
Automated Syntactic Medation for Web Service Integration

Martin Szomszor, Terry R. Payne and Luc Moreau

School of Electronics and Computer Science

University of Southampton

Southampton, SO17 1BJ, UK

{mns03r, trp, L.Moreau}@ecs.soton.ac.uk

Abstract

As the Web Services and Grid community adopt Seman-

tic Web technology, we observe a shift towards higher-

level workflow composition and service discovery practices.

While this provides excellent functionality to non-expert

users, more sophisticated middleware is required to hide

the details of service invocation and service integration. An

investigation of a common Bioinformatics use case reveals

that the execution of high-level workflow designs requires

additional processing to harmonise syntactically incompat-

ible service interfaces. In this paper, we present an ar-

chitecture to support the automatic reconciliation of data

formats in such Web Service worklflows. The mediation of

data is driven by ontologies that encapsulate the informa-

tion contained in heterogeneous data structures supplying

a common, conceptual data representation. Data conver-

sion is carried out by a Configurable Mediator component,

consuming mappings between XML schemas and OWL on-

tologies. We describe our system and give examples of our

mapping language against the background of a Bioinfor-

matics use case.

1. Introduction

e-Science Grid applications are used to pool resources

from multiple, heterogeneous resource providers. By ex-

posing applications and data through Web Services, Web

Service workflow has been adopted to encode scientific

processes, allowing users to perform in silico science [4].

For many in the scientific community, this has resulted

in stronger support for complex experimentation spanning

both physical and organisational boundaries. The MYGRID1

project is an example of such a system supporting Bioin-

formaticians in the construction, execution and sharing of

1www.mygrid.org.uk

workflows through the Taverna2 graphical workbench.

Recent work within the MYGRID project has focused on

supplying users with a richer, and more user-friendly envi-

ronment to aid in the discovery and composition of services.

FETA [7] has incorporated Semantic Web [2] technology

into the service description policy using ontologies to cap-

ture the semantics of Web Services - essentially supplying

users with conceptual definitions of what the service does

using domain specific terminology. This has proven to be a

valuable commodity in a system containing over a thousand

services where searching over service descriptions alone is

a cumbersome and tedious task.

With the introduction of Semantically annotated Web

Services, workflow composition within MYGRID has

shifted to a higher-level design process. While this makes

workflow design more accessible to untrained users, it does

lead to more complex architectual requirements. For exam-

ple, the situation often arises where a user wishes to connect

together two services that are conceptually compatible but

have different syntactic interfaces. The current solution to

this problem is entirely manual - users must insert media-

tion services into workflows to resolve any data incompati-

bilities.

This paper’s contribution is a dynamic invocation frame-

work designed to work in conjunction with existing work-

flow specification technologies (such as WSFL [6] and XS-

CUFL3) that provides automated data conversion when syn-

tactically incompatible services are encountered within a

workflow. This is achieved through a mapping language

that links elements and attributes within XML schemas to

concepts and properties in an OWL [10] ontology. By us-

ing the ontology as an intermediate representation, we are

able to transform data structures between different formats

using a Translation Engine. We present our Configurable

Mediator, used in a Web Service workflow to harmonise

data incompatibilities, and demonstrate it using a common

Bioinformatics use case.

2http://taverna.sf.net
3http://www.ebi.ac.uk/ tmo/mygrid/XScuflSpecification.html

This paper is organised as follows: Section 2 introduces

the problem of service integration in terms of a Bioinfor-

matics use case. In Section 3, we present the theory of our

integration approach and the use of ontologies. Our Archi-

tecture is presented in Section 4 covering the invocation of

services and the use of our Configurable Mediator. In Sec-

tion 5, we give description of our mapping language, high-

lighting the complex mapping requirements and details of

the translation process before evaluating our work in Sec-

tion 6. Related work is examined in Section 7 before we

conclude and give further work in Section 8.

