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Abstract—Many generic position-estimation algorithms are
vulnerable to ambiguity introduced by nonunique landmarks.
Also, the available high-dimensional image data is not fully used
when these techniques are extended to vision-based localization.
This paper presents the landmark matching, triangulation, recon-
struction, and comparison (LTRC) global localization algorithm,
which is reasonably immune to ambiguous landmark matches. It
extracts natural landmarks for the (rough) matching stage before
generating the list of possible position estimates through trian-
gulation. Reconstruction and comparison then rank the possible
estimates. The LTRC algorithm has been implemented using an
interpreted language, onto a robot equipped with a panoramic
vision system. Empirical data shows remarkable improvement in
accuracy when compared with the established random sample
consensus method. LTRC is also robust against inaccurate map
data.

Index Terms—Landmark matching, triangulation, reconstruc-
tion, and comparison (LTRC), natural landmark, panoramic
image, random sample consensus (RANSAC), triangulation,
vision-based localization.

I. INTRODUCTION

V ISUAL image data has the potential to disambiguate
objects for localization, as it provides high resolution,

and additional information such as color, texture, and shape. To
compensate for accumulated navigation errors, mobile robots
must use external sensors to estimate their position. Active
ranging devices give direct distance measurements and have
found widespread use for robot localization. However, these
sensors do not provide features needed to resolve ambiguities
between objects.

Many animals rely on visual perception to guide their own
movement. The omnidirectional vision system has evolved in
many insects, including the housefly and the honey bee. It brings
a very large field of view to these insects, and is valuable to their
survival, as natural enemies can attack from any direction.

The design of many robot components, including the vision
system, imitates the biological counterparts. Panoramic vision,
which is very similar to omnidirection vision, but the zenith is
not visible from the observer, has been adopted in many robotics

Manuscript received June 24, 2003; revised March 11, 2004. This paper was
recommended for publication by Associate Editor K. Yoshida and Editor S.
Hutchinson upon evaluation of the reviewers’ comments. This work was sup-
ported in part by the Foundation for Research, Science and Technology, New
Zealand, under a Top Achiever Doctoral Scholarship.

The authors are with the Department of Electrical and Computer Engineering,
University of Auckland, Auckland, New Zealand (e-mail: d.yuen@auck-
land.ac.nz; b.macdonald@auckland.ac.nz).

Digital Object Identifier 10.1109/TRO.2004.835452

studies, for example, by Yagi et al. [1] for obstacle avoidance,
and by Zhu et al. [2] to train a road classification and orientation
network for an autonomous land vehicle. It is worthwhile to
explore techniques that assist robot localization with panoramic
vision.

While most established robot-localization algorithms assume
the use of direct ranging sensors, such as an ultrasonic or laser
range finder, a single panoramic image does not give obstacle
distance explicitly. The range information to the obstacles can
only be extracted in an indirect manner. As a result, the applied
localization algorithm must be amended.

A. Global Localization

Global localization, the primary interest for this paper,
provides the initial position estimate for conventional
robot-tracking algorithms (e.g., extended Kalman filtering)
and enables the robot to identify its own position when previous
odometry readings are either inaccurate or even not available
(e.g., due to wheel slippage, or just after powering up). In terms
of functionality, localization can be classified as global, incre-
mental, or simultaneous localization and mapping (SLAM).
Global localization identifies the robot position with respect
to some external frame using only the current sensory data.
Unlike the incremental methods, an historical position estimate
is not required. The global localization application is targeted
not only because it is essential to many robot navigation sys-
tems, but its independence from historical position estimates
also clarifies the evaluation of the proposed algorithm in the
presence of nonunique landmarks.

B. Iconic Versus Feature-Based Localization

Localization methods are often classified either as iconic or
feature-based. The iconic method directly compares the raw
data with the map, whereas the feature-based method considers
mainly the prominent features [3]. Most iconic localization al-
gorithms assume the use of a range sensor and may be inap-
propriate for visual information. When using an image sensor,
the direct analogue for iconic localization would involve the
matching of raw image pixels with a three-dimensional (3-D)
lighting model of the environment. Obvious practical concerns
limit the use of this approach.

