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ABSTRACT
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by Trung Dong Huynh

Trust and reputation are central to effective interactions in open multi-agent sys-

tems (MAS) in which agents, that are owned by a variety of stakeholders, contin-

uously enter and leave the system. This openness means existing trust and repu-

tation models cannot readily be used since their performance suffers when there

are various (unforseen) changes in the environment. To this end, this thesis devel-

ops and evaluates FIRE, a trust and reputation model that enables autonomous

agents in open MAS to evaluate the trustworthiness of their peers and to select

good partners for interactions. FIRE integrates four sources of trust information

under the same framework in order to provide a comprehensive assessment of an

agent’s likely performance in open systems. Specifically, FIRE incorporates inter-

action trust, role-based trust, witness reputation, and certified reputation, that

models trust resulting from direct experiences, role-based relationships, witness

reports, and third-party references, respectively, to provide trust metrics in most

circumstances. A novel model of reporter credibility has also been integrated to

enable FIRE to effectively deal with inaccurate reports (from witnesses and ref-

erees). Finally, adaptive techniques have been introduced, which make use of

the information gained from monitoring the environment, to dynamically adjust

a number of FIRE’s parameters according to the actual situation an agent finds

itself in. In all cases, a systematic empirical analysis is undertaken to evaluate the

effectiveness of FIRE in terms of the agent’s performance.
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Chapter 1

Introduction

Trust is pervasive in human societies. Everyday, from the moment a person

wakes up, trust plays an important role in each of his actions. For example, when

his doorbell rings in the morning, he can open the door to an unknown postman.

He trusts that the school bus driver will take his children safely to their school.

Moreover, he trusts not only in people, but also in inanimate objects, systems, and

institutions. For instance, when he turns the tap on, he expects the water to flow

and it is of the required drinking standards. He trusts that his paper money is

exchangeable for goods and services whenever he needs them. Without the trust

he places routinely everyday, his life would be unbearable. For a company or an

organisation, trust is of no less importance. Every company trusts in the legal

systems when carrying out all of its (legal) business transactions. It also trusts

that their employees and their partners will not betray them if they are offered

a chance. From these examples, it can be seen that the existence of trust helps

humans and organisations be confident about the behaviour of those they rely on.

In short, trust is essential for any decision which makes an entity dependent on

any other one.

Until recently, trust was viewed as a concept that is applicable for human beings

only. In computer science, the word ‘trusted’ was used mostly in the area of

security and was usually associated with the meaning of ‘known to be safe’ [Abrams

and Joyce, 1995; Jøsang et al., 2006]. This is, however, a very limited view of the

concept of ‘trust’ in the real world. In contrast, work in the area of agent-based

computing (amongst others) has made trust a relevant research topic for computer

scientists [Castelfranchi and Tan, 2001; Ramchurn et al., 2004]. The reason is that

computer software agents with their emphasis on autonomous actions and flexible

1
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interactions are now expected to exhibit behaviours that are more akin to those

found in human societies than has hitherto been the case in computer systems.

For example, a wide range of agents have been developed to conduct business in

electronic environments such as the Internet (see [He et al., 2003] for a review). In

such situations an agent can participate in online auctions (e.g. monitoring bids,

and making bids), or they can negotiate on behalf of their owners (e.g. negotiating

for the best price possible, or making business commitments such as payments and

contracts). Having such levels of delegation, agents are also able to make certain

decisions themselves, including decisions not to uphold their commitments. In

such scenarios, the risks of traditional commerce come to the fore (e.g. fraud,

unfulfilled commitments, and services/products of low quality). Moreover, the

risks may even be intensified by the speed and the reach of the new technologies.

Therefore, trust, which is essential in human social relations, needs to be re-created

and maintained in new forms of computer supported collaboration and computer

(agent) mediated communities.

In general, the term ‘trust’ can have various meanings depending on the context,

as well as the trusting and trusted parties (see [Dasgupta, 2000] for a review).

However, for the interacting entities in the context of agent communities, trust

can be understood as the expectation or the belief that a party will act benignly

and cooperatively with the trusting party [Dasgupta, 2000; Gambetta, 2000a].

Evaluating this expectation before making interactions is important because it

can help an agent to estimate the trustworthiness of each potential partner and

thus to decide whether the partner is reliable enough to interact with. There-

fore, the existence of a trust measure in agent communities provides a mechanism

to help agents identify reliable partners and avoid potential risks resulting from

interactions with less reliable ones.

Since the first attempt of computationally modelling trust for agents by Marsh

[1994], there has been a significant amount of research on trust for various com-

puter environments and applications (see Sections 2.2 and 2.3 for more details).

In recent years, however, open multi-agents systems (MAS), with their distributed

nature, independent entities having rich reasoning capabilities, and their standard-

ised communication infrastructure (see Section 1.1), have emerged as a natural

model for computer communities. There are already a wide range of computer

communities that are modelled as open MAS. Well-known examples are the Grid

[Foster et al., 2001], the Semantic Web [Berners-Lee et al., 2001], Virtual Organ-

isations (VO) [Norman et al., 2004], the CoABS Grid [Kahn and Cicalese, 2002],

the Open Agent Architecture [Cheyer and Martin, 2001; Martin et al., 1999], var-
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ious electronic commerce environments (see reviews in [Guttman et al., 1998] and

[He et al., 2003]), and Peer-to-Peer sharing networks such as Gnutella, MFTP

(eDonkey2000), and FastTrack (Kazaa). However, there has not been any trust

model designed specifically for this type of computer community and models that

have been developed for other contexts are not readily adaptable (see Chapter 2).

Given the increasing ubiquity of open MAS, a trust model devised for them will

benefit a wide range of agent applications that need a means to assess the trust-

worthiness of agents to operate effectively. Against this background, this thesis

presents just such a model—FIRE1 an integrated trust and reputation model for

agents in open MAS.

1.1 Agents and Multi-Agent Systems

Before delving into a further discussion on trust, we first identify the main building

blocks of open multi-agent systems. To this end, this section introduces the basic

concepts of agency and multi-agent systems, which will be used throughout this

thesis. First we consider the notion of agency.

An agent is an encapsulated computer system situated in some environ-

ment that is capable of flexible, autonomous action in that environment

in order to meet its design objectives [Jennings, 2001].

From this definition, there are a number of properties of agents that require elab-

oration. Agents are [Jennings, 2001]:

• clearly identifiable problem-solving entities with well-defined boundaries and

interfaces,

• situated (embedded) in a particular environment over which they have par-

tial control and observability— they receive inputs related to the state of

their environment through sensors and they act on the environment through

effectors,

• designed to fulfill a specific role— they have particular objectives to achieve,

1FIRE is from ‘fides’ (Latin for ‘trust’) and ‘reputation’. In the Ramayana legend of India,
Sita proved the purity of her character by passing through the raging fire flames.
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• autonomous —they have control both over their internal state and over their

own behaviour, and

• capable of exhibiting flexible problem-solving behaviour in pursuit of their

design objectives —being both reactive (able to respond in a timely fashion

to changes that occur in their environment) and proactive (able to oppor-

tunistically adopt goals and take the initiative).

In this research, all agents are additionally assumed to be rational; meaning for

each possible percept sequence, they should do whatever action is expected to max-

imise their performance measure, on the basis of the evidence provided by the per-

cept sequence and whatever built-in knowledge the agent has [Russell and Norvig,

1995]. Irrational agents have unpredictable behaviours, and thus it is impossible

to have any expectation about their actions. Hence, irrational agents are placed

outside the remit of this research.

When adopting the agent approach to problem solving, it soon becomes apparent

that most problems require or involve multiple agents: to represent the decen-

tralised nature of the problem, multiple loci of control, multiple perspectives or

competing interests [Jennings, 2001]. Hence, a multi-agent system is one that is

composed of multiple interacting agents that work together to solve problems that

are beyond the individual capabilities or knowledge of each agent (adapted from

Jennings et al., 1998). It should be noted from this definition that the agents in

a MAS are designed to work together towards some common goals of the system.

In contrast, an open MAS allows agents from various sources to join and operate.

Thus, the agents in an open MAS may work towards different, or even contrary,

goals because of different ownerships. In other words, an open MAS is an open

society of agents, where they can operate and obtain some benefits from the in-

frastructure and other agents in the society. In general, the two main features of

an open MAS are:

1. Agents can freely join and leave at any time.

2. Agents are owned by various stakeholders with different aims and objectives.

From these two main features, other characteristics of an open MAS can be derived

as follows (adapted from [Barber and Kim, 2002]):

• The environment in an open MAS is dynamic: Agents providing services

might become unavailable and new agents offering new services might come
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online. This means that the environment will change over time as the system

operates.

• The number of agents is unbounded, given that agents can join an open MAS

at any time.

• An open MAS is insecure: There may be incompetent, unreliable or even

malicious agents in the system.

• No agent can know everything about its environment: It is not practical

for agents to rely on access to complete information about the environment

that they are in. Given the typical scale of an open MAS, the computa-

tional cost required to create such a world view will exceed any performance

improvements (if it is even possible).

• Due to different ownerships in an open MAS, there is no central authority

that can control all the agents. In addition, it is assumed that agents are

self-interested.

Against this background, in order to show the importance of trust in open multi-

agent systems, the next section presents a scenario for the domain of electronic

commerce in which the various occurrences of trust are identified and their roles

are analysed.

1.2 An Example Trust Scenario

The scenario in this section is an example of future online transactions that are

mediated by agents. In particular, this scenario outlines the interactions that may

be involved in a car purchasing transaction. In the scenario, James intends to

buy a new BMW 760i to replace his old car. He assigns his personal (software)

agent to find a suitable deal on the Internet. The parts where trust is involved are

emphasised in italics.

1. James instructs his personal agent to look for a good car retailer in the region.

He also tells the agent the desired model and his available funds.

2. James’ agent contacts an online directory service to fetch a list of local car

retailers.
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3. James’ agent then contacts James friends’ personal agents to ask them to rate

the service of those in the retailer list that they have had experiences with.

It collects the ratings, aggregates them, giving high priorities to ratings from

those with high experience in cars, then filters the original list into a list of

potentially good retailers.

4. James’ agent begins to contact these retailers, asking them about their offers

on the specific model 760i of BMW, and at the same time asks them to

provide ‘authorised dealer’ certificates from BMW UK.

5. A problem arises when no offer falls within range of the available funds.

James’ agent suggests some cheaper models to him, and also makes him

aware of the fact that the retailer X offers finance options. James still insists

on a BMW 760i and instructs his agent to negotiate with X on a particular

finance option.

6. In order to consider the finance option request from James’ agent, the agent

of retailer X contacts an established credit reference agency to obtain the

credit history of James. After having assessed James’ financial status against

its finance policy, the agent of retailer X agrees to sell the car with the

requested finance option.

7. James’ agent returns to him with a purchasing contract. He checks the terms

and signs it digitally. The signed contract is then presented to the retailer’s

agent by James’ agent along with an electronic payment as the deposit. The

two agents negotiate to set an appointment when James can come to collect

his new car. James’ agent also records in its diary future payments according

to the finance terms agreed.

The model of an open MAS (as described in Section 1.1) fits well this scenario

since the participating agents here are owned by various stakeholders (e.g. personal

agents, retailers’ agents, and the credit agency’s agents) and they all have their

own aims and objectives (e.g. selling cars for profits, buying the required car at

a good price with the limited available funds). To James’ agent, the environment

in the scenario is dynamic and uncertain because it cannot be sure whether the

other agents are reliable. For example, a car retailer might sell illegally imported

products which do not qualify for the manufacturer’s guarantee; or a credit agency

can be incompetent and might produce unreliable credit reports. Against all these

uncertainties, thanks to the various trust relationships, a transaction can still be

carried out. As the highlighted text shows, trust appears in every decision taken
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in the transaction (those of James, his agent, and the retailer X). Its occurrences

in the scenario can be generally classified into four main categories:

• Trust in information sources : This covers trust in information credibility, as

well as the sufficiency of the sources. For example, in step 2, when asking

for a list of local car retailers, James’ agent trusts that the directory service

it contacts has a list of car retailers with correct and sufficient information

allowing it to proceed to later steps.

• Trust between agents : This covers the expectation that another agent will

have desirable behaviours. That is the belief that when offered a chance, the

other agent is not likely to behave in a way that is damaging to the trusting

agent. This is the kind of trust that individuals in a society have in their

family, friends, and close partners. In step 3, James’ agent trusts agents

belonging to James’ friends and believes that they will provide their ratings

honestly. Trust between agents is usually built on the relationship between

the two agents and evolves along with the development of their relationship.

It should be noted that when choosing which car retailer to contact, James’

agent depends on the honesty of agents of James’ friends. Consider the

case that an agent W receives commission from introducing customers to

the retailer X. Since agents are assumed to be rational and self-interested,

agent W can report falsely about retailer X’s performance despite the trust

of James’ agent. However, if James’ agent knew about the relationship

between the retailer X and agent W it would treat the ratings from W with

respect to the retailer X with doubt and care. Therefore, when trust is

built on information obtained from others, the possibility of lying or false

information should always be taken into account.

• Trust in the internal characteristics of an agent : This covers understanding

the capabilities of an agent and its interests in carrying out a delegated task.

When James instructs his agents to find a potential car retailer (step 1) or to

negotiate a finance option (step 5), he believes that his agent is sufficiently

competent to deal with these tasks. More importantly, he believes his agent

will do its best to serve his interests (rather than those of the retailer X).

In other words, he knows his agent’s characteristics and trusts it in those

specific tasks providing these characteristics. The same applies to the retailer

X when it delegates its agent to negotiate and settle deals.

• Trust in the environment : Here the environment consists of all the external
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conditions that affect the agents’ operations (e.g. the environment’s infras-

tructure, rules, and so on). Knowing about the external conditions that

can make an action successful or reduce the probability or the damage of

its failure helps an agent be more confident when taking that action. This

knowledge helps an agent to proceed when facing a potential risk of loss. In

the above scenario there are various types of external conditions that affect

the agents’ decisions. These include:

– Technology: The digital certificate presented by X’s agent (step 4) as-

sures James’ agent about the origin of its ‘authorised dealer’ certificate;

or the digital signature presented by James’ agent (step 7) assures the

retailer’s agent about the validity of the contract signed by James.

– Institutions of electronic commerce: Both agents and their owners (i.e.

James and the retailer X) trust the digital contract and the electronic

deposit payment (step 7). They believe that both parties will obey

the agreed terms and, therefore, they trust each other. They are also

confident that if a party breaks the contract it will be punished by an

authority and the resulting loss will be compensated for.

– Norms in a society: When consulting a credit reference agency (step 6),

X’s agent expects that it will receive complete and impartial information

because it believes the norm that the agency will do that to uphold the

reputation of its service.2

It should be noted that the trust behaviours in this scenario are very close to those

in human societies (as discussed at the beginning of this chapter). For example, in

step 3, James’ agent gives more attention to the ratings of those who know a lot

about cars. It is also the case that trust research usually attempts to model trust in

a manner that is as close as possible to some particular trust relationships in human

societies. This is due to the belief that trust in human societies is essential and

effective in enhancing relationships and promoting cooperation among individuals

[Gambetta, 2000a], and, thus, should be replicated. Now, having analysed the

trust scenario and identified the main trust categories, in the next section, we

turn to determining the specific goals for our research in building a trust model

for application in open MAS.

2The belief also involves trust in the motives (internal characteristics) of the credit reference
agency that it wants to keep up its reputation to attract more customers. This will, in turn,
increase its profits. This belief can be viewed as a norm in business.
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1.3 Research Goals

As we can see in the scenario of Section 1.2, trust exists and plays an important

role in many of the decisions of the agents and their owners. The existence of these

various types of trust allows the transaction to happen despite the potential risks

that exist in that scenario (e.g. being lied to or being deceived by the other party).

Against this background, we believe it is important to have computational models

of trust and to bring this into the arena of agent-based systems. This belief has

also led to a significant body of work on trust in recent years (see [Falcone et al.,

2001, 2003; Jensen et al., 2004] for some examples and [Ramchurn et al., 2004] for

reviews). However, because trust is so ubiquitous and comes in many forms, it is

essential that the scope of this research is clearly defined.

To this end, the main goal of this research is to create a trust model for open

MAS. Therefore, it will study trust relationships between software agents only.

This means that trust between humans, or trust of humans in agents/systems

is outside the scope of this research (but see [Gambetta, 2000b] for more details

of these areas). Since delegation of tasks to other agents is the main means to

achieve bigger and more complicated goals in MAS [Zambonelli et al., 2001], task

delegation in open MAS is here chosen to be the context for trust evaluation.

However, trust relationships between agents may fall in any of the four main

categories of trust identified in Section 1.2. Hence, it is necessary to consider

which types of trust will be studied and which will not.

Trust in internal characteristics of an agent is made up of two components: trust

in the capabilities of an agent and trust in that agent’s goals or interests. The

latter depends on the capability of agents to build up sufficient knowledge about

the mental states (i.e. goals and interests) of another agent. So far, only the

works of Castelfranchi and Falcone [1998, 2001] have analysed this type of trust

(see more details in Section 2.1). However, they did not show how the mental states

of an agent can be discovered and modelled. In general, this task is particularly

difficult in open MAS due to the diversity of agents (recall the characteristics of

an open MAS in Section 1.1). Since agents can have very different tasks, domains

and designs, it is almost impossible to develop a general method to model the

mental states of every agent in an open MAS. Therefore, in this research, trust

made up from the mental states of an agent will not be considered. The former,

trust in the capabilities of an agent, is a prerequisite for the decision to delegate

a task to an agent. In MAS, there are several different mechanisms that allow an

agent to advertise its capabilities so that others can discover the services that it is
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providing (e.g. Middle-Agents or Matchmakers in [Decker et al., 1997; Klusch and

Sycara, 2001], and Service Directory Service in FIPA Architecture [FIPA, 2002]).

However, there is still no mechanism for verifying that an agent can actually do

what it has advertised. Since an agent must know a partner’s capabilities before

delegating any task, it is desirable that an agent has a way to verify the partner’s

capabilities. This motivates one of the aims of this research: to study how trust

in the capabilities of a particular agent can be established.

Trust in the environment is a broad category. Since the conditions of the environ-

ment that affect an interaction vary depending on the nature of that interaction, it

is impossible to provide a generic model for this type of trust. Some of the condi-

tions have been studied well such as security, platforms, and so on (see [Grandison

and Sloman, 2000] for examples), including some specifically for agents (e.g. auc-

tion protocols in [Brandt, 2002] and [Hsu and Soo, 2002]; and security in [Wong

and Sycara, 2000]). However, these conditions are chosen by the agents’ design-

ers, not by the agents themselves. Hence, agents trust the environment and its

conditions because they are trusted by the agents’ owners or designers. At the

current time, agents have no capability to perceive the conditions imposed by the

environment or to judge about its trustworthiness. These capabilities require the

environment to have a standardised way of advertising the conditions in effect and

their impacts. This is currently unavailable. Therefore, it is currently impossible

to model trust in the environment for agents. This research therefore will ignore

this type of trust and leave it open for future work.

Trust between agents : In the relationships between agents, knowing that a partner

is able to carry out a task is usually not sufficient. Each agent has its own interests

and will act according to those interests. It is also true that agents have degrees of

freedom to disappoint others. Hence, the belief of an agent that a partner will do

a delegated task in a desirable manner is a determinant factor when it considers

task delegation to that partner. This belief is called service provision trust. In

open MAS, it is possible that there are malicious agents trying to exploit näıve

ones (those who believe blindly what others say). Thus, the risk of being deceived

by an unknown agent is higher than in traditional MAS (where all the agents are

designed to work together). Therefore, this type of trust is especially important

in open MAS. Having a trust measure will help agents in open MAS to identify

unreliable agents and to gain confidence when dealing with reliable ones. Hence,

this research will study how service provision trust can be modelled in order to

provide a trust measure for agents in open MAS.
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Trust in information sources. Information sources in an open MAS can always

be treated as agents providing an information service. Then, trust in informa-

tion sources means trust in those information providing agents, and, thus falls

into the category of trust between agents discussed above. However, there are a

number of traditional information sources that operate as information databases

without agent-like behaviours (e.g. contact/email directories, image databases,

map/weather services). Although it is still possible to view them as very simple

agents, there are criteria that are more relevant in evaluating the quality of these

information sources than their general trustworthiness. Those criteria include in-

formation credibility, information provenance, or the correctness and sufficiency of

information provided (see more in [Barber and Kim, 2002; Hertzum et al., 2002;

McGuinness and da Silva, 2003]). Generally speaking, they are of a different area

to that of trust in the target of study (i.e. information sources), and, thus, will not

be covered in this research. Whenever information sources are treated as agents,

service provision trust will be used.

In summary then, the goals of this research are:

1. To model trust relationships between agents in open MAS. This covers ser-

vice provision trust and trust in the capabilities of an agent.

2. To provide a trust measure for agents in open MAS that helps them to

identify reliable partners. This includes providing mechanisms to build and

to maintain trust among agents.

In particular, we envisage that our trust model should satisfy the following re-

quirements (here listed as R1, R2,. . . and subsequently refined to R1a, R1b, etc.

in Chapter 2):

• R1: Be able to provide a trust measure in all situations that an agent may

be in by making use of a variety of potential sources of information that can

be used to derive the trustworthiness of a partner.

• R2: Be suitable for open MAS given their characteristics as discussed in

Section 1.1. This includes the ability to cope with the distributed and ‘no

central authority’ nature of an open MAS, the possible large number of

agents that may be present, as well as the dynamic nature of the environment

in an open MAS (e.g. agents come and leave, change their relationships with

others, and/or change their behaviours).
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• R3: Be adaptable to different domains of applications.

• R4: Be robust against possible cheating and defecting (i.e. lying or false

information).

These desiderata for our trust model are general and at a high level. More specific

requirements for the trust model will be derived from an analysis of the approaches

to modelling trust in Chapter 2.

1.4 Research Contributions

By accomplishing the objectives set out in the previous section, this research

advances the state of the art in the following ways:

• Although trust has been investigated in a significant amount of research,

trust for agents in open MAS has not been explicitly addressed within the

field of MAS to date. Most work in the area has tackled the problem of

modelling trust in very specific or narrow contexts. This research, however,

studies trust in the more general context of an open MAS (see Section 1.1),

which has been used as a model for a wide variety of agent applications.

FIRE’s trust mechanisms are then built in a generic way such that they do

not depend on any application-specific information to operate effectively (as

those of most existing trust models do). Therefore, it can enjoy a much

wider applicability than the current trust models in an open MAS.

• This research extends the current work on trust based on an agent’s direct

experiences, its relationships, and witness reports by adapting them to the

context of open MAS and by integrating them into a coherent framework.

Being more precise, this research devises new normalised reliability measures

for these types of trust, allowing them to be aggregated into a single trust

measure, but still taking into account their individual situations using con-

figurable parameters. Adopting this framework means agent designers have

the ability to evaluate trust from various perspectives (i.e. using various

sources of trust information). It also allows them to adjust the trust model

to suit their domain of application by changing various parameters of FIRE

(e.g. the influence of each type of trust on the overall trust measure, and

the sensitivity to the recency of ratings of each component of FIRE, and the
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level of confidence based on the set of ratings taken into account). No such

trust framework has been developed in the current literature.

• This research formalises the notion of third-party references into a type of

trust information that can be use to derive the trustworthiness of an agent.

This allows an agent to actively present the references about its past perfor-

mance to potential interaction partners in order to establish trust relation-

ships with them. This type of trust is here called Certified Reputation. By

using references, an agent can prove its capabilities to other agents (to gain

the trust in its capabilities), while the other agents do not have to look for rel-

evant trust information themselves. Certified Reputation is highly available

since agents can typically collect a large number of references themselves and

they are incentivised to present these to establish new trust relationships.

The idea of Certified Reputation has not been developed in other work on

trust. However, there are a few cases where somewhat similar concepts

are presented such as trust policy management engines (e.g. PolicyMaker

[Grandison and Sloman, 2000], Trust-Serv [Skogsrud et al., 2003])— which

grant rights to an agent based on its self-presented certificates of its iden-

tity according to predefined policies or endorsements [Maximilien and Singh,

2002] —certificates endorsing that a service (provider) is trusted and pre-

ferred by their issuers. Nevertheless, they address a different problem in the

case of trust policy management engines (i.e. granting rights in the secu-

rity area), and the real benefits of using endorsements have not been fully

demonstrated.

• Third-party information (used for deriving an agent’s reputation) is typically

prone to inaccuracy. To this end, this research develops a novel credibility

model that allows FIRE to assess the reliability of information providers

(i.e. reporters) and to weight, or to filter out, their information accordingly.

More specifically, using our credibility model, an agent rates the credibility

of a reporter based on the difference between the reports it receives and the

actual interaction result it observes later. Hence, reporters’ credibility is not

objectively assessed based on how honest they are in revealing the interac-

tion result they received, but rather it is subjectively judged based on their

capability to give reports close to the actual results that a particular agent

would receive. By so doing, an agent can detect not only inaccurate/false

reports, but also honest, but useless, reports that result from the different

views of the reporters. For example, one reporter may receive preferential

treatment from a particular service provider and give out good (and honest)
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ratings about this provider. Such ratings, though honest and accurate (in

the view of that reporter), are not useful for other agents because they would

receive only normal treatment from that provider. By taking an agent’s indi-

vidual situation (i.e. the actual performance it receives during interactions)

into account, our credibility model can deal with cases similar to the one

in this example appropriately. Hence, our credibility model is better suited

for applications in open MAS than the existing solutions in that it takes the

individual view of an agent into account and, more importantly, that it does

not require additional application domain knowledge to work.

• This research shows how learning about an agent’s environment can be in-

corporated into the agent’s reasoning model to adapt FIRE (by adjusting its

various parameters) to the current situation of a changing environment in a

flexible manner. No such work has been done before for any trust model.

In terms of publications, the following contributions has been made:

1. Sarvapali D. Ramchurn, T. Dong Huynh, and Nicholas R. Jennings. Trust

in multi-agent systems. The Knowledge Engineering Review, 2004, provides

a survey of the current work on trust in agent systems.

2. T. Dong Huynh, Nicholas R. Jennings, and Nigel R. Shadbolt. FIRE:

An integrated trust and reputation model for open multi-agent systems.

In Proceedings of the 16th European Conference on Artificial Intelligence

(ECAI), 2004, presents FIRE and the idea of certified reputation.

3. T. Dong Huynh, Nicholas R. Jennings, and Nigel R. Shadbolt. Developing

an integrated trust and reputation model for open multi-agent systems. In

Proceedings of the 7th Int Workshop on Trust in Agent Societies, 2004, ex-

tends the results in the previous paper further more by showing that FIRE

also performs well in dynamic environments.

4. T. Dong Huynh, Nicholas R. Jennings, and Nigel R. Shadbolt. On Handling

Inaccurate Witness Reports. In Proceedings of the 8th Int Workshop on

Trust in Agent Societies, 2005, presents our model of credibility that can be

used to detect and filtered out inaccurate witness reports.

5. T. Dong Huynh, Nicholas R. Jennings, and Nigel R. Shadbolt. An Integrated

Trust and Reputation Model for Open Multi-Agent Systems. In Journal of

Autonomous Agents and Multi-Agent Systems, 2006, presents in detail how
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FIRE is constructed and why it is constructed that way with a comprehensive

evaluation on its performance.

6. T. Dong Huynh, Nicholas R. Jennings, and Nigel R. Shadbolt. Certified

Reputation: How an Agent Can Trust a Stranger. In Proceedings of the

5th International Joint Conference on Autonomous Agents and Multi-Agent

Systems, 2006, presents Certified Reputation as an independent trust model

and shows how it deals with inaccurate references.

1.5 Thesis Structure

This thesis presents the FIRE model, designed to realise the objectives outlined

in Section 1.3. The remainder of the thesis is structured as follows:

• Chapter 2 gives a discussion on the current approaches to modelling trust

in agent systems. It also reviews the current state of the art in the area and

summarises the open issues.

• Chapter 3 presents FIRE— the trust model devised in this research for

agents in open MAS.

• Chapter 4 describes the methodology and the test domain characterising

an open MAS which will be used for evaluating FIRE.

• Chapter 5 shows an empirical evaluation of FIRE’s performance in the test

domain. Particular attention is given to determining the contribution of each

of FIRE’s components to its overall performance and also to evaluating its

performance in situations where various changes in an open MAS take place.

• Chapter 6 extends FIRE to deal with situations in which witnesses/refer-

ees produce inaccurate reports about the behaviour of agents (either because

they have a different perspective or because they seek to gain a strategic ad-

vantage by so doing). It also includes a detailed evaluation of the credibility

model’s performance in handling inaccurate witnesses and referees.

• Chapter 7 implements a number of learning techniques in order for FIRE

to adapt its parameters to suit the environment in which it is operating and

shows how these techniques improve FIRE’s adaptivity through empirical

evaluations.