2. Motivation and Use Case

For our use case, we examine a common Bioinformat-

ics task: retrieve sequence data from a database and pass

it to an alignment tool to check for similarities with other

known sequences. According to the service-oriented view

of resource access adhered to by MYGRID, this interac-

tion can be modelled as a simple workflow with each stage

in the task being fulfilled by a Web Service, illustrated in

Figure 1. Many Web Services are available for retriev-

XEMBL

NCBI-Blast

Get Sequence Data Sequence Alignment

DDBJ-XML

Sequence
Data

Accesssion
ID

Blast
Results

Figure 1. A simple bioinformatics task: get sequence data

from a database and perform a sequence alignment on it.

ing sequence data. For our use case, we use the DDBJ-

XML (http://xml.ddbj.nig.ac.jp/) and XEMBL

(http://www.ebi.ac.uk/xembl/) services. To obtain

a sequence data record, an accession number is passed as

input and an XML document is returned. Such a document

essentially contains the same information, namely the se-

quence data as a string (e.g. atgagtga...), references to

publications, and features of the sequence (such as the pro-

tein translation). However, the format of the data returned

by each provider is different - XEMBL returns an INSD4

formatted record, whereas DDBJ-XML returns a document

using their own custom format. The next stage in the work-

flow is to pass the sequence data to an alignment service

such as the BLAST service at NCBI5. This service can con-

sume a string of FASTA6 formatted sequence data.

Intuitively, a Bioinformatician will view the two se-

quence retrieval tasks as the same type of operation, expect-

4http://www.ebi.ac.uk/embl/Documentation/DTD/INSDSeq v1.3.dtd.txt
5http://www.ncbi.nlm.nih.gov/BLAST/
6http://www.ebi.ac.uk/help/formats frame.html

Sequence
Data

DDBJ-XML NCBI_Blast

DDBJ-XML
Format

FASTA
Format

At a conceptual level, the output of the DDBJ-XML Service is
compatible with the input to the NCBI-Blast Service.

At a syntactic level, the output from the DDBJ-XML Service is
not compatible with the input to the NCBI_Blast Service.

Conceptual Level

Syntactic Level

 <DDBJXML xmlns='http://themindelectric.com'>
 <ACCESSION>AB000059</ACCESSION>
 <FEATURES>
 <cds>
 <location>1..1755</location>
 <qualifiers name="product">capsid protein 2</qualifiers>
 <qualifiers name="protein_id">BAA19020.1</qualifiers>
 <qualifiers name="translation">MSDGAV...</qualifiers>
 </cds>
 </FEATURES>
 <SEQUENCE>atgagtgatggagcagt..</SEQUENCE>
 </DDBJXML>

>AB000059
atgagtgatggagcagtatgagtgatggagcagtatgagtgatggagcagt...

Figure 2. The output from the DDBJ-XML Service is not

compatible for input to the NCBI-Blast Serivce.

ing both to be compatible with the NCBI-Blast service. The

semantic annotations attached through FETA affirm this as

the output types are assigned the same conceptual type,

namely a Sequence Data Record concept. However, when

plugging the two services together, we see that the output

from either sequence data retrieval service is not directly

compatible for input to the NCBI Blast service. For exam-

ple, the DDBJ-XML Service produces a DDBJ formatted

XML document whereas the NCBI-Blast service consumes

a FASTA formatted sequence, as shown in Figure 2.

We use the term service integration to denote the combi-

nation of two or more web services within a workflow with

data passing from one service to another. In our use case,

service integration occurs between the sequence data re-

trieval service and the NCBI-Blast alignment service. Since

these two services have syntactically incompatible inter-

faces, successful service integration requires a translation

between the two data formats assumed. We define this

translation as syntactic mediation.

3. Ontologies for Data Integration

The service integration problem we present emanates

from the variety of data formats assumed by service

providers. Data Integration (the means of gathering in-

formation from multiple, heterogeneous sources) also ad-

dresses this problem. Building on existing data integration

models [12], we present our service integration problem

against a three-tier data representation model, separating the

storage, structure, and meaning of information:

1. Physical Layer - How the data is stored

Data can be stored in a variety of different formats:

proprietary binary files, text files, XML documents

and relational databases encompass the most common

methods.