A training phase can be included in the iconic method to
process a reference-image database. Zhang et al. [4] trained an
array of neuro-fuzzy controllers with raw omnidirectional im-
ages. The robot position is then determined by choosing the
most appropriate output with a situation-identification module.
Cassinis and Rizzi [5] present a self-localization system that
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processes the panoramic image data through both neural net-
works and multiple linear regression. Their system gives low
positioning error (averaging less than 10 cm), but is quite sen-
sitive to errors if the robot is offset by more than about 5 from
its original orientation.

Feature-based methods are often very efficient, providing that
unique features can be found. Ishiguro and Tsuji [6] compare the
incoming image with images captured at reference points during
the exploration stage to determine the approximate robot posi-
tion. The low-frequency components of the Fourier-transformed
images are kept as features for comparison. The data-compres-
sion method is efficient, but may cause problems when the envi-
ronment is more cluttered. By triangulating the extracted land-
marks from the panoramic image, Ishiguro et al. [7] estimate
the relative distances between a team of robots. The method as-
sumes unique and known robot appearance, which may not be
valid in more general cases. Atiya and Hager [8] determine robot
position with vertical image edges obtained from stereo image
pairs. The observed landmark and stored map labeling problem
is solved by a set-based method. Lowe [9] introduced the scale
invariant feature transform (SIFT) algorithm to extract invariant
features from the images. The input image is convoluted with
2-D Gaussian functions scaled by different smoothing factors.
The local minima and maxima of the smoothed images are taken
as the keys. Global vision localization [10] can be achieved with
a random sample consensus (RANSAC) approach by matching
the SIFT features between the current image and a database
map.

Feature-based localization algorithms are often simpler and
more reliable, especially in dynamic environments, but the
presence of nonunique landmarks is the serious concern. Fea-
ture-based methods can be simpler due to the lack of a training
phase. It is quite common to find multiple entities of similar
objects, such as a set of dining chairs, an array of partitions,
or a series of doors, in the case of indoor navigation. These
nonunique natural landmarks cause serious data-association
problems for many generic position-estimation algorithms
[11]. While unique landmarks can be introduced by the place-
ment of artificial objects, the preparation, maintenance, and
environment-modification requirements make them unpop-
ular. Robust estimation methods, notably RANSAC [12],
can tolerate outliers, “poisoned points,” or nonunique feature
matches, to a certain extent. RANSAC relies on repetitive
random sampling. Its performance deteriorates rapidly with
an increasing proportion of nonunique matches. Markov-chain
Monte Carlo expectation-maximization (MCMCEM) [13] is
a promising data-association technique, which demonstrates
success in solving the 3-D scene model-estimation problem
from a collection of image data. It assumes that all the 3-D
features are visible from all the views. Although this is a
common and very reasonable assumption for computer vision,
occlusion is a crucial problem that should not be overlooked in
robot navigation.

C. Paper Outline

Instead of using a purely feature-based approach, we describe
a novel two-stage global localization algorithm using panoramic
images, which consists of a rough feature-matching stage fol-
lowed by iconic-based comparison. We focus on the influence
of nonunique landmarks on vision-based localization, which

is a particular concern in a cluttered indoor environment. The
image representation is reconstructed to remove the perspec-
tive viewing effect before comparison. The proposed method,
landmark matching, triangulation, reconstruction, and compar-
ison (LTRC), works well when compared with the established
RANSAC robust estimation technique. We believe the direct
comparison between the high-dimension image representations
of the current and reference images, rather than between the
low-dimension position estimates, assists the matching between
corresponding landmarks, and thus improves the overall local-
ization performance. Tests have been carried out in a cluttered
office, where the influences from both similar objects and oc-
clusion are strong.

The data-association problem caused by the presence of
nonunique landmarks is illustrated further in Section II. Sec-
tion III outlines our LTRC vision-based localization approach.
To link the vision input to existing map data, some images
around the robot workspace must be captured. The reasons for
the selection of the generalized Voronoi vertices as the refer-
ence image-capturing sites are also discussed. The empirical
results are shown in Section V, and the paper is concluded in
Section VI.

II. PROBLEM ANALYSIS

In this paper, the coordinates and the heading direction
of the robot are the only state variables of interest,

. For a panoramic image, the map position of the
landmark and the viewing angle of it from the ob-
server position can be defined as an ordered observation pair

. A minimum of only three observation pairs are re-
quired to estimate the robot position, and the amount of obser-
vation data available is often more than the minimum required
to solve the triangulation equation system.