• Chapter 8 concludes the thesis and outlines the directions for future work.



Chapter 2

Trust and Reputation in Agent

Systems

This chapter introduces the concepts of trust, direct trust and reputation in

agent systems. It starts with a discussion about the definitions and a classification

of these concepts in Section 2.1, followed by a review on the main approaches to

modelling direct trust (Section 2.2) and reputation (Section 2.3) in agents. The

two sections break the task of modelling direct trust and that of reputation into

subproblems and review the current approaches to solve each subproblem. Then

Section 2.4 presents generic problems (which have not been discussed in the two

previous sections) that may influence the effectiveness of a trust model in open

MAS. Finally, Section 2.5 concludes this chapter by pointing out open issues that

needs to be addressed and the specific requirements for the trust model in this

research.

2.1 Trust Paradigms and Classification

To date there has been little consensus in the literature on exactly what trust is,

although its pervasive importance has been recognised. Traditionally, there are

two main views of trust. First, the cognitive view [Castelfranchi and Falcone, 2001]

models trust as made up of underlying beliefs. That is, trust is a function of the

values of these beliefs. Second, the probabilistic view ignores the role of underlying

beliefs and uses a (scalar) metric to model a subjective probability with which an

agent will perform a particular action [Yu and Singh, 2002]. Each of these views

16
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will now be dealt with in turn.

The cognitive view of trust is mainly from the work of Castelfranchi and Falcone

[1998, 2001]. The context they choose is that of task delegation where an agent a

wishes to delegate a task to agent b. In so doing, agent a needs to evaluate the

trust it can place in b by considering different beliefs it has about the motivations

of b1. They claim the following beliefs of a are essential to determine the amount

of trust to be put in b2:

• Competence belief: a should believe that b can actually do the task.

• Willingness belief: a believes that b has decided and intends to do what it

has proposed to do.

• Persistence belief: a believes that b is stable enough about its intention to

do what it has proposed to do.

• Motivation belief: a believes that b has some motive to help a, and that

these motives will probably prevail over other motives negative to a in case

of conflict.

In order to devise the level of trust that it can place in b, a would need to take

all these beliefs into account. However, the evaluation of these beliefs requires

modelling agent b’s mental states. This task is generally complicated and impre-

cise in open MAS since there is no general way to model another agent’s mental

states given the great diversity of agents in both their origins and their domains.

Therefore, we believe that the cognitive approach to modelling trust, although

providing a natural view of trust from socio-psychological work, is not suitable for

open MAS in general.

On the other hand, the probabilistic view ignores the beliefs about intentions of

the other agent. In this approach, trust is quantified based mainly on agents’

experiences (e.g. the outcomes of their interactions), which are observable to

the involved agents. The main idea is that past experiences about an agent’s

behaviours can be used in predicting the future behaviours of that agent. In

particular, they can be used for calculating the probability that the agent will show

a particular behaviour. Obviously, an agent can always record past behaviours of

1From this point, we use a to denote the trust evaluating agent, and b the target agent being
evaluated.

2The beliefs presented have been adapted and summarised from Castelfranchi and Falcone
[1998, 2001].
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those that it has interacted with. This ability allows agents to calculate trust

values without the need of modelling mental states of other agents. Thus, in open

MAS, this approach is more practical.

This research follows the probabilistic approach for the reasons noted above and

uses the following definition (adapted from [Gambetta, 2000a]):

Trust is a measurable level of the subjective probability with which an

agent a assesses that another agent b will perform a particular action

in a favourable way to a, both before a can monitor such action (or

independently of its capacity ever to be able to monitor it) and in a

context in which it affects its own action.

In this definition, the trust of a on b is a subjective probability because a can only

have a limited view on b’s behaviour; it cannot reason certainly what are b’s next

actions, but can only calculate the probability of b’s possible actions based on its

limited knowledge, which might not be true (hence subjective). A particular action

is used in a deliberately broad sense to include any delegated tasks, including

making payments, delivering goods, recommending other agents, and so on. A

favourable way to a is also deliberately understood broadly to include honesty,

security, safety, reliability, and timeliness. The context mentioned includes the

external conditions of the environment such as the business context, the relevant

agreements, the technology infrastructure, the legislative, and regulatory systems

that may apply. This definition of trust is also agreed and used in various of the

work on trust that adopt the probabilistic approach (e.g. [Abdul-Rahman and

Hailes, 2000], [Dimitrakos and Bicarregui, 2001], [Mui et al., 2002], [Teacy et al.,

2006], and [Yu and Singh, 2002]).

In a human society, the trust that an individual places on another can be built

from two main sources:

1. Private information that it obtains from its direct relationships with the

other.

2. Public reputation of the other, which can be obtained from other individuals

in the society.

Similarly, trust in agent communities can also be built in the same manner. In

order to build a trust measure an agent can take into account both of these sources
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of information. A trust measure which is built on both direct relationships and

reputation information is here called composite trust. The trust resulting from the

direct relationships is now called direct trust in order to be distinguishable from

the composite one. The direct trust that an agent a places in another agent b

is derived from a’s knowledge that ensues from evaluating its direct relationships

with b. Therefore, direct trust reflects the subjective opinion of the judging agent

(i.e. a). On the other hand, reputation is a collection of subjective opinions about

an agent from other agents in the same society. It represents the view of the

society about a member. Reputation of an agent is formally defined as follows

(adapted from [Abdul-Rahman and Hailes, 2000]):

The reputation of an agent is an expectation of its behaviours based

on other agents’ observations, or information, about the agent’s past

behaviours.

Since reputation information is from the subjective view of its provider, it is usu-

ally less reliable than information that an agent can observe and judge by itself

(i.e. direct trust). Thus, the direct trust usually has a larger influence on the com-

posite trust than reputation. However, in the case that an agent does not have

enough information to calculate direct trust3, it will have to depend on reputa-

tion information to evaluate trust. Since reputation information is obtained from

other agents in the society and agents are free to lie, the reliability of reputation

information should be taken into account.

In summary, a trust model should make use of both direct trust and reputation in

order to be able to cover situations where one of them is unavailable or unreliable.

In addition, making use of both brings more experiences into trust evaluations than

using only one source of trust information. This should enhance a trust model’s

accuracy. Thus the trust model in this research will be built on both direct trust

and reputation (recall the desideratum R1). These are then the two dimensions

of trust that an agent can use to evaluate another agent in task delegation in this

work. When combining the two dimensions of trust, the reliability of the trust

measure in each dimension should be available in order to calculate the influence

of each dimension on the final composite measure. The two next sections will

discuss, in detail, about modelling these two dimensions of trust in agents.

3This is the case when two agents have not had any direct relationship or interaction. Thus,
they do not know about each other directly. Or their relationship is too weak (e.g. too few
interactions) to derive a reliable trust value.
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2.2 Direct Trust

Direct trust, which only involves two agents, is calculated based on direct rela-

tionships between the two agents. This research focuses on two main types of such

relationships:

1. Role-based relationships that stem from the social roles of the two agents

(e.g. owned by the same organisation, relationships derived from links be-

tween the agents’ owners in real life such as friendship or relatives, relation-

ships between a service provider agent and its registered consumer agents),

and

2. Relationships that result from direct interactions between two agents.

Relationships of the first type have not been studied much in modelling direct trust

since there is no general way to computationally quantify trust based on them.

The reason is that the number of social roles and the relationships between them

may vary greatly depending on particular domains of application. Direct trust

from role-based relationships, here called role-based trust, is thus left open to be

defined by particular applications. The usual approach to this problem is using a

rule-based (or policy) system to map relationships to trust values (see [Grandison

and Sloman, 2000] for a comprehensive review). For example, an agent should

have a high degree of trust in information provided by another agent that is from

the same organisation, or a seller agent always has a tendency to increase the

product price and to lower the product quality when possible4. These rules are

specified for each agent and are used to map the role of an agent to a predefined

trust value when evaluating role-based trust. Since the rule-based approach is

fairly simple and adequate for modelling role-base trust, more effort is put on

studying the latter. Thus, the remainder of this section focuses on reviewing the

main approaches to modelling direct trust based on direct interactions, here called

interaction trust.

Consider the context where an agent a wishes to delegate a task to another agent b

and it is evaluating the trustworthiness of b to decide the task delegation. The most

accessible source of information about b is past experiences of a from interactions

with b, or a’s interpretation of the results of past interactions with b. These

observations reflect a’s subjective view of b’s behaviours and they can help a

4This rule reflects a norm in the relationship between a seller agent and an ordinary buyer
agent.
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predict the future behaviours of b. Therefore, this information is used to calculate

the expected behaviours of b when it carries out the delegated task. However,

there are two problems that need to be solved in modelling interaction trust:

1. How to represent interaction trust?

2. How to calculate the amount of trust from past interactions?

In most existing work, trust is represented as a single numerical value which shows

the degree of expectation of agent a about a desirable action of agent b [Mui et al.,

2002; Sabater and Sierra, 2001; Teacy et al., 2006; Yu and Singh, 2002; Zacharia

and Maes, 2000]. The higher the trust value for agent b, the higher the expecta-

tion/probability that b will carry out that action in a’s view. This also makes it

easy to compare the trust values of two or more potential partners to select one

from them. However, a number of models do use different representations. For

example, the trust model of Abdul-Rahman and Hailes [2000] uses a set of ordered

labels for trust degrees: ‘Very Trustworthy’, ‘Trustworthy’, ‘Untrustworthy’, ‘Very

Untrustworthy’. However, it is always possible to convert this type of represen-

tation back to an equivalent numerical representation for the ease of calculations

and comparisons. Hence, numerical representation will be used for the trust model

of this research.

With respect to the second problem, in order to calculate a trust value for b, trust

models initially require agent a to gather its observations about b’s behaviours.

Without these observations, the interaction trust of a to b does not exist as a

has no knowledge about b. For each interaction in a similar context to the task

being considered, a gives ratings to the performance of b (i.e. a rates how good

the result of each interaction is). This can be accomplished by comparing the

outcome of a transaction (i.e. the quality of an action in the trust context being

considered) against predefined criteria (e.g., b tells the truth or not [Schillo et al.,

2000], whether b fulfills the contract with a [Teacy et al., 2006], or how good are

the quality of the products purchased from b [Sabater and Sierra, 2001]). Then the

ratings will be aggregated into a single value that shows the level of performance

that a expects from b. This is the main idea of trust models in [Mui et al., 2002]

and [Sabater and Sierra, 2001]. However, the contexts where trust is calculated

in some work are very simple in that they consider the performance ratings of an

agent to be simply a value of ‘good’ or ‘bad’, ‘cooperate’ or ‘defect’ (e.g. [Mui

et al., 2002], [Schillo et al., 2000], [Teacy et al., 2006]), or a single performance

measure (e.g. [Yu and Singh, 2002], [Zacharia and Maes, 2000]). These simple



Chapter 2 Trust and Reputation in Agent Systems 22

rating systems limit the applicability of these models in real world situations since

realistic interactions in an open MAS often involve various valuations (e.g. qual-

ity, timeliness, reliability). In contrast, Regret [Sabater and Sierra, 2001] gives a

richer semantics to ratings, and, thus, it allows more complex trust contexts. For

example, an agent can give a rating of −0.5 for late delivery of some good, and

+1 for the quality of the same good. Moreover, Regret introduces the capability

of rating on more abstract aspects by incorporating the ontological structures of

these aspects into its model. For example, a rating of ‘good seller’ may be cal-

culated from ratings about delivery date, price, and quality of the goods in the

same interaction (see Figure 2.1). This favours Requirement R3 of adaptivity in

that this rating system can be reused for various types of agents from different

domains (with different criteria in performance rating). This is particularly useful

in an open MAS where there may be a great difference in the application domains

and the designs of agents.

good_seller

delivery_date product_price product_quality

0.2
0.2

0.6

Figure 2.1: An example of ontological structure for ratings.

After having rated relevant observations, most models aggregate the ratings using

some form of arithmetic mean function. In addition, to simulate the phenomenon

that recent experiences affect trust more than older ones, Regret introduces re-

cency as a weight in its mean function. It uses a time dependent function that

gives higher values to the observations that are closer to the time that they are

being considered. The function is then used as a weight value for the rating given

for the corresponding observation. Thus, the recency of observations serves as

the relevance factor of those observations5 (see Appendix A.2 for more details).

The aggregated value of ratings then becomes the value for the interaction trust.

It should be noted that this trust value corresponds to the criterion that is used

for rating. In binary rating systems (i.e. ratings have two values, such as ‘coop-

erate/defect’), the trust value is the probability that an agent will perform the

action that was rated (e.g. to cooperate or to defect). In single-criterion rating

systems, the trust value is the expected performance of an agent with respect to

the criterion being rated. In multiple-criterion rating systems (such as Regret),

5There are many psychological studies that support recency as a determinant factor [Karlins
and Abelson, 1970].
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each criterion will have a corresponding trust value which shows the expected per-

formance in terms of that criterion in a future similar interaction. For example,

in the context of buying a product, we will have the expected performance of an

agent in terms of product price, delivery, and product quality in future selling

actions of that agent. A notable class of trust models based on binary rating sys-

tems is those that calculate trust values using probability density functions (PDFs)

[DeGroot and Schervish, 2002]. TRAVOS [Teacy et al., 2006] is such an example.

Using binary ratings allows TRAVOS to make use of the beta family of PDFs to

model the probability of having a successful interaction with a particular given

agent. This probability is then used as that agent’s trust value.

As discussed in Section 2.1, each trust measure should have a reliability measure in

order to model its influence on the composite trust measure. For interaction trust,

only Regret and TRAVOS introduce a reliability measure. Specifically, Regret

uses the number of observations available and their deviation to determine the

reliability of trust values calculated from those observations. The principles are:

the more observations are available, the more reliable the resulting trust is until

the number of observations exceeds a predefined threshold; and the greater the

deviation in the observations, the less reliable the resulting trust. As for TRAVOS,

given an acceptable margin of error and using PDFs, it calculates the probability

the actual rate of successful interactions with b lies within the margin of error about

b’s trust value and this is then used as the reliability of b’s trust values. Although

PDFs provides a sound theoretical foundation for calculating trust values and

their reliability, its dependence on binary rating systems significantly hampers its

application in open MAS (because binary ratings are far more limited in terms of

their expressiveness compared to the other types of ratings).

Comparing the models reviewed above, Regret provides the most complete frame-

work for modelling interaction trust. It allows future adaptation to different do-

mains (with a flexible rating system), as well as providing facilities for combining

with other dimensions of trust (by providing a reliability measure). Hence, this

research will not devise a new model for interaction trust, but will reuse the inter-

action trust part of Regret (the subjective reputation, as termed by Sabater and

Sierra) with relatively minor adaptations (see Section 3.3).
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2.3 Reputation

Reputation, as defined in Section 2.1, is built on observations about an agent’s

past behaviours. In order to build up a reputation measure, an agent needs to

consult other agents in the society to collect their observations about the target

agent (i.e. the agent whose reputation is currently being evaluated). Here, the

observations are usually in the form of ratings, in which other agents in the society

show how they value an agent after an interaction. These valuations, after being

collected and properly aggregated, can be used to represent the reputation of other

individuals [Sabater and Sierra, 2001]. Hence, the main tasks of a reputation model

are to define how to collect observations about a specific agent from other agents in

a society, and how to combine them to represent the reputation of that agent such

that it is as close as possible to its actual trustworthiness.6 It should provide a

mechanism by which individual agents within their society can obtain information

about other agents without, or prior to, direct interaction.

Reputation and interaction trust have a close relationship. The interaction trust

that an agent places in another after an interaction is reflected by the correspond-

ing ratings of that agent. Since reputation of an agent is built based on the ob-

servations (i.e. ratings) of other agents, it can be said that the reputation of that

agent is built from the interaction trust it receives from other individuals in the

society (provided it is being reported accurately). On the other hand, interaction

trust between agents can be seen as reputation at the individual level (as is the

case with Regret). In the case that two agents have no previous experiences with

each other, thus they do not trust each other, reputation is a source of information

that can be used to establish the initial trust between them.

Similar to modelling interaction trust, modelling reputation has the following basic

problems that need to be addressed:

1. How to represent reputation?

2. How to gather observations about a specific agent?

3. How to aggregate the collected observations to represent the reputation of

that agent?

6Because each member in a society has a particular point of view, each member may record a
different rating from the same interaction. This means that each agent has a different perception
of the reputation of a given entity and, therefore, that reputation is linked to subjectivity [Sabater
and Sierra, 2001]. One of the goals of reputation models is to provide a reputation measure that
models the real trustworthiness of an agent as closely as possible.
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The last two questions are the main research foci when modelling reputation.

Their issues will be presented in subsequent sections. Regarding the first question,

most researchers tend to reuse the same representation as they used for trust (see

discussion in Section 2.2) for reputation. This makes it easier to combine direct

trust and reputation values later into a composite trust measure.

Since reputation is a social concept, besides the basic problems listed above, mod-

elling reputation often needs to obtain information about the relationships between

the involved agents. As there is no guarantee about the honesty of other agents

in providing observations, information about relationships often helps an agent to

evaluate the reliability of the observations that have been collected. Hence, the use

of social relationships in modelling reputation will also be outlined and reviewed

in Section 2.3.3.

2.3.1 Collecting observations

Observations about an agent’s behaviours can only be obtained from those who

have had direct interactions with it (i.e. witnesses). Depending on a particular

model, an observation may be in one of the following forms:

1. Raw result of an interaction. This is the most basic and most useful form

of observation since the receiving agent will be able to make its own ratings

about the performance of the participating agents without being affected by

the subjective view of the providing witness. However, in practice, it is not

widely used because it is not suitable when the nature of the interaction is

too complicated7 or when the witness —one of the participants— has privacy

concerns about disclosing raw results of its interactions.

2. Interaction trust value of the witness toward the target agent. This form

of observation provides the view of the witness on how the other agent will

perform. This is clearly subjective because other agents have no clue how

the interaction trust value of the witness is derived. However, it is still useful

in some cases when only simple opinions are needed. For example, in step 3

of the scenario in Section 1.2, James’ agent only asks for the general opinions

about some car retailers’ service, not details of the interactions with them.

7That is the case when the raw results contain a large set of data that is not relevant for per-
formance assessment; or other agents cannot make judgments from the provided results without
knowing the context of the interaction.
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3. Rating of an agent’s performance in a particular interaction. This is the

middle approach of the two forms of observations above. Though it is still

from the subjective view of the witnesses, it provides more information about

how the other agent performs in an interaction. For example, using the rating

system of Regret, an agent can learn about various aspects of an interaction.

In the example of Regret provided in Section 2.2, an agent can learn about

how the other agent performs in terms of the price, the quality of product,

and the delivery date of the same transaction. The witness can provide to

the evaluating agent several ratings of different interactions with the target

agent, rather than only one trust value as in the second form of observation.

Each form of observation suits a specific type of application, depending on the level

of information required. However, in our opinion, the third form can suit a wider

range of applications as it provides richer information for reputation calculation.

Another reason in its favour is that it provides a level of abstraction over raw

interaction results, overcoming the possible limitations of raw results regarding

privacy and overly complicated data (as discussed in the first point above). Thus,

given the diversity of agents in open MAS, we believe the third form is the most

suitable for a general trust model (Requirement R3). In addition, the rating

system of Regret, which is used for modelling interaction trust, can be reused for

exchanging observations in this research.

The next question is how to find the right witnesses and collect their observations

about the target agent. There are a number of approaches to this problem:

• Centralised approach: Observations are reported and then stored in a central

database. The reputation system— usually the database itself —will use

information in the observation database to calculate the reputation of an

agent when asked. This approach is used in the reputation systems of online

auction sites, such as eBay8 and Amazon9, and SPORAS [Zacharia and Maes,

2000]. These reputation systems offer a mechanism that allows their users

to rate each other’s general trustworthiness after a transaction and to report

the ratings to the systems. The reputation of a user is then updated by the

systems according to the new ratings. For example, eBay reputation is the

sum of all ratings a user has received in the last 6 months. SPORAS extends

the reputation model of eBay by introducing a new formula to calculate

8eBay site: www.ebay.com.
9Amazon site: www.amazon.com.

www.ebay.com
www.amazon.com
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the amount of change of the reputation value according to the new rating

value. It also devises a reliability measure for reputation values based on

rating values’ deviation (see Appendix A.1 for more details). However, the

centralised approach is not suitable for open MAS as the agents are typically

widely distributed. The cost of reporting ratings to a central database and

asking reputation information from it might therefore become a problem as

the number of agents become larger. Moreover, this approach assumes that

the rating (reputation) system is accepted and trusted by all the individuals

that join the system. This will not be the case in open MAS as there is

no ultimate authority for all agents. Thus, agents from various sources may

well question the trustworthiness of a reputation service and may not use it.

Hence, this approach cannot fulfill Requirement R2.

• Distributed approach: Observations are stored locally at the agent who makes

the observations. When an agent a wants to find out about the reputation

of an agent b, it will look for agents that interacted with b (i.e. witnesses)

then ask them for their observations about b. The searching process used

is a distributed search through a’s neighbours, forming chains or a graph of

agents from a to b’s witnesses. The distributed approach overcomes the main

limitations of the centralised approach as they occur in distributed environ-

ments. Specifically, the task of calculating reputation is now carried out by

each individual. This provides a level of freedom to the agents in choosing

the method of calculating reputation which they believe will produce a re-

liable reputation measure. Besides collecting observations and calculating

reputation, each agent also chooses the witnesses by itself. This provides

more confidence for each agent on the resulting reputation value compared

to the centralised approach. This approach is thus compatible with the

open MAS’s distributed and no central authority nature (Requirement R2).

Given the increasing popularity of environments modelled as open MAS,

most recent research on reputation adopts this approach for their reputation

models (e.g. [Mui et al., 2002], [Sabater and Sierra, 2002], [Yu and Singh,

2002]). However, a basic degree of cooperation in locating witnesses and

providing observations is still needed between agent a and other agents in

the process of a distributed search.

There is a variation of the distributed approach in which agent a only asks

its neighbours or friends about their general trust evaluations about b (e.g.

[Abdul-Rahman and Hailes, 2000]). Hence, there is no distributed search

involved. However, observations are still stored locally at each agent. In
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this approach, the agents provide their general views about b, which are not

necessarily from direct interactions with it. In this case, the agents provid-

ing observations are sometimes called recommenders [Abdul-Rahman and

Hailes, 2000]. The problem with this variation is that an agent’s neighbours

may not have the information about the target agent b. Given the possibly

large number of agents in an open MAS, there is a high possibility that a

may not be able to find any information about b if it does not perform a

distributed search. Thus, this variation is not suitable for an open MAS.

• Hybrid approach: As its name suggests, this approach is both centralised

and distributed in nature. More specifically, broker agents are used to pro-

vide reputation services. They centralise reputation information but are

distributed in a system. For example, the trust model by Jurca and Faltings

[2003] is one that follows this approach. It defines a set of broker agents

(called R-agents) to buy and sell reputation information. There are no syn-

chronisation requirements among different R-agents. Hence, some R-agents

may possess more accurate information than others. Other agents have to

contact an R-agent to buy any reputation information they need. There-

fore, it is also necessary that they are equipped with an ability to learn

and value the service of R-agents to avoid bad ones (which appears similar

to interaction trust with R-agents). Although this approach is compatible

with distributed environments, there is still no guarantee on the quality of

service provided by R-agents. Other agents might suspect the objectiveness

of R-agents and refuse their reputation service. Moreover, the number of

agents in an open MAS may again cause a problem in finding R-agents that

have reputation information about the target agent b. The two shortcomings

mentioned make this approach unsuitable for open MAS.

The analysis of the approaches in this section has led to the following refined list

of requirements which are derived from the requirement R2:

• R2a: Because of the no central authority nature of open MAS, in order

to have the necessary degree of confidence in reputation values, each agent

should collect observations and calculate reputation values for itself.

• R2b: The trust model should be scalable to the large number of agents

that might be present in open MAS. The number of agents that the trust

model can handle is preferably unlimited. This means that agents should
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be equipped with a distributed search method that can locate witnesses

effectively in possibly “large” agent societies.

For the above reasons, we will follow the distributed approach for collecting obser-

vations in open MAS. Among the models that adopt this approach, Regret and the

model of Mui et al. assume that the network (graph) of agents from the judging

agents to the witnesses is already available and just use this information in their

models. Thus, they do not show how the information can be obtained. Yu and

Singh [2003b] also follow this approach but they make an attempt to build a graph

of agents (called the referral network) to locate witnesses based on the expertise of

each agent in the graph. They develop a mechanism to locate information sources

(i.e. witnesses) based on individual agents’ knowledge and help (through each

agent’s contacts) without relying on a centralised service (see Sections 2.3.3 and

3.5 for more details). Hence, this approach is well suited for applications in an

open MAS which is distributed by nature. Due to the diversity and the distributed

nature of agents in open MAS, we believe that the task of locating witnesses should

be treated with more attention as it is an essential part in modelling reputation.

Therefore, we will survey the referral network introduced by Yu and Singh and its

applicability in locating witnesses and collect observations in open MAS.

2.3.2 Aggregating observations

After collecting observations about an agent, the next step is to calculate its

reputation from these observations. Because of the various forms of observation

and the various ways of collecting them, there are a similarly large set of methods

for aggregating the observations that have been collected. However, since the

distributed approach (in the previous section) has been chosen for the reputation

model of this research, we will limit our discussion to those methods that are used

for the distributed approach.

The simplest way is averaging all the observations (e.g. [Schillo et al., 2000]),

or better, averaging the observations weighted by the relevance/reliability of the

observations’ sources (e.g. [Abdul-Rahman and Hailes, 2000], [Mui et al., 2002],

[Sabater and Sierra, 2002]). In [Abdul-Rahman and Hailes, 2000], for example,

an agent assigns weights according to the trust it places upon the sources (recom-

menders). In [Mui et al., 2002], as each observation belongs to a chain of agents

(see Figure 2.2) from agent a to a witness of agent b, Mui calculates the weight of

an observation by taking the product of all the weights of each link in the chain.
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The weight of a link between an agent x and y (denoted by wxy) is defined as the

 

Chain 1 

a b
Chain 2 

Chain k 

b 

Figure 2.2: The chains of agents to witnesses in Mui’s model.

reliability measure of the link where wxy is equal to 1 if the number of encounters

between x and y exceeds a defined threshold m. Otherwise wxy is the proportion

of that number to m. The Regret model takes a different approach using fuzzy

rules to determine the weight based on the social relationship between b and the

witness (w). For example, a possible rule would be: ‘If the level of cooperation

between w and b is high then the trustworthiness of the information coming from

w related to b is very bad’ because b may be able to affect w’s ratings. This ap-

proach requires modelling the social relationships (see Section 2.3.3) of the agents

involved in reputation calculations.

In the work presented above, weights are chosen to reflect the influence of each

witness on the final reputation of the target agent. Obviously, the reliability

(i.e. honesty, completeness) of observations is an important factor that affects the

reliability of the aggregated reputation value. However, none of the methods of

selecting weights above has been proved to be better than the others. Therefore,

further empirical study is needed to evaluate the performance of each method.

Intuitively, the method of Mui et al., which is based solely on the number of

encounters, is too simple. In our opinion, the reliability of a witness should be

based on additional factors, such as the witness’s trustworthiness in providing

observations, or the social relationships between the witness and the target agent

(as suggested by Abdul-Rahman and Hailes and Sabater and Sierra respectively).

Given its influence on the effectiveness of the reputation model being devised, we

believe that the issue of selecting weights for the observations collected needs more

careful study.

In contrast to other models, the model of Yu and Singh [2002] uses the Dempster-

Shafer theory [Kyburg, 1987] to model trust. The main benefit of this theory is

that it can model the case of uncertainty. Following Marsh [1994], their model

defines, for each agent, an upper and a lower threshold for trust. When calcu-
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lating the trustworthiness of b, performance ratings from direct interactions with

b are categorised into trust, distrust, and uncertainty based on the two thresh-

olds; and then are used to calculate the probabilities of the trust, distrust, and

uncertain belief about b. These three probabilities, whose sum is 1, will be used

as an observation about b (observations in the form of interaction trust— see Sec-

tion 2.3.1). Such observations are collected from witnesses and combined with

the current beliefs of a about b into a new set of beliefs of a using Dempster’s

rule of combination. Then the difference in trust and distrust beliefs about b is

used as its reputation value. While Yu and Singh claim that this approach, which

handles the case of uncertainty explicitly, is better than using a scalar value for an

agent’s belief, there is no apparent improvement in terms of the reliability of the

reputation value calculated. Thus, in their paper [Yu and Singh, 2002], there is no

evidence presented about the advantages of their method compared to others. In

another aspect, their method is much more complex than those presented above; it

also requires that observations be in the form of interacting trust, which provides

less information than the two other forms of observations. Thus, we believe that

there is no reason to use the Dempster-Shafer theory for aggregating observations.