Sequence_Data_Record

accession_id
division
definition
keyword
has_reference
has_sequence
has_feature

DPDP

DP

DP

OP

OP

DP

OP

DDBJ_Sequence_Data_Record

molecular_form
taxonomy
date_last_updated

DPDP

DP

DP

INSD_Sequence_Data_Record

topology
release_created
release_last_updated

DPDP

DP

DP

Reference

author
journal
title

DPDP

DP

DP

Feature

has_positionOP

Feature_Source

organism
isolate
molecular-type
lab-host

DPDP

DP

DP

DP

Feature_CDS

translation
protein-id
product

DPDP

DP

DP

Sequence

data
lenght
type

DPDP

DP

DP

DP

OP

Key

DataType Property

Object Property

Sub-Concept

Position

start
end

DPDP

DP

Figure 3. An ontology to describe sequence data.

See http://www.ecs.soton.ac.uk/˜mns03r/

ont/sequencedata for a full listing.

2. Logical Layer - How the data is structured

On top of the physical representation layer, the logical

organisation of the data describes the structure of phys-

ical data elements, such as XML schema and relational

database models.

3. Conceptual Layer - What the data means

Above the logical layer, the conceptual model of an

information source specifies what the data means us-

ing high-level language, such as an OWL ontology or

description logic.

Since XML is used to describe the data transported to and

from Web Services, we can assume a homogeneous phys-

ical layer. The data incompatibilities occurring in our

use case stem from different logical organisations of data,

i.e. service providers designing different XML schemas.

To enable the transformation of data between different

logical formats, we link conceptually equivalent elements

from different logical schemas to a common concept in

the conceptual layer via a set of mappings. An OWL on-

tology is used to describe the contents of XML schemas

with a custom mapping language to specify the correspon-

dence of XML schema elements7 to OWL concepts and

properties. Figure 3 shows a Sequence Data Record on-

tology we use to describe the data formats in our use

case. The main concept, Sequence_Data_Record , has

two sub-concepts: DDBJ_Sequence_Data_Record and

INSD_Sequence_Data_Record . This is used to express

the subtle differences between the two formats which con-

tain additional information while sharing common prop-

erties such as accession_id . If a service is described

7The term elements is used to refer to XML schema elements, attributes,

and text values.

as consuming a Sequence_Data_Record , it should be

able to consume instances of either sub-concept because

the necessary information will be present. Each Sequence

Data Record has a Sequence that contains the string of se-

quence data, references to publications on the sequence,

and a number of Features. There is a variety of se-

quence features; we show two common ones in this exam-

ple: Feature_Source (where and how the sequence was

gathered) and Feature_CDS (which shows the protein se-

quence translation and id).

4. Architecture

Before presenting our architecture, we list the four prin-

cipal requirements of the system:

R1. The ability to harmonise data incompatibilities in Web

Service workflows using syntactic mediation driven by

ontologies that capture the semantics of data struc-

tures, and mappings between XML data sources and

their corresponding conceptual representations.

With this approach, users must define an ontology to

describe the contents of an information source and a

set of mappings to specify the translation of data to

and from the conceptual representation.

R2. A modular and composable mapping language to sup-

port sharing and reuse.

Since service providers often expose multiple opera-

tions over subsets of the same dataset, the mapping de-

sign overhead can be reduced through a modular and

composable mapping language.

R3. Support for the invocation of arbitrary WSDL Web Ser-

vices.

Since large scale e-Science Grid applications pull re-

sources from multiple providers into a dynamic and

volatile environment, the ability to invoke unseen ser-

vices is paramount because services may appear and

disappear without warning. Often, it is a requirement

to replace Web Services within a workflow with new

ones when the original services are unavailable.

R4. Minimise annotation overheads by utilising existing

semantic annotation techniques.

Rather than impose new annotation requirements, we

build our solution on existing semantic annotation

techniques, namely the association of WSDL message

parts with concepts in an ontology.

To automate the process of syntactic mediation, we require

a mechanism to link XML elements to OWL concepts and

properties. To simplify this problem, we assume a canon-

ical XML representation of an OWL concept instance, re-

ferred to in this paper as an OWL-XI (i.e OWL XML in-

stance). In order to validate instances of OWL concepts,

WSDL

Service Provider Service Provider

OWL Ontology

XML SCHEMA

WSDL

Bioinformatics
Community

XML SCHEMA

Service Providers describe their Web

Service interfaces using WSDL. Data

consumed and produced is defined

using XML Schemas.