A number of generic estimation procedures [11], including
least-squares (LS), maximum-likelihood estimators, RANSAC,
and various clustering techniques, have been adopted in com-
puter vision to handle the redundant information. However, it is
often difficult to ensure the nonambiguous association amongst
all the observation pairs. Not many generic estimation methods
can handle this type of nonunique matching error.

When natural landmarks are being extracted, it is quite
common to find several similar objects. Fig. 1 shows a room
with only six natural landmarks . Nonunique landmarks

and have pattern

while and have pattern

Since the image regions around these landmarks are very sim-
ilar, it is difficult to distinguish them. Therefore, if a landmark
with pattern

is now being observed at the angle of , an erroneous ob-
servation pair will be introduced, due to the sim-
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Fig. 1. Multiple position estimates. Dots represent position estimates, and the
short line segments, the direction. Only about half of the 120 estimates are
shown, as the remainders are outside the region.

ilarity between landmarks and . In general, observation
pairs can be formed from a set of similar landmarks. Suppose
the robot can see all six landmarks, the total number of observa-
tion pairs is . The robot position is esti-
mated by triangulating any three arbitrarily chosen observation
pairs. A maximum of possible position estimates
(see Fig. 1) will have to be checked, whereas the search space
is only if the landmarks are unique.

Most generic estimation procedures are vulnerable to the sys-
tematic error introduced by the erroneous observation pairs. It is
well known that the LS method is accurate only if the data error
is normally distributed [14]. Clustering methods are also likely
to fail. As illustrated in Fig. 1, the cluster associated with the
actual robot position does not have a significantly larger mem-
bership when compared with other ones.

RANSAC is a robust estimation technique. While it has a
greater tolerance toward data inconsistency, a high proportion
of poisoned points renders the method inefficient. A small con-
sensus data set is randomly selected, which can be any three
observed landmarks in the case of 2-D global localization. A
position estimate is evaluated from this consensus data set. Ad-
ditional data points (landmarks) are added if they give consis-
tent position estimates with the existing consensus data set. The
solution is accepted when the consensus set grows to a prede-
termined size . If no acceptable solution is found, the
process will be reinitialized with a different random consensus
set until a maximum trial number is reached. For a
fixed rate of success, the expected trial number is

where is the proportion of outliers [12]. All the erroneous ob-
servation pairs introduced in Fig. 1 are considered as poisoned
points, which renders RANSAC inefficient. More importantly,
some false solutions generated from multiple erroneous obser-
vation pairs can form a fairly large consensus set, and thus make
the estimation more liable to errors.

Although RANSAC is the most reliable method described,
it fails to use all the available vision data. Trying to resolve the
ambiguity from only the low-dimension position estimate is dif-
ficult. Therefore, a reconstruction stage should be introduced to

remove the perspective effect, so that the high-dimension cur-
rent image input can be compared with the reference data.

III. LTRC ALGORITHM

The preprocessing, LTRC stages are the main components
of the LTRC algorithm (Fig. 2); details are in subsections fol-
lowing the summary below. The combination of feature then
iconic localization is the distinguishing characteristic. LTRC as-
sumes the availability of a simple map of the workspace, and a
set of reference images previously taken from known positions
in the environment. It accepts the current panoramic view from
the robot as the only input, and ignores any historical position
estimates.

First, reference images are generated and preprocessed (Al-
gorithm 1). To reduce image computation, a representative 1-D
color scalar array is generated for each image during prepro-
cessing. Natural landmarks are also extracted at this stage. Most
indoor scenes are filled with close-range objects, and perspec-
tive viewing effects are too significant to be ignored. The vertical
image edges are thus extracted as the natural landmarks, due to
their invariance to perspective changes. Depending on the op-
erating environment, other prominent image features, such as
SIFT [9], corners, and regions with special pattern or texture,
can also be selected as features.

Algorithm 1 Reference Image Preparation
Generate generalized line Voronoi diagram (GVD) from floor

plan
for all GVD vertices do

Capture reference image
Compute scalar array

end for

Once the current image is preprocessed, the land-
mark-matching stage identifies a short list of consecutive
landmark matches (Algorithm 2). Instead of being sampled
randomly as in RANSAC, observed natural landmarks are
matched with those landmarks extracted from each of the
reference images. The corresponding points are triangulated to
estimate the current robot position.