In summary, we choose weighted mean of observations as our method of aggre-

gating observations. However, focus should be placed on how the weights can be

chosen to reflect the reliability of each observation.

2.3.3 Social relationships in modelling reputation

Since reputation is a social concept, social relationships are also one of the factors

that affect an agent’s reputation. For example, the fact that an agent belongs

to a government office may imply high trustworthiness of the information that it

provides. As seen above in Regret, the nature of the social relationship between

agents can be used to determine the reliability of reported observations. In ad-

dition, being equipped with an effective method to model the social relationships

between individuals, an agent can find witnesses quicker (as in the case of Yu and

Singh’s referral network described below). Hence, studying social relationships of

agents is needed to make a reputation model more effective.

In recent work (e.g. [Mui et al., 2002], [Sabater and Sierra, 2002], [Yu and Singh,

2003b]), social relationships are usually captured in a graph where its nodes denote

the agents and the edges denote the social relationships between them. Attributes

can be labelled to the edges of the graph to represent the nature and/or properties
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of the corresponding relationships (e.g. cooperation, competition). Such a graph

is called a social network or sociogram [Sabater and Sierra, 2002]. As discussed in

Section 2.2, there are two main types of relationships in open MAS: role-base rela-

tionships and relationships emerging from direct interactions between two agents.

Some of the former are assigned to an agent by its owner or designer. They may

reflect the initial roles, position, or membership of an agent in an organisation (e.g.

company employee, or friend relationships). This type of relationship usually gives

an agent an initial image of the society that it is about to join which, in turn, lets

it know who it can trust initially. The latter type of relationship appears when an

agent interacts with other agents in its society. Regular interactions between two

agents can reflect a close relationship (e.g. a regular buyer). Relationships of this

type can be selected to extend the initial social structure of role-based relation-

ships. The more information an agent’s social structure stores, the more the agent

has learned about its environment, and the more useful it is when the agent comes

to the questions such as who to trust (e.g. organisational relationships) and who

to ask for recommendations (e.g. agents that have interacted with many others).

There are several researchers who have studied social relationships and how to

use them in modelling trust. Sabater and Sierra use a social structure (called

a sociogram) to identify witnesses in calculating reputation. They also use the

information about the nature of the relationship between a witness and the agent

being considered in the social structure to determine the possibility of lying, and

thus, the reliability of the information provided from that witness. However, they

assume that each agent already has a social network about other agents and they

did not show how such social network can be obtained. Yu and Singh propose

a method of representing a social network (based on their referral network) and

provide techniques to gather information through the network. In more detail,

in this system, agents cooperate by giving, pursuing, and evaluating referrals (a

recommendation to contact another agent). Each agent in the system maintains

a list of acquaintances (other agents that it knows) and their expertise. Thus,

when looking for a certain piece of information, an agent can send the query to a

number of its acquaintances who will try to answer the query if possible or, if they

cannot, they will send back referrals pointing to other agents that they believe

are likely to have the desired information (based on those agents’ expertise). Yu

and Singh’s referral system uses a vector space model [Salton and McGill, 1983]

to model agents’ expertise. An agent’s expertise is then used to determine how

likely it is to have interaction with or to know witnesses of the target agent. The

requesting agent also uses the referrals received to gradually build up a social
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network and update its knowledge about the expertise of unknown agents.

2.4 Generic Issues of a Trust Model

Besides the basic issues of building an interaction trust measure and a reputa-

tion measure presented in the previous sections (Sections 2.2 and 2.3), there are a

number of generic issues that can affect the performance of a trust model. These

include: bootstrapping, dynamism in open MAS, inaccurate reports, and corre-

lated evidence. They are going to be discussed in turn in subsequent subsections

(Sections 2.4.1 to 2.4.4).

2.4.1 Bootstrapping

Newly joined agents who have no acquaintances will face various difficulties in join-

ing the community. Typically, a new agent should have an initial set of contacts

to establish its first interactions, as well as to collect reputation information about

some initial potential partners. In addition, new agents may find themselves not

accepted by some service providers because of their low initial reputation. How-

ever, this problem is ignored in most of the research in this area. We believe that

solving the bootstrapping issue is necessary so that agents will be able to make

use of a trust model in any situations (desideratum R1). Therefore, we add a new

requirement for our trust model:

R1a: The trust model should be able to deal with the bootstrapping issue of

newly joined agents.

2.4.2 Dynamism in open MAS

As discussed Section 1.1, due to its openness, the environment in an open MAS

will change continually. Possible types of changes include:

• The agent population. Existing agents leave the environment and new ones

join on a continual basis. This means that an agent might have to repeatedly

learn about new agents since its previous interaction partners may no longer

be available.
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• Agent behaviour. Since agents are owned by different stakeholders, their goals

and motivations may change over time. In addition, an agent’s situation may

also change. Now all of these will result in agents’ changing their behaviours.

For example, an honest agent may become a liar, or an agent may reduce its

service quality due to less resources available to it.

• Relationships between agents. Agents may break old relationships and make

new ones depending on their situations and needs. For example, virtual

organisations can be automatically formed or disbanded according to the

participants’ capabilities and goals [Norman et al., 2004]. Hence, the rela-

tionships, and thus the trust, between them are also changed over time.

Given such a wide range of changes that can happen in an open MAS, a trust

model for such an environment should reasonably maintain its normal effective

operations under these types of changes. However, none of the existing trust

models explicitly take such dynamism into account and none of them has been

demonstrated to cope well with it. Therefore, in order for a trust model to be

suitable for open MAS (Requirement R2), it should reasonably maintain its normal

effective operations in situations where various changes in an open MAS take place

(here called Requirement R2c).

2.4.3 Inaccurate reports

As agents in open MAS are self-interested, they may lie when being asked for

their observations if they can gain some benefits from so doing (see [Schillo et al.,

2000] for an example). In an attempt to solve this problem, the model of Schillo

et al. shows how witness information can be reliably used to reason effectively

against lying. However, the model greatly simplifies direct interactions (e.g. coop-

erate/defect in the disclosed Prisoner’s Dilemma), thus, it is not useful in realistic

settings.

To help overcome this problem, Jurca and Faltings [2003] presented a model in

which agents pay for reputation information. When an agent needs to find rep-

utation information, it contacts an R-agent to buy the information. Agents also

receive money when reporting their observations to R-agents, but only after the

verification of their reports. In this context, a mechanism is devised to determine

the specific amount for each payment so that the agents that report truthfully will

not lose money and agents that report falsely will lose money. Thus, lying agents
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will gradually lose their money until they do not have enough to buy reputation

information. This mechanism makes it rational for an agent to report its obser-

vations honestly. However, the idea of side payment may not be feasible in an

open MAS. For example, in order to have the rational property mentioned above,

the model of Jurca and Faltings requires that the currency for side payment is

unexchangeable with the currency used in ordinary transactions. In open MAS,

devising a new currency system that is different from the traditional ones, to be

accepted by the agents from various origins is not practical.

Regret uses fuzzy rules to classify the reliability of the witnesses based on their

relationships with the target agent (see Section 2.3.2 and Section 2.3.3). In this

way, they also take into account the possibility of a witness lying based on fuzzy

rules. However, this approach is a preventive measure and is based on social

information, which is not always available in every situation. In our opinion, the

trustworthiness of a witness in reporting its observations should also be taken

into account. The reason for this is that the experiences with the witness (i.e.

interaction trust) or the relationships between the witness and the collecting agent

(i.e. role-based trust) are more reliable than social information.

In order to determine the accuracy of third-party ratings, Whitby et al. [2004]

assume that the “true” rating of an agent is defined by the majority’s opinions.

In particular, they model the performance of an agent as a beta PDF which is

aggregated from all witness ratings received. Then a witness is considered unre-

liable and filtered out when the reputation derived from its ratings is judged to

be too different from the majority’s (by comparing the reputation value with the

PDF). Since this method bases it decisions entirely on PDFs of witness reports,

if these reports are scarce and/or too diverse it will not be able to recognise lying

witnesses. Moreover, it is possible that a witness can lie in a small proportion

of their reports without being filtered out. To rectify this, TRAVOS provides a

probabilistic method for filtering out the opinions of inaccurate reputation sources.

Reputation is shared in the form of frequencies of successful and unsuccessful con-

tracts that the reputation source has had with the trustee, which after interacting

with the trustee itself, the truster compares with its own observations. By this

means, the truster calculates the probability that the reputation source’s informa-

tion supports the true behaviour of the trustee within a reasonable margin of error,

and uses this probability to weight the impact of the reputation source’s opinions

on future decisions made be the truster. However, TRAVOS’s dependence on its

binary rating system again is its weakness.
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Yu and Singh propose a similar approach to that of Whitby et al. Specifically, they

use a weighted majority algorithm to adjust the weight for each witness over time.

Although the weights of the deceitful agents are reduced, these agents are never

disregarded completely. Several successful applications of this approach have been

demonstrated, but only for agent populations where deceitful agents are in the

minority and are balanced between agents that falsely exaggerate their friends’

performance and those that defame other agents.

In summary, all the proposed approaches above are limited in that they require

additional domain knowledge or make unrealistic assumptions about the environ-

ment. In order to fulfill the Requirement R4 of robustness, an effective mechanism

is needed to deal with inaccuracy reports (here called Requirement R4a).

2.4.4 Correlated evidence

This problem happens when the opinions of different witnesses are based on the

same event or when there is a considerable amount of information shared among

a group of agents that make their opinions similar to each other. In both cases,

the reliability of the information should not be as high as the number of similar

opinions suggests [Sabater and Sierra, 2002]. Sabater and Sierra use graph anal-

ysis techniques to address this issue. The process starts with identifying graph

components of a domain dependent sociogram. Then an agent in each component

will be selected to be the representative agent for all agents in the component.

Witnesses will be selected from those representative agents only. However, a node

that deems to be representative for a component in a sociogram is not necessarily

able to give a full witness’ account for all the agents in the component and, there-

fore, choosing only one agents from those in a component may discard possible

unique witness reports of the rest. Moreover, the approach is based on heuristics

and there is no empirical result presented to show its capabilities. The problem

of correlated evidence affects the efficiency and robustness of a reputation model

and should be dealt with (here called the requirement R4b).



Chapter 2 Trust and Reputation in Agent Systems 37

Requirements
R1 The trust model should be able to provide an effective trust

measure that can
R1a deal with the bootstrapping issue of newly joined agents.
R1b make use of role-based trust, interaction trust, and wit-

ness reputation when the required information for these
dimensions of trust is available.

R2 The trust model should be suitable for open MAS. In particu-
lar,
R2a each agent should be able to collect observations and cal-

culate the reputation values by itself.
R2b the trust model should be scalable to a large number of

agents that might be present in open MAS.
R2c the trust model should reasonably maintain its normal

effective operation in situations where there are various
changes in its environment.

R3 The trust model should be adaptable to different domains of
applications that an open MAS may have.

R4 The trust model should be robust against
R4a possible lying from agents.
R4b the correlated evidence problem.

Table 2.1: The requirements for a trust model in open MAS.

2.5 Requirements for Trust and Reputation Sys-

tems in Open MAS

In the previous sections, it has been shown that a composite trust measure can

be built from a number of trust measures: role-based trust, interaction trust, and

reputation from witnesses (here called witness reputation from now on). However,

the information required for each type of trust might not all be available at the

same time. Therefore, we believe all three types of trust should be modelled so

that an agent can have a trust measure in all situations (Requirement R1). This

is specified in a new requirement:

R1b: The trust model should be able to make use of role-based trust, interaction

trust, and reputation when the required information for these dimensions of trust

is available.

Through reviewing the current trust/reputation model, we have identified a num-

ber of core issues in building a trust model for open MAS. In order to address

these issues, our original requirements (Section 1.3) have been refined into more

specific ones. These are summarised in Table 2.1. In order to provide an overview
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of the trust models reviewed in this chapter, a comparison of them against our

refined requirements is presented in Table 2.2.

The meanings of the symbols used in the Table 2.2 are as follows:

• Empty box: the model does not satisfy the corresponding requirement.

• −: the model attempts to solve the related problem(s) and has partly satis-

fied the corresponding requirements.

• +: the model satisfied the corresponding requirements.

• N/A: the corresponding requirement is not applicable.

Other notes for Table 2.2:

• The requirement R1b is split in the three dimensions of trust (i.e. role-based,

interaction trust, and witness reputation). In order to satisfy this require-

ment in each dimension, a trust model has to implement the corresponding

trust component and provide a reliability measure for the corresponding

trust measure. The reliability measure is needed for combining that trust

measure with the others.

• An empty box in the column of R2b means that the corresponding model

provides no proof nor evidence about its scalability; and/or the number of

agents that was run in the empirical study was small (e.g. 100 agents as in

Yu and Singh [2002]).

As we can see from Table 2.2, Regret is the only model that provides an Interaction

Trust component and satisfies the requirement about adaptivity in open MAS

(R3). Therefore, the interaction trust component of Regret will be reused in

FIRE with minor adaptations so that it can be fit with the other trust components.

Hence, FIRE will also inherit the rating system with the rich semantics of Regret.

It then allows adaptivity in the other trust dimensions, as well by offering the same

rich semantics for sharing ratings and modelling complex trust contexts based on

ontologies.

With respect to the witness reputation dimension, none of the models reviewed

fully meets the requirements for a trust model in an open MAS. This analysis

suggests the following issues that need to be addressed in this research:
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• R1a: The bootstrapping issue.

• R2a: Most of the current witness reputation models show how agents can

calculate a reputation measure from the observations collected from wit-

nesses. However, it is not clear how agents can locate the right witnesses

in a distributed and open environment (such as an open MAS) except for

the model of Yu and Singh. Therefore, their the referral network (see Sec-

tion 2.3.3) will be used in this work as the method to find the needed wit-

nesses.

• R2b: The scalability of the trust model in an open MAS.

• R2c: The ability of the trust model to cope with the dynamism of an open

MAS.

• R4a and R4b: The problems of lying and correlated evidence.

Against this background, we developed FIRE to address the remaining issues and

to satisfy the requirements for a trust model in open MAS. The next chapter

presents FIRE and discusses its various design decisions. In particular, it deals

with Requirements R1a, R2a, R2b, R2c, and R4b. The problem of lying (Re-

quirement R4a) is dealt with in Chapter 6.
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Chapter 3

The FIRE Model

This chapter formalises the basic FIRE model of trust and reputation developed

in this research. This basic model is then subsequently extended in Chapter 6

to deal with situations in which witnesses produce inaccurate reports about the

behaviour of agents (either because they have a different perspective or because

they seek to gain a strategic advantage by so doing). Chapter 7 further extends

FIRE by making a number of its parameters adaptive to various changes in the

environment.

In more detail, this chapter is organised as follows. First, it discusses various

sources of trust information and how they can complement one another in produc-

ing a comprehensive trust measure, especially when some of them can be missing

or anomalous (Section 3.1). Then Section 3.2 shows how a trust value is calculated

from a set of evidence (i.e. ratings). Sections 3.3 to 3.6 present, in turn, the four

components of FIRE —Interaction Trust, Role-based Trust, Witness Reputation,

and Certified Reputation. Section 3.7 shows how trust values produced by these

components can be combined into a single overall measure. Finally, a summary of

the chapter is provided in Section 3.8.

3.1 Sources of Trust Information

As can be seen in the previous chapter, trust can come from a number of informa-

tion sources: direct experience, witness information, rules or policies. However,

due to the openness of a MAS, the level of knowledge of an agent about its envi-

ronment and its peers is likely to vary greatly during its life cycle. Therefore, at

41
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a given time, some information sources may not be available, or adequate, for de-

ducing trust. For example, the following situations may (independently) happen:

• An agent may never have interacted with a given target agent and, hence,

its experience cannot be used to deduce how trustworthy/reliable the target

agent is.

• An agent may not be able to locate any witness of the target agent (because

of a lack of knowledge about the target agent’s society) and, therefore, it

cannot obtain witness information about that agent’s behaviours.

• None of the current set of rules to determine the level of trust matches the

role of this particular target agent.

In such scenarios, trust models that use only one source of information will fail to

provide a trust value of the target agent. For that reason, FIRE adopts a broader

base of information than has hitherto been used for providing trust-related infor-

mation. Although the number of sources that provide trust-related information

can vary greatly from application to application, we consider that most of them

can be categorised into the four main sources as follows:

• Direct experience: The evaluator uses its previous experiences in interacting

with the target agent to determine its trustworthiness. This type of trust is

called Interaction Trust.

• Witness information: Assuming that agents are willing to share their direct

experiences, the evaluator can collect the experiences of other agents that

interacted with the target agent. Such information will be used to derive

the trustworthiness of the target agent based on the views of its witnesses.

Hence this type of trust is called Witness Reputation.

• Role-based rules : Besides an agent’s past behaviours (which are used in the

two previous types of trust), there are certain types of information that can

be used to deduce trust. These can be the various relationships between

the evaluator and the target agent or its knowledge about its domain (e.g.

norms, or the legal system in effect). For example, an agent may be preset

to trust any other agent that is owned, or certified, by its owner; it may trust

that any authorised dealer will sell products complying to their company’s

standards; or it may trust another agent if it is a member of a trustworthy
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group1. Such settings or beliefs (which are mostly domain-specific) can be

captured by rules based on the roles of the evaluator and the target agent to

assign a predetermined trustworthiness to the target agent. Hence this type

of trust is called Role-based Trust.

• Third-party references provided by the target agents : In the previous cases,

the evaluator needs to collect the required information itself. However, the

target agent can also actively seek the trust of the evaluator by presenting

arguments about its trustworthiness. In our model, such arguments are

references produced by the agents that have interacted with the target agents

certifying its behaviours2. However, in contrast to witness information which

needs to be collected by the evaluator, the target agent stores and provides

such certified references on request to gain the trust of the evaluator. Those

references can be obtained by the target agent (assuming the cooperation

of its partners) from only a few interactions, thus, they are usually readily

available. This type of trust is called Certified Reputation.

Now FIRE integrates all four sources of information and is able to provide trust

metrics in a wide variety of situations. Certified Reputation, in particular, greatly

enhances FIRE in this respect since the evaluator does not have to obtain this type

of information itself (as is the case with other types of trust). Hence, the addition

of Certified Reputation decreases the possibility that the evaluator fails to evaluate

the trustworthiness of the target agent due to a lack of information. Our working

hypothesis here is that integrating these various sources will also enhance the

usefulness of the trust model. This will be verified subsequently in our empirical

evaluation (see Chapter 5). Specifically, each type of trust information is processed

by a particular component of FIRE: Interaction Trust (IT), Witness Reputation

(WR), Role-based Trust (RT), and Certified Reputation (CR) components; and

the resulting trust values are combined into an overall trust value (see Section 3.7)

to benefit from all the available information.

It should be noted that the WR and CR components depend on third-party infor-

mation (witness experiences and references) and, therefore, they are susceptible

1This belief is similar to the neighbourhood reputation in Regret, which calculates the repu-
tation of an agent from the reputation of the agents that it is connected to.

2The arguments can also be the target agent’s identity, its certifications (e.g. ‘authorised
dealer’, performance awards), its sources of products (to guarantee their quality), and so on.
However, deducing trust (or the expected performance) of the target agent from such information
requires knowledge about the application domain. This is dealt with in Role-based Trust based
on rules encoding an agent’s beliefs. Therefore, we only consider third-party references here
because they can be quantified and computationally aggregated in a standardised way as we
show later in this chapter.
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to unreliable information. Since agents in an open MAS are self-interested, they

may provide false ratings to gain unwarranted trust for their partners. However,

in this chapter, for the sake of simplicity, the basic FIRE model is presented with

the temporary assumption that all agents are honest in exchanging information.

Although this is unrealistic for an open MAS, our aim now is to ascertain that

our philosophy and trust components are actually effective before extending them

to more complex scenarios later in this thesis. Specifically, the problem of various

sorts of disinformation in reporting ratings are considered and dealt with in Chap-

ter 6, where FIRE is extended to detect and filter out unreliable reports. Hence,

in addition to the characteristics of an open MAS, we have made a number of

assumptions about the agents and their environment. Before going on to discuss

FIRE, we state these assumptions:

Assumption 1 Agents are willing to share their experiences with others (as wit-

nesses or as referees).

Assumption 2 Agents are honest in exchanging information with one another.

In FIRE, except for the RT component which deduces trust based on rules, the

other components deduce trust from information about the target agent’s be-

haviour. Here we use ratings to capture this type of information. Specifically,

then, a rating is the evaluation about an agent’s performance given by its partner

in an interaction between them. For instance, consider an example where agent

a subscribes to a news service provided by agent b. Each time a receives a piece

of news from b, it can evaluate the news provided in terms of topicality, quality,

and honesty. From its evaluation, agent a may give ratings about agent b’s ser-

vice in those terms for that particular interaction. Ratings are thus tuples in the

following form: r = (a, b, c, i, v), where a and b are the agents that participated in

the interaction i, and v is the rating value a gave b for the term c (e.g. topicality,

quality, honesty). The range of v is [−1, +1], where −1 means absolutely negative,

+1 means absolutely positive, and 0 means neutral.

Each time agent a gives a rating, it will be stored in the agent’s local rating

database. Ratings in this database will be retrieved when needed for trust evalua-

tion or for sharing with other agents. However, an agent does not need to store all

ratings it makes. As the environment of an open MAS is dynamic, old ratings usu-

ally become out-of-date due to changes in the environment. In addition, since each

agent has limited resource (i.e. memory), storing all ratings about various agents

is not necessarily an option. Therefore, each agent will only store at maximum the
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H latest ratings given to another agent. Here H is called the rating history size.

This parameter is adjustable according to a particular agent’s situation.

3.2 Trust Formula

In order to calculate the trust value of a target agent, the components of FIRE will

have to collect relevant ratings about that agent’s past behaviour. The subsequent

sections will define how and which ratings are collected by each component. This

section describes how the set of ratings each component collects is used to estimate

the target agent’s future behaviour, or more specifically, the expected rating value

that agent is likely to receive in a future interaction. It is also viewed as the target

agent’s trust value. Now, a common way to estimate that value is to calculate it

as the arithmetic mean of all the rating values in the set. However, these ratings

are usually not equally relevant when estimating the expected rating value. For

example, some ratings may be older than others and, thus, are deemed to be out-

of-date; some may come from a more reliable source that suggests a higher level

of credibility compared to others. Therefore, we devise a rating weight function

ωK for each component of FIRE3 which calculates the relevance of each given

rating. K is thus one of I, R, W, and C standing for interaction trust, role-based

trust, witness reputation, and certified reputation respectively. Then instead of

considering all ratings equally, the trust value is calculated as the weighted mean

of all the ratings available4, whose weights are given by the corresponding weight

function:

TK(a, b, c) =

∑
ri∈RK(a,b,c) ωK(ri) · vi∑

ri∈RK(a,b,c) ωK(ri)
(3.1)

where TK(a, b, c) is the trust value that agent a has in agent b with respect to term

c, which is calculated by the component K; RK(a, b, c) is the set of ratings collected

by component K for calculating TK(a, b, c); ωK(ri) is the rating weight function that

calculates the relevance or the reliability of the rating ri (ωK(ri) ≥ 0); and vi is

the value of the rating ri. In short, the trust value is calculated as the sum of all

the available ratings weighted by the rating relevance and normalised to the range

of [−1, 1] (by dividing the sum by the sum of all the weights). The rating weight

3Since each component of FIRE collects ratings from a different source, it also needs a different
way to calculate the relevancy of ratings. For example, the WR component may have information
about witness credibility to take into account when weighing ratings, while this information is
not relevant to the IT or RT components.

4We choose the weighted mean method here because it allows us to take the relevance of each
rating into account. Other aggregation methods could equally well be used if desired.
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function ωK(ri) is later defined for each component.

As we have discussed, the trust value given above lets an agent know the expected

performance of the target agent. However, the trust value alone is not very useful

for making task delegation decisions. For example, a trust value of +1 calculated

from only 1 rating or from 10 ratings may have different effects on an agent’s

decision. Therefore, an agent usually also needs to know how likely it is that the

target agent will perform at that expected performance (similar to the expected

value and deviation measures in statistics). In other words, apart from the trust

value, its reliability should also be provided by a trust model. Here, we define

a reliability measure that reflects the confidence of the trust model in producing

each trust value given the data it took into account. This is given in the form of

a reliability value that ranges in [0, 1], where 0 represents complete uncertainty

and 1 total confidence. The reliability value is given based on the two following

measures:

• Rating reliability : Since the rating weight function ωK gives us the rele-

vancy— in other words, the quality or the reliability—of each rating taken

into account, the sum of all rating weights reflects the reliability of the rat-

ing set taken into account in computing TK(a, b, c) in Equation 3.1 above.

Therefore, we devise a rating reliability measure based on this sum:

ρRK (a, b, c) = 1− e−γK·(
P

ri∈RK(a,b,c) ωK(ri)) (3.2)

where ρRK(a, b, c) is the reliability value of the rating set RK(a, b, c) and γK

is a parameter used to adjust the slope of the reliability function to suit

the rating weight function of each component (see Figure 3.1). Since each

component has its own rating weight function, it also has a rating reliability

function of its own— ρRK. As above, K is one of I, R, W, and C. R in

ρRK stands for ‘rating reliability’. Intuitively, the rating reliability should

increase proportionally to the sum of the rating weights. However, since

this sum is not limited, we choose the (increasing) function 1− e−x in order

that the resulting reliability value is limited in [0, 1]. This normalisation is

required because the trust and reliability values of FIRE’s components will

be combined later on in Section 3.7. Moreover, since each rating weight

function is defined differently and may have a different range to that of

another component’s weight function, the parameter γK is introduced in

order to adjust the rate of the rating reliability (Equation 3.2) according

to each rating weight function’s range. This means the rating reliability
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Figure 3.1: Rating reliability function ρRK (a, b, c)

function ρRK (a, b, c) gradually increases from 0 (the lowest reliability) to 1

(the highest reliability) when the sum of rating weights increases from 0 to

+∞.

• Deviation reliability : The greater the variability in an agent’s past behaviour

(which is reflected by its rating values), the more volatile it is likely to behave

in future interactions. Therefore, the deviation in the rating values is also a

metric that reflects a trust value’s reliability:

ρDK(a, b, c) = 1− 1

2
·
∑

ri∈RK(a,b,c) ωK(ri) · |vi − TK(a, b, c)|∑
ri∈RK(a,b,c) ωK(ri)

, (3.3)

where ρDK(a, b, c) is the deviation reliability value of the trust value TK(a, b, c).

Here, D in ρDK stands for ‘deviation’. Basically, Equation 3.3 calculates

the deviation of ratings’ values in the set of ratings RK(a, b, c) around the

‘expected’ value (i.e. the trust value); the calculated deviation is then nor-

malised to [0, 1]. Intuitively, when there is no deviation in the rating’s value

(i.e. the target agent performs consistently), the deviation reliability is 1

(i.e. the most reliable); and it decreases proportionally to 0 (i.e. the least

reliable) when the deviation increases.

In order to take both of these reliability factors above into account, the relia-

bility value of the produced trust value, denoted by ρK(a, b, c), is defined as the

combination of the rating reliability and the deviation reliability measures:

ρK(a, b, c) = ρRK(a, b, c) · ρDK(a, b, c) (3.4)
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3.3 Interaction Trust

As introduced in Section 3.1, Interaction Trust is built from the direct experience

of an agent. It models the trust that ensues from the direct interactions between

two agents. Here we simply exploit the direct trust component of Regret (see

Appendix A.2) since this meets all our requirements for dealing with direct ex-

periences. In more detail, each agent rates its partner’s performance after every

transaction and stores its ratings in a local rating database. When calculating the

IT value for agent b with respect to term c, agent a has to query its database for

all the ratings that have the form (a, b, c, , ), where the ‘ ’ symbol can be replaced

by any value. We call the set of those ratings RI(a, b, c).