Serialisation and Realisation

Mappings describe how to

transform XML Documents

to and from OWL-XI

OWL-XIS

OWL-XIS

Generator

The OWL-XIS Generator

produces an XML Schema to

 describe valid OWL-XI for

concepts within the ontology Semantic Annotations associate

each WSDL message part with a

concept from the ontology

OWL Ontologies are created to

describe the information contained

 within Bioinformatics data structures

Semantic Type

WSDL Part

Semantic
Annotation

Semantic Type

WSDL Part

Realisation

Mapping

Sequence_Data_Record

accession_id
division
definition
keyword
has_reference
has_sequence
has_feature

DPDP

DP

DP

OP

OP

DP

OP

Reference

author
journal
title

DPDP

DP

DP

Feature

has_positionOP

Sequence

data
lenght
type

DPDP

DP

DP

Serialisation

Mapping

: is source of

: refers to

Key

: produces

Figure 4. Architecture Overview: information sources and relationships.

we have built an XML schema generator to produce OWL-

XIS (OWL XML instance schemas) that validate OWL-

XI. This component utilises the JENA
8 API to compute

concept hierarchies and produce XML schemas that mir-

ror them. With an OWL-XIS in place, the transforma-

tion of XML documents to and from an OWL-XI can be

viewed as an XML to XML translation process. To dis-

tinguish between these translations, we define the terms

conceptual realisation - denoting the transformation from

XML to OWL-XI, and conceptual serialisation - for the

transformation from OWL-XI to XML. An OWL-XIS

for the ontology presented in Figure 3 can be found at

http://www.ecs.soton.ac.uk/˜mns03r/ont/sequencedata.xsd .

Our architecture is built around the existing MYGRID

infrastructure. We assume service providers expose ser-

vices using WSDL descriptions with data structures speci-

fied using XML schemas. We show the relationship between

these existing WSDL descriptions, their semantic Annota-

tions which relate them to concepts within a Bioinformatics

ontology, and the serialisation and realisation mappings in

Figure 4. Dotted lines represent the source of information

and solid lines denote references (e.g. a serialisation map-

ping references elements in the WSDL description and the

OWL-XIS). In Figure 4, three information providers are

shown: two separate service providers (upper left and up-

per right) and the Bioinformatics community (bottom right).

Each service provider supplies a WSDL description of their

service, the Bioinformatics community collectively supply

the Bioinformatics ontology, semantic annotations for each

8http://jena.sourceforge.net/

service and the serialisation and realisation mappings.

To illustrate the mechanics of our system and the inter-

face to the Configurable Mediator (C-Mediator), we con-

tinue using our use case from Section 2. For demonstra-

tion purposes, we use the DDBJ Sequence retrieval service

and the NCBI-Blast service. In Figure 5, we give a vi-

sual representation of the workflow execution and syntac-

tic mediation. XML schemas for datasets and OWL-XIS,

as well as the serialisation and realisation mappings cor-

respond with those presented in Figure 4. Beginning at

the upper left of the diagram (marked 1), the workflow In-

put (accession id) is used to create an input message for

the DDBJ service. The Dynamic WSDL Invoker (DWI)

calls the service using SOAP encoding over HTTP trans-

port. The output message, containing the full sequence

data record, is then passed to the C-Mediator to be con-

verted into the correct format for input to the NCBI-Blast

service. The C-Mediator is comprised of three components;

two instances of a Translation Engine and a Mediation-

KB. During the first half of syntactic mediation (2), the

sequence data record is transformed to an instance of a

DDBJ_Sequence_Data_Record . This transformation is

performed by the Translation Engine which consumes XML

schemas for both the source and target representation as

well as the DDBJ-XML->Seq-Data-Ont mapping. The

output of this transformation is an OWL-XI representing

the Sequence Data Record. This is passed to the Mediation-

KB which imports the individual into a JENA inference

model to perform reasoning (e.g. calculate concept hier-

archies). From the perspective of our use case, reason-

Out: GetEntryOut

• record [recordType]

In: runAndWaitForIn

• sequence_data[xsd:string]

Mediation

KB

(Jena)

