, etc). By using such a Type Adaptor description
with a service registry, we show that it is possible
to advertise Type Adaptors and discover them at run-
time, aiding the user by automatically including the
necessary conversion components. By combining the
implementation of a composable translation language with
the Grimoires service registry (www.grimoires.org), our
proposed architecture is able to automate the discovery and
execution of Type Adaptors in Web Service Workflows. We
evaluate our implementation to show that the translation

approach scales well, offers composability with little
cost, and requires relatively low overhead for the use of
Grimoires. Our contributions include:

1. An approach for Type Adaptor interface description in
WSDL using Grimoires for advertising and discovery;

2. A language to describe Type Adaptors and an engine
to process them and perform type conversion;

3. A complete system implementing the approach with
empirical evaluation through benchmarking.

This paper is organised as follows: Section 2 introduces
the need for Type Adaptors and presents a motivating
example within a Bioinformatics scenario. In Section 3, the
use ofWSDL for Type Adaptor description and discovery
is shown, before we present our implementation in Section
4. Evaluation of our implementation is given in Section 5,
followed by the examination of related work in Section 6.
Finally, we conclude and present further work in Section 7.

2. Motivation and Use Case

A typical task within Bioinformatics involves retrieving
sequence data from a database and passing it to an
alignment tool to check for similarities with other known
sequences. WithinMY GRID, this interaction is modelled
as a simple Workflow, with each stage in the task
being fulfilled by a Web Service, illustrated in Figure
1. Many Web Services are available for retrieving

XEMBL

NCBI-Blast

Get Sequence Data Sequence Alignment

DDBJ-XML

Sequence

Data

Accesssion

ID

Blast

Results

Figure 1. A simple bioinformatics task: get sequence data
from a database and perform a sequence alignment on it.

sequence data; e.g. the ones used here are DDBJ-
XML (http://xml.ddbj.nig.ac.jp/) and XEMBL
(http://www.ebi.ac.uk/xembl/). To obtain a
sequence data record, an accession number is passed as
input to the service, which returns anXML document. This
document, returned from either service, essentially contains
the same information, namely the sequence data as a string
(e.g. atgagtga...), references to publications, and
features of the sequence (such as the protein translation).
However, the way this information is represented differs
- XEMBL returns an INSD1 formatted record whereas

1http://www.ebi.ac.uk/embl/Documentation/DTD/INSDSeqv1.3.dtd.txt

Sequence
Data

DDBJ-XML NCBI_Blast

DDBJ-XML
Format

FASTA
Format

At a conceptual level, the output of the DDBJ-XML Service is
compatible with the input to the NCBI_Blast Service.

At a syntactic level, the output from the DDBJ-XML Service is
not compatible with the input to the NCBI_Blast Service.

Conceptual Level

Syntactic Level

 <DDBJXML xmlns='http://themindelectric.com'>
 <ACCESSION>AB000059</ACCESSION>
 <FEATURES>
 <cds>
 <location>1..1755</location>
 <qualifiers name="product">capsid protein 2</qualifiers>
 <qualifiers name="protein_id">BAA19020.1</qualifiers>
 <qualifiers name="translation">MSDGAV...</qualifiers>
 </cds>
 </FEATURES>
 <SEQUENCE>atgagtgatggagcagt..</SEQUENCE>
 </DDBJXML>

>AB000059
atgagtgatggagcagtatgagtgatggagcagtatgagtgatggagcagt...

Figure 2. The output from the DDBJ-XML Service is not
compatible for input to the NCBI-Blast Serivce.

DDBJ-XML returns a document using their own custom
format. The next stage in the Workflow is to pass the
sequence data to an alignment service, such as the BLAST
service at NCBI2. This service can consume a string of
FASTA3 formatted sequence data.