However, there may be erroneous estimates:
• images of such natural landmarks are not unique; there

may be many similar images of many similar object edges;
• not all object edges will form image edges; for example,

when an object is next to another one of similar color;
• not all image edges are projections of object edges; for ex-

ample, some image edges are caused by stripes on objects;
• when an object is occluded, its edge in the image may

appear in the wrong place;
• in nearly every robot environment, there is more than one

reference site; some of these may not match well to the
current view.

The reconstruction and comparison stage is introduced to re-
solve these ambiguities. The corresponding reference color at-
tribute array is reconstructed as if it is now taken at the estimated
location. It is then compared with that of the current view to
generate a similarity score. The estimate that gives the highest
similarity score will be taken as the current robot position.
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Fig. 2. Overview of the LTRC localization system.

Algorithm 2 LTRC Localization
Capture current image
Compute scalar array
for all do

Find matched-feature triplets between and
for all do

Get observation pairs , , from

end for
end for

A. Reference-Image Generation

More than one reference image is taken, since most robot en-
vironments contain both convex and nonconvex corners, which
may block the view of an observer from some of the locations.
During the map-preparation stage, the reference images are
taken from strategic positions around the workspace. The exact
locations and camera orientations of the reference sites are
recorded. The reference images will be compared with the
current captured image to identify the corresponding landmarks
at the position estimation stage.

The reference surveying sites should be selected such that the
combined view from these sites provides a complete coverage
of the workspace. That is, to ensure the existence of at least
one reference image that can be reconstructed to match any
single possible view captured from the workspace

Reconstruct (1)

where , can be any valid position in the workspace and
. Due to the dynamic nature of the environment, the

criterion may have to be relaxed, in reality. Nevertheless, the
system should at least place surveying sites in neighboring re-
gions where the visibility toward any major object is different.
In addition to full-view coverage, the reference sites should ide-
ally be situated far away from obstacles to improve the use of
the panoramic view. The total number of reference sites should
also be kept to a minimum to reduce site preparation and main-
tenance.

A number of site-selection techniques were found lacking,
such as uniform sampling, the art-gallery solution, and view-in-
variant partitioning. The placement of reference sites on a
uniform grid is the simplest solution, but full coverage results
in too many redundant sites. The art-gallery problem involves
the assignment of vertex guards such that the entire polygonal
workspace is visible by at least one of the guards. The required
number of sites is less than for a simple polygon
with holes, where is the number of object edges [15].
However, guarding posts are placed at either the corner or the
edge positions, where the neighboring boundaries unavoidably
block a significant proportion of the panoramic view. The
view-invariant region (VIR) polygon partitioning algorithm
introduced by Simsarian et al. [16] decomposes the map into
a set of disjoint VIRs, each of which is characterized by the
map or obstacle edges that are visible from points within it.
Characteristic points such as centroids are selected within
the VIRs to guarantee complete view coverage and provide a
certain clearance from obstacles. However, this method creates
many more reference sites than the former one, e.g. for
a simple polygon with holes.

Vertices of the GVD were used as the reference sites in this
paper. The GVD is generated by a set of line segments,
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Fig. 3. GVD for a typical room.

, which outlines the workspace boundary and the
obstacles. The GVD can be defined as the tessellation formed
by the boundary set of the Voronoi polygons , i.e.,

(2)

where is the Euclidean distance from point to a member
of the generator set [17].

GVD vertices have a number of desirable geometric proper-
ties which make them a good choice for the placement of ref-
erence sites. The view coverage is almost complete if the sur-
veying sites are located at these vertices1 (Fig. 3). The GVD
vertices are equidistant from at least three or more generator ob-
jects. Since the vertices are kept well away from obstacles, the
panoramic view captured will be more representative. The pos-
sibility of sharing the computation with other navigation mod-
ules, e.g., path planning [18], [19] or mapping [20], [21], further
supports our proposed selection. For a room with modest com-
plexity , the required number of reference sites is
reduced by at least an order of magnitude if GVD vertices are
selected instead of the VIR centroids (Fig. 4).

For environments with a lot of free space, e.g., inside a
large sports stadium, distant landmark features may appear
to be small. Although the proposed method mainly considers
cluttered environments, extra reference sites can be added
along the long Voronoi edges to extend its application. We do
not want reference sites at corners and edges of objects, as
these locations can be difficult to access. Besides, the view
can be highly distorted if the camera is placed very close to an
obstacle.