Translation

Engine

DDBJ XML Schema

Sequence Data OWL

Instance Schema

DDBJ XML->Seq-Data-Ont

Mapping

Translation

Engine

NCBI XML Schema

Sequence Data OWL

Instance Schema

Seq-Data-Ont -> FASTA

Mapping

DDBJ_Sequence_Data_Record

OWL-XI

Sequence_Data_Record

OWL-XI

Sequence Data Ontology

Concept URI

DDBJ WSDL

OWL-XIS

Generator
Manually

Specified

NCBI Blast WSDL

Manually

Specified

From Semantic Annotation

DDBJ
Service: GetEntry

PortType: GetEntry

Dynamic

WSDL

Invoker

wsdl:GetEntryIn

• accession_id [xsd:string]

NCBI-Blast
Service: runAndWaitFor

PortType: runAndWaitFor

Dynamic

WSDL

Invoker

wsdl:runAndWaitForOut

• result[resultType]

Configurable Mediator

Web Services with WSDL

Descriptions

SOAP / HTTP SOAP / HTTP

Workflow Input Workflow Output

1

2

3

4

Figure 5. The Configurable Mediator

ing is required because the output concept of the DDBJ-

XML service (DDBJ_Sequence_Data_Record) is sub-

sumed by the input concept of the NCBI-Blast service

(Sequence_Data_Record). Therefore, an instance of the

DDBJ_Sequence_Data_Record concept is compatible for

input to the NCBI-Blast service - this can only be deduced

using the ontology definition and a reasoning engine such

as JENA. The second half of syntactic mediation is to con-

vert this OWL-XI to a different representation, in this case

FASTA format (3). Again, the Translation Engine is used to

achieve this, consuming the Seq-Data-Ont->FASTAmap-

ping along with the relevant XML schemas. The output of

mediation stage is then used to create an input message for

the NCBI-Blast service which is called by the DWI (4). The

service invocation output message, containing the results of

the sequence alignment, is then passed back as the workflow

output.

5. Mapping Language

A single Web Service may offer a number of different

operations, each having different inputs and outputs. Of-

ten, different operation’s input and output types overlap, in

effect reusing types defined in a global schema. For exam-

ple, the DDBJ-XML service in our use case offers many

operations over sequence data records. When passing an

accession id as input, the user can retrieve records from dif-

ferent databases (e.g. SWISS and EMBL) or different parts

of the record such as the isolated sequence data or a par-

ticular sequence feature. Because of this schema reuse, we

design our mapping language to be modular and compos-

able to minimise design effort. Therefore, transformations

are specified using a set of mappings which describe the re-

lationship between either single, or groups of elements and

attributes. In this Section, we describe the requirements of

our mapping language against our use case datasets, provide

an overview of the transformation mechanics, and give a

small example. A full and formal specification of our map-

ping language is in preparation.

We stated in Section 4 that we simplify the transforma-

tion requirements for conceptual realisation and conceptual

serialisation by assuming a canonical XML representation of

XML concept instance (OWL-XI). Examination of use case

datasets reveals that the mapping requirements are com-

plex, as we illustrate in Figure 6 with a subset of the use

case transformation. We describe these mappings below

and form a list of requirements:

1. Single element to element mapping

The mapping language should enable to association of

elements from the source document to the destination

document. In Figure 6, The <DDBJXML> element is

mapped to the <DDBJ_Sequence_Data_Record> el-

ement.

2. Element contents mapping

The <ACCESSION> element and its text value are

mapped to the <accession_id> element.

<DDBJXML>

 <ACCESSION>AB000059</ACCESSION>

 <FEATURES>

 <source>

 <location>1..1755</location>

 <qualifiers name="isolate">Som1</qualifiers>

 <qualifiers name="lab_host">Felis domesticus</qualifiers>

 </source>

<DDBJ_Sequence_Data_Record>

 <accession_id>AB000059</accession_id>

 <has_feature>

 <Feature_Source>

 <isolate>Som1</isolate>

 <lab_host>Felis domesticus</lab_host>

 <location>

 <Feature_Location>

 <start>1</start>

 <end>1755</end>

 </Feature_Location>

 ...

1

2

3

4
5

Figure 6. Mapping of Elements between

a DDBJXML Sequence Data Record and a

DDBJ-Sequence-Data-Record OWL-XI.