Intuitively, a Bioinformatician will view the two
sequence retrieval tasks as the same type of operation,
expecting both to be compatible with the NCBI-Blast
service. The semantic annotations attached through FETA
affirm this as the output types are assigned the same
conceptual type, namely a Sequence Data Record concept.
However, when plugging the two services together, we see
that the output from either sequence data retrieval service
is not directly compatible for input to the NCBI Blast
service (Figure 2). To harmonise the Workflow, some
intermediate processing is required on the data outputted
from the first service to make it compatible for input to the
second service. We define this translation step assyntactic
mediation, an additional Workflow stage that is carried
out by a particular class of programs we define asType
Adaptors.

3. Generic Type Adaptor Description

To augment the manual selection of programs or
services to harmonise data incompatibles in Web Service
Workflows, we propose a solution that utilises a registry of
Type Adaptors, each of them described byWSDL, to support
the automated discovery of harmonisation components. In
this Section, we characterise a generic approach for the
description, sharing and discovery of Type Adaptors and
how they can be used to perform syntactic mediation in

2http://www.ncbi.nlm.nih.gov/BLAST/
3http://www.ebi.ac.uk/help/formatsframe.html

input_message, in1:
 - part: in, type: S1
output_message, out1:
 - part: out, type: D1

port type:
 - operation: convert
 - input_message, in1
 - output_message, out1

WSDL Description

XSLT Script

<xsl:stylesheet>

 <xsl:template match="S1">

 <D1> ... </D1>

 </xsl:template>

</xsl:stylesheet>

Java

main(String args[]){

 S1=args[0];

 return convert(S1);

}

Web Service

<definitions>

...

 <binding name='adaptorBinding'>

 <soap:Binding style='document' ...>

 <operation name'convert'>

 <soap:operation soapAction='convert'/>

 <input name='convertIn'/>

 <output name='convertOut'/>

 <operation>

 </binding>

</definitions>

The XSLT Script, Java program

and Web Service can all be

described using WSDL.

Figure 3. Using WSDL to describe different Type
Adaptors

workflows.

There are many applications and tools that support the
translation of data between different formats.XSLT [6]
enables the specification of data translation in a script
format using pattern matching and template statements.
Such a script can be consumed by anXSLT engine to drive
the translation of data to a different representation. Other
forms of Type Adaptors are not so transparent; a black
box approach is used frequently inMY GRID where users
create custom translation programs using languages such
as JAVA and Perl. In other cases, a Type Adaptor may
take the form of a distinct mediator Web Service, described
by WSDL and executed usingSOAP over HTTP. Any of
these Type Adaptors can be viewed as a component that
converts data from a source type to a destination type. To
describe the capabilities of all Type Adapters, irrespective
of implementation, we separate concrete implementation
details from the abstract definition. Under this assumption,
all Type Adaptors can be described usingWSDL [5].

WSDL is a declarative language used to specify service
capabilities and how to access them through the definition
of service end-points. The operations implemented by the
service are defined in terms of the messages consumed
and produced, the structure of which is specified by
XML Schema. The service, operations and messages
are described at an abstract level and bound to a
concrete execution model via the service binding. The
service binding describes the type of protocol used to
invoke the service and the requested datatype encoding.
Because of this two-tier model, many different Web
Service implementations may be viewed through a common
interface. By applying the same principle to data
harmonisation components, we can useWSDL to describe
the capabilites of any Type Adaptor. Using this approach
allows different implementations of the same Type Adaptor

Service A Service B
Document

Type: S1

Document

Type: D1

Registry

S1 to D1

Type Adaptor

find adaptor

from S1 to D1

The Type Adaptor can be used

to translate instance of S1 to D1

input_message, in1:

 - part: in, type: S1

output_message, out1:

 - part: out, type: D1

port type:

 - operation: convert

 - input_message, in1

 - output_message, out1

Binding:

 - Type adaptor reference

WSDL DescriptionWhen queried, the Registry returns

the WSDL document describing the

type adaptor for S1 to D1

The WSDL Binding describes

how to use the Type Adaptor

Figure 4. The use of a registry to discover Type Adaptors

to be described with the same abstract definition (i.e. in
terms of the input and outputXML schema types) and
different bindings. This is illustrated in Figure 3, where
three Type Adaptors are shown: anXSLT script, a JAVA

program and aSOAP Web Service, all providing the same
functionatlity - to convert data of typeS1 to D1.