While this work generated the GVD from an a priori floor
plan and the robot was driven manually to the reference GVD
vertex site during the preparation stage, it is possible to make the
operation fully autonomous by building the GVD incrementally
with the onboard range-finding sensors [22].

B. Preprocessing

The current and reference panoramic images are generated
by stitching together single 24-b color snapshots from a Sony
XC-999 camera mounted on a rotating platform. Since our pro-
posed algorithm does not really rely on high-resolution input,

1Although using GVD vertices can achieve full-view coverage in most real-
world environments, theoretically, there are degenerated cases where the visib-
lity is more limited.

Fig. 4. Required number of reference sites for maps with different complexity,
where n is defined as the number of object edges. Among the 23 sample maps,
some have up to 12 holes.

the raw panoramic images of 1920 240 24-b color pixels are
trimmed to 1920 80 along the central line of the vertical axis,
then downsampled to 192 80 with a median filter. A lower res-
olution design, such as a conical or parabolic mirror, could be
substituted for the rotational panoramic camera.

The color vector for each pixel is converted to a representative
color scalar. The best choice of 1-D color scalar is dependent on
the color distribution of objects in the workspace. Our previous
paper [23] found little difference in further localization stages
when using three different color scalars: the intensity, hue, and
modified hue index (MHI).2 In this paper, we also examined all
three indexes, but only report the MHI results for simplicity.

Vertical edges are extracted by thresholding the resulting
image after processing through the Sobel vertical operator.
Only those edges longer than 40 pixels, i.e., half the height of
the trimmed image, are kept as natural landmarks [Fig. 5(c)].
They also serve as boundaries to separate the supposedly
uniform image regions, known as tokens. Each token may
correspond to a separated object or a portion of a single object
(e.g., a wall painted with different colors on opposite ends).
The median color scalar of the left and right token is calculated
as a signature for each landmark to facilitate matching. For
example, the landmark corresponding to the edge formed be-
tween unpainted wood and a concrete wall can be characterized
by the brown-gray color scalar pair.

A more compact image representation is needed to improve
the efficiency of image comparison. A 1-D color scalar array
[Fig. 5(b)] is generated for the current image or the indi-
vidual references images , by evaluating the median color
scalar in a column-by-column manner.

C. Landmark Matching

A pair of landmarks is said to be similar if the difference be-
tween their individual signatures (median color scalars) is suf-

2MHI is essentially the hue component of hue–saturation–value (HSV) color
space with provisions for colors with low saturation values (white, grey, or
black)

MHI =

�120:0 � 5 (black)

�90:0 < 5 & 5 < � 90 (grey)

�60:0 < 5 & > 90 (white)

otherwise

(3)

where , , represents the hue [0.0,360.0 ), saturation [0.0,100.0], and value
[0.0,100.0], respectively.
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Fig. 5. Preprocessing stage. (a) Raw panoramic image. (b) Color scalar
array (S). (c) The extracted landmarks (the thick vertical lines) and their
corresponding signatures (taken as the median MHI color scale of the pixels
bounded by two neighboring landmarks).

Fig. 6. Position estimation process. (a) Simple room map shows the
current robot position,  = (x ; y ; � ), and one of the reference sites
 = (x ; y ; � ). (b) 1-D color scalar array for the current and reference
view. A sample pair of corresponding landmarks (landmark j) is highlighted
by a solid triangle. (c) Looking up the map position of landmark j by drawing
an extension line from the reference site i along the direction of � .
(d) Triangulation.

ficiently small. Expecting a consecutive match along the entire
landmark sequence is not realistic, due to partial occlusion and
slight environmental changes. On the other hand, nonunique
landmarks are a common occurrence. To reduce the rate of mis-
matching, only landmark sequences with at least three consec-
utive matched features are considered.

The landmark signature list of the current image is compared
with that generated from each of the reference images. The op-
eration often finds multiple sets of consecutive matched land-
marks. Robot position estimates are obtained from the triangu-
lation of these matched landmark sets, and the best one is se-
lected during the reconstruction and comparison stage (see Sec-
tion III-E).