Since older ratings may become out-of-date quickly, we use recency of the ratings

as a rating weight function to give recent, and likely more up to date, ratings

more weight than older ratings in IT evaluation. However, as pointed out in Ap-

pendix A.2, Regret’s method of calculating rating recency has several undesirable

characteristics. Therefore, we devise a new rating recency function based on the

time difference between the current time and the rating time since this metric

reflects precisely how old (i.e. how recent) a rating is. In order to make our rating

recency function adjustable to suit the time granularity in different applications,

the parameter λ, called the recency scaling factor, is introduced in the function (to

scale time values). Our rating recency function, which is also used as the rating

weight function for IT, is given by the following formula:

ωI(ri) = e−
∆t(ri)

λ (3.5)

where ωI(ri) is the weight for the rating ri (used in Equation 3.1) and ∆t(ri)

is the time difference between the current time and the time when the rating

ri is recorded. In our model, analogously to human perception, we view the

time difference of two recent events as more significant than the same one of two

older events (see Footnote 2, page 133 for an example). Hence, the exponential

function above is chosen for rating recency because its shape over time fits our

view on how the recency of ratings should affect an agent’s decision about trust

(see Figure 3.2). Our intuition is that new ratings are deemed to reflect the

target agent’s current performance more accurately than old ratings, and our

recency function here is to help FIRE adapt quickly to any changes in that agent’s

performance. In Equation 3.5, the parameter λ is hand-picked for a particular

application depending on the time unit used. For instance, if the time unit used

is day and we want a rating obtained five days earlier to only have half the effect
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Figure 3.2: Rating weight function of interaction trust component.

of a new rating obtained today (i.e. rating weights of 0.5 and 1 respectively;

∆t(ri) = 5) then λ = − 5
ln(0.5)

.

Given the rating set RI(a, b, c) and the rating weight function ωI(ri) as specified

above, the IT value TI(a, b, c) and its reliability ρI(a, b, c) are calculated using the

general trust formula as defined in Equations 3.1 and 3.4 (Section 3.2).

3.4 Role-Based Trust

Role-based trust models the trust resulting from the role-based relationships be-

tween two agents (e.g. owned by the same company, a service provider and its

registered user, friendship relationship between their owners). Since there is no

general method for computationally quantifying trust based on this type of rela-

tionship, we use rules to assign RT values. As previously discussed, those rules are

used to encode knowledge about the trust dynamics in the application domain.

Therefore, they are usually domain-specific and must be specified by an agent’s de-

signer or its owner. In other words, this component provides the means of adapting

FIRE to a particular environment and, thus, making it perform better in that en-

vironment. Here, rules are tuples of the following form: rul = (rolea, roleb, c, e, v),

which describes a rule that if rolea and roleb are the roles of agent a and b re-

spectively, then the expected performance of b with respect to the term c in an

interaction with a is v (v ∈ [−1, 1]); e ∈ [0, 1] is the level of influence of this rule on

the resulting RT value or the belief strength of agent a on the rule. For example,

possible rules may be:

rul1 = (buyer, seller, quality, 0.3,−0.2),

rul2 = ( , government-seller, quality, 0.8, 0.0),

rul3 = ( , team-mate, honesty, 1.0, 1.0).
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Thus, rul1 expresses an agent’s belief that an ordinary seller will usually sell a

product of slightly lower quality than agreed, but the reliability of this belief is

low (0.3); rul2 expresses a stronger belief that an agent can expect a governmental

seller to do what is agreed in terms of product quality; and rul3 tells an agent to

expect total honesty from its team mate (e.g. agents of the same owner). Here,

rul1 and rul2 encode norms of the environment, while rul3 is the belief based on

an arrangement between agents. Such rules are given to the agent by its owner.

Additional rules can naturally be added during an agent’s life cycle.

Each agent has its own set of rules which are stored in a (local) rule database. In

order to determine the RT of agent b with respect to term c, agent a looks up the

relevant rules from its rule database. We call the set of those rulesRR(a, b, c). Since

the form of a rule is very analogous to that of a rating, the general trust formula in

Equation 3.1 can be used to calculate the RT of b, which is denoted by TR(a, b, c),

from this set. Here, the level of influence of each rule is used as the weight for that

rule: ωR(ri) = ei. Therefore, it should be noted that in case there exist conflicts

in the applicable rules (i.e. contradicting expected performance values), all these

rules will be taken into account but the deviation measure reliability (ρDK) of the

resulting trust value will be low (because of the high deviation of the rules used).

This, in turn, will result in a low reliability of the RT trust value, which shows

that the RT trust value has a low predictive power and so it will be weighted

accordingly in calculating the overall trust value (see Section 3.7).

3.5 Witness Reputation

The witness reputation of a target agent b is built on observations about its be-

haviour by other agents (witnesses). In order to evaluate the WR of b, an agent a

needs to find the witnesses that have interacted with b. Here, it is assumed that

agents in open MAS are willing to share ratings that they made and to help others

search for witnesses. In order to find relevant witnesses, we implement a variant of

Yu and Singh’s referral system without using the VSM model5. Instead, our sys-

tem assumes that each agent has a measure of the degree of likeliness with which

an agent can fulfil an information query about witness information and witness

5As pointed out in Yolum and Singh [2004], the VSM model does not support hierarchy
in expertise types, which can be better represented by service graphs. In this respect (i.e.
modelling expertise), there is no universal model for all applications. Therefore, we leave the
choice of expertise model to end users as they can evaluate which method is best suited to their
particular applications.
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locating. This measure needs to be defined in an application specific manner. For

example, in our testbed (described in Chapter 4), an agent is assumed to know lo-

cal agents (those that are adjacent to it) better and, therefore, we use the physical

distance between an acquaintance and the target agent as the knowledge measure.

Thus the nearer to the target agent, the more likely the acquaintance is to know it.

This measure is used in the referral process to help locate witnesses. However, it

should be noted that the resources available to each agent are limited (in terms of

its memory and communication cost) and the evaluator (agent a) usually has lim-

ited time for trust evaluation (before it has to initiate an interaction). Thus, the

process of locating witnesses should typically be limited according to an agent’s

time constraints, though this may result in no witnesses being found (even though

appropriate agents are available in the system). Here, the parameters nBF (called

the branching factor [Yu and Singh, 2003b]) and nRL (called the referral length

threshold, or the depth of referral graphs in [Yu and Singh, 2003b]) are introduced

for that purpose. Specifically, nBF is used to limit the number of acquaintances to

which a query is forwarded and nRL to limit the length of referral chains. Besides

restricting the search range of agent a due to time constraints, the referral length

threshold also helps an agent not to waste its effort querying too distant agents

because, intuitively, the further the witness is from a (in terms of the length of the

referral chain to the witness from a), the less reliable/relevant its information. At

present, nBF and nRL need to be hand-picked according to the an agent’s resource

constraints and its environment’s acquaintance networks.

Specifically, the process of evaluating WR is as follows:

1. When agent a assesses the WR of agent b with respect to term c, denoted

by TW(a, b, c), it sends out a query for ratings of the form ( , b, c, , ) to nBF

acquaintances that are likely to have relevant ratings on agent b and term c

(see Figure 3.3, where nBF = 2).

2. These acquaintances, upon receiving the query, try to match it to their own

(local) rating databases. If they find matching ratings, it means they have

had interactions with b, they will return the ratings found to a.

3. If they cannot find the requested information, they will return referrals iden-

tifying their nBF acquaintances that they believe are most likely to have the

relevant ratings to the query (based on the knowledge measure) so that a

can look further.
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Figure 3.3: Referral process.

4. This process continues until a finds sufficient witnesses or the length of its

referral chains reach the defined threshold nRL.

It should be noted here that in this process we implicitly assume that agents in

a’s referral network are willing to help a find the required witness ratings. This

is not a trivial assumption and needs to be guaranteed for this referral process

(as for any mechanism based on third-party information) to work, especially in

open MAS where agents are self-interested. However, we do not consider how

such a guarantee can be obtained in this thesis because that task would very

much depend on the particular application domain being considered. Thus, end-

users who wish to make use of WR need to provide necessary measures for this

willingness assumption to hold (e.g. obtaining an agreement between agents on

sharing witness information or paying for any information request).

The set of ratings collected from the referral process, denoted by RW(a, b, c), is

used to calculate the WR of agent b (i.e. TW(a, b, c)) following Equation 3.1. Here,

the rating weight function for WR ωW(ri) is intended to reflect a witness rating’s
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quality which also includes the rating’s credibility (since in realistic environments

agents may give false/inaccurate ratings). However, as we currently assume all

agents are honest, only the recency of ratings is temporarily used as per Section 3.3

(i.e. ωW(ri) = ωI(ri), see Equation 3.5). A model of witness credibility is described

and incorporated into FIRE in Chapter 6.

3.6 Certified Reputation

Certified reputation of a target agent b comprises certified references6 about its

behaviour from third-party agents. Such information is obtained and stored by the

target agent itself and made available to any other agent that wishes to evaluate its

trustworthiness for further interactions (somewhat like a reference when a person

is applying for a job). The references are in the form of ratings given by agent

b’s partners about its performance in (past) interactions between them. These

ratings allow agent b to prove its achievable performance as viewed by its previous

interaction partners and then to gain the trust of its potential partners. However,

since it can choose which ratings to put forward, a rational agent will only present

its best ratings. Therefore, it should be assumed that CR information probably

overestimates an agent’s expected behaviour. Thus, although it cannot guarantee

agent b’s minimal performance in future interactions, the CR information does

reveal a partial perspective on agent b’s capabilities (which is certainly useful for

trust evaluation in the absence of other sources of information).

Though CR may have lower predictive power than the other types of trust/repu-

tation (where all bad and good ratings can be collected), it is useful because of its

wide applicability. With the cooperation of its partners, agent b can obtain their

references from just a small number of interactions7. From our evaluation, for in-

stance, in a society where 100 agents provide a service to 500 others, agents using

direct experience to evaluate trust require more than 100 interactions to achieve a

reasonable level of performance, which is still less than what is achieved by agents

using CR after 5 interactions (see Section 5.3 for more detail). In addition to its

6It is assumed that some form of security mechanism (such as a public-key infrastructure)
is employed to ensure that the provided references cannot be tampered with. For instance, all
references could be accompanied by digital signatures from the issuers using their private keys
[Zimmermann, 1995]. By so doing, any change to a reference will be easily detected. Digital
signatures are also a means to verify the references’ origins.

7In many scenarios, such as those in the Internet, established service providers (e.g. news
services or online merchants) usually have high volumes of interactions (at any time). Therefore,
if they adopt the CR process outlined here, we can reasonably expect that such providers will
have an abundance of performance ratings readily available.
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high availability, since references are stored by the target agent and provided di-

rectly to the evaluator, CR has a very low running cost (i.e. time, communication,

processing cost) compared to witness reputation. Since CR information comes

from the target agent, the CR component complements the other components of

FIRE, which use information collected by the evaluator, reducing the chances that

they may fail to calculate trust due to lack of input (see Section 3.1). Thus, in-

corporating the CR component makes FIRE able to provide a trust value in most

circumstances.

In more detail, the process of CR is as follows:

• After every transaction, agent b asks its partners to provide their certified

ratings about its performance from which it can choose the ratings to store

in its (local) rating database.

• When agent a contacts b to express its interest in using b’s service, it asks b to

provide references about its past performance with respect to an interested

term c.

• Agent a receives the set of certified ratings of b from b, which we call

RC(a, b, c) (C to denote this set is obtained via the CR mechanism), and

calculates the CR of b based on this set.

In this process, since agent b relies on its interaction partner’s cooperation to get

references, agents may refuse to give out their ratings (as in the case of witness rep-

utation). However, this is a much smaller problem than that in witness reputation

because this information is requested far less frequently (each referee is requested

to give its rating only once). Moreover, giving such information could be made a

standard part of any agreement for task allocation and so agents could be forced

to give it. The most notable point in this process is that when agent a makes the

trust evaluation, it only involves agents a and b. Since the certified ratings about

b are stored by b itself, they are immediately available to a as in the case when

a uses its own experience. It should also be noted that when a referee provides

references to an interaction partner, it surrenders its privacy with respect to how

it values that partner’s performance. This may lead to various possible reactions

of that partner (e.g. it may retaliate against the referee for a bad reference or it

may treat the referee differently the next time to get a better reference). However,

due to the vast number of possibilities in the reactions of both agents (i.e. the

referee and the referred agent), we do not consider the effects of giving up privacy

in CR here and defer it to future work.
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Having obtained the references of b, a can calculate the CR value of b using the

formula in Equation 3.1. However, since there is no guarantee about the honesty

of agents in an open MAS, we need measures to prevent or to minimise the adverse

effects of lying (e.g. collusion between the target agent and its referees in producing

falsely inflated references). Here, we use the rating weight function ωC(ri) to reflect

the credibility of a reference (i.e. rating). Again, since we are not considering the

problem of lying in this chapter, the rating weight function for CR is defined

based only on the recency of ratings as per Section 3.3 (i.e. ωC(ri) = ωI(ri)). The

value of CR, TC(a, b, c), and its reliability, ρC(a, b, c), are calculated as defined in

Section 3.2.

3.7 An Overall Value

When using FIRE to evaluate trust, an agent can decide which components it

will use for trust evaluation according to its needs and situation. However, as

each component produces trust values from a separate source of information, we

believe that in combining the four components, and effectively the four information

sources, it will in most cases yield a higher level of performance (as confirmed by

the empirical evaluation in Section 5.3). Thus, we recommend combining all the

aforementioned trust values into a single composite measure to give an overall

picture of an agent’s likely performance. As all trust values in FIRE come with

reliability values, instead of averaging the trust values from the four components,

we again use the weighted mean method to calculate the composite trust value,

denoted by T (a, b, c)), to take each trust value’s reliability into account:

T (a, b, c) =

∑
K∈{I,R,W,C} wK · TK(a, b, c)∑

K∈{I,R,W,C} wK
(3.6)

where wK = WK · ρK(a, b, c), and WI, WR, WW, WC are the coefficients correspond-

ing to the IT, RT, WR, and CR components. Here, the composite trust value

is calculated from the four component trust values and each of them is weighted

by both its reliability (as given by ρK(a, b, c)) and the corresponding component

coefficients (i.e. WK). These coefficients are set by end users to reflect the im-

portance of each component in a particular application. For instance, one can set

WI and WR to be the highest in the four coefficients since the IT and RT use an

agent’s own information and should be the most reliable components; WC can be

set to be the lowest since the CR information is from third-parties and tends to
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exaggerate the target agent’s performance. However, these coefficients can be au-

tomatically set according to changes in an agent’s environment by implementing

the adaptability extension of FIRE as shown in Chapter 7.

The composite trust value also has a corresponding reliability value, denoted by

ρT (a, b, c), which is calculated from the components’ reliability values weighed by

the component coefficients in a similar manner:

ρT (a, b, c) =

∑
K∈{I,R,W,C} wK∑
K∈{I,R,W,C} WK

(3.7)

3.8 Summary

This chapter has described the basic FIRE model for trust evaluations in open

MAS. The model itself is composed from four trust and reputation components:

Interaction Trust, Role-based Trust, Witness Reputation, and Certified Reputa-

tion. Each component derives trust values from a separate source of information

and then the component trust values are combined to provide an overall picture

of an agent’s trustworthiness. Thus, reviewed against our requirements for a trust

model in open MAS (Section 2.5), FIRE satisfies the requirement R1b by making

use of IT, RT, and WR. FIRE also introduces CR, a novel type of reputation, that

addresses the inherent shortcomings of interaction trust (the lack of direct experi-

ence) and witness reputation (the difficulty in finding witness reports). Combining

all the four trust/reputation components not only allows FIRE to produce more

useful trust values than using fewer components (as confirmed from our evaluation

in Section 5.3), but also makes it serviceable in the absence of some of the sources

of information. In this respect, CR is particularly relevant because it greatly en-

hances the serviceability of FIRE by transferring the task of collecting third-party

ratings (i.e. references) to target agents, who are more capable than evaluators

and incentivised to do so. Therefore, an agent that newly joins an environment

can evaluate the trustworthiness of others from their references even when it has

not had previous experience with them and cannot find any witness for them.

Thus, FIRE satisfies the requirement R1a by addressing the bootstrapping issue

of newly joined agents8.

8Obviously, there are still cases when FIRE cannot produce a trust value. Specifically, those
are when a service provider newly joins the system. Hence, it does not have references about
its performance and other agents do not have past experience with it. However, in a realistic
scenario, in order to promote its service, that provider can join a (popular) scheme/organisation
that provides quality assurance about its members’ service. For example, a car dealer can obtain
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In order to be compatible with the distributed nature of open MAS, FIRE is

designed such that an individual agent can make trust evaluations itself without

having to rely on a central authority (Requirement R2a). Various mechanisms

are provided so that an agent can collect trust information about its peers and

aggregate such information to derive trust values. Therefore, the reliability of

those trust values is guaranteed (in contrast to the case where trust values are

provided from a third-party). Although we have not done an analysis on the

scalability of FIRE, in our experiments where 500, 1000, and 1500 agents using

FIRE are deployed (Chapters 5, 6 and 7), it is observed that the execution time of

those experiments varies linearly to the number of agents deployed. Thus, given

its decentralised nature, we believe that FIRE is scalable to the large number of

agents that may be present in an open MAS (Requirement R2b). The process of

CR (Section 3.6) is also beneficial in this respect since it makes trust information

(i.e. references) highly accessible in most circumstances. As for the adaptability

requirement (Requirement R3), the required trust information in our model (i.e.

ratings, rules) is defined in such an abstract manner that it can be applicable in

various application domains. The behaviour of FIRE is also parameterised and can

be fine tuned for a particular environment or application if desired. Finally, since

FIRE uses only first-hand evidence of agent interactions (i.e. ratings produced

by the participating agents), the problem of correlated evidence (Section 2.4.4,

Requirement R4b) is avoided.

In summary, the basic FIRE model satisfies all the requirements for a trust model

in open MAS that we outlined in Section 2.5, except that it has not considered the

problem of inaccurate third-party reports (Requirement R4a). FIRE is extended

in Chapter 6 to address this problem. In the next phase of our research, we aim to

evaluate the effectiveness of FIRE in evaluating trustworthiness by helping agents

select good interaction partners and, in addition, how it performs in dynamic

situations (Requirement R2c, see Section 2.4.2). Before doing this, however, we

need to describe the evaluation methodology that we use. This is detailed in the

next chapter.

the title ‘authorised dealer’ from a car manufacturer. Such (popular) membership (and inherently
its quality assurance) can be recognised by other agents (via rules in FIRE’s RT component)
and thus helps the provider to sell its service.



Chapter 4

Evaluation Methodology

In order to employ a formal and systematic evaluation of the work in this thesis, a

set of experiments has been designed to evaluate FIRE’s performance. In this work,

since trust is an abstract and multi-faceted concept, there is no base for analytic

evaluation. Instead, empirical evaluation is used as the method of measurement

because it allows us to assess the performance of a trust model in terms of how

much benefit it can bring to its users (which can serve as a measure to justify

its use). In addition, there are a number of internal variables which control the

behaviour of FIRE, as well as external variables which define the environment in

which our model is being used (see Section 4.2). These variables are interrelated

and need to be considered in a broad range of situations. Empirical techniques

allow us to manipulate these variables, conduct the experiments, and analyse

the results. Thus, they are suitable for our evaluation purpose. In particular,

the evaluation technique we use is called hypothesis testing [Cohen, 1995, pg.

106]. With this method, hypotheses are formed to express the intuitions about

FIRE’s performance under a variety of situations. Experiments are then conducted

and their results are used in statistical inference to either accept or reject the

hypotheses.

This chapter explains in detail the procedure of hypothesis testing (Section 4.1),

the testbed in which the experiments are carried out (Section 4.2), and how they

are set up (Section 4.3). Finally, a summary is provided in Section 4.4.

58
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4.1 The Methodology

As discussed above, we will evaluate FIRE’s performance in terms of how much

benefit an agent may gain by using it. In the context of this thesis, the aim of

the trust model is to help agents distinguish good interaction partners from bad

ones (Section 1.3) and, thus, to allow them to avoid losing utility by choosing

not to interact with bad agents. Therefore, the difference between the utility

gained1 by an agent using a trust model and that gained by another agent using

no trust model in choosing interaction partners can be interpreted as the added

value of that trust model (or more concisely the performance of that trust model).

Henceforth, the performance (i.e. the utility gain) of an agent using, say, FIRE is

used interchangeably with the performance of FIRE. In order to be able to do so,

we have to exclude all other factors than trust models that can affect an agent’s

performance; these include domain knowledge, negotiation issues, and planning

(see Section 4.2). By removing such extraneous factors, the trust model is left as

the only differentiating factor in an agent’s capability (e.g. agents using no trust

model, using FIRE, or using another model). This then allows us to objectively

compare the performance of trust models by making comparisons between the

performance of the corresponding agents using them.

In more detail, it is desirable that FIRE is evaluated in all possible situations

in order to make sure that it will always behave properly. However, since the

environment of an open MAS is both complex and dynamic, there are uncountably

many factors that can affect FIRE’s performance. For instance, it can be affected

by the population of the agents in an open MAS, the interactions and relationships

between them, and their behaviours. These are all unbounded external variables

to FIRE. Therefore, it is impossible to exhaustively explore all the environment

space in order to comprehensively evaluate FIRE. To combat this, we introduce

randomness into the testbed we use to evaluate FIRE (see Section 4.2 for more

details) to make it similar to a continually changing environment of an open MAS.

In addition, a group containing a large number of agents (typically 500) using FIRE

are evaluated at the same time, in which each agent has a particular situation

defined by the environment’s randomness. In so doing, FIRE is evaluated under a

wide range of situations and its performance can reasonably be measured as the

mean performance of all the agents in the group.

1Since agents are typically designed to select their actions based on the expected utility gained
from those actions in order to maximise their own utility [Wooldridge, 2002], it is implicitly
assumed here that the utility an agent gains from an interaction can be quantitatively measured.
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In our evaluation, we are interested in answering the question:

‘How do agents using FIRE perform in comparison to agents using no

trust model and to other trust models?’

This requires us to compare FIRE’s performance with that of another model. We

are also interested in experiments showing how FIRE performs with and without a

particular component because such results help us to confirm/reject our intuitions

and to justify our design decisions. Specifically, this requires us to compare the

performance of groups of agents using FIRE with different configurations. How-

ever, a mere comparison of the mean performance of two groups of agents does

not allow us to conclude that one group performs better than the other in all

the cases. The reason is that the population of possible situations is infinitively

large and the results from one experiment are only from a small sample of that

population and, moreover, it might not be a typical result for the population.

Given this, statistical inference techniques should be used since they allow us to

draw a conclusion about an unseen population given a relatively small sample.

Thus, to the extent that a sample is representative of the population from which

it is drawn, statistical inference permits generalisations of conclusions beyond the

sample [Cohen, 1995, pg. 105]. In our experiments, we use a statistical inference

method called hypothesis testing, which allows us to answer a yes-or-no question

about the population and assess the probability that the answer is wrong2.

Now suppose we need to determine whether the performance of agents using FIRE

is better than the performance of agents using no trust model. Since trust models

typically learn about its user’s environment and gradually improve its performance

through interactions (Section 2.2), it does not make sense to compare the perfor-

mance of models after different periods of use. Therefore, we need to choose a test

period and compare the performance of models after that same period (say, five

interactions3).

2In analysing (experimental) data about two populations, say their income levels, the fact
that the means of the two sample groups’ incomes are different does not always indicate that
the two populations have different levels of income if randomness can affect sample selection.
Thus, it is possible that the means of these two particular samples are different, but the means
of the two populations’ incomes are not. Hypothesis testing methods allows us to confirm with
a predefined confidence level whether the difference of the two means actually indicates that one
group has higher income than the other, eliminating the random factor in selecting the samples
(see [Cohen, 1995] for more detail).

3Test periods can also be chosen in other time units (e.g. 5 minutes or 100 generated clock
ticks). However, since we are using the mean performance of a group of agents employing FIRE
as the performance measure and in a timed period each of the agents may complete a varied
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Term Definition
FIRE The name of the group of agents using FIRE
NoTrust The name of the group of agents using no trust model
n The number of finished interactions chosen as the test period
NFIRE The number of agents in group FIRE
NNoTrust The number of agents in group NoTrust
µFIRE The population mean performance for FIRE; the mean performance

obtained by measuring the utility gain of an infinitive number of
agents using FIRE in their nth interaction and in all possible envi-
ronments.

µNoTrust The population mean performance for NoTrust, obtained as above.
P FIRE The mean performance of a sample of agents using FIRE after their

nth interaction
PNoTrust The mean performance of a sample of agents using no trust model

after their nth interaction
sFIRE The variance of the performance sample of FIRE
sNoTrust The variance of the performance sample of NoTrust

Table 4.1: Terms used in the hypothesis testing example.

With the terms defined in Table 4.1, the procedure of hypothesis testing used in

our experiments is as follows (adapted from [Cohen, 1995]):

1. Formulate a null hypothesis and an alternative hypothesis, denoted H0 and

H1, respectively:

H0: µFIRE = µNoTrust;

H1: µFIRE > µNoTrust.

2. Gather a sample of performance (i.e. utility gain) of agents in FIRE and

NoTrust in their nth interaction, and calculate the mean performance of each

group, denoted by P FIRE and PNoTrust. Call NFIRE and NNoTrust the number

of samples in group FIRE and that in group NoTrust respectively.

3. Assuming the null hypothesis is true (i.e. there is no difference between the

performance of FIRE and NoTrust), calculate the probability of obtaining the

sample means P FIRE and PNoTrust. This probability is given by the two-sample

t-test function that takes into account P FIRE, PNoTrust, NFIRE, NNoTrust, and

number of interactions depending on its operation, the performance measure after such a period
can greatly fluctuate between experiment runs. This is because the performance of a trust model
depends on the amount of information it learns after each interaction and, thus, a varied number
of interactions will result in a varied level of a specific performance. Therefore, the number of
finished interactions is a more suitable basis than time unit for choosing test periods. From the
view point of an individual agent, it also allows the performance measure to show how quickly a
trust model learns roughly in terms of an individual agent’s cost (i.e. interaction cost, possible
loss because of bad bootstrapping performance of the trust model), which is more relevant to
the agent than how much time it has been operating in its environment.
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the sample variances of the two groups (see [Cohen, 1995, pg. 127] for more

details).

4. If this probability is lower than 0.05, reject the null hypothesis in favour of the

alternative hypothesis. This means that we can conclude with a confidence

level of 95% that H1 is true, or the performance of FIRE is (statistically)

significantly better than that of NoTrust.

For example, after an experiment, assume the following data is obtained at n = 5:

• Group FIRE: P FIRE = 6.3627, NFIRE = 500, and sFIRE = 3281.2384.

• Group NoTrust: PNoTrust = −1.0543, NNoTrust = 500, and sNoTrust = 4641.8361.

Assuming H0 is true, the probability of obtaining this data given by the two sample

t test is 2.81×10−242. Therefore, we can conclude that the performance of FIRE is

indeed significantly better than that of NoTrust (in this case with the confidence

level of nearly 100%).

The hypothesis testing procedure above can determine that, for instance, using

FIRE will yield a better utility gain than using no trust model at the 5th inter-

action. However, it is not clear exactly how quickly FIRE can achieve that level

of performance. Moreover, we are also interested in whether FIRE can maintain

the same level of performance at later interactions. Thus, instead of choosing a

fixed test period, in each experiment we carry out the hypothesis testing procedure

for every test period from the 1st interaction to the 200th one4. Thus, the mean

performance of each group of agents in terms of utility gain (UG) is plotted on a

chart to show the trend of performance change (see Figure 4.1 for an illustration).

Now, since showing the actual hypothesis tests will include many (uninteresting)

numbers, we will show only the result of the tests on the chart using the second y-

axis (on the right). For example, with the result for n = 5 above, we assign rank 2

to FIRE and rank 1 to NoTrust. This is to show that the corresponding hypothesis

test concludes that FIRE outperforms NoTrust and that the performance difference

is statistically significant (using the confidence level of 95%). The rank lines are

named using the group names but prefixed by R. If at some interactions the rank

4It is shown in all our experiments that the performance of all the models tested are stable
by around the 200th interaction, or, put another way, that the interesting trends of performance
change can be observed in this period. In our experiments, most agents make about 300–400
interactions. However, given this stability, we choose to show only the results from the first 200
interactions for reasons of simplicity.
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Figure 4.1: Hypothesis testing example chart.

lines are collapsed into one line, it means that at the corresponding test period

the probability that H0 is true is greater than 0.05. This means that we cannot

reject the null hypothesis and can only conclude that the performance difference

between the two groups is not statistically significant for that test period.

4.2 The Testbed

Having defined the evaluation methodology, we need a testbed to run the experi-

ments on. This section describes the testbed we use and discusses various design

decisions that aim to ensure it captures the key characteristics of open MAS (as

detailed in Section 1.1). In particular, the testbed domain setup is described in

Section 4.2.1, and then Section 4.2.2 presents the factors of randomness introduced

into the testbed to simulate the dynamism in an open MAS.