With a uniform method for the description of Type
Adaptors in the form ofWSDL, we can utilise existing
registry technologies to support sharing and discovery - this
feature is described in more detail in Section 4 where we
present our implementation. Figure 4 shows a high level
view of how a registry containingWSDL definitions of Type
Adaptors can be used in a Web Service workflow to perform
syntactic mediation. The output from Service A, of type
S1 is used as input to Service B, which consumes type
D1. The binding section of theWSDL definition describes
how to execute the translator, for example, by providing the
location of anXSLT script or theJAVA method details.

4. Architecture

In this Section, we describe an architecture that
utilises the Type Adaptor description outlined above.
After presenting the motivation for an intermediary
representation, we briefly describe our mapping language,
FXML -M, that is used to specify Type Adaptor behaviour,
present our Type Adaptor registration and discovery
implementation, and show it working against our use case
scenario.

4.1. Scalability and Reuse

As the amount of Web Services is increasing, currently
over 1000 in MY GRID [9, 8], scalability and reuse is
an important issue. In the simplest case, we assume a
Type Adaptor exists to convert data directly between every
compatible representation. Forn compatible data formats,
O(n2) Type Adaptors are required to achieve maximum
interoperability. Therefore, as more Web Services are
introduced, the number of compatible interfaces increases

and a quadratic expansion for the number of Type Adaptors
will occur. Also, when introducing a new representation
for information that is already present in other formats,
Type Adaptors must be created to transform the new
representation to all other formats.

By introducing an intermediate representation, to which
all data formats are converted, the problem of scalability
can be diminished. Forn compatible interfaces,O(n) Type
Adaptors are required, resulting in a linear complexity as
more services are added. When introducing new formats,
only one Type Adaptor is required to convert the new
data format to and from the intermediate representation.
Therefore, our Architecture is based around the use of
an intermediary representation. When considering the
mechanisms necessary to support users in the use and
agreement of a common representation, we see existing
work already tackles a similar problem withinMY GRID.
FETA uses descriptions that supply users with conceptual
definitions of what the service does using domain specific
terminology. Part of this solution involves the construction
of a large ontology for the bioinformatics domain covering
the types of data shown in our use case. Therefore,
we extend these existingOWL ontologies to capture the
semantics and structure of the data representation.

In terms of sharing and reuse, it is common for Web
Services to supply many operations that operate over
the same, or subsets of the same data. Therefore, the
transformation for a given source type may come in the
form of a Type Adaptor designed to cater for multiple
types. Hence, the generation of aWSDL description for a
given Type Adaptor should captureall the transformation
capabilities of the adaptor. This can be achieved by placing
multiple operation definitions in theWSDL, one for each of
the possible Type conversions.

4.2. Bindings

To describe the relationship betweenXML schema
components andOWL concepts / properties, we devised a
mapping language,FXML -M (FormalisedXML mapping),
described in previous work [15].FXML -M is a composable
mapping language in which mapping statements translate
XML schema components from a source schema to a
destination schema.FXML -T (FormalisedXML Translator)
is an interpreter forFXML -M which consumes anM-
Binding (collection of mappings) and the sourceXML

document and produce a destination document. Broadly,
an M-Binding B contains a sequence of mappings
m1, m2, . . . , mn. In the style ofXML schema, M-Bindings
may also import other M-Bindings (e.g.B1 = {m1, m2} ∪
B2) to support composition - an important feature when
services offer operations over multipleXML schemas. M-
Bindings themselves areXML documents which be viewed

as a specialised mini Workflow for type conversion.