The landmark-matching process is illustrated in Fig. 6. After
the identification of the consecutive matched landmarks
from the color scalar arrays [Fig. 6(b)], the corresponding ob-
served angles to these landmarks are recorded. Since the color

Fig. 7. Nomenclature for the triangulation equations.

scalar arrays are essentially vertically compressed panoramic
images, the landmark location on them is proportional to the ob-
served angle. The physical positions of landmarks of the map are
deduced by drawing an extension line from the reference site, as
in Fig. 6(c). The intersection of this line with the nearest obstacle
gives the map position, and can form an observation pair

. Triangulation of the robot position requires the
recognition of at least three matched landmarks between the ref-
erence and current images. For a consecutive matched-feature
triplet, the first three observation pairs are taken as the inputs
for the triangulation equations [Fig. 6(d)].

D. Triangulation

The general triangulation equations when using projective ge-
ometry [14] are shown in (4) and (5). The parameters are de-
scribed in Fig. 7

(4)

(5)

where

(6)

For our current panoramic camera settings, the geometry can
be simplified. Capturing an image is equivalent to stitching the
vertical strips in the middle of each image captured when ro-
tating the camera along its axis. In other words, the
term is always zero. Also, the orientation of the camera suggests
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that and should be set to and 0, respectively. As the
panoramic images are collapsed to 1-D color scalar arrays after
preprocessing, (5) can be ignored. Since the zeroing position
of the panoramic camera is linked to the robot heading direc-
tion and the bearing system adopted is different, is substituted
with . Equation (4) is simplified to

(7)

The robot position and heading direction are found by
solving a set of triangulation equations (7) using a fail-safe ver-
sion of the Newton–Raphson root-finding algorithm.

E. Reconstruction and Comparison

Since our algorithm assumes no previous knowledge of the
robot position, the estimation procedure must be repeated for
each of the reference views, and reconstruction is used to select
the best estimate. As explained in Section II, multiple matches
may be obtained, even if only one reference site is considered.

Perspective distortion must be corrected, otherwise, direct
comparison between two color scalar arrays provides little hint
regarding the similarity between the regions. The reference
image under examination is reconstructed as if it is now taken
at the suggested position. If the estimate is, in fact, close to the
correct robot position, the current color scalar array will
be very similar to the reference view . Thus, and

can be compared directly.
The reference color array shown in Fig. 6(b) is arranged

in compass order. A ray is drawn from the reference site to the
viewing direction of each token boundary on the map. The co-
ordinate of the nearest intersection from each ray is recorded
and mapped to a corresponding value on to give .
The reconstructed array is calculated from rectan-
gular mapping for the reference color scalar array using
(8)–(10) before converting back to the polar form

(8)

(9)

(10)

A similarity score is assigned when comparing with
. Two different indexes, %similarity and correlation coeffi-

cient, are examined. The %similarity is taken as the length ratio
of similar bands between and . The reference color
scalar array is first subtracted from that of the captured one. The
bands between the two scalar arrays are assumed to be similar
if their absolute difference is less than 20 color scalar units. The
reconstruction and comparison process is repeated for each po-
sition estimate.

The estimate which leads to the highest similarity score is re-
garded as the solution of the localization algorithm. Erroneous
estimates caused by landmark misclassification, local occlusion,
nonunique matching, etc., are usually rejected due to low simi-
larity scores.

IV. RANSAC ALGORITHM

The performance of the proposed LTRC algorithm (Algo-
rithm 2) is compared with the established RANSAC algorithm

(Algorithms 3 and 4) in Section V. To enable a fair comparison,
both of them share the same preparation procedure for reference
images (Algorithm 1). The differences between various auxil-
iary procedures, e.g., color scalar array and landmark matching,
are also kept to a minimum.

Algorithm 3 RANSAC Localization
Capture current image
Compute scalar array
for all do

Find matched feature triplets between and
for all do

Add any unique observation pairs to
end for

; Algorithm 4

end for

Similar to LTRC, consecutive matched-feature triplets
are identified between the current image and the reference image
under examination. Unique observation pairs, which indicate
the position of the feature and its orientation from the cur-
rent viewing point, are added to set . The largest consensus set

is then found using a standard RANSAC implementation
[12], as indicated in Algorithm 4. By triangulating the members
in , a number of possible robot positions are obtained. The
current robot position is taken as the centroid of these possible
positions.