4.2.1 The testbed domain description

The testbed environment for evaluating FIRE is a multi-agent system consisting of

agents providing services (called providers) and agents using those services (called

consumers). We assume that the performance of a provider (and effectively its

trustworthiness) in a particular service it provides (e.g. news services) is generally

independent from that in another service (e.g. weather services or banking ser-

vices). Therefore, without loss of generality, and in order to reduce the complexity

of the testbed’s environment, it is assumed that there is only one type of service in

the testbed. Hence, all the provider agents offer the same service. However, their
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performance (i.e. the quality of the service) differs. The agents are situated ran-

domly on a spherical world whose radius is 1.0 (see Figure 4.2). Each agent has a

radius of operation (ro —depicted by a dotted circle around an agent in Figure 4.2)

that models the agent’s capability in interacting with others (e.g. the available

bandwidth or the agent’s infrastructure) and any agents situated in that range

are the agent’s acquaintances. In the case of a provider, its radius of operation

serves as the normal operational range in which it can provide its service at its full

capability without loss of quality. For consumers outside that provider’s normal

operational range, the quality of service they receive from it gradually degrades.

This simulates the phenomenon that each agent usually has particular circum-

stances (here its location) which affect service delivery. For example, two distant

agents may experience significant network latency during their interactions, or a

seller agent in the UK may charge another agent extra for shipping goods abroad

and the goods may arrive much later than usual.

P C 1 

C 3 

C 2 

r o 

Figure 4.2: The spherical world and a path from consumer C1 (through C2

and C3) to provider P based on neighbourhood.

Simulations are run in the testbed in rounds (of agent interactions). Events that

take place in the same round are considered simultaneous. The round number is

used as the time value for events. In each round, if a consumer agent needs to use

the service it can contact the environment to locate nearby provider agents5 (in

terms of the distance between the agents on the spherical world). The consumer

agent will then select one provider from the list to use its service. The selection

5This is to simulate a situation in which only a portion of the provider population is available
to a given agent. For example, a retail banking agent can only serve customers in its country. In
addition, as the degradation of service quality is proportional to the distance between a provider
and its consumer, providers that are too distant may not be useful.
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process relies on the agent’s trust model to decide which provider is likely to be the

most reliable. Consumer agents without a trust model randomly select a provider

from the list. On the other hand, an agent with a trust model selects a provider

as follows:

1. It evaluates the trustworthiness of all the providers in the list. Providers

whose trustworthiness cannot be determined (due to no available rating) are

placed in the set NoTrustValue. The rest, whose trustworthiness has been

determined, are placed in the set HasTrustValue.

2. There can be up to two options available to the agent:

(a1) select the provider with the highest trust value in the set HasTrustValue,

which according to the trust model is likely to yield the highest UG; and

(a2) select a random provider from the set NoTrustValue, allowing it to learn

about the performance of an unknown provider (i.e. exploring the provider

population).

3. Obviously, if the set HasTrustValue is empty, it can only choose (a2); if the

set NoTrustValue is empty, it can only chose (a1).

4. Otherwise, it needs to determine which action it should take. Choosing

(a2) allows it to explore more about the provider population although it

may risk losing utility if it encounters a bad provider. In contrast, choosing

(a1) can somewhat guarantee the expected UG. However, it may not be

the optimal performance the agent can get because it has not learnt enough

about the provider population. This exploit-vs-explore dilemma is addressed

in this work by using a standard Boltzmann exploration strategy [Kaelbling

et al., 1996]. Using this strategy, an agent tends to explore its environment

first and then gradually move its stance towards exploitation when it learns

more about the environment. Thus, the agent chooses an action ak with the

probability of:

P (ak) =
e

ER(ak)

T∑
ai

e
ER(ai)

T

(4.1)

where ER(ai) is the expected return from choosing action ai, and T is a pa-

rameter that is set to decrease over time to decrease exploration (termed the

temperature parameter in [Kaelbling et al., 1996]). In brief, the probability

that an action ak is selected is biased by the expected return of that action.

Moreover, when an agent’s level of exploration is decreased (by decreasing

T over time) the action with the highest expected return is more likely to be
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selected (i.e. the agent is more likely to exploit the knowledge it has learnt

about the performance of provider agents). Here, the expected return for

(a1) is the expected UG of the highest trusted provider as calculated from its

trust value, and that for (a2) is the average UG of the provider population

that has been observed by the consumer agent.

Having selected a provider, the consumer agent then uses its service and gains

some utility from the interaction (i.e. UG). The value of UG is in [−10, 10] and

depends on the level of performance of the provider in that interaction. A provider

agent can serve many users at a time. As in realistic situations, a consumer agent,

however, does not always use the service in every round. The probability it needs

and requests the service, called its activity level and denoted by α, is selected

uniformly randomly when the consumer is created. In other words, the activity

level of a consumer determines how frequently it uses the service6.

After an interaction, the consumer agent rates the service of the provider based on

the level of performance, or the quality of the service, it received. It records the

rating for future trust evaluations and also informs the provider about the rating

it made. The provider may record the rating as evidence about its performance

to be presented to potential consumers (as discussed in Section 3.6). Since the

basic FIRE, which is going to be evaluated, assumes that all agents exchange

their information honestly, an agent (as a witness or as a referee) provides its true

ratings as they are without any modification. The testbed is extended to simulate

various types of disinformation later in Chapter 6.

So far, there is no difference between provider agents. However, in order to test

the ability of a trust model in helping a consumer select good providers, we need

to introduce different types of provider agents with various levels of performance.

By so doing, the actual UG of a consumer agent from an interaction (which is

determined by the performance of the provider it selects) will reflect how good its

trust model is in evaluating the trustworthiness (i.e. the expected performance)

of the providers. Here, we consider four types of provider agents: good, ordi-

nary, bad, and intermittent. They are to simulate the cases in real world, where,

in a particular market, there are usually a (small) number of very good service

providers, many ordinary providers who cannot perform exceptionally as those in

the first group, and some bad providers that cheat. The intermittent providers

6This is to simulate the phenomena that each agent has an individual frequency of requiring
a particular service. For example, an ordinary person may need to check the news once a day,
while a stock broker may do so once every hour.
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Profile Range of µP σP

Good [PL GOOD, PL PERFECT] 1.0
Ordinary [PL OK, PL GOOD] 2.0
Bad [PL WORST, PL OK] 2.0

Performance level Utility gained
PL PERFECT 10
PL GOOD 5
PL OK 0
PL BAD −5
PL WORST −10

Table 4.2: Profiles of provider agents.

are introduced to simulate the cases of some online servers whose performance is

affected by extraneous factors such as unreliable Internet connections or technical

difficulties so that they perform unpredictably, good in some instances and bad in

the others.

In the real world, it is rarely the case that one service provider can always maintain

a fixed performance. There are usually always some (minor) fluctuations of their

performance due to various reasons (e.g. late delivery due to traffic conditions,

varying food quality depending on weather). Therefore, it is unreasonable to set

a fixed performance level for a provider agent in the testbed. Instead, we only set

a provider’s mean performance and later vary its actual performance based on a

random variable. The normal distribution is chosen for this purpose since it models

the random nature that we look for and also allows us to control the variation

range of the variable fluctuations (by setting the standard deviation parameter).

Hence, good, ordinary, and bad providers are assigned a mean level of performance,

denoted by µP. Its actual performance then follows a normal distribution around

this mean. The values of µP and the associated standard deviation of these types

of providers, denoted by σP, are given in Table 4.2. Intermittent providers, since

we want to model intermittent behaviours, on the other hand, are set to yield

unpredictable (random) performance levels in the range [PL BAD, PL GOOD].

As in our example above, a consumer might experience a better service from a

provider in the same country than it does from those that are in a different country.

Here, we use the distance between a consumer and a provider on the sphere world

to model the particular situations between them. If a consumer agent is situated

outside of the provider’s normal operational range (i.e. ro) the service quality of

that provider is then set to degrade in proportion to the distance between them.
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4.2.2 The dynamism factors

Although the testbed described in the previous section covers the basics of in-

teractions between agents in MAS, it does not reflect the continuously changing

nature of an open MAS (as discussed in Section 2.4.2). Therefore, in order to

verify that FIRE can cope with various changes that can happen in an open MAS

(Requirement 2c), dynamism is introduced into the testbed by changing a number

of its factors after each round7:

• The population of agents : In an open MAS, agents can come and leave the

system at anytime. This is simulated by removing a number of randomly

selected agents from the testbed and adding new agents into it. The num-

bers of agents added and removed after each round vary, but have an upper

limit of some predefined percentage of the whole population. The population

change limits for the consumer and the provider populations are denoted re-

spectively by pCPC and pPPC. Since in the real world, providers are usually

more established than consumers, pPPC is set to be lower than pCPC in our

simulations. The profile of the newly added agents are set randomly but

they are uniformly distributed over the initial agent populations (i.e. the

proportions of providers of different profiles and that of consumers in differ-

ent groups are maintained) in order to maintain the characteristics of the

population in which trust models are being tested.

• The locations of agents : During their life cycle, agents break old relation-

ships and make new ones (reflecting the notion of continual change that is

inherent in open MAS). In our testbed, this type of change is reflected by

the change in an agent’s location on the spherical world. When a consumer

changes its location, it will have a new set of acquaintances according to

its ro. In addition, the location of an agent in the testbed also reflects its

individual situation covering things such as its knowledge about other local

agents (see Section 3.5) and the service delivery between providers and con-

sumers (see Section 4.2.1). Therefore, changing an agent’s location changes

its relationships with others, as well as its individual situation. Specifically,

we use polar coordinations (r, ϕ, θ) for agent locations on the spherical world.

Then in order to change an agent’s location, amounts of angular changes ∆ϕ

and ∆θ are added to ϕ and θ respectively. In this case, ∆ϕ and ∆θ are se-

lected randomly in [−∆φ, +∆φ]. Thus, ∆φ limits the variability of agents’

7These factors are chosen based on the types of changes that were identified in Section 2.4.2.
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locations. Not every agent changes its locations every round and, in particu-

lar, pCLC and pPLC are used to denote the probabilities that a given consumer

or provider, respectively, changes its location in a round.

• The behaviour of the providers : In many environments, provider performance

may alter (for better or worse) over time. A provider may even change

its behaviour completely (e.g. a provider may take advantage of its good

reputation and decide to perform selfishly to obtain better utility). In our

testbed, the average performance of a provider (µ) can be changed by an

amount of ∆µ randomly selected in [−M, +M], and this happens in each

round with the probability of pµC. Moreover, after each round, a provider can

switch to a completely new provider profile with a probability of pProfileSwitch.

The above changes to the testbed’s environment are applied only after each round

of interactions finishes. The nature and degree of dynamism vary depending on

the experiment and are therefore specified for each specific experiment. Now, in

some experiments where, because of their objectives, none of the above changes is

carried out, we call the testbed static.

4.3 The Experimental Setup

In each experiment, the testbed is populated with provider and consumer agents.

Each consumer agent is equipped with a particular trust model, which helps it

select a provider when it needs to use a service. Since the only difference among

consumer agents is the trust models that they use, the utility gained by each agent

through simulations will reflect the performance of its trust model in selecting

reliable providers for interactions. Therefore, the testbed records the UG of each

interaction along with the trust model used.

Before each experiment, the testbed is set up to simulate a particular environment

of interest using the parameters defined in the previous sections. These param-

eters are called the experimental variables and their default values are presented

in Table 4.3. These default values will be used in all the experiments unless oth-

erwise specified. Although a ‘typical’ provider population may differ in various

applications, the space of possibilities is vast and exploring it completely would

be impossible. Therefore, we choose provider populations which we believe are

more common than others for our experiments Here, a typical provider popula-

tion according to our view consists of about half profitable providers (i.e. yielding
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Simulation variable Symbol Value
Number of simulation rounds N 500
Total number of provider agents: NP 100
+ Good providers NPG 10
+ Ordinary providers NPO 40
+ Intermittent providers NPI 5
+ Bad providers NPB 45
Number of consumer agents in
each group

NC 500

Range of consumer activity level α [0.10, 1.00]

Table 4.3: Experimental variables.

Parameters Symbol Value
Local rating history size H 10
IT recency scaling factor λ − 5

ln(0.5)

Branching factor nBF 2
Referral length threshold nRL 5
Component coefficients:
+ Interaction trust WI 1.0
+ Role-base trust WR 1.0
+ Witness reputation WW 0.5
+ Certified reputation WC 0.25
Reliability function parameters:
+ Interaction trust γI − ln(0.5)
+ Role-base trust γR − ln(0.5)
+ Witness reputation γW − ln(0.5)
+ Certified reputation γC − ln(0.5)

Table 4.4: FIRE’s default parameters.

positive UG) and half exploiting providers (i.e. yielding negative UG, including

intermittent providers). However, good and intermittent providers are usually ex-

ceptional cases and, thus, they take only a small portion of each half. Except in

the experiments where we evaluate FIRE with different provider populations, this

typical provider population is used throughout8.

Here, we also show the default parameters of FIRE set for the experiments in

Table 4.4. These parameters were introduced to allow end users of FIRE to cus-

tomise FIRE’s behaviour according to their own needs and application. For ex-

ample, here, we know that the IT component deduces trust from ratings in which

the agent does the rating itself and, thus, is more reliable than the WR and CR

components, which use information from third-parties. We expect the CR infor-

mation to exaggerate an agent’s true performance, hence, the CR component has

8We have explored with different population mixes and we observe the same broad trends.
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the lowest reliability. The RT component provides rules encoding knowledge and

beliefs about the agent’s environment to customise the trust model, so it should

also have a high reliability. Therefore, the component coefficients are set to reflect

these beliefs. Likewise, since the performance of an agent may change quickly

from round to round and given the time unit used in the test bed (round of inter-

actions), we set the IT recency scaling factor such that a 5-round old rating has

half (0.5) the effect of a new rating (1.0). It should be noted that the space of

possible parameter assignments is vast and comprehensively evaluating FIRE in

that space is impossible. Therefore, these parameters are chosen here on a reason-

able basis as explained above. In this regard, Chapter 7 investigates a number of

learning techniques so that some of these parameters can be adjusted dynamically

according to an agent’s actual situation.

4.4 Summary

This chapter has presented our evaluation methodology which is followed through-

out in evaluating FIRE. The two-sample t-test, a hypothesis testing method, is

used to ensure that our conclusions about the evaluation results are correct with

a minimum confidence level of 95%. We also show in detail how our testbed is

constructed and set up to reflect the main features of open MAS as identified in

Chapter 1. The testbed and the evaluation methodology will be used in the sub-

sequent chapters (Chapters 5, 6, and 7) to run and analyse various experiments

on FIRE’s performance.



Chapter 5

Empirical Evaluation

Having presented the testbed and the methodology for FIRE’s evaluation in the

previous chapter, we now turn to the experiments themselves. In particular, we

concentrate on the two following questions:

1. How much is the benefit (in terms of UG) of using FIRE for selecting inter-

action partners compared to not using a trust model and to other models?

2. How do FIRE’s individual components contribute to its overall performance?

The experiments in this chapter are designed to give the answers for the two

questions in a variety of environment types (e.g. static environments where there

is no significant dynamism and dynamic environments where there are changes in

various factors in the testbed as described in Section 4.2.2). Experiments dealing

with the first question are presented in Sections 5.1 and 5.2. The former shows

experiments with static environments, while the latter focusses on dynamic ones.

Subsequently, Section 5.3 presents experiments dealing with the second question.

A summary is then provided in Section 5.4

5.1 Performance in Static Environments

In order to evaluate the overall performance of FIRE, we compare it with the

SPORAS model (whose operation is described in Appendix A.1) and a group of

agents with no trust model. Hence, there are three groups of consumer agents:

FIRE, SPORAS, and NoTrust. SPORAS is chosen as the control benchmark for two

72
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Figure 5.1: Overall performance of FIRE in the typical provider population.

reasons. First, it is a successful independently developed trust model that several

other researchers have used for benchmarking (e.g. [Carbo et al., 2003], [Sabater

and Sierra, 2001]). Second, other than SPORAS, most other notable trust models

make assumptions that are incompatible with open MAS, or require additional

knowledge, and, thus, they will not operate as intended in our testbed.

Now, the first thing to test is whether FIRE helps consumer agents select profitable

providers (i.e. those yielding positive UG) from the population and, by so doing,

helps them gain better utility than without FIRE (i.e. the NoTrust group). In this

section, the testbed’s environment is static (as defined in Section 4.2.1).

In more detail, Figure 5.1 shows that the NoTrust group, selecting providers ran-

domly without any trust evaluation, performs consistently the lowest (as we would

expect). On the other hand, both SPORAS and FIRE prove to be beneficial to

consumer agents, helping them to obtain significantly higher UG. This shows that

the tested trust models can learn about the provider population, and allow their

agents to select profitable providers for interactions. However, the chart, as well

as the t-test ranking, also shows that FIRE outperforms SPORAS, the second rank,

throughout the interactions by about 40%1. This is despite the fact that SPO-

RAS, being a centralised model, gathers much more information than FIRE (a

decentralised model)2. The performance difference of FIRE and SPORAS is ac-

1Here, the average UG of the NoTrust group in an experiment (i.e. −1) is used as the baseline
performance. The UG of SPORAS and FIRE is then compared to this baseline performance to
show the benefit of using SPORAS and FIRE.

2After every interaction, the consumer reports its rating about the provider’s service in that
interaction to SPORAS. Therefore, as a centralised service, SPORAS collects all the available
ratings from its users. In contrast, consumers employing FIRE only have ratings from a limited
set of witnesses (from the WR component) and those presented by providers (from the CR
component) in addition to their own ratings. Typically in our experiments, after the first 10
rounds the average number of ratings taken into account in each trust evaluation request to
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Interaction: 1 2 3 4 5 6 7 8 9 10
SPORAS 0.20 0.85 1.80 2.96 3.53 3.42 3.42 3.52 3.58 3.62
FIRE −0.16 1.20 2.30 4.00 5.06 5.44 5.66 5.52 5.47 5.53

Table 5.1: The performance of SPORAS and FIRE in the first 10 interactions

counted for by the fact that FIRE separates direct experiences from others’ expe-

riences (i.e. ratings) in trust evaluation, while SPORAS treats all types of ratings

equally. Therefore, SPORAS suffers from noise in ratings (resulting from different

degrees of degradation of service quality due to different provider-consumer dis-

tances). In contrast, FIRE reduces rating noise by giving more weight to direct

experiences (see Table 4.4), which are more relevant to an individual agent’s sit-

uation. Another noticeable point is that in the first few interactions, FIRE can

learn about the providers quicker than SPORAS as the FIRE group achieves its

superiority from the first interaction (see Table 5.1) despite much less information

being available to it. As we show in Section 5.3, this is achieved thanks to the

WR and, in particular, the CR components.

Having shown FIRE performs well in a mixed population, we now check whether

FIRE performs consistently with a particular type of providers. Therefore, we

re-ran the same experiment but with provider populations consisting of providers

of only one profile (e.g. all good, all ordinary, all bad, and all intermittent).

Specifically, the experiment is run with 100 good providers, then with 100 ordinary

providers, 100 bad providers, and 100 intermittent providers. The result in the

case of intermittent providers is not shown here because the performance of all

three groups is indistinguishable; fluctuating randomly in [−1, 0] (this is expected

because of the random behaviour of intermittent providers). In the rest of the

experiments, we observe similar results (see Figures 5.2, 5.3, and 5.4) to that in

our first experiment with the typical provider population. FIRE maintains its

superiority in all the three types of provider population. This shows that FIRE

can work well in a wide range of provider population.

In sum, through the experiments on FIRE’s overall performance, we confirm that

FIRE is beneficial to agents in selecting interaction partners in a variety of types

of provider populations. In addition, despite being decentralised and having less

information than SPORAS, FIRE outperforms the model in all the cases thanks

to its differential treatment of each source of trust information.

FIRE is 3.28, and that to SPORAS is 15.55. After 20 rounds the corresponding numbers are
4.05 and 28.47 respectively. This suggests that FIRE may be advantageous in environments in
which rating information costs some premium.
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Figure 5.2: Overall performance of FIRE – 100% good providers.
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Figure 5.3: Overall performance of FIRE – 100% ordinary providers.
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Figure 5.4: Overall performance of FIRE – 100% bad providers.
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5.2 Performance in Dynamic Environments

The environment of a realistic open MAS is always changing because of its open-

ness (as discussed in Sections 1.1 and 4.2.2). Hence, a trust model designed for

open MAS should be able to function effectively in such a dynamic environment.

Given this, this section concentrates on testing the hypothesis that FIRE still

maintains its desirable properties (i.e. being beneficial to agents in selecting inter-

action partners) in a changing environment. Similarly to the experiments in Sec-

tion 5.1, there are three groups of consumer agents in the experiments: NoTrust,

SPORAS, and FIRE. The provider population is the typical one. Each experiment

will test the hypothesis with only one dynamic factor in effect (see Section 4.2).

Specifically, the same experiments will be run but with each of the following con-

ditions3:

1. The provider population changes at maximum 2% every round (pPPC = 0.02).

2. The consumer population changes at maximum 5% every round (pCPC =

0.05).

3. A provider may alter its average level of performance at maximum 1.0 UG

unit with a probability of 0.10 each round (pµC = 0.10, M = 1.0).

4. A provider may switch into a different (performance) profile with a proba-

bility of 0.02 each round (pProfileSwitch = 0.02).

5. A provider may move to a new location on the spherical world at a maximum

angular distance of π
20

with a probability of 0.10 each round (pPLC = 0.10,

∆φ = π
20

).

6. A consumer may move to a new location on the spherical world at a max-

imum angular distance of π
20

with a probability of 0.10 each round (pCLC =

0.10, ∆φ = π
20

.

These experiments are named Experiment 1 to 6, respectively, and their results

are shown in Figures 5.5 to 5.10. Since the NoTrust group still has the lowest

performance, we omit its results from the charts for reasons of clarity. A gen-

eral observation from all the results is that both FIRE and SPORAS still maintain

3These are what we consider to be reasonable values of variation. We have conducted similar
experiments with both greater and lesser degrees of dynamism and we see the same broad trends
as we report here.
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Figure 5.5: Experiment 1: Provider population change: pPPC = 0.02.
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Figure 5.6: Experiment 2: Consumer population change: pCPC = 0.05.

positive UG from about 3.0 to 6.0 (except SPORAS in Experiment 4, Figure 5.8).

However, dynamism, as it introduces noise to the environments, adversely affects

the performance of both of them in all the experiments reported here. Specifically,

and as we would expect, their performance is lower than that in the static envi-

ronment (Figure 5.1) and the performance plots also evolve differently over time.

Nevertheless, although having lower levels of performance than in a static environ-

ment, the shape of FIRE’s performance plots are generally maintained after they

reach their stable level in the first few interactions in all the experiments. This

shows that FIRE is able to maintain a stable performance regardless of the various

types of changes in the environment. In other words, FIRE can learn about the

changes and adapt quickly to them.

In more detail, the experiments here can be put into two categories: (i) dynamism

on the consumer side (Experiments 2 and 6), and (ii) dynamism on the provider

side (Experiments 1, 3, 4, 5). In the first group, the results (Figures 5.6 and 5.10)
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Figure 5.7: Experiment 3: Providers change their performance: pµC = 0.10,
M = 1.0.
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Figure 5.8: Experiment 4: Providers switch their profiles: pProfileSwitch = 0.05.
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Figure 5.9: Experiment 5: Providers change their locations: pPLC = 0.10,
∆φ = π
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Figure 5.10: Experiment 6: Consumers change their locations: pCLC = 0.10,
∆φ = π

20 .

show that SPORAS can cope well with these types of changes. This is because

SPORAS collects ratings centrally from all consumers and, thus, small changes

on the consumer side do not have a significant impact on its performance as its

learned knowledge about the provider population is still useful. Particularly in

Experiment 2, where new consumers are added to the testbed, newly joined agents

using SPORAS take advantage of the existing knowledge of the centralised model

and perform well right from the start. In contrast, FIRE relies on the consumer

community for witness reputation and, thus, has a slightly lower performance than

that in the static environment. However, it still outperforms SPORAS in these

experiments.

The situation is somewhat different in the experiments of the second category.

SPORAS’s performance is significantly affected when providers change their per-

formance levels (Experiments 3 and 4, whose results are shown in Figures 5.7 and

5.8), most noticeably in Experiment 4, where providers switch their performance

profiles completely. In this experiment, although FIRE is also affected greatly by

the steep changes in the provider population, it still maintains a generally high and

stable performance, while SPORAS’s performance degrades disproportionately to

that of the NoTrust group. It should be noted that the trust models’ duty here is

to learn and predict the behaviour (i.e. the performance) of providers and, there-

fore, their performance in an environment where there are changes on the provider

side reflects their ability to adapt to such changes. Hence, the results suggest that

SPORAS can quickly learn about the environment (because of its centralised na-

ture), but has difficulty adapting to the continual changes of the providers. In

Experiments 1 and 5 (Figures 5.5 and 5.9), where the provider population changes

and where the providers move around, respectively, the performance of FIRE and
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Figure 5.11: Experiment 7: Performance of FIRE in an environment where
all dynamic factors are in effect.

SPORAS are only slightly affected. In general, FIRE performs consistently in all

these experiments. Its average UG is stable around 6.0 in Experiments 1, 3, and

5; and around 4.0 in Experiment 4 (which has the most abrupt changes). This

confirms our intuition that the recency function of FIRE helps it adapt quickly to

changes in the environment.

Since a realistic open MAS usually has a combination of all the dynamic fac-

tors considered here, we also want to test how FIRE performs in such situations.

Therefore, we ran an additional experiment with all the dynamic factors active

at the same time. The result, in Figure 5.11, shows that although both FIRE

and SPORAS suffer from the continual changes of various types in the testbed’s

environment, FIRE manages to maintain a rather stable performance in the range

[4.0, 5.0]. SPORAS, however, cannot cope with all the types of changes at the

same time and its performance degrades significantly compared to its own perfor-

mance in a static environment and is near to that of the NoTrust group through

all interactions (see Figure 5.1). This again confirms the adaptability of FIRE in

a complex dynamic environment.

In summary, the experiments in this section show that FIRE is able to perform

consistently in various dynamic environments, maintaining a high level of utility

gain for its agents (in all the experiments).
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5.3 Impact of the Individual Components

In Section 3.1, we argued that each component of FIRE plays an important role in

exploiting trust information from a particular source and this, in turn, contributes

to the effectiveness of the overall model. In order to confirm this, here we bench-

mark FIRE with and without various components to evaluate the contribution of

that component to the whole model. However, since the IT component is mostly

reused from Regret, we will focus on evaluating the novel components (i.e. WR

and CR). Role-based trust is also not considered here because it is typically highly

domain specific. Experiments in this section evaluate the WR and CR components

with the typical provider population in a static environment.

First, we benchmark the WR component. In this experiment, there are two groups

of consumer agents. The first one uses only the IT component4 (called the Control

group). The second makes use of the WR component in addition to the IT compo-

nent (called the WR group). This experiment’s hypothesis is that the performance

of the WR should be higher than that of the Control group.

The result of the experiment, presented in Figure 5.12, shows that the WR com-

ponent does substantially improve the performance of agents in the WR group

compared to that of those in the Control group. The t-test ranking confirms this

by showing that agents using the WR component outperform agents using only

the IT component in all interactions, and, effectively, also verifies our hypothe-

sis. More importantly, however, the WR group achieves its higher performance

quicker than the Control group. This means that WR speeds up an agent’s learn-

ing about its environment by propagating trust in the agent’s community (here

the community of consumer agents is connected to one another via acquaintances).

In the next experiment we evaluate the CR component (using a similar setting).

Here, there are two groups of consumer agents. The Control group employs the IT

component, and the other employs the CR component in addition (called the CR

group). The hypothesis in this experiment is that the CR group, which additionally

makes use of the CR component, should outperform the Control group. The result

presented in Figure 5.13 shows a similar result to that of the previous experiment.

4It should be noted that if Regret is employed in our testbed, its performance will be similar
to that of FIRE’s IT component only. This is due to the fact that there is no information
about a social network of the agents in the testbed available for Regret. Therefore, other than
the direct trust component, the other components of Regret will not be able to work due to a
lack of supporting information (e.g. its witness reputation component will not be able to locate
witnesses, and the neighbourhood reputation component will not be able to locate neighbouring
agents of the target agent).
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Figure 5.12: Performance of the WR component.

Hence, all of the claims made above for the WR component are still valid for the

CR component. However, the most noticeable thing about this experiment is its

execution time. Without having to look for witnesses as in the process of WR, the

process of CR is more direct, resulting in an execution time for this experiment

being about 15 times faster than that of the previous one. This confirms our

intuition about the high serviceability of the CR component.

A subtler point shown in this experiment is the quick learning time of the CR

group. Comparing the first interactions of the WR group in Figure 5.12 with those

of the CR group, Figure 5.13 shows that the CR group starts off better than the

WR group right from the first few interactions. In order to verify this observation,

eliminating the random factor that may affect the results of the two independent

experiments above, we ran another experiment to compare the performance of

FIRE with and without the CR component. In this experiment, there are also two

groups of consumer agents: the WR group employing the IT and WR components

and the FIRE group employing the IT, WR, and CR component. Our hypothesis

is that the addition of the CR component to FIRE is beneficial, or, equivalently,

the FIRE group should outperform the WR group. The result in Figure 5.14 shows

that the performance of FIRE is indeed always higher than that of the WR group.