4.3. Binding Publication and Discovery

Since our M-Binding language is used to driveXML to
XML document conversion, and our intermediary language
is anOWL ontology, conversion betweenXML instances and
OWL concept instances is specified in terms of a canonical
XML representation forOWL individuals. While the use of
XML to representOWL concepts is common,XML schemas
to describe these instances are not available. Hence, we
generateXML schemas (OWL instance schema) to describe
valid concept instances for a given ontology.

With an intermediary schema in place (in the form
of an OWL instance schema), the appropriate M-Bindings
to translate data to and fromXML format, andFXML -
T (the FXML -M translator), Web Service harmonisation
is supported. To fully automate the process, i.e.
discover the appropriate Bindings (or Type Adaptors)
based on translation requirements, we require a registry
to advertise M-Bindings. Since Type Adaptors can be
described usingWSDL, we use the Grimoires service
registry (www.grimoires.org) to record, advertise and
supply adaptors. Grimoires is an extendedUDDI [1]
registry that enables the publishing and querying of Service
interfaces while also supporting semantic annotations of
service descriptions [11]. Figure 5 illustrates how Bindings
are registered with Grimoires using theBinding Publisher
Service.

TheBinding Publisher Serviceconsumes an M-Binding,
along with the source and destinationXML schemas, and
produces aWSDL document that describes the translation
capability of the M-Binding. This generatedWSDL in
then publicly hosted and registered with Grimoires using
thesave service operation. Afterwards, an M-Binding
WSDL may be discovered using the standard Grimoires

Binding Publisher

Service

Source Schema

element: s1

element: s2

...

element: sn

Destination Schema

element: d1

element: d2

...

element: dn

M-Binding

m1: s1 --> d1

m2: s2 --> d2

...

mn: sn --> dn

Register

Binding

Generated WSDL

in message type: s2
out message type: d2
...

in message type: sn
out message type: dn

in message type: s1
out message type: d1

Produces

GRIMOIRES

Repositorysave_service

M-Binding

m1: s1 --> d1

m2: s2 --> d2

...

mn: sn --> dn

findInterfaceinput type: s1
output type: d1

Figure 5. Registration and discovery of Binding using the
Grimoires repository

DDBJ NCBI_Blast
Doc

Type: DDBJ Type: FASTA

OWL

[Sequence_Data]

FXML-T FXML-T

JENA
OWL

[Sequence_Data]

DDBJ
to

[Sequence_Data]

M-Binding

[Sequence_Data]
to

FASTA

M-Binding

GRIMOIRES

Repository

findInterfaceinput: DDBJ

output: [Sequence_Data]

findInterface input: [Sequence_Data]

output: FASTA

[Sequence_Data] [Sequence_Data]

semantic
type

semantic
type

The first mediation phase

converts the DDBJ Record

to an OWL concept Instance

The second mediation phase

convert the OWL Sequence_Data

Instance to FASTA format

M-Bindings are discovered

using Grimoires

Instance of FXML-T
peform translation

JENA is used to store

OWL Concept Instances

Figure 6. Automated syntatic mediation for our use case
using Grimoires to store Binding descriptions andFXML -T
for document translation

query interface (thefindService operation) based on
the input and output schema types desired.

4.4. Automated Mediation

To achieve syntactic mediation, two M-Bindings are
necessary: arealisation M-Binding(to convert XML to
the intermediateOWL representation), and aserialisation
M-Binding (to convert OWL to XML). Figure 6 is an
expansion of Figure 4 showing the use of Grimoires
and FXML -T to automate syntactic mediation for our use
case. When registering the DDBJ and NCBI-Blast services
with FETA, semantic annotation are used to specify the
input and outputsemantic typesusing a reference to a
concept in the Bioinformatics ontology - in this case the
Sequence Data concept. At workflow composition
time, the Bioinformatician may wish to feed the output
from the DDBJ service into the NCBI-Blast service because
they are deemed semantically compatible (i.e. they share
the same semantic type). While this workflow can be
specified, it is not executable because of the difference in
data formats assumed by each service provider - a stage
of syntactic mediation is required. Figure 6 shows the
mediation phase, using Grimoires to discover M-Bindings,
FXML -T to perform the translation from DDBJ format to
FASTA format with JENA used to hold the intermediate
representation (in the form of anOWL concept instance).