If the best reference site is not known, a similarity score will
be evaluated when the current scalar array is compared with
each reference . Again, the estimate which leads to the highest
similarity score is regarded as the solution of the localization
algorithm.

Algorithm 4 Find the largest consensus set (RANSAC)
for do

Draw three members randomly from to form

while do
Draw from and
if then

end if
end while
if then

break
end if

end for

Algorithm 4 is the core implementation for RANSAC. Im-
plementation details, such as provision for an empty set, and
early reseeding of the consensus set for poor-quality matching,
are omitted for clarity. A random subset of is taken to seed
the consensus set . To test whether an observation pair
belongs to the consensus set, and two random members
from are taken as the inputs for triangulation. is added
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Fig. 8. View of the testing room.

to set if the triangulated robot positions are consistent. The
calculation is repeated until either the size of the consensus set
becomes larger than or the maximum number of iter-
ations is reached.

A fundamental difference can be identified between the algo-
rithms, which is even more clear if we consider the simpler case
where the best reference site is known. For LTRC, a similarity
score is generated by comparing the reconstructed reference
scalar array with the current one. It is a high-dimension com-
parison based on the observation. On the contrary, RANSAC is
limited by the consensus set formation for the observation pairs.
The consistency between the triangulated positions becomes the
decision criterion. It is a low-dimension comparison based on
the state estimates. The implications of the difference are clearly
shown in the next section.

V. RESULTS

Tests were carried out with a B21r robot in a heavily cluttered
6.0 9.0 m student office (Fig. 8), which was partitioned into a
number of similar cubicles. Part of the room was influenced by
ambient lighting, and tests had been run both day and night. The
room consists of 28 GVD vertices [Fig. 9(a)] and 5994 VIRs.
The choice of GVD vertices as reference sites is the only prac-
tical solution to keep the number of sites to a manageable value.

Images were taken from a number of randomly chosen sites
during testing. The ground truth position is measured by a tape
to within the nearest 10 mm. The captured panoramic images
were preprocessed before being further examined with different
localization schemes. An average of 16 landmarks, ranging from
9 to 25, were extracted per panoramic image. Only 55% of those
are unique landmarks. The proximity of obstacles in a heavily
cluttered environment also amplifies the perspective viewing
problems. Both conditions make the environment difficult for
the robot to localize in.

The closest visible GVD vertex to a particular sampling point
is defined as the best reference site. We first examine the simpler
case in Section V-A, in which the best reference site is known.
Then, the more difficult case is examined in Section V-C, in
which the best reference site is not known.

Fig. 9. Room map with reference sites. (b)–(d) Actual and estimated sample
positions under various localization conditions. Both (b) and (d) show results
when %similarity is used as the similarity score for LTRC. (�—actual position,
�—estimated position; each sample and its associated estimate is paired by a
dotted curve. If the positioning error is greater than 1.6 m, the estimate will not
be shown with the sample marked by a 
 symbol. (a) Room map with GVD
outline ( —reference site). (b) LTRC results when best reference is known. (c)
RANSAC results when best reference is known. (d) LTRC results when best
reference is not known.

A. Best Reference Site is Known

When %similarity between and is selected as
the similarity score, the LTRC localization algorithm gives very
satisfactory performance [Fig. 9(b)]. The mean and median
positioning errors are less than 0.20 and 0.19 m, respectively.
Assuming an arbitrary robot heading angle effectively
introduces an extra dimension for the vision-based localization.
Many solution architectures, including multiple linear regres-
sion and neural networks [5], do not scale well for this change.
For LTRC, the mean and median orientation localization errors
are less than 0.055 and 0.034 rad ( and 2.0 ), on par
with the accuracy of many digital compasses. The matched
landmark locations provide a good estimate for the rotation
angle and greatly improve the results.

The error-distribution diagram in Fig. 10 suggests that the se-
lection of the correlation coefficient as the similarity score ac-
tually leads to slightly better results when the localization er-
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Fig. 10. Error distribution for various localization conditions when best
reference is known.

rors are smaller. However, for the worst 15% of samples, %sim-
ilarity gives consistently fewer errors. The correlation operation
highlights the trend differences, which may give a misleadingly
high similarity score when two color scalar arrays share sim-
ilar trends but with vastly different color, e.g., consecutive red
MHI versus consecutive yellow MHI regions.