In more detail, Table 5.2 shows the FIRE group’s performance reaches its stable

level of around 6.0 in only 8 interactions, while that of the WR group only reaches

2.57 after 10 interactions. This shows that the CR process propagates trust in an

agent community more quickly than the WR process. Taking into consideration

its very quick execution time, compared to that of the WR component in the

previous experiments, the CR component is clearly useful in situations where an

agent needs to have a quick trust evaluation in order to expedite decisions, or when
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Figure 5.13: Performance of the CR component.
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Figure 5.14: Performance of FIRE with and without the CR component.

WR information is scarce and difficult to locate. We conclude that the addition of

the CR component to FIRE is beneficial both in terms of its robustness (reflected

by its higher level of performance) and its serviceability.

In summary, it has been shown that taking various sources of trust information

into account not only helps FIRE be able to make trust evaluations in a wide

variety of situations, but also increases its usefulness; and that both the WR and

CR components contribute a significant amount to its overall performance.

Interaction: 1 2 3 4 5 6 7 8 9 10
WR −0.50 −0.39 −0.35 0.01 0.40 0.99 1.36 1.80 2.10 2.57
CR 0.71 2.08 2.94 4.38 5.02 5.34 5.67 5.92 5.99 5.89

Table 5.2: The performance of WR and FIRE in the first 10 interactions
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5.4 Summary

This chapter has presented various experiments to investigate the behaviour of

FIRE. These experiments were designed to assess the effectiveness of FIRE in a

wide range of situations. Specifically, we showed that FIRE helps its users to

select appropriate partners for interactions. In terms of utility gain, agents using

FIRE outperform those using SPORAS, a centralised model, despite the fact that

SPORAS collects more information than FIRE. This result remains even when

FIRE is used in different provider populations. More importantly, we showed that

FIRE copes well with various changes that are typically present in a realistic MAS.

It is able to learn changes in the environment quickly and to maintain a stable

and high performance.

In addition, we showed that the WR and CR components contribute highly to

FIRE’s performance and their mechanisms allow trust information to be propa-

gated quickly in an agent society. Particularly, FIRE with the CR component

achieves a significantly higher level of performance than without it. Moreover, CR

also speeds up FIRE’s bootstrapping and has a very low running cost (in terms of

time and resources required for trust evaluations).

Overall, it was shown that FIRE is a robust trust model and that all its components

contribute significantly to its performance. However, in the experiments reported

in this chapter we assumed that all agents are honest in exchanging information,

which is not realistic in open MAS (as noted in our requirements in Section 2.5).

In the next phase of our research, we extend FIRE with the ability to detect lying

and inaccuracy in third-party ratings. This allows FIRE to filter out inaccurate

ratings when evaluating trust based on WR and CR. The details of this are given

in the next chapter. Subsequently, Chapter 7 shows how learning techniques can

help to adapt FIRE’s parameters to an agent’s own situation.



Chapter 6

Handling Inaccurate Reports

As we have shown in the previous chapter, third-party reports (i.e. witness

reports and certified ratings) propagate trust information in an agent society.

They are particularly useful in speeding up an agent’s learning about its peers’

behaviours and, in so doing, they help it gain high utility by choosing to interact

with appropriate partners despite its lack of direct experiences. However, a key

problem in this area, and one that is exacerbated in open MAS, is that these reports

can be inaccurate. This can happen because of the differing views of the reporters

(e.g. ‘on-time good delivery’ may indicate an ‘excellent service’ for one person

but may only indicate a ‘satisfactory service’ to another, close business partners

may receive preferential services compared the normal services that other ordinary

customers receive). However, it can also happen due to the conflicting interests

that stem from the fact that there are multiple stakeholders (e.g. some reporters

may deliberately provide false information to serve their own interests). In both

cases, third-party reports that differ from the actual performance an agent receives

are viewed as inaccurate and their inaccuracy1 is reflected by the magnitude of

the differences. Now, since these reports are central building blocks for reputation

systems, if their inaccuracy is not recognised and dealt with, it will adversely affect

the function of these systems. Worse still, they may become a means for malicious

agents to gain unwarranted trust which may then allow them to benefit to the

detriment of others.

Given its importance, there have been several attempts to tackle the inaccurate

1It should be noted that, in this context, inaccuracy is according to the view of the agent
receiving third-party reports. It does not reflect the true honesty/accuracy of a reporting agent.
Rather it should be viewed as the subjective measure of the usefulness of third-party information
provided by that agent which is assessed by another particular agent.

85
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reports problem (see Section 2.4.3), but none of them are well suited to open MAS.

In particular, in order to operate as intended, they typically make assumptions

about the target environment that are incompatible with the characteristics of

open MAS or they require additional domain knowledge that clearly limits their

applicability (see Section 2.4.3 for examples). To this end, we devise a credibility

model that can be used by trust and reputation models in open MAS to assess the

accuracy of a reporter. In so doing, we extend FIRE to deal with situations where

agents may provide inaccurate reports. Against this background, this chapter

describes our credibility model (Section 6.1) and provides an empirical evaluation

of its performance (Section 6.2).

6.1 Credibility Model

The credibility of a witness or a referee in reporting its ratings about another

agent can be derived from a number of sources. These include knowledge about:

• the relationships between the reporter and the rated agent (e.g. cooperating

partners may exaggerate each other’s performance, competing agents may

underrate their opponents, no relationship may imply impartial ratings);

• the reputation of the reporter for being honest and expert in the field in

which it is doing the rating (e.g. a reputable and independent financial

consultant should provide fair ratings about the services of various banks);

• the relationships between the reporter and the querying agent (e.g. agents

with the same owner should provide honest reports to one another);

• norms in the reporter’s society (e.g. doctors usually recommend a drug to

the benefits of patients, rather than to the benefit of its pharmaceutical

companies).

Unfortunately, however, these types of information are very application specific

and may not be readily available in many cases. Therefore, although they could

certainly be used to enhance the performance of a credibility measure, they are

not suitable as a generic basis (although they could complement a generic measure

in particular contexts).
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In contrast, in our credibility model, we view providing third-party reports as a

service an agent provides. Thus its performance (i.e. trustworthiness and reliabil-

ity) can be evaluated and predicted by a trust model. By so doing, the credibility

model can benefit from a trust model’s (usually sophisticated) ability of learning

and predicting an agent’s behaviour (in this case, the behaviour of providing accu-

rate reports) without having to implement its own method. Here, we use FIRE’s

IT component for this purpose2. Although witness reports in WR and references

in CR are both third-party reports and their accuracy can be modelled in the

same way, an agent can take the roles of a witness and a referee at the same time

and behave differently in each role. This is because witness reports in WR are

only revealed to a selected set of agents, while references in CR are public as the

refereed agent can give its references to any other agents. Knowing this, an agent

may have different lying strategies in each role. For example, it may lie more

when providing witness reports than when providing certified references because

there is more chance that it can get away with lying (since significantly fewer

agents receive its witness reports). Therefore, we consider that it is necessary to

evaluate the credibility of an agent in terms of providing witness reports (called

witness credibility) and that in terms of providing references (called referee credi-

bility) separately. However, since we use the same credibility model for both these

tasks, for the sake of simplicity, henceforth, we shall only describe the evaluation

of witness credibility and how WR can make use of it in this section. The same

procedure is applied for referee credibility.

In more detail, after having an interaction with agent b, agent a records its rating

about b’s performance, denoted by ra (ra = (a, b, ia, c, va)). Now, if agent a previ-

ously received a witness report from agent w about b, it then rates the credibility

of w by comparing the actual performance of b (i.e. va) with w’s rating about

b. The smaller the difference between the two rating values, the higher agent w

is rated in terms of providing witness reports (mutatis mutandis for bigger differ-

ences). For each rating that a received from w in evaluating the trustworthiness

of b (denoted by rk = (w, b, ik, c, vk)), the credibility rating value vw for agent w

is given in the following formula:

vw =

{
1− |vk − va| if |vk − va| < ι

−1 if |vk − va| ≥ ι
(6.1)

2It should be noted that the credibility model is not necessarily limited to just using IT
only. Other components of FIRE could equally well be used for the same purpose. For example,
suppose that an agent knows that the reporter belongs to its owner, it can use rules to give a
high credibility to that reporter; or if a witness is known to be reliable, witness reports about
the reporter can also be taken into account.
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where ι is the inaccuracy tolerance threshold (0 ≤ ι ≤ 2, 2 is the maximal difference

since vk, va ∈ [−1, 1]). Thus if the difference between a witness rating value and

the actual performance is higher than ι, the witness is considered to be inaccurate

or lying, and, therefore, receives a negative rating of −1 for its credibility. On the

other hand, if the difference is within the tolerance threshold, it can be viewed as

resulting from a subjective viewpoint and is deemed acceptable. In this case, the

credibility rating value vw is set to be inversely varied to the difference (e.g. higher

difference, lower credibility). Since 0 ≤ |vn−va| ≤ 2, vw is also in the range [−1, 1]

regardless of ι. The rating about w’s credibility— rw = (a, w, iw, termWCr, vw)— is

then recorded in a’s rating database, where termWCr is the rating term of providing

witness reports and iw is the interaction of agent w providing agent a the rating

rk about agent b.

Here, as agents whose inaccuracy exceeds the tolerance threshold are considered

lying and are heavily fined (by giving a −1 credibility rating), honest witnesses

may be falsely penalised if their (honest) ratings are too different from that of

a (e.g some agents may have substantially varying levels of performance which

result in varying, though honest, ratings). However, since in the case of acceptable

inaccuracy (|vk − va| < ι) an agent’s credibility is also penalised according to the

degree of its inaccuracy (i.e. |vk − va|), it is always safe to set ι to higher values

to reduce the probability of falsely classifying honest witnesses. Nevertheless,

doing so inevitably allows ratings from marginally lying reporters be accepted. In

such cases, although the credibility of such witnesses may be low, it may never

be low enough, or it may take a longer time, for them to be considered lying

and be disregarded (see below). This means, in general, that there will be a

lower performance of the credibility model. Therefore, it is important to choose

a threshold value that closely reflects the variability of the agents’ performance

in the target environment and the relative costs of considering lying witnesses

versus falsely classifying them. To this end, Section 7.3 proposes a technique to

automatically tune ι according to the agents’ performance deviation.

Having recorded ratings about w’s performance on providing witness reports, a

can evaluate w’s credibility based on those ratings. As mentioned above, a can

use its own trust model for so doing. Specifically, here we evaluate a’s trust on

w’s capability of providing accurate reports using the IT component to calculate

the credibility trust value of w from the set of ratings about w’s witness credibil-

ity (called RI(a, w, termWCr), which is retrieved from the rating database as per

Section 3.3). If no such ratings have been recorded, and, thus, the IT value is not

available, w will be assigned the default witness credibility trust value, denoted
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by TDWCr.

TWCr(a, w) =

{
TI(a, w, termWCr) if RI(a, w, termWCr) 6= ∅
TDWCr otherwise

(6.2)

where TWCr(a, w) is the witness credibility of w evaluated by a.

Having defined the credibility measure for witnesses, we extend the WR component

to weight each witness rating received according to the credibility of the witness.

Suppose that agent a is evaluating the WR of agent b and that the rating ri is

collected from witness w, then the weight for ri is obtained as follows:

ωW(ri) =

{
0 if TWCr(a, w) ≤ 0

TWCr(a, w) · ωI(ri) otherwise
(6.3)

This means the new rating weight function disregards any rating provided by wit-

nesses that have negative credibility (by giving 0 as the weight for their ratings).

The rest are taken into account in producing the WR of b, but are weighted by the

credibility of their providers and by their recency (provided by the function ωI(ri)

of the IT component). In so doing, ratings from the more accurate witnesses (as

judged by the accuracy of their past ratings) make a bigger impact on the WR

value than those from the less accurate ones. In cases where all the witness rat-

ings collected are disregarded, due to negative credibility of their providers, the

WR component will produce no trust value (as in the case where it fails to collect

witness ratings). In addition, at first, every witness receives the default credibility

value since it has not provided witness ratings to agent a before. Hence, end users

can set the value of TDWCr to reflect their policy towards newly encountered wit-

nesses. For example, TDWCr can be set to 0 so that newly encountered witnesses are

disregarded until they prove to be credible (by providing ratings in the acceptable

accuracy threshold) or it can be set to 1 to reflect the policy that all witnesses

are considered to be accurate and honest until proven otherwise. However, it can

also automatically adjust based on the general level of witness credibility in the

environment as shown in Section 7.2.

Similarly, we extend the CR component to make use of the credibility model. In

brief, after every interaction, each reference of the target agent is compared with

the actual outcome and a rating is recorded for the referee in terms of providing

accurate references (denoted by termRCr) as in Equation 6.1. Then the referee
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credibility of an agent is given by the following formula:

TRCr(a, w) =

{
TI(a, w, termRCr) if RI(a, w, termRCr) 6= ∅
TDRCr otherwise

(6.4)

where TRCr(a, w) is the referee credibility of w evaluated by a, RI(a, w, termRCr) is

the set of credibility ratings of w that a recorded in terms of providing accurate

references, and TDRCr is the default referee credibility which is given when no such

ratings has been recorded. Then the rating weight function for CR is redefined

similar to Equation 6.3:

ωR(ri) =

{
0 if TRCr(a, w) ≤ 0

TRCr(a, w) · ωI(ri) otherwise
(6.5)

6.2 Empirical Evaluation

Having extended FIRE to deal with possible inaccuracy and disinformation in

third-party reports, we now turn to evaluating its performance in such situations

(i.e. those where some agents provide dishonest reports). The main question here

is how the new WR and CR components cope with inaccurate reports. We survey

the effect of them on WR in Section 6.2.1 and on CR in Section 6.2.2, respectively.

6.2.1 The effect of inaccurate reports on WR

In order to evaluate how the WR component copes with inaccurate witness reports,

we need to extend the testbed in Section 4.2 to simulate lying in giving out witness

ratings. Specifically, we introduce five types of witnesses: Hon, Pos1, Pos2, Neg1,

and Neg2. Agents in the Hon group always reveal their actual ratings truthfully.

Those in Neg1 and Neg2, however, provide to the querying agent ratings that

are lower than those they actually recorded. Conversely, those in Pos1 and Pos2

give falsely higher ratings. The difference between an actual rating value and

its fabricated one in Neg1 and Pos1 is randomly set in the range [0.3, 1.0] (i.e.

representing marginally inaccurate witnesses) and the respective range of Neg2

and Pos2 is [1.0, 2.0] (i.e. representing extremely inaccurate witnesses). In the

testbed, we also define levels of witness inaccuracy at the level of the overall

system (−100 to 100) so that various configurations of witness population can

be conveniently referred in our experiments. The proportions of witness types in
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Figure 6.1: The proportions of witness types at various levels of witness inac-
curacy.

each level of witness inaccuracy are given in Figure 6.1 (where vertical dotted lines

represent specific example configurations of witnesses). For example, level 0 means

that all the witnesses are of the Hon group (and provide their ratings honestly).

Level +80 means that in the witness population, the proportions of Hon, Pos1,

and Pos2 are 20%, 40%, and 40% respectively. It also means that 80% of the

witness population is providing positively exaggerated reports (because 80% of

the witnesses are either Pos1 or Pos2). Similarly, level −60 means that 60% of the

witness population (30% Neg1, 30% Neg2) is providing falsely negative reports.

In our experiments, there are three groups of consumers: NoTrust, SPORAS, and

WR. As in our previous experiments in Chapter 5, agents in the NoTrust group

select provider agents for interaction randomly, those in SPORAS use the trust

values provided by SPORAS for selecting providers, and those in WR use the WR

and IT components of FIRE. The WR component is extended to make use of the

credibility model as described in Section 6.1. The default witness credibility TDWCr

is set to 0.5 so that all ratings from newly encountered witnesses will be taken into

account in calculating WR, but their weights are smaller than those of any proven

accurate witness (which is typically greater than ι = 0.5, see Equation 6.2) and

larger than that of a proven inaccurate one (which is typically negative). The

value of ι is handpicked based on the actual variability of honest rating values in

the testbed (which never exceeds 0.5).

Now, we look at how various levels of witness inaccuracy affect the performance

of each consumer group using the methodology described in Section 4.1. The ex-

periments are run with the following witness inaccuracy levels: −100, −80, . . . , 0,
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. . . , +80, +100. In these experiments, inaccurate witnesses always provide inaccu-

rate reports. After plotting the performance of the three consumer groups in each

experiment (for example, see Figure 6.2), it can be seen that the performance of

NoTrust is consistently low (around −1.0). On the other hand, thanks to the trust

models used, the performance of SPORAS and WR are always higher than that of

NoTrust. However, the performance of WR is always superior to that of SPORAS.

In this experiment, since the performance of all providers are equally exaggerated,

it is still the case that good providers generally have better ratings than others.

Hence, in the first few interactions, they are selected by WR, and this accounts

for an increase of WR’s UG in this period. Now, after several interactions with

these providers, WR is able to record their actual performance, which is generally

lower than the reported performance of the remaining providers (calculated only

from falsely positive reports). Thus, remaining providers (i.e. ordinary and bad

ones) are then selected in later interactions. As a result, WR’s UG is decreased.

Nevertheless, because of the witness credibility model, during these interactions,

WR is able to realise that all reports are inaccurate, and, thus, future (false) re-

ports are disregarded. Effectively, WR resorts to the IT component for evaluating

providers’ trustworthiness. As for SPORAS, since it cannot filter out inaccurate

reports, it cannot improve its performance over time. Now, due to the large num-

ber of experiments and associated settings that were conducted and because we

are interested in the effects of varying levels of inaccuracy on WR, we only present

a general analysis of the experiment’s results. In more detail, the chart in Fig-

ure 6.3 shows the average performance of the three groups in each experiment

with various levels of witness inaccuracy. Here, the average performance of each

group is calculated as the average utility gained in each interaction of an agent

in that group. This average performance is calculated from data of the first 200

interactions in each experiment (by which time the average UG of all groups is

stable in all experiments).

From Figure 6.3, it can be seen that the performance of both WR and SPORAS

suffer as the witness inaccuracy increases (as we would expect). However, the

performance of WR is more robust. In particular, SPORAS suffers greatly from

exaggerated positive ratings (because of the reason mentioned above). On the

other hand, although WR also suffers from false positive ratings at the beginning

(see Figure 6.2), it can gradually learn and disregard inaccurate witnesses and,

generally speaking, it maintains a high performance. In the cases of falsely negative

ratings (see Figure 6.3, witness inaccuracy level −100 to −20), SPORAS does not

suffer as much as in the cases of exaggerated positive ratings. The reason is



Chapter 6 Handling Inaccurate Reports 93

-2
-1
0
1
2
3
4
5
6
7

1 21 41 61 81 101 121 141 161 181
Interaction

U
G

-1
0
1
2
3
4
5
6
7
8

R
an

k

NoTrust SPORAS WR
R.NoTrust R.SPORAS R.WR

Figure 6.2: Performance of NoTrust, SPORAS, and WR at witness inaccuracy
level +100.
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Figure 6.3: Performance of NoTrust, SPORAS, and WR at various levels of
inaccuracy.

that falsely negative ratings not only lower the rating values of good providers,

but also lower those of bad and ordinary ones by similar amounts. Hence, it is

still the case that good providers have better reputations in SPORAS, and, thus,

they are more likely to be selected for interaction. This means that SPORAS can

perform normally in scenarios where all lying witnesses provide negative ratings.

However, this is because of the nature of that specific lying population rather than

SPORAS’s ability of dealing with inaccurate reports. As for WR, as mentioned

above, its ability to detect and penalise inaccurate witnesses also works in such

scenarios and allows WR to maintain a generally high performance.

Next, we seek to determine whether our model can cope with situations where wit-

nesses have more subtle lying behaviour— they lie sometimes and provide their

honest ratings at other times. Here, we investigate two scenarios: the lying wit-

nesses provide false ratings: (1) 25% of the time (i.e. being mostly honest, lying
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Figure 6.4: Lying 25% of the time.
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Figure 6.5: Lying 75% of the time.

sometimes) and (2) 75% of the time (i.e. mostly lying, being honest sometimes).

The two cases are interesting because some agents may try to fool a reputation

system by lying only a few times to maintain their credibility (case 1) or by giving

reports honestly to increase its (bad) credibility (case 2). The set of experiments

are re-run for the two scenarios and their results are presented in Figures 6.4 and

6.5. From these, it can be seen that the performance of all groups have a broadly

similar pattern in scenarios of negative lying. However, as in the scenarios of lying

100% of the time, SPORAS suffers adversely from exaggerated positive reports

(as in the previous experiment). It can also be seen that SPORAS’s performance

decreases in proportion to the amount of lying (i.e 25%, 75%, 100%). In contrast,

in all scenarios presented, our witness credibility model can learn the witnesses’

lying behaviour (thanks to the adaptive nature of FIRE’s IT component), and this

accounts for the robust performance of WR throughout in these scenarios.
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6.2.2 The effect of inaccurate reports on CR

Now, we turn to assessing the effect of inaccurate reports on the CR component.

Similar to the previous section, in order to do so, we also introduce lying behaviours

when providing references into the testbed. However, since references are given

and disclosed directly to the refereed agents, a rational referee typically does not

simply give bad references to its interaction partners. The reasons are that (1)

the badly refereed agent might retaliate and (2) it can disregard such references.

Moreover, a rational referee normally does not give exaggerated references for

everyone. Rather, it is more likely to give them only to certain agents —called its

friend agents (e.g. those from the same organisation or having common interests).

Thus, in each experiment in this section, a consumer agent has a maximum number

of friend providers (NFP) that it may collude with when providing references about

their performance. Such providers are selected randomly from a consumer’s nearby

providers when it enters the testbed. In addition, we introduce five types of

referees: Hon, Exag1, Exag2, Extr1, and Extr2. Agents in the Hon group always

give out their actual ratings as references (as per Section 6.2.1). Exaggerating

referees in groups Exag1 and Exag2, however, give falsely higher ratings than

those they actually recorded for their friend providers3 (and their actual ratings

for the others). In addition to giving falsely inflated references for their friends,

extreme referees in Extr1 and Extr2 also deliberately underrate the other providers.

The difference between an actual rating value and its inaccurate one in Exag1 and

Extr1 is randomly set in the range [0.3, 1.0] (i.e. representing marginally inaccurate

referees) and the respective range of Exag2 and Extr2 is [1.0, 2.0] (i.e. representing

extremely inaccurate referees).

In this section, we carry out several experiments to evaluate the new CR compo-

nent in a wide range of environments. In these experiments, there are three groups

of consumer agents: NoTrust, SPORAS, and CR. The NoTrust and SPORAS groups

are defined as in our previous experiments. The CR group consists of agents us-

ing the CR component extended to deal with inaccurate references (Section 6.1).

Similar to the experiments with WR, the default credibility level of referee TDRCr

is 0.5 and the lying threshold ι is 0.5. The consumers in each experiment consist of

honest referees and those from only one of the four colluding referee groups (Exag1,

Exag2, Extr1, and Extr2). Each consumer is set to have a maximum of four friend

providers (NFP = 4). The proportion of colluding referees is set to be 0%, 20%,

40%, 60%, 80%, and 100% in these experiments. For example, Figure 6.6 presents

3This is motivated by examples where referees provided exaggerated reports about their
friends.
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Figure 6.7: Performance with exaggerating referees.

the result from the experiment where the consumers consist of 20% honest ref-

erees and 80% colluding referees from the Extr2 group. Since NoTrust performs

consistently poorly in all the experiments, its results are omitted from our charts

for the sake of simplicity. Moreover, instead of providing a detailed result of every

experiment as in Figure 6.6, for an overview of the effect of various proportions of

colluding referees versus honest referees, we plot the average UG per interaction

of SPORAS and CR in each experiment on the summary charts in Figures 6.7 and

6.8. In these charts, the plots are named as GroupName.RefereeType. For example,

SPORAS.Extr1 is the plot for the average UG of agents in the SPORAS group when

the colluding referees in the testbed are of the Extr1 group.

The first thing these charts show is that collusion adversely affects the perfor-

mance of trust models (as we would expect). For instance, Figure 6.6 shows that
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it takes longer for CR to reach a stable level of performance (i.e. to learn about

the colluding agents) and this performance is also lower than that in an honest

environment (see Figure 5.13, Section 5.3). In such circumstances, SPORAS also

yields a low UG and, without a credibility model, it cannot improve its perfor-

mance over time. We can also see that the average performance of both SPORAS

and CR generally decreases when the number of colluding agents increases (Fig-

ures 6.7 and 6.8). However, CR always outperforms SPORAS except in the case

when 100% of the consumers are Extr2 agents. In this particular experiment, since

all consumers are identified by CR as lying (because all of them provide highly

distorted references for all the providers), CR stops using their references, thus,

depressing performance. However, this particular case (i.e. 100% extreme collu-

sion) is highly unlikely to happen in practice (and if it did one might just retract

trust from the population altogether). In the remaining experiments, CR can eas-

ily detect referees providing highly distorted references and maintain a generally

high performance (see plots CR.Exag2 and CR.Extr2). CR is less effective in fil-

tering out the colluding agents in Exag1 and Extr1 since their colluded references

are less distorted than in the case of Exag2 and Extr2 (i.e. more difficult to detect

lying). This suggests that the inaccuracy tolerance threshold ι should be carefully

selected to reflect the nature of biased behaviours in a particular environment, or

better, learning techniques could be used to enable an agent to adjust this param-

eter according to the prevailing context. In this regard, Chapter 7 presents such a

technique in which FIRE monitors the general level of deviation in the providers’

performance in the environment and accordingly adjust the inaccuracy tolerance

threshold on-the-fly.
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In summary, the results shows that the credibility model of CR enables it to

outperform SPORAS in dealing with biased behaviours. Specifically, it allows

agents using CR to maintain a robust and high performance in a wide variety

of cases, especially when the level of collusion is less than 50% (which is, in our

opinion, the most likely case in realistic scenarios).

6.3 Summary

The basic FIRE model presented in Chapter 3 is not able to recognise inaccurate

third-party reports and, thus, in its evaluation (Chapter 5) we had to assume that

all agents were honest. However, this is not realistic in open MAS (as discussed

in our requirements in Section 2.5). Given this, this chapter describes our novel

model of credibility which extends the basic FIRE model in that it can now detect

such inaccuracy. This is done based solely on an agent’s own experience, and,

therefore, no additional domain knowledge is required. As a result, an agent is

able to keep track of the quality of third-party reports and assess the credibility

of a witness or a referee accordingly. Making use of the credibility model, our

extended WR and CR components take into account the credibility of reporters in

weighing their information. Hence, reports from inaccurate reporters can quickly

be filtered out.

Using empirical evaluation, we have shown that with the credibility model our WR

and CR components perform well in a variety of contexts. In all the experiments

where the percentages of inaccurate reporters are less than 50%, the performance

of the WR and CR components is maintained at a comparable level to that in

honest environments. Therefore, with the addition of the credibility model, FIRE

satisfies the requirement R4a on being robust against inaccuracy reports (see

Section 2.5). This completes all our requirements for a trust model in open MAS.

In developing a trust model that satisfies our initial requirements, we introduced

various parameters so that FIRE can be adapted and fine tuned for a wide range of

applications. However, choosing the right parameters for FIRE to work efficiently

in a particular application currently requires a good understanding of how FIRE

operates and the application domain. To overcome this, we believe it is possible

to use a variety of learning techniques to enable FIRE to adapt to its operating

environment and to automatically adjust its parameters accordingly. This work is

detailed in the next chapter.



Chapter 7

Adapting FIRE’s Parameters

FIRE is a parameterised model; that is, its behaviour is defined by a set of pa-

rameters. Such parameterisation is necessary in order to make FIRE customisable

to suit particular environments and/or applications. For example, in environments

where there are a high level of lying agents, the component coefficients for the WR

and CR components should be decreased because third-party information is highly

unreliable; or the recency scaling factor λ (see Section 7.1) can be adjusted to suit

the time unit used in a particular environment. However, choosing the right set of

parameters for FIRE to work efficiently in a particular environment or application

currently requires a good understanding of how FIRE operates and also of the

application domain. To overcome this, we believe it is possible to use a variety

of learning techniques to enable FIRE to adapt to its operating environment and

to automatically adjust its parameters accordingly. Having been equipped with

such techniques, FIRE is able to adapt itself to changes in an environment on-the-

fly. The benefit of this is twofold. First, a self-adaptive model requires minimal

administration because parameters which are initially set to wrong values can

be readjusted automatically by the model without requiring human intervention.

Second, such a model is more robust in a dynamic environment like an open MAS

since it can adapt itself to changes that were unforseen by the model’s designer.