5. Evaluation

To evaluate this approach, we have examined the
performance of our Translation Engine (FXML -T) and
the use of Grimoires as a repository for advertising M-
Binding documents. The aims are threefold: (i) to

test the scalability of our mapping language approach;
(ii) to establish FXML -T as scalable translation engine
by examining the performance costs against increasing
document sizes, increasing schema sizes, and increasingly
complex M-Binding composition; (iii) to confirm the use
of Grimoires for M-Binding discovery is not a significant
overhead in the context of Workflow execution. The
following sub-Sections describe each of the tests with
hypothesis given initalics. All tests were carried out using
a 2.6 Ghz Pentium4 PC with 1GB RAM running Linux
(kernel 2.6.15-20-386) using unixtime to record program
execution times.FXML -T is implemented inSCHEME and
run using the Guile Scheme Interpreter (v1.6). Tests in
Section 5.1 are run 10 times with a mean value plotted.

5.1. Translation Engine Scalability

Expanding document and schema size will increase the
translation cost linearly or better.
We test the scalability ofFXML -T in two ways: by
increasing input document size (while maintaining uniform
input XML schema size), and by increasing both input
schema size and input document size. We testFXML -T
against the followingXML translation tools:

• XSLT: Using Perl and the XML::XSLT module4.

• XSLT: UsingJAVA (1.5.0) and Xalan5(v2.7.0).

• XSLT: Using Python (v2.4) and the 4Suite Module6(v0.4).

• SXML: A SCHEME implemention for XML parsing and
conversion (v3.0).

Since FXML -T is implemented using an interpreted
language, and Perl is also interpreted, we would expect
them to peform slowly in comparison toJAVA and Python
XSLT which are compiled7.

Figure 7 shows the time taken to transform a source
document to a structurally identical destination document
for increasing document sizes. The maximum document
size tested is 1.2 MB, twice that of the Blast results obtained
in our use-case. From Figure 7 we see thatFXML -T has a
linear expansion in transformation time against increasing
document size. Both Python andJAVA implementations
also scale linearly with better peformance thanFXML -T
due toJAVA and Python using compiled code. Perl exhibits
the worst performance in terms of time taken, but a linear
expansion is still observed.

Our second performance test examines the translation
cost with respect to increasingXML schema size. To
perform this test, we generate structurally equivalent source
and destinationXML schemas and inputXML documents

4http://xmlxslt.sourceforge.net/
5http://xml.apache.org/xalan-j/
6http://4suite.org/
7although Python is interpreted, the 4Suite library is statically linked to

natively compiled code

 0

 10

 20

 30

 40

 50

 60

 70

0 200 400 600 800 1000 1200

U
se

r
C

P
U

 T
im

e
(S

ec
on

ds
)

Document Size (KBytes)

FXML

Perl

Java

Python

SXML

FXML
FXML Fit

JAVA
JAVA Fit

PERL
PERL Fit
PYTHON

PYTHON Fit
SXML

SXML Fit

Figure 7. Transformation Performance against increasing
XML Document Size

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

U
se

r
C

P
U

 T
im

e
(S

ec
on

ds
)

Number of Schema Elements

FXML

Perl

Java
Python

SXML

FXML
FXML Fit

JAVA
JAVA Fit

PERL
PERL Fit
PYTHON

PYTHON Fit
SXML

SXML Fit

Figure 8. Transformation Performance against increasing
XML Schema Size

which satisfy them.XML input document size is directly
proportional to schema size; with 2047 schema elements,
the input document is 176KBytes, while using 4095
elements a source document is 378KBytes. Figure 8 shows
translation time against the number of schema elements
used. Python andJAVA perform the best - a linear expansion
with respect to schema size that remains very low in
comparison toFXML -T and Perl. FXML -T itself has a
quadratic expansion; however, upon further examination,
we find the quadratic expansion emanates from theXML

parsing sub-routines used to read schemas and M-Bindings,
whereas the translation itself has a cost linear to the size of
its input. TheSCHEME XML library used forXML parsing
is common toFXML -T and SXML, hence the quadratic
expansion forSXML. Therefore, our translation approach is
linear and can be implemented with a suitableXML parser.