For similar reasons, it penalizes some combinations of color
mismatches more heavily than others. These problems become
more apparent when localization error and the mismatching rate
are high, and this explains the deterioration in performance.

RANSAC performs badly when compared with LTRC. Due
to the stochastic nature of RANSAC, that position-estimation
procedure was rerun eight times. The median positioning and
orientation localization errors range from 0.52 to 0.88 m and
0.20 to 0.61 rad, respectively; all are at least three times worse
than LTRC. Fig. 9(c) shows the estimated errors taken from one
of the particular runs (with median localization error of 0.76 m).
The same set of data is also plotted on Fig. 10. While a fairly
large consensus set can be found for most samples, a signifi-
cant proportion of them ( 25%) still have a positioning error of
larger than 1.6 m. The ambiguity is difficult to resolve without
using the extra information contained in the images.

The algorithms are implemented in Python, an interpreted
language, and time of execution is recorded for both LTRC
and RANSAC experiments. On average, RANSAC takes
108.5 s, whereas LTRC takes 2.9 s to localize when tested
with an Athlon XP1600 PC. To form a consensus set, Sec-
tion II explains that RANSAC needs to sample a lot more
combinations from the observation pairs when nonunique
landmarks are present. The expected number of sampling steps
required is in . Based on the
assumption of 37.5% of nonunique landmarks with a consensus
set size , would be 615 times at a
90% confidence level. In comparison, the consecutive land-
mark-matching step limits the estimates that require testing in
LTRC. The panoramic images collected have an average of
16 landmarks. The number of consecutive landmark matches
would be quite modest.

B. Inaccurate Map Data

LTRC performs robustly when a few objects, shown in gray
in Fig. 9(a), are removed from the map before running the test
again. A good localization algorithm should be immune to small
discrepancies in the a priori map. The results are compared in
Fig. 11. RANSAC is a well-known robust estimation method. Its

Fig. 11. Error distribution when the map given is incomplete.

Fig. 12. Error distribution when the best reference site is unknown.

median increases from 0.76 to 0.92 m, which is less than 25%.
LTRC is not affected much by the data removal, either. While
the position estimation significantly deteriorates in the worst
cases (about 10%), its median increases by only 0.03–0.22 m.
The consecutive landmark-matching stage accepts good partial
matches, and thus improves the robustness.

C. Best Reference Site is Unknown

The LTRC method also performed well in a workspace with
multiple reference sites. The algorithm is basically the same as
the previous case, except the LTRC calculation is repeated be-
tween the current view and each of the references. %similarity
is used as the similarity score. The results are shown in Fig. 9(d)
and Fig. 12. The mean and median localization errors are 0.21
and 0.17 m, respectively, fairly close to the simpler case where
the closest visible GVD vertex is known. The magnitude of lo-
calization error is not much affected by the change.

VI. CONCLUSION

In this paper, we present a natural landmark-based indoor lo-
calization algorithm that estimates the robot position by trian-
gulation. Natural landmarks are extracted from the panoramic
image input. The map positions of the natural landmarks are
identified by comparing the input image with the reference data
set. The robot position can then be triangulated as the landmark
positions and observed angles are known. We believe the intro-
duction of a post-triangulation reconstruction and comparison
stage is an important step that helps to distinguish the bad posi-
tion estimates associated with the mismatched nonunique land-
marks. By generating a similarity score for each local best es-
timate associated with each reference image, the application of
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LTRC has also been extended to maps with multiple reference
sites.

Experimental results show practical improvement of LTRC
over the established RANSAC robust estimation method. The
landmark-extraction stage efficiently reduces the search space,
while allowing a certain tolerance to incomplete matching. In
addition, the LTRC algorithm does not simply discard the visual
information after the natural landmark-extraction stage. It gen-
erates a similarity score according to the high-dimension recon-
structed image representation, whereas RANSAC finds a con-
sistent set from the low-dimension position estimate. For these
two reasons, LTRC improves the localization performance in the
presence of similar objects.

Different heuristics, such as identifying the most probable
reference position by statistical means, can be introduced to sim-
plify the calculation for the multiple reference sites case. Sim-
ilarly, landmark extraction also benefits by the use of more so-
phisticated image-processing procedures. These illustrate some
of the directions for future studies.
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