This chapter surveys the parameters of FIRE and possible techniques to make it

an adaptive model. In the next section, an analysis of FIRE’s parameters is carried

out to choose the parameters to become adaptive. Sections 7.2, 7.3, and 7.4 then

describe our learning algorithms for the chosen parameters. Various experiments

are then carried out to empirically evaluate the proposed techniques in Section 7.5.

Finally, a summary is provided in Section 7.6.

99
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Parameter Symbol
Rating history size H
Rating reliability scaling factor γK

Recency scaling factor λ
Branching factor nBF

Referral length threshold nRL

Component coefficients WK

Inaccuracy tolerance threshold ι
Default witness credibility TDWCr

Default referee credibility TDRCr

Table 7.1: FIRE’s parameters.

7.1 Determining the Parameters to Adapt

FIRE’s parameters (Table 7.1) are designed to enable end users to control its

behaviours and to allow it to be customised for a particular application. Some of

them can be set according to the end users’ subjective considerations, while the

others need to be set according to the (objective) constraints of the application.

For example, an end user can set FIRE to rely more on the IT component than

the others because he believe IT is more reliable than WR and CR, but he can

only set the rating history size according to the available memory of his agents.

Since objective parameters can only be set according to an agent’s individual

situations that are out of FIRE’s control, they are not suitable to become adaptive.

Therefore, in what follows, we identify the subjective parameters and study how

they can made adaptive in the subsequent sections:

• Rating history size (H): This parameter defines the maximum number of

ratings of a partner (from direct interactions) that are stored in an agent’s

memory (Section 3.1). Thus, for a given agent, only its latest H ratings are

stored; its older ratings are discarded if the number of its ratings exceeds H.

Generally speaking, the more ratings that are stored, the longer the history,

or the more knowledge, about an interaction partner is retained. However, in

practice, this is constrained by an agent’s memory capacity. Therefore, the

agent’s designers must choose H according to the memory resource available

to it.

• Rating reliability scaling factors (γK
1): Each component of FIRE has its own

rating reliability measure to evaluate the reliability, or the quality, of the

1As in previous chapters, K is one of I, R, W, and C, which represent the IT, RB, WR, and
CR components, respectively.
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ratings it receives (Section 3.2). In each component, the reliability values of

the ratings taken into account are used to calculate the reliability value of the

trust value produced from those ratings. The reliability values of trust values

need to conform to the same kind of representation (i.e. 0 for completely

uncertainty and 1 for total confidence) because they are also used as weights

for trust values produced by the trust components that are combined into

an overall trust value (Section 3.7). However, since end users are free to

replace FIRE’s rating reliability measure with their own (to suit a particular

application) and because there is no constraint on such measures except that

they are required to produce a non-negative reliability value for each rating,

the range of rating reliability values can vary greatly. Therefore, a rating

reliability scaling factor (γK) is devised for each component to scale (and to

normalise) the range of the rating reliability measure it uses; and, thus, it

needs to be set according to the range of the rating reliability measure used

in each component.

• Recency scaling factor (λ): This parameter is devised to scale the time unit

that an application uses (Section 3.3) and, thus, allows FIRE to work with

various time systems. For example, artificial time ticks might be used in

one application, while real time seconds might be used in another. Hence,

this parameter needs to be set to suit the time system used in a particular

application.

• Branching factor (nBF) and Referral length threshold (nRL): The Witness

Reputation component uses these two parameters to define the search range

in which it will look for the required witnesses (Section 3.5). The former

limits the breadth of the search range (i.e. how many acquaintances an agent

will pass on a query onto) and the latter limits how far away it is (i.e. to query

agents at how many links away from the querying agent). Although a broader

and further search range potentially yields a better result (i.e. more witnesses

found) than a smaller one, as a trade-off, it also requires more resources in

terms of (searching) time, communication costs, and, sometimes, information

costs (e.g. a queried agent may request payment for its information). In light

of this, the two parameters above were designed to enable an agent to limit

the number of agents to be contacted in a witness search to suit its resource

constraints. Therefore, these parameters can only be set by the agent or its

designer according to its own situation.

• Component coefficients (WK): In order to evaluate the trustworthiness of an

agent, FIRE uses its four components and combines the trust values that
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these components produce into an overall value (Section 3.7). Since each

component derives trust values from an independent source of ratings, its

accuracy can differ from the others’. Therefore, trust values from the four

components are not equally taken into account when an overall trust value

is produced, but, rather, they are weighted according to an agent’s belief on

how accurate they are deemed to be (Equation 3.6). For instance, an agent

might believe that the ratings it makes itself are more accurate than third-

party ratings and, thus, it gives more weight to the trust values produced by

the Interaction Trust component than to those produced by the Witness and

Certified Reputation components. Here, the component coefficients (wK) are

the weights for the components and are set by an agent’s designer according

to such beliefs. However, presetting fixed component coefficients might yield

bad results when the actual situation does not correspond with the agent’s

beliefs. For example, an agent might interact very infrequently and, thus,

might not have sufficient ratings for the IT component to produce accurate

trust values. In that situation, relying heavily on IT rather than WR or

CR would possibly give an unreliable overall trust value. Another possible

situation is where the number of inaccurate reporters (i.e. witnesses, refer-

ees) in an agent’s environment increases or decreases; and this will affect the

accuracy of the WR or CR components. In order to deal with such uncer-

tainties, FIRE should be able to adjust the component coefficients to reflect

the actual accuracy of the corresponding components.

• Inaccuracy tolerance threshold (ι): In our credibility model (Section 6.1), the

inaccuracy tolerance threshold ι is used to speed up the process of filtering

out clearly unreliable (e.g. lying) witnesses or referees by classifying those

that provide ratings whose inaccuracy exceeds ι as liars and giving them the

minimum credibility rating value (−1). However, incorrect classification is

always possible and, if made, can be a significant problem. For example,

a provider’s performance can vary so highly that it makes an honest and

accurate recent rating too different to that provider’s next performance and

since the difference is greater than the (low) ι value, the rating’s reporter

is (wrongly) classified as lying. This would result in that reporter’s future

(honest) ratings be disregarded. Conversely, an unnecessarily high ι value

is also inefficient as it allows lying reporters to ‘get away’ (i.e. to be unde-

tected) and slows down the learning process of FIRE’s credibility model. In

such situations, knowing the typical performance deviation of providers in

an environment can help in choosing a suitable value for ι. Therefore, we
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propose to monitor the performance deviation of all the providers an agent

encounters and to use it to adjust the inaccuracy tolerance threshold ι.

• Default witness credibility (TDWCr) and Default referee credibility (TDRCr):

These two parameters are the default values for the credibility of a witness

and a referee, respectively, when FIRE cannot evaluate the credibility of

them because of a lack of past experience (Section 6.1). They are normally

set (by a designer) to reflect the policy of the agent for handling information

from a newly encountered witness or referee. Setting TDWCr to 0, for exam-

ple, means that witness information from newly encountered witnesses are

initially believed not to be accurate and, therefore, not used; thus, all wit-

nesses need to prove their credibility by presenting accurate information to

the agent first. Conversely, setting the parameter to 1 means that all newly

encountered witnesses are believed to be accurate unless proved otherwise

(i.e. detected giving false ratings). TDRCr is set similarly. However, either

setting can be inefficient. Setting the default credibility to 0 in an honest

environment (where most agents are honest and accurate) will initially ren-

der valued information from newly encountered agents useless, while setting

it to 1 in an environment where there are many lying agents will feed in-

accurate information to FIRE. Therefore, we propose to monitor the level

of inaccurate witnesses/referees in an agent’s environment to calculate the

likely credibility of a newly met agent.

In summary, FIRE’s subjective parameters are: the component coefficients, the

inaccuracy tolerance threshold, and the default witness/referee credibility. In the

subsequent sections (7.2, 7.3, and 7.4), we study present our approaches to make

these parameters adaptive in order to push FIRE towards a self-adaptable trust

model.

7.2 Component Performance Learning

As discussed above, in order for FIRE to efficiently make use of the trust values

produced by its components, the component coefficients WK should be set to reflect

the accuracy of the corresponding components and they should also be updated

accordingly when the components’ performance changes. To this end, we use FIRE

itself to monitor the performance (i.e. accuracy) of its components. In order to do

so, we introduce four virtual agents into the FIRE model of each agent; they are
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named compI, compR, compW, and compC representing the IT, RB, WR, and CR

components respectively. The performance of each component is then recorded as

the performance of the corresponding agent. It is measured by how accurate its

trust values are in predicting the performance of other agents as follows. Suppose

that agent a uses FIRE to predict the performance of agent b and then interacts

with b. After the interaction, a can observe the actual performance of b and can

use this to determine how accurate each of FIRE’s component was. Specifically,

let vb
K be the trust value of b that component K produced before the interaction

and vo be b’s actual performance observed by a; the accuracy of component K in

that particular interaction is calculated from the difference between vb
K and vo:

vi = 1− |vo − vb
K| (7.1)

where vi is the accuracy of component K. Since −1 ≤ vo, v
b
K ≤ 1, vi is also bound

in [−1, 1], where 1 is the maximum possible accuracy (when vo = vb
K) and −1 is

the minimum (when |vo−vb
K| = 2). The accuracy of component K is then recorded

as a rating for compK: ri = (a, compK, tei, termCP, vi), where tei refers to the trust

evaluation that a made using FIRE and termCP is the term for trust component

performance.

Having recorded ratings for each component, FIRE can now evaluate their per-

formance. Since these ratings are the direct experience of agent a, we use the IT

component for this purpose:

TCP(a, compK) = TI(a, compK, termCP) (7.2)

where TCP(a, compK) is the trust agent a has in the performance of compK; or, in

other words, the expected performance of compK given a’s experience (i.e. ratings).

The trust value for compK is then used to adjust the component coefficient of com-

ponent K; the potential value for WK (denoted by W ′
K) is taken from TCP(a, compK)

if it greater than 0 (i.e. the trust values produced by component K are expected

to be somewhat accurate), otherwise (i.e. TCP(a, compK) < 0, component K is too

inaccurate) trust values from component K should be ignored (W ′
K is set to 0):

W ′
K = max {0, TCP(a, compK)} (7.3)

Here, the potential value W ′
K is not assigned directly to WK because it might

fluctuate significantly from interaction to interaction. This is because the accuracy

of a trust component can sometimes vary greatly depending on the target agent it
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evaluates. For instance, an agent may interact with others frequently and its IT

component generally performs well, but for a target agent it has never interacted

with before, the IT component’s performance can be very low (due to the lack of

direct experience). In order to avoid the situation in which a trust component is

temporarily disabled because of such fluctuations, FIRE partly ‘remembers’ the

previous value of a component coefficient; thus, it adjusts WK towards the potential

value W ′
K instead of using W ′

K directly:

WK = qCPL ·W pre
K + (1− qCPL) ·W ′

K (7.4)

where W pre
K is the previous value of WK (i.e. before this update) and qCPL ∈ [0, 1] is

the memory parameter for component performance learning defining how strongly

FIRE remembers previous values of WK. If qCPL is set to 0, FIRE will ‘forget’ the

previous value completely; the nearer qCPL is to 1, the less WK is adjusted towards

its potential value W ′
K.

7.3 Inaccuracy Threshold Learning

Classifying a reporter as honest or lying only based on the information it provides is

difficult. Typically, the evaluator’s view in an open MAS is limited (see Section 1.1)

and there is usually no way it can confirm whether the ratings it receives are honest

and based on the actual observation of the target agent’s performance. Thus, in

order to assess the accuracy of such third-party ratings, the evaluator can only

compare them with its own observations of the target agent. In our credibility

model (Section 6.1), the difference between a third-party rating of the target agent

and the performance the evaluator receives from it serves as the measure of the

reporter’s accuracy. Based on this measure, the reporter is then classified as

lying/inaccurate or honest/accurate. However, this accuracy measure alone is

not enough. The difference between a third-party rating and the performance the

evaluator observes can be attributed to many things: (1) the variation of the target

agent’s performance, (2) the reporter’s (in)ability of making accurate ratings, and

(3) the reporter’s intentional manipulation of the rating’s value. Ideally, only

when (2) or (3) is the case should the reporter be classified as lying/inaccurate

and its future ratings be filtered out (as a result). However, there is no way for the

evaluator to tell whether the difference is due to (1) or not because it cannot know

the performance the reporter received from the target agent. Therefore, it can

only (reasonably) expect the performance variation of providers to be relatively
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small and that any inaccuracy greater than the typical performance variation

of providers is deemed to be due to (2) or (3). Here, the inaccuracy tolerance

threshold ι serves as the borderline to separate between cases (1) and cases (2) or

(3) and it needs to be set based on the typical performance variation of providers in

an agent’s environment. As discussed at the beginning of the chapter, fixed values

for ι can be inefficient if the agent’s designer chooses a wrong value. Moreover,

an agent can interact with only a small set of providers in an open MAS whose

typical performance variation is different to that of another set or that of the

whole open MAS. Hence, in this section, we propose an algorithm to monitor

the performance variation of the providers an agent encounters and to adjust the

inaccuracy tolerance threshold accordingly.

In order to do so, we first need to calculate the performance deviations of the

providers that the evaluator, say, agent a, has encountered. The performance

deviation of a provider, say, agent b, in term c is calculated by a as follows:

dv(a, b, c) =

∑
ri∈RI(a,b,c) |vi − v|
|RI(a, b, c)|

(7.5)

where dv(a, b, c) is the performance deviation of b in term c that is observed by a,

RI(a, b, c) is the set of ratings of b in term c that a made from past interactions

with b, vi is the value of the rating ri, and v is the mean value of all the rating

values in the set RI(a, b, c). The performance deviation is used to estimate the

variations in providers’ performance only when it is calculated from at least two

ratings. Otherwise, the deviation from one rating is always 0 and does not give

any information regarding the variation of a provider’s performance. Next, the

average performance deviation of all the provider agents a encountered at least

twice (denoted by the set P) is used as the potential value for the inaccuracy

threshold (denoted by ι′):

ι′ =

∑
p∈P dv(a, p, c)

|P|
(7.6)

where |P| is the number of agents in the set P. If this number is too small, ι′

may not be representative and the inaccuracy tolerance threshold ι should not

be replaced by it completely. Otherwise, the value of ι can fluctuate significantly

when an agent has just joined an environment and interacted with a small number

of agents. Hence, ι is updated as follows:

ι =

{
|P|·ι′+(nMD−|P|)·ιpre

nMD
if |P| < nMD

ι′ otherwise
(7.7)
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where nMD is the minimum number of deviation values for ι′ to be considered

representative and ιpre is the previous value of ι (i.e. before this update). In

short, if the potential value ι′ is calculated from the deviation values of sufficient

agents (i.e. ≥ nMD) then ι′ is assigned to ι. Otherwise, ι is only partly updated

based on ι′ and the impact of ι′ on the new value of ι is given by the number of

deviation values taken into account (|P|) when ι′ is calculated. The inaccuracy

tolerance threshold ι is updated every time an agent has new information about

the performance variation of its providers. This means that an ι update happens

(after) every time a interacts with a provider agent (i.e. FIRE received a new

direct rating) that it has interacted with before (so that a has at least two ratings

of the rated agent to calculate its performance deviation).

7.4 Default Credibility Learning

In this section, FIRE is extended to monitor the level of inaccuracy of the witnesses

and referees that an agent encounters. It can then adjust the default credibility

values for newly met witnesses and referees so that it does not ignore potentially

good information or use potentially bad information (as discussed in the examples

provided in Section 7.1). In order to do so, the latest credibility of every agent

calculated by the evaluator is stored in a credibility cache. FIRE is equipped with

two such caches; one for witnesses, denoted by WCr, and the other for referees,

denoted by RCr. In our notation here, WCr and RCr are treated as sets of credibility

values and WCr(w) and RCr(r) are used to refer to the latest credibility values of

witness w and referee r, respectively. The process of adjusting the default witness

credibility is as follows:

1. When evaluating the credibility of a witness w, if the evaluator has credibility

ratings of w (see Section 6.1), w’s credibility value can be calculated and is

then stored in WCr (i.e. the evaluator’s witness credibility cache).

2. If the evaluator does not have any credibility ratings of w and, thus, FIRE

cannot calculate the credibility of w. In this case, we would expect that the

credibility of w is similar to that of the witnesses the evaluator had expe-

riences with. Therefore, the default credibility for w should be calculated

as the mean credibility from all the credibility values of the witnesses the
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evaluator knows (i.e. which are stored in the witness credibility cache):

WCr =

∑
r∈WCr WCr(r)

|WCr|
(7.8)

where WCr is the mean credibility of all witnesses in the set/cache WCr.

3. As in the previous section, WCr can only serve as the potential value for

the default witness credibility TDWCr since it may not be representative if

calculated from a small number of witnesses’ credibility values. Likewise,

we introduce the minimum number of witness credibility values, denoted by

nMWCr, required for WCr to be representative. The default witness credibility

value is then updated as follows:

TDWCr =

{
|WCr|·WCr+(nMWCr−|WCr|)·T pre

DWCr

nMWCr
if |WCr| < nMWCr

WCr otherwise
(7.9)

where T pre
DRCr is the previous value of TDWCr (i.e. before this update).

Similarly, for the default referee credibility (TDRCr), the mean credibility is calcu-

lated from the credibility values stored in the credibility cache RCr:

RCr =

∑
w∈RCr RCr(r)

|RCr|
(7.10)

where RCr is the mean credibility of all referees in the set/cache RCr. The default

referee credibility TDRCr is then updated based on this mean value:

TDRCr =

{
|RCr|·RCr+(nMRCr−|RCr|)·T pre

DRCr

nMRCr
if |RCr| < nMRCr

RCr otherwise
(7.11)

where T pre
DRCr is the previous value of TDWCr (i.e. before this update) and nMRCr is

the minimum number of referee credibility values required for calculating RCr so

that it can be considered representative.

7.5 Empirical Evaluation

Having presented the learning techniques to automatically adjust the component

coefficients, the inaccuracy threshold, and the default witness/referee credibility,

we now turn to their evaluation to determine whether these techniques are in fact
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effective (i.e. they can choose the right values for the parameters in question in a

variety of changing situations). First, Section 7.5.1 starts with the experiments to

evaluate the learning algorithm for component coefficients. Those for adjusting the

inaccuracy threshold and the default witness/referee credibility are subsequently

presented in Sections 7.5.2 and 7.5.3, respectively. All the experiments use the

standard settings as defined in Section 4.3 unless otherwise stated.

7.5.1 Component performance learning

In this section, the learning algorithm for FIRE’s component coefficients is evalu-

ated to see whether it helps FIRE to cope with the situation in which a component

that used to function well fails. The WR and CR components are chosen as the tar-

get for the experiments in this section since their performance depends significantly

on the inaccuracy of the ratings they receive and this can easily be manipulated

in our testbed. Specifically, in these experiments, none of the consumer agents

is an honest witness or an honest referee. They all provides both false witness

and certified ratings. However, their lying percentage can be externally control.

For example, in the first experiment, at first the WR lying percentage is set to

100% and the CR lying percentage is set to 0%. This means that each consumer

lies 100% of the time when providing witness ratings and always provides honest

certified ratings (0% lying). This effectively renders the WR component useless

(because all witnesses are lying all the time) and leaves the CR component in tact.

During the experiment, the WR and CR lying percentages are changed often to

create a situation where the components’ performance is affected by the changes in

the agent’s environment. In order to simulate drastic changes in an environment

that can render one trust component useless, the WR and CR lying percentages

are set to be alternating between 100% and 0% every 60 rounds (Figure 7.1). For

example, in the first 60 rounds, the WR component is almost useless (because

all witnesses are lying), while all the information the CR component receives is

honest and accurate. The situation of the two components are then switched after

every 60 rounds. It should be noted that this is the worst case scenario which is

somewhat unlikely to happen in practice. However, this case is chosen for our first

experiment here to demonstrate the maximum benefit of component performance

learning and to test its ability to cope with such drastic changes.

In order to evaluate the new learning algorithm, we introduce two groups of con-

sumer agents into this experiment. Both of them use FIRE without the IT com-

ponent (since we are interested only in the performance of the WR and CR com-
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Figure 7.1: Lying rate change in the testbed’s environment.
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Figure 7.2: Component weight learning — Fixed initial weight values.

ponents) with the credibility model extension (to detect lying, Chapter 6) as their

trust models. However, only one of them implements the new learning algorithm.

We name that group WCRL and the other WCR (‘L’ signifies learning abilities).

The performance of both groups are monitored as in our previous experiments. In

addition, we also monitor the average component coefficients of WCRL. The com-

ponent coefficients of both groups are initially set to the same value 0.5 (the mid

value in the range of component coefficients). This means that both the WR and

CR components are initially treated the same (the same initial weights). After the

experiment, the average component coefficients of WCRL are plotted in Figure 7.2

and the performance of both groups is plotted in Figure 7.3.

Comparing the chart in Figure 7.2 (WCRL’s component coefficients) with that
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Figure 7.3: Learning performance —Fixed initial weight values.

in Figure 7.1 (the WR and CR lying percentages), as we would expect, we can

see that the coefficient for the WR of WCRL (WW) is low when the WR lying

percentage is 100% (i.e. when WR performs badly) and it quickly increases to

near 0.9 (high) when the WR lying percentage is changed to 0%. Similarly, the

coefficient of WCRL’s component (WC) initially goes up because the CR compo-

nent is given accurate information and produces accurate trust values. When the

CR lying percentage is 100% (e.g. from round 61 to 120), WC decreases because

CR cannot produce accurate trust values anymore. Generally, the lines of WW

and WC in Figure 7.2 correspond closely to the changes of the witness and referee

populations in Figure 7.1 that affect the performance of the WR and CR compo-

nents2. This shows the new learning algorithm can effectively track the changes in

the performance of FIRE components and adjust the corresponding weights (i.e.

the component coefficients) accordingly, even though it does not directly track

the level of lying in the testbed. This shows that the method used for learning

component performance is generic and it can reasonably be expected to work with

other types of changes that affect the components’ performance, not just the lying

percentages as in our experiment. As a result, the performance plots in Figure 7.3

and the t-test rankings show that the learning algorithm helps WCRL to cope with

the changes introduced in the testbed and outperforms WCR in most interactions3.

2It should be noted that there is a gradual decrease of WC from round 61 to 120 in Figure 7.2
that does not correspond closely to the abrupt change in the CR lying percentage (in the same
period in Figure 7.1). However, this does not mean that the algorithm cannot track the changes
well. In fact, since providers store references they receive, good (i.e. honest) references (from
the previous period where there is no CR lying) are still stored and presented for a little while
before they are all replaced by false references. Thanks to these (lingering) honest references,
the performance of CR does not drop abruptly and this is reflected in the gradual decrease of
WC as shown in Figure 7.2.

3WCRL and WCR have a similar level performance in the bootstrap period (the first five
rounds) and around round 60 when the lying percentages changes. These are the times in which
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Figure 7.5: Learning performance —Randomly initialised weight values.

In order to ensure our learning algorithm still works in various situations, we repeat

the experiment above except that the component coefficients WW and WC of the

group are not initially fixed but randomly initialised in [0, 1]. This is to show that

the learned parameters can still converge from random initial values. The results

presented in Figures 7.4 and 7.5 are very similar to that of our first experiment and,

thus, it shows our algorithm can work well even when the component coefficients

are wrongly set to arbitrary values.

In the two previous experiments, the abrupt changes introduced in the testbed are

useful for verifying our algorithm’s effectiveness. However, they are not typical in

realistic scenarios because it is unusual that all the agents (of various ownerships)

to switch their behaviours at the same time. Therefore, our first experiment is

WCRL is adjusting to the new situations (hence a lower performance).
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Figure 7.6: Gradual change of lying percentages in the testbed’s environment.
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Figure 7.7: Component weight learning — Gradual change.

further repeated but the changes in the WR and CR lying percentages are now

made gradually (Figure 7.6). This models the case in which the behaviours of

the agents gradually change through time (which is more likely the case in a real-

world environment). The result plotted in Figures 7.7 and 7.8 again shows that

our algorithm can still track well the (gradual) changes and help FIRE to obtain

better performance than without the algorithm.

7.5.2 Inaccuracy tolerance threshold learning

As discussed in Section 7.3, there are three causes to rating inaccuracy: (1) the

variation of the target agent’s performance, (2) the reporter’s (in)ability to make
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Figure 7.8: Learning performance —Gradual change.

accurate ratings, and (3) the reporter’s intentional manipulation of the rating’s

value. Given these, the inaccuracy tolerance threshold ι serves as the borderline

for the credibility model to distinguish between inaccurate ratings due to cause (1)

(i.e. honest ratings) and those due to (2) and (3) (i.e. inaccurate/false ratings).

Based on the performance deviation of the providers an agent encounters, the algo-

rithm presented in Section 7.3 is designed to automatically adjust the inaccuracy

tolerance threshold to help the credibility model make an accurate classification

of honest and lying reports. Therefore, in this section, we evaluate how this al-

gorithm performs in terms of its improvements to the classification’s accuracy. In

order to measure this accuracy, as our testbed knows which ratings are honest

and which are fabricated, we extend the current testbed to count the number of

ratings that are correctly classified; the percentage of correctly classified ratings

(over the total number of third-party ratings an agent receives) is then used as the

classification accuracy measure.

Generally speaking, if the performance of agents varies significantly, a low ι value

would result in a high number of wrongly classified ratings, and vice versa. There-

fore, in this section, the changes we introduce into the testbed to evaluate the

adaptability of the ι parameter are the various levels of provider’s performance

variations. Since the performance of the providers in our testbed are simulated

following the normal distribution (Section 4.2.1), such changes can simply be ob-

tained by setting the standard deviation σP of the provider’s performance to the

desired values. In this experiment, the σP of all providers are set according to the

chart in Figure 7.9 (the right y-axis); thus there are four levels of performance

deviation: 0.1 (very low), 2.0, 4.0, and 6.04(very high).

4It should be noted that the performance of a provider (UG units) is in the range [−10, 10].
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Figure 7.9: Variation of provider performance and the adaptation of inaccu-
racy threshold.

In this experiment, there are three groups of consumer agents, all of which use

only FIRE’s CR component with the credibility model extension5. The first two

groups have fixed ι = 0.5 and ι = 1.0 (i.e. low and high inaccuracy thresholds,

respectively). The agents in the third group (called ι auto) implement the algo-

rithm in Section 7.3 to update their ι parameter automatically. There are also

three profiles of referees in the consumer’s population: Hon, Extr1, and Extr2 (see

Section 6.2.2). In order to build a balanced (typical) referee population, the pro-

portions of honest and lying referees are equal (50% are Hon); and among the lying

referees, half of them lie mildly (25% are Extr1) and the other half are extremely

inaccurate (25% are Extr2).

The results of this experiment is plotted in Figure 7.10, which shows the percent-

ages of ratings correctly classified by each consumer group in each round. Compar-

ing these to the changes of providers’ performance deviation shown in Figure 7.9,

there is a clear correlation. Specifically, the second group with a fixed ι = 1.0 per-

forms worst in the first 100 rounds because the actual variations of the providers’

performance are low. Now, it appears that the group’s classification accuracy is

low, because it classified mildly lied ratings as honest, due to its high value of

ι. It can only achieve its maximum classification accuracy when the providers’

performance deviation is raised up in rounds 101 to 200. The situation is reversed

Therefore, σP = 6.0 is a very high level of deviation (about 32% of the time the actual per-
formance of a provider falls outside the range [µP − 6, µP + 6] around its mean performance
µP).

5Since this experiment is to evaluate the accuracy of third-party rating classification, the IT
component is not relevant. Both the WR and CR could equally well be used here. However, we
choose the CR component because it has a much faster running speed than the WR component.
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Figure 7.10: The accuracy of referee classification using fixed ι versus using
automatically learned one.

with the first consumer group (fixed ι = 0.5). Having a fixed low ι, it performs

best in the first 100 rounds (when the providers’ performance variation is low) and

worst in the latter 100 rounds (low inaccuracy threshold, high providers’ perfor-

mance deviation). By having the ability to monitor the actual variations of the

providers’ performance, only the third group manages to maintain a high level of

rating classification accuracy throughout the 200 rounds of simulation. Moreover,

its accuracy is always higher than, or at least comparable to, that of the other

two groups. This shows that the algorithm we introduce helps the third group to

effectively adapt its ι parameter according to changes in its environment. This is

confirmed by the experiment’s result, in which the evolution of the automatically

updated ι of the third group (i.e. the black line) plotted in Figure 7.9 corresponds

well to the changes in providers’ performance deviation (i.e. the grey line).

7.5.3 Default credibility learning

We now turn to the evaluation of the last learning algorithm introduced in this

chapter. This algorithm is designed to monitor the general level of credibility of

witnesses or referees in an environment and to update the default witness/referee

credibility value. Hence, the effectiveness of this algorithm is going to be tested

in situations where the general level of lying in the environment changes. In this

experiment, there are two main groups of consumer agents; both of them using the

CR component with the credibility model extension as their trust model. However,

one of them is equipped with the default credibility learning algorithm, called CRL.
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Figure 7.11: Learning TDRCr — CR lying percentage.
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Figure 7.12: Learning TDRCr — TDRCr’s evolution.