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

 0.28

 0.3

 0 1 2 3 4 5 6

U
se

r
C

P
U

 T
im

e
(S

ec
on

ds
)

Number of bindings

File Size = 152Bytes
Fit, File Size = 152Bytes

File Size = 411Bytes
Fit, File Size = 411Bytes

File Size = 1085Bytes
Fit, File Size = 1085Bytes

File Size = 2703Bytes
Fit, File Size = 2703Bytes

Figure 9. Transformation Performance against number of
bindings

5.2. Composition Cost

Binding composition comes with virtually no
performance cost.
One important feature of our translation language (FXML)
is the ability to compose M-Bindings at runtime. This can
achieved by creating an M-Binding that includes individual
mappings from an external M-Binding, or imports all
mappings from an external M-binding. For Service
interfaces operating over multiple schemas, M-Bindings
can be composed easily from existing Type adaptors.
Ideally, this composability should come with minimal cost.
To examine M-Binding cost, we increased the number of
M-Bindings and observed the time required to transform
the document. To perform the translation, 10 mappings are
requiredm1, m2, . . . , m10. M-Binding 1 contains all the
required mapping statements:B1 = {m1, m2, . . . , m10}.
M-Binding 2 is a composition of two M-Bindings where
B2 = {m1, . . . , m5}∪B2a andB2a = {m6, . . . , m10}. To
fully test the cost of composition, we increased the number
of M-Bindings used and run each test using 4 source
documents with sizes 152Bytes, 411Bytes, 1085Bytes,
and 2703Bytes. While we aim for zero composability
cost, we would expect a small increase in translation time
as more M-Bindings are included. By increasing source
document size, a larger proportion of the translation time
will be spent on reading in the document and translating it.
Consequently, the relative cost of composing M-Bindings
will be greater for smaller documents and therefore the
increase in cost should be greater. Figure 9 shows the time
taken to transform the same four source documents against
the same mappings distributed across an increasing number
of M-Bindings. On the whole, a very subtle increase in
performance cost is seen, with the exception of the file size

1085Bytes. We attribute this anomaly to the rate of error in
time recording which is only accurate to±10 milliseconds.

5.3. Registry Cost

The cost of M-Binding discovery using Grimoires is not
significant when compared to cost of executing the target
service.
Our final test examines the cost of using Grimoires to
discover the required M-Bindings. While this feature
facilitates automation, it will require additional web service
invocations in a workflow.

Activity Average

DDBJ Execution 2.50
Realisation Discovery 0.22

Realisation Transformation 0.47
Jena Mediation 0.62

Serialisation Discovery 0.23
Serialisation Translation 0.27

Total Mediation 1.81

The Table above shows the average time taken (from 5
runs) for a type translation usingOWL as an intermediarry
representation. These types of translation consist of 5 steps:
(i) discover realisation M-Binding, (ii) transformation of
result to OWL instance, (iii) import OWL instance to
JENA KB, (iv) discovery of serialisation M-Binding, (v)
trasformation ofOWL instance toXML . Results show
that the total mediation time is roughly 2 seconds, with
the largest portion of the time taken importing theOWL

instance intoJENA. The discovery overhead (realisation
and serialisation M-Bindings) is acceptable in comparison
to service execution and translation times.