The other group is called CR. Since the default credibility is only used for referees

that are met for the first time, new referees need to be continuously added into

the testbed in order to evaluate this facet of the model. Therefore, we introduce a

dummy group of consumers whose tasks are simply interacting with the providers

and providing references for them. All of the consumers in this group are lying

referees of either Extr1 or Extr2 type. Similar to Section 7.5.1, the level of lying in

the testbed is controlled by using the CR lying percentage, which is set following

the chart in Figure 7.11. To ensure the abundance of new referees in every round,

30% of the agents in the dummy group are replaced by new dummy consumer

agents after each round. Since the dummy consumers do not use a trust model

(they randomly select providers for interaction), we only monitor the performance

of CR and CRL.

The experiment’s results are presented in Figures 7.12 and 7.13. The TDRCr value

of group CRL, plotted through time in Figure 7.12, closely corresponds to the CR
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Figure 7.13: Learning TDRCr performance.

lying percentage in Figure 7.11. Thus, TDRCr is raised to its near maximum value

(i.e. 1.0) when the CR lying percentage is minimum and vice versa. It is apparent

here that the default credibility learning algorithm can effectively track the level

of lying/inaccuracy in the environment and update the default referee credibility

accordingly. Figure 7.13 shows that, with the new learning algorithm, CRL can

outperform CR in several instances while it has similar performance with CR in

the other cases. The slight performance improvement is expected because TDRCr

is only used for new referees and, thus, it cannot significantly affect the overall

performance of FIRE.

7.6 Summary

This chapter has further extended FIRE towards a more flexible and adaptable

trust model. We have explored several learning techniques and partly automated

the process of choosing the right parameters in order to ensure that FIRE oper-

ate effectively in a range of environments. Specifically, and most importantly, we

devised an algorithm to monitor the performance of each of FIRE’s components

(based on the accuracy of their trust values). This is a novel approach that al-

lows any changes in an agent’s environment that affect the performance of one or

more components (e.g. lack of ratings or changes in the quality of ratings from

a particular source of information) to be indirectly detected and the weights for

the corresponding components (i.e. the component coefficients) to be accordingly

adjusted. In addition, appropriate algorithms are also devised for choosing the

right values for the inaccuracy tolerance threshold and the default witness/ref-

eree credibility. When taken together, all these new techniques enhance FIRE’s
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robustness and resilience in facing unforeseen circumstances. Through empiri-

cal evaluation, we have shown that the new algorithms are in fact effective and

significantly improve FIRE’s adaptability.

This chapter has concluded the research work of designing a generic and adaptable

trust and reputation model for applications in open MAS in the scope of this

thesis. The next chapter will summarise the contributions this research has made

and outline the directions for the future work.



Chapter 8

Conclusions

This chapter summarises the findings of this thesis in enabling agents in an open

multi-agent system to assess the trustworthiness of their peers for selecting good

interaction partners. In order to do so, a novel trust and reputation model—

FIRE— was developed, which takes into account the main characteristics of an

open MAS to ensure its robustness and applicability in such environments. More

specifically, this thesis presents and evaluates a framework for evaluating trust-

worthiness of agents based on multiple sources of information: direct experience,

role-based relationships, witness reports, and certified references. By using this

framework, agents in an open MAS are able to obtain the trust values of their

peers in most circumstances. This is possible because FIRE does not rely solely

on one source of information (its four components complement and back up one

another) and particularly because it exploits the high availability of the novel

Certified Reputation component.

In more detail, Section 8.1 reviews the contributions of this research to the state

of the art. Section 8.2 then discusses the main ways in which this research can be

carried forward in the future.

8.1 Research Contributions

This thesis has presented FIRE, a novel decentralised model for trust evaluation

that is specifically designed for general applications in open MAS. Before going

on to FIRE’s contributions to the state of the art, we recap the requirements for

a trust model for applications in open MAS (discussed in Section 2.5):

120
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R1a It should deal with the bootstrapping issue of newly joined agents.

R1b It should make use of role-based trust, interaction trust, and witness reputa-

tion when the required information for these dimensions of trust is available.

R2a Each agent should be able to collect observations and calculate the reputation

values by itself.

R2b The trust model should be scalable to a large number of agents that might

be present in open MAS.

R2c It should reasonably maintain its normal effective operation in situations

where there are various changes in its environment.

R3 It should be adaptable to different domains of applications that an open MAS

may have.

R4a It should be robust against possible lying from agents and

R4b the correlated evidence problem.

In what follows, we are going to show how these requirements are met by FIRE

and highlight its novelties. In an overview, the novel mechanisms developed in

this research can be classified into the following areas:

• evaluating trust : A generic framework is built which allows a variety of

sources of trust information to be integrated to provide a collective and

precise trust measure. The model is able to predict closely the behaviour of

an agent. In addition, Certified Reputation, a novel type of reputation, is

introduced. (Chapter 3)

• dealing with inaccurate reports : A model of the reporter’s credibility is de-

veloped, allowing FIRE to weight third-party reports according to their

provider’s credibility and filter out inaccurate reporters. (Chapter 6)

• adapting to the environment : Learning techniques were implemented to

adapt a number of FIRE’s parameters to the prevailing context, allowing

it to operate robustly under unforseen circumstances in the environment.

(Chapter 7)

The remainder of this section discusses the results of the work in this thesis focusing

on the above aspects in turn (in Sections 8.1.1, 8.1.2, and 8.1.3, respectively).



Chapter 8 Conclusions 122

8.1.1 Evaluating trust

Enabling agents in open MAS to evaluate the trustworthiness of their peers and,

thus, to be able to select reliable ones for interactions is the main aim of this

thesis. To this end, FIRE was developed based on a number of potential sources

of trust information. These sources include: direct experiences of an agent from

its interactions, witness reports, third-party references, and rules provided by end

users encoding beliefs or knowledge about the environment. This breadth is im-

portant because, given the dynamic factors that inherently exist in an open MAS,

some sources may not be available, or adequate, for deducing trust. Moreover,

the multiple sources are used in FIRE not only to back one another up, but also

to complement one another in order to produce more precise trust values (c.f.

just using one of them). In order to combine trust values derived from different

sources of information, a generic framework was developed to standardise trust

calculations. This includes:

• a standardised rating form: to represent trust information from any source

which is used for exchanging trust information. A rating is not given for an

agent for its performance in general, but for its performance in a particular

interaction. Therefore, each rating is linked with a particular interaction,

providing further contextual information (e.g. value of the interaction, ser-

vice provided in that interaction) if needed. Moreover, this also eliminates

the correlated evidence problem (Requirement R4b) because no overall opin-

ion (i.e. opinions given based on results of more than one interaction) is

exchanged.

• a general trust formula: to aggregate the trust information (i.e. ratings)

that a trust component collects, which is used in all FIRE’s components.

However, depending on the information source used, each component can

define its own weight function to reflect the quality of each rating taken into

account.

• reliability measures : to produce reliability values for each trust values based

on the quality of the ratings taken into account and their deviation.

This framework is generic because it works independently of any specific applica-

tion and it does not rely on any assumption or information which is not widely

available in an open MAS. Thus, FIRE can be instantiated and applied in a wide

range of applications (Requirement R3).
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Under this framework, each component of FIRE is developed to process trust

information from each of the sources mentioned above. The components are: In-

teraction Trust, Role-based Trust, Witness Reputation, and Certified Reputation.

First, based on the principles of Regret’s Direct Trust component, the IT compo-

nent is built to produce trust values from an agent’s own ratings from its direct

interactions. A new rating weight function is devised to calculate the reliability

of a rating based on its recency. Second, a formalisation of role-based rules is

presented in order for the RT to retrieve relevant rules and calculate the role-

based trust based on those rules. Third, the referral process was implemented for

the WR component to locate witness ratings for witness reputation calculations.

Finally, and most importantly, a novel mechanism was developed for making use

of third-party references in the CR component, in which the target agents obtain

references themselves and present those to the evaluator when requested. The ad-

dition of this new type of reputation greatly enhances the serviceability of FIRE,

allowing a trust measure to be available in most circumstances because:

• its mechanism addresses the problem of the lack of direct experience (since

agents can typically collect a large number of references themselves and they

are incentivised to present these to establish new trust relationships) in the

IT component, and

• using the CR component, agents are freed from the various costs involved in

locating witness reports (e.g. resource, time, and communication costs).

Making use of all the four components, FIRE effectively combines their particular

strengths in building a robust trust measure: the reliability of direct experiences,

the domain knowledge from role-based rules, and the abundance of third-party

information via witness reports and certified references. Moreover, having the

four sources of information at its disposal (especially certified references thanks

to their high availability) means that FIRE can provide a trust measure that is

sufficiently precise to be used in a wide range of situations (Requirements R1a

and R1b). Obviously, there are still cases when FIRE cannot produce a trust

value. Specifically, those are when a service provider newly joins the system.

Hence, it does not have references about its performance and other agents do

not have past experience with it. However, in a realistic scenario, in order to

promote its service, that provider can join a (popular) scheme/organisation that

provides quality assurance about its members’ service. For example, a car dealer

can obtain the title ‘authorised dealer’ from a car manufacturer, or a commercial

site can assure its potential customers about its security reliability by showing



Chapter 8 Conclusions 124

a ‘HackerSafe’ 1 certification. Such (popular) memberships (and inherently their

quality assurance) can be recognised by other agents (via rules in FIRE’s RT

component) and, thus, helps the provider to sell its service.

In addition to the above, a notable characteristic of FIRE is that all of its mech-

anisms are decentralised. This means that individual agents can use FIRE to

make trust evaluations without the need of a centralised authority. This is im-

portant for making FIRE compatible with the ‘no central authority’ of open MAS

(Requirement R2a).

In order to verify our claims, empirical evaluation was carried out and it was

demonstrated that:

• Agents using the trust measure provided by FIRE are able to select reliable

partners for interactions and, thus, obtain better utility gain compared to

those using no trust measure. This result was reconfirmed with various types

of provider population.

• Each component of FIRE plays an important role in its operation and sig-

nificantly contributes to its overall performance.

• FIRE is able to cope well with the various types of changes in an open

MAS and can maintain its properties despite the dynamism possible in an

environment (Requirement R2c).

• Although decentralised, to suit the requirements of a trust model in open

MAS, FIRE still outperforms, or at worst maintains a comparable perfor-

mance level with SPORAS, a centralised trust model.

• In our experiments (Chapters 5, 6, and 7), 500, 1000, and 1500 agents using

FIRE have been deployed and we observe the execution time of those ex-

periments varies linearly to the number of agents deployed. Thus, given its

decentralised nature, we believe that FIRE is scalable to the large number

of agents that may be present in an open MAS (Requirement R2b).

To sum up, FIRE satisfies all our requirements (plus Requirement R4b, which is

dealt with in the following section) for a trust model in open MAS. Its behaviour

can be customised via its set of parameters to suit a particular application. Hence,

FIRE is ready to be used in real world contexts.

1‘HackerSafe’ certifications are provided by ScanAlert (a security company, www.hackersafe.
com) to certify that the certified sites’ servers are regularly tested (by real security attacks) and
shown to be hacker-proof.

www.hackersafe.com
www.hackersafe.com
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8.1.2 Dealing with inaccurate reports

The ability to detect and handle inaccurate reports appropriately is critical in or-

der for the WR and CR components to produce reliable trust values (because these

components rely on third-party reports to work). This is particularly important

in an open MAS where agents that are owned by various stakeholders can dissem-

inate disinformation to their own benefit (Requirement R4b). To this end, this

thesis presented a novel credibility model that allows FIRE to assess the reliability

of information providers (i.e. reporters) and to weight, or to filter out, their infor-

mation accordingly. More specifically, using our credibility model, an agent rates

the credibility of a reporter based on the difference between the reports it receives

and the actual interaction result it observes later. Hence, reporters’ credibility is

not objectively assessed based on how honest they are in revealing the interaction

result they received, but rather it is subjectively judged based on their capability

to give reports close to the actual results that a particular agent would receive.

By so doing, an agent can detect not only inaccurate/false reports, but also hon-

est, but useless, reports that result from the different views of the reporters. For

example, one reporter may receive preferential treatment from a particular service

provider and give out good (and honest) ratings about this provider. Such ratings,

though honest and accurate (in the view of that reporter), are not useful for other

agents because they would receive only normal treatment from that provider. By

taking an agent’s individual situation (i.e. the actual performance it receives dur-

ing interactions) into account, our credibility model can deal with cases similar to

the one in this example appropriately. This is the main difference that separates

our approach from others in the literature where reporters are usually judged on

their honesty (e.g. [Sabater, 2003], [Sen and Sajja, 2002]).

Through empirical evaluation, our credibility model was shown to be effective in

handling inaccurate reports, enabling the WR and CR components to maintain

a stable level of performance in a wide range of situations where various levels

of inaccuracy were introduced. In particular, the WR and CR components were

extended with the credibility model and tested in environments where marginally

inaccurate and extremely inaccurate reporters were introduced at various percent-

ages. The results show that by using the credibility model, the WR and CR

components are able to maintain their performance at a comparable level to that

in honest environments in all the experiments where the percentages of inaccurate

reporters are less than 50%. Furthermore, compared to SPORAS, the extended

WR and CR components are significantly better in dealing with inaccurate reports
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and their performance degrades more gracefully when the level of inaccuracy in

the environment increases.

8.1.3 Adapting to the environment

Given the continuously changing nature of an open MAS, it is desirable that a

trust model can cope well with unforseen changes that might take place in the

environment and that it is able to maintain its normal effective operation under

such circumstances. Therefore, learning techniques have been implemented in or-

der to enhance FIRE’s adaptivity to a number of possible changes in an open

MAS. In particular, FIRE is extended to weight the trust values produced by its

components according to the components’ performance. In order to do so, the per-

formance (i.e. the accuracy) of each component is continuously monitored during

FIRE’s operation. Should there be extraneous factors that affect the performance

of one or more of FIRE’s components (e.g. the lack of ratings or changes in the

quality of ratings from a particular source of information), the corresponding com-

ponent coefficients are automatically adjusted in an appropriate manner. By so

doing, the actual reliability of each of FIRE’s component is taken into account

when FIRE calculates the overall trust values from its components.

In addition, algorithms are also devised for choosing the right values for the inac-

curacy threshold and the default witness/referee credibility (used in the credibility

model). When taken together, all these techniques not only enhance FIRE’s ro-

bustness and resilience in facing unforseen changes, but also reduce FIRE’s admin-

istrative burden since these parameters, if initially wrongly set, can be re-adjusted

automatically by the model without requiring human intervention. Finally, empir-

ical evaluation has shown that the learning techniques implemented are effective

and significantly improve FIRE’s adaptability.

8.2 Future Directions

Although FIRE makes a number of advances to the state of the art, there are still

a number of ways in which this work can be further extended. These are now

detailed in the remainder of this subsection.

First, in the RT component, role-based rules need to be entered by agent owners

and when these rules are matched the target agent will be given a pre-determined
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trust value (Section 3.4). However, this can be extended to make use dynamic

rules that give trust values based on the prevailing context. An example rule is “if

a provider offers an x-year guarantee for its products then its product reliability is

min{0.2× (x− 1), 1.0}”, or another one is “if a provider shows y references about

its previous successful interactions whose value exceeds £1000 then its capability

is min{0.1 × y, 1.0}”. Here, the first rule means that if a provider does not offer

a product guarantee at all (x = 0) then its product reliability is likely to be bad

(trust value is −0.2), a 1-year guarantee is the standard (a neutral trust value,

0.0), and over that, each additional guarantee year offered increases its product’s

reliability by 0.2 up to the maximum of 1.0. Similarly, the second rule means that

the more high-value interactions (i.e. larger than £1000) a provider has finished

successfully, the more capable that provider is (here each such transaction adds

0.1 to the provider’s capability rating up to the maximum of 1.0). Such rules are

here called “semi-automatic” because they still need to be produced by humans,

but the trust values they give are not fixed, rather they are calculated according

to the context in which they are applied. These rules are more powerful and

expressive than those that are currently accommodated by the RT component,

allowing the agent designer to encode far more complex rules than their current

role-based counterparts. In order to process and apply such semi-automatic rules,

the current RT component needs to be significantly extended and new mechanisms

are also needed in order for an agent to understand and to extract data from

contextual information. However, such an extension would greatly enhance the

RT component and, as a result, the FIRE model, in terms of its customisability

since it allows a much wider range of domain knowledge to be encoded and used.

The next potential extension is considered with the CR component. The CR

mechanism presented in this thesis allows a target agent to actively establish trust

relationships with its potential interaction partners by presenting references about

its past performance when requested. Although this works well, this process can

be further improved by introducing an element of negotiation into it. For example,

having examined the references provided by the target agent b, agent a may not

be satisfied with the quality or the relevance of these references (e.g. because they

are about a different kind of service than the one a needs, because they are too

old, or because the values of the corresponding interactions are insignificant). In

that case, agent a can explain to b the reasons why the provided references cannot

be accepted and ask b to provide more relevant ones. From the reasons given

by a, agent b can select and present another set of references and tell a why it

should believe in those new ones; or b can argue with a that the ones it provided
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are actually significant and relevant to it (e.g. because a particular reference r

was given by a big name company that has a very strict set of standards, and

so on). In this example, compared to our original CR mechanism, the way CR

is calculated from provided references does not change, but a trust relationship

between a and b can be easier to establish because both the agents have the

opportunity to understand the needs of each other and also the opportunity to

correct possible misunderstandings (e.g. from the arguments provided by b, a

might adjust its initial weight for reference r). One of the main concerns over

the use of CR is that the references provided by the target agent itself might be

misleading because it can choose the best references to present. To overcome this,

argumentation-based negotiation [Rahwan et al., 2004] could be used to clear up

the evaluator’s possible doubts on the references it receives. In order to enter

into such a negotiation, however, an agent (or the trust model) needs to be able to

evaluate contextual information associated with a reference and to understand and

generate appropriate arguments. This requires an investigation into the possible

ways to apply the work from the area of argumentation-based negotiation into the

CR component.

Understanding contextual information comes up as one of the main additional re-

quirements for FIRE in both of the above suggested extensions. However, achiev-

ing this is not a simple task because contextual information (which is indefinite

and varies significantly) needs not only to be provided, but also to be expressed

in a standardised way. To this end, a suitable ontology2 [Smith, 2003] needs to

be developed to be used as a standardised basis for trust information exchange

between agents. Although the development of an ontology specifically for trust

information does not directly extend the work in this thesis, its existence would

greatly benefit FIRE in several ways. This is because it allows contextual infor-

mation to be exchanged to accompany ratings (in the interaction component of a

rating), which, in turn, opens up a wide range of possible enhancements in trust

evaluation as demonstrated in our examples above.

Coming back to the CR component, it should be noted that when a referee gives

its references to an interaction partner, it effectively surrenders its privacy with

respect to how it values that partner’s performance. This may lead to various

possible reactions of that partner (e.g. it may retaliate against the referee for a

bad reference or it may treat the referee differently the next time to get a better

2The term ontology refers to a data model that represents a specific part of the real-world
and is used to reason about the relationships of objects in the world. Ontologies contain abstract
representations of objects and their relationships [Smith, 2003].
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reference). However, due to the vast number of possibilities in the reactions of

both agents (i.e. the referee and the referred agent) and the limited scope of

this thesis, the effects of giving up privacy in the CR component have not been

considered. However, a fuller investigation on this is needed in order to understand

the possible problems and to put appropriate measures in place should they have

undesirable effects on the performance of the CR component.

In the RT component, when looking for relevant rules to apply for a given pair of

agents a and b, it is assumed that information about the roles of a and b (and,

thus, their relationships) is already given in some way. Although some types of role

information may actually be readily available from an agent’s knowledge (e.g. b is

owned by the same organisation, b is the seller, b is a financial institution), there

are many other cases where such knowledge is less apparent and is not available.

For example, given a rule that says “if b competes with w then opinions of b

about w may not be reliable”, it is not always straighforward to determine how

the ‘competitor’ roles of b and w can be deferred. Since there are no mechanisms

in FIRE to determine the relationships of agents (and their roles), the types of

roles that can be used in such rules are thus limited (to the simple and apparent

ones as mentioned above). Therefore, developing a model for agent relationship

identification is also a potential extension to FIRE. Given the ability to determine

high-level relationships, such as competition, collaboration, dependency between

agents, the range of rules that could be used in FIRE would be greatly expanded,

allowing a wider range of knowledge (than currently possible) to be encoded and

used by FIRE. The model presented by Ashri et al. [2005] is an example of such

relationship identification models and might provide a promising point of departure

for this line of enquiry.

All the work above focuses on extending the capability of FIRE. In a broader view,

it is not realistic for an agent a to select another agent b for an interaction merely

based on the trustworthiness of b. Agent a also needs to consider other factors

such as the cost requested by b in comparison with others. For example, if there

is another agent c which is marginally less trustworthy than b, but requests a far

lower price, b might not be the best choice. In another example, if the service

that a needs is very critical to a and its failure would mean a catastrophy, b

might be selected because a could not accept the risk of choosing a lesser provider.

Hence, a decision model that takes into account the cost, the utility gain, the risk

(which can be calculated from the potential chosen agent’s trust values and the

corresponding reliability values) involved in an agent’s delegation action is clearly

needed. Simply comparing the trustworthiness of agents may not always suffice.
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Relevant Trust Models

Of the trust models reviewed in Chapter 2, SPORAS [Zacharia and Maes, 2000]

was later used in our experiments (Chapters 5 and 6) as a benchmark and Regret’s

Direct Trust component [Sabater, 2003] was reused in FIRE. Thus, their operations

need to be described in greater detail. However, since our review in Chapter 2

mainly focuses on the characteristics of trust models, these were not discussed.

Therefore, this appendix provides a more detailed survey on the operations of

SPORAS and Regret (Sections A.1 and A.2, respectively).

A.1 SPORAS

SPORAS is a centralised trust model similar to the online reputation models used

on eBay and Amazon (which manage the reputation of all its users in a centralised

manner). However, it extends those online reputation models by introducing a new

method for rating aggregation. Specifically, instead of storing all the ratings, each

time a rating is received it updates the reputation of the involved party using an

algorithm that satisfies the following principles:

1. New users start with a minimum reputation value and they build up repu-

tation during their activity on the system.

2. The reputation value of a user never falls below the reputation of a new user.

3. After each transaction, the reputation values of the involved users are up-

dated according to the feedback provided by the other parties, which reflect

their trustworthiness in the latest transaction.

130
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4. Users with very high reputation values experience much smaller rating changes

after each update.

5. Ratings must be discounted over time so that the most recent ratings have

more weight in the evaluation of a users’s reputation.

A new user a in SPORAS starts with a reputation value Ra
0 = 0. Ra

i is used to

denote user a’s reputation at time i. The range of a reputation value in SPORAS

is D = [0, 3000]. The reputation rating for a reported by user b at time i is denoted

by W a,b
i and ranges from 0.1 to 1.0. The formula for updating reputation at Ra

i

at time i upon receiving the rating W a,b
i is as follows:

Ra
i = Ra

i−1 +
1

θ
·Θ(Ra

i−1) ·Rb
i · (W

a,b
i − Ea

i ) (A.1)

where θ > 1 is the effective number of ratings considered, Ea
i is the expected value

of W a,b
i (i.e. the expected performance of a) and Θ(Ra

i−1) is the damping function

defined to slow down reputation changes of a user with a very high reputation

(see the principles of SPORAS above). Ea
i and Θ(Ra

i−1) are given in the following

formula:

Ea
i =

Ra
i−1

D
(A.2)

Θ(Ra
i−1) = 1− 1

1 + e
−(Ra

i−1
−D)

σ

(A.3)

where σ is chosen so that function Θ remains above 0.9 for all users whose repu-

tation is below 3
4

of D.

In addition, SPORAS also introduces a reliability measure based on the reputation

deviation (RD) of the estimated reputations. The reputation deviation of user a

at time i is calculated as follows:

(RDa
i )

2 =

⌊
λ · (RDa

i−1)
2 +

(
Rb

i · (Wi − Ei)
)2

⌋
θ

(A.4)

where λ is the forgetting factor computed from the effective number of ratings

considered:

λ =
θ − 1

θ
(A.5)

Hence, the recursively estimated RD of a user is an indication of the predictive

power of SPORAS for that user’s reputation. A high RD can mean either that the

user has not been active enough to be able to make a more accurate prediction for

his/her reputation, or that the user’s behaviour has a lot of variation. The initial
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value of RD is set to D
10

.

A.2 Regret

Regret is a reputation model in which the trust evaluation process is decentralised.

Employing Regret, each agent is able to evaluate the reputation of others by itself.

In order to do so, each agent rates its partner’s performance after every interaction

and records its ratings in a local database. The relevant ratings will be queried

from this database when trust evaluation is needed. The trust value derived from

those ratings is termed direct trust.

In more detail, in order to calculate the direct trust of agent b, agent a retrieved

its past ratings about b’s performance. The set of those ratings is called R1. Then

the direct trust of a to b, denoted by DTa→b, is calculated as follows:

DTa→b =
∑
ri∈R

ρ(t, ti) · ri (A.6)

where ri is a rating value in the set R, and ρ(t, ti) is a normalised weight value

that gives higher values to ratings of more recent interactions:

ρ(t, ti) =
f(ti, t)∑

ri∈R f(ti, t)
(A.7)

f(ti, t) =
ti
t

(A.8)

where t is the current time and ti is the time the rating ri is recorded. However,

this weight function has some shortcomings on time granularity control. Actually,

after being factored, Equation A.7 is equivalent to:

ρ(t, ti) =
ti∑

ri∈R ti
(A.9)

Therefore, the weight function depends only on the time values of a particular set

of ratings, rather than the recency of those ratings in comparison with the current

time t. For example, assume that r1 and r2 are ratings about the interactions

that took place at time t1 = 1 and t2 = 2 respectively, and that R = {r1, r2}.
Equation A.9 will give ρ(t, t1) = 1

3
and ρ(t, t2) = 2

3
. Hence the difference of the

1Due to the limited scope of this thesis, Regret and its notation are simplified here. However,
the main ideas of the model are still retained.
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weights for r1 and r2 is 1
3

in the interaction trust calculation. Suppose that r′1 and

r′2 are completely the same ratings to r1 and r2 except that t′1 = 100 and t′2 = 101.

The same calculations will give a weight difference that is now 1
10100

. This vast

change in weight differences is not desirable given that the rating time difference

in both cases is the same (1 time unit, e.g. second). Moreover, given the same set

of ratings, the weight function produces the same value regardless of the current

time t2 (i.e. the time of calculating the interaction trust).

Like SPORAS, every trust value in Regret comes with a reliability value that

reflects the confidence of Regret in that trust value. This reliability value is calcu-

lated from a combination of two measures that are based on the number of ratings

in the set R and the deviation of those ratings. Regret defines an intimate level

of interactions, denoted by itm, that represents the minimum number of ratings

needed for a close relationship. The reliability degree increases until |R| reaches

this number. After that, more interactions will not increase reliability. The mea-

sures (No for number of ratings and Dv for deviation of ratings) and the reliability

for direct trust, denoted by DTRLa→b, are specified in the following formula:

No(R) =

{
sin( |R|·π

2·itm) |R| ≤ itm

1 |R| > itm
(A.10)

Dv(R) =
∑
ri∈R

ρ(t, ti) · |ri −DTa→b| (A.11)

DTRLa→b = No(R) · (1−Dv(R)) (A.12)

In addition, agents are further assumed to be willing to share their opinion about

others. Based on this, Regret develops a witness reputation component along

with a sophisticated method for aggregating witness reports taking into account

the possibility of dishonest reports. The operation of this component depends

on the social network built up by each agent. In particular, Regret uses a social

network to find witnesses, to decide which witnesses will be consulted, and how

to weight those witnesses’ opinions. However, Regret does not specify how such

social networks can be built, and, thus, this component is of limited use.

Besides direct trust and witness reputation, Regret also introduces the concepts of

neighbourhood reputation and system reputation. The former is calculated from

2Suppose that r1 and r2 are experiences of some person and the time unit used is year. If the
current time is year 2, r2 should have much more influence on the trust decision of that person
than r1 since it is much more recent. If the current time is year 20, both r1 and r2 are too old,
and they should have a similarly low levels of influence on his current trust decision.
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the reputation of the target’s neighbour agents based on fuzzy rules. However,

this again requires a social network to work. The latter is a mechanism to assign

default trust values to the target agent based on its social role in an interaction

(e.g. buyer, seller). This is only useful if additional domain specific information is

available.
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