6. Related Work

The Interoperability and Reusability of Internet
Services (IRIS) project have also recognised the need to
assist Bioinformaticians in the design and execution of
Workflows. Radetzkiet al [13] describe Adaptor services
using WSDL with additional profiles in the Mediator
Profile Language (MPL)8. Adaptor services are collated
in a Mediator Pool and queried using a derivation from
the input and output descriptions of services connected
by a dataflow. The query is a combination of syntactic
information and semantic concepts from a domain
ontology. A Matchmaking algorithm presents a ranked
list of Adaptors, some of which may be composed
from multiple Adaptor instances. To aid the Adaptor
description stage,WSDL descriptions of services and their

8http://www.cs.uni-bonn.de/III/bio/iris/MediatorProfile.owl

documentation are linguistically analised to establish the
sort of service. For example, the ‘getNucSeq’ method is
decomposed into the terms ‘get’, ‘nuc’, and ‘seq’. To this
end, the matching algorithm is relaxed and not intended
to be used automatically; instead, users are aided during
workflow composition.

Within the SEEK framework [4], each service has a
number of ports which expose a given functionality. Each
port advertises astructural typewhich defines the input
and output data format by a reference to anXML schema
type. If the output of one service port is used as input
to another service port, it is defined asstructurally valid
when the two types are equal. Each service port can
also be allocated asemantic typewhich is specified by a
reference to a concept within an ontology. If two service
ports are plugged together, they aresemantically validif
the output from the first port is subsumed by the input to
the second port. Structural types are linked to semantic
types by a registration mapping using a custom mapping
language based onXPATH. If the concatenation of two
ports is semantically valid, but not structurally valid, an
XQUERY transformation can be generated to integrate the
two ports, making the linkstructurally feasible. The
SEEK system provides data integration between different
logical organisations of data using a common conceptual
representation, the same technique that we adopt. However,
their work is only applicable to services within the bespoke
SEEK framework. The architecture we present is designed
to work with arbitraryWSDL Web Services annotated using
conventional semantic Web Service techniques.

Hull et al [8] dictate that conversion services, orshims,
can be placed in between service whenever some type of
translation is required - exactly as the currentMY GRID

solution. They explicitly specify that a shim service is
experimentally neutralin the sense that it has no side-
effect on the result of the experiment. By enumerating
the types of shims required in bioinformatics Grids and
classifying all instances of shim services, it is hoped thatthe
necessary translation components could be automatically
inserted into a workflow. However, their focus is not on the
translation between different data representation, rather the
need to manipulate data sets; extracting information from
records, finding alternative sources for data, and modifying
workflow designs to cope with iterations over data sets.

Moreauet al [12], have investigated the same problem
within the Grid Physics Network, GriPhyn9. To provide
a homogeneous access model to varying data sources,
Moreau et al propose a separation between logical and
physical file structures. This allows access to data sources
to be expressed in terms of the logical structure of the
information, rather than the way it is physically represented.
The XML Data Type and Mapping for Specifying Datasets

9http://griphyn.org/

(XDTM) prototype provides an implementation which
allows data source to be navigated usingXPATH. While this
approach is useful when amalgamating data from different
physical representations (i.e.XML files, binary files and
directory structures), it does not address the problem of
data represented using different logical representations(i.e.
different schemas with the same physical representation).
Our service integration problem arises from the fact
that different service providers use different logical
representations of conceptually equivalent information.

7. Conclusions and Future Work

In this paper, we have described the motivation
for a generic Type Adaptor description policy to
support automated Workflow harmonisation when syntactic
incompatibilities are encountered. By usingWSDL to
describe Type Adaptor capabilities, and the Grimoires
registry to advertise them, translation components can
be discovered at run-time and placed into the running
workflow. UsingFXML -M as a Type Adaptor language and
OWL ontologies as an intermediate representation, we show
an implementation that supports a common Bioinformatics
use case. Evaluation of our Binding language approach,
its implementation, and the use of Grimoires as a registry
shows our architecture is scalable, supports Type Adaptor
composablity with virtually no cost, and has a relatively low
overhead for Binding discovery.

While our Architecture has been based on Type Adaptors
taking the form of FXML -M Binding documents, the
approach will work with any Type Adaptor language, such
asXSLT andJAVA, providing the appropriate code is put in
place to automatically generateWSDL descriptions of their
capabilities and the Workflow engine is able to interpret
their WSDL Binding (i.e. execute anXSLT script, run a
JAVA program, invoke a particularSOAP service). Even
though our Architecture has been designed to fit within the
existing MY GRID application, this approach will apply to
any Grid or Web Services architecture. When incorporating
the use of Semantic Web technology, namely the association
of WSDL message parts with concepts from an ontology, we
have followed existing practices such as those used by the
FETA system,OWL-S [10], WSMO [14], andWSDL-S [2].

In future work, we aim to improve theFXML -T
implementation in the area ofXML parsing. This will make
FXML -T translation cost scale at an acceptable rate when
increasing bothXML document size andXML schema size.

8. Acknowledgment

This research is funded in part by EPSRC myGrid
project (reference GR/R67743/01).

References

[1] UDDI technical white paper, September 2000.
[2] R. Akkiraju, J. Farrell, J.Miller, M. Nagarajan, M. Schmidt,

and A. S. K. Verma. Web service semantics - WSDL-S.
Technical report, UGA-IBM, 2005.

[3] T. Berners-Lee, J. Hendler, and O. Lassila. The semantic
web. Scientific American, pages 34 – 43, 2001.

[4] S. Bowers and B. Ludascher. An ontology-driven framework
for data transformation in scientific workflows. In
Intl. Workshop on Data Integration in the Life Sciences
(DILS’04), 2004.

[5] E. Christensen, F. Curbera, G. Meredith, and
S. Weerawarana. Web services description language
(WSDL) 1.1, March 2001. W3C.

[6] J. Clark. XSL transformations (XSLT) version 1.0.
Technical report, W3C, 1999.

[7] C. Goble, S. Pettifer, R. Stevens, and C. Greenhalgh.
Knowledge Integration: In silico Experiments in
Bioinformatics. In I. Foster and C. Kesselman, editors,
The Grid: Blueprint for a New Computing Infrastructure
Second Edition. Morgan Kaufmann, November 2003.

[8] D. Hull, R. Stevens, and P. Lord. Describing web services
for user-oriented retrieval. 2005.

[9] P. Lord, P. Alper, C. Wroe, and C. Goble. Feta:
A light-weight architecture for user oriented semantic
service discovery. InThe Semantic Web: Research and
Applications: Second European Semantic Web Conference,
ESWC 2005, Heraklion, Crete, Greece, pages 17 – 31, Jan.
2005.

[10] D. Martin, M. Burstein, G. Denker, J. Hobbs, L. Kagal,
O. Lassila, D. McDermott, S. McIlraith, M. Paolucci,
B. Parsia, T. Payne, M. Sabou, E. Sirin, M. Solanki,
N. Srinivasan, and K. Sycara. OWL-S: Semantic markup for
web service. Technical report, The OWL Services Coalition,
2003.

[11] S. Miles, J. Papay, T. Payne, M. Luck, and L. Moreau.
Towards a protocol for the attachment of metadata to service
descriptions and its use in semantic discovery.Scientific
Programming, pages 201–211, 2005.

[12] L. Moreau, Y. Zhao, I. Foster, J. Voeckler, and M. Wilde.
XDTM: the XML Dataset Typing and Mapping for
Specifying Datasets. InProceedings of the 2005 European
Grid Conference (EGC’05), Amsterdam, Nederlands, Feb.
2005.

[13] U. Radetzki, U. Leser, S. Schulze-Rauschenbach,
J. Zimmermann, J. Lussem, T. Bode, and A. Cremers.
Adapters, shims, and glue - service interoperability for in
silico experiments.Bioinformatics, 22(9):1137–1143, 2006.

[14] D. Roman, H. Lausen, and U. Keller. D2v1.0. web service
modeling ontology (WSMO), September 2004. WSMO
Working Draft.

[15] M. Szomszor, T. R. Payne, and L. Moreau. Automatic
syntactic mediation for web service integration. In
Submitted to International Conference on Web Services
2006.