3. Multiple element mapping

A <FEATURES> element containing a <source> ele-

ment is mapped to a <has-feature> element con-

taining a <Feature-Source> element.

4. String manipulation support

The <location> element has text containing the start

and end position, delimited by a ".." . Each of these

positions must be mapped to separate elements in the

destination document.

5. Predicate support

The contents of the <qualifiers> element should

be mapped differently depending on the value of the

name attribute - in the case of Mapping 5, when the

string equals "lab-host" the value is mapped to the

<lab-host> element.

To give an overview of the transformation mechanics, we

supply a simple example, shown in Figure 7 where the up-

per layer shows the desired transformation. Our transla-

tion approach is recursive, starting from the root node of

the source document, mappings are applied to create ele-

ments in the destination document. For example, Stage 1

in Figure 7 identifies the element <a> containing the two

 elements and constructs an <x> element containing

two <y> elements using the mapping a/b -> x/y. After

Stage 1, a recursion is made on element so each

element’s value is inserted in the <y> element’s in the des-

tination document according to the mapping b/$ -> y/$

(where $ denotes text value). Example mappings to de-

scribe the translation in Figure 6 are given in Figure 8.

Mapping 1 maps the <ACCESSION> element and its text

value. Mapping 2 associates the <Features>/<Source>

elements and Mapping 3 maps the lab_host qual-

a

b b

"val1" "val2"

a/* a/*

xsd:string xsd:string

Source Document

x

y y

"val1" "val2"

x/* x/*

xsd:string xsd:string

Destination Document

"val1" "val2"

xsd:string xsd:string

b

a/*a/*

b

a/*
a

x/*

y

x/*x/*

y

x/*
x

a/b -> x/y

a

"val2"

a/*a/* a/*

b

"val1"

a/*

xsd:string

b

"val2"

a/*

xsd:string

x
x/*x/* x/*

y

"val1"

x/*

xsd:string

y

"val2"

x/*

xsd:string

Desired transformation

Mapping Execution stage 1

Mapping Execution stage 2

b/$ -> y/$

Figure 7. The execution of a mapping.

<binding xmlns="http://www.ecs.soton.ac.uk/~mns03r/mapping/ddbj-to-ont-mapping"
 xmlns:sns="http://jaco.ecs.soton.ac.uk/schema/DDBJ"
 xmlns:dns="http://jaco.ecs.soton.ac.uk/ont/sequencedata">

<mapping id="1">
 <source match="sns:DDBJXML/sns:ACCESSION"/>
 <destination create="dns:DDBJ_Sequence_Data_Record[join]/dns:accession_id[branch]/"/>
 <mapping>
 <source match="sns:ACCESSION/$"/>
 <destination create="dns:accession_id[join]/$"/>
 </mapping>
</mapping>

<mapping id="2">
 <source match="sns:DDBJXML/sns:FEATURES/sns:source"/>
 <destination create="dns:DDBJ_Sequence_Data_Record[join]/
 dns:has_feature[branch]/dns:Feature_Source[branch]"/>
</mapping>

<mapping id="3">
 <source match='sns:source/sns:qualifiers[sns:qualifiers/sns:name/$ = "lab_host"]'/>
 <destination create="dns:Feature_Source[join]/dns:lab-host[branch]"/>
 <mapping>
 <source match="sns:qualifiers/$"/>
 <destination create="dns:lab-host[join]/$"/>
 </mapping>
</mapping>

<mapping id="4">
 <source match="sns:location/$^[^.]+"/>
 <destination create="dns:Location[join]/dns:start[branch]/$"/>
</mapping>

<mapping id="5">
 <source m atch="sns:location/$[^.]+$"/>
 <destination create="dns:Location[join]/dns:end[branch]/$"/>
</mapping>

</binding>

Figure 8. An example mapping - The full

mapping for our use case can be found at

http://www.ecs.soton.ac.uk/˜mns03r/

mapping/ddbj-to-ont-mapping.xml.

ifier. Mapping 3 contains a predicate evaluation

[sns:qualifiers/sns:name/$ = "lab_host"]

to ensure the qualifier element is mapped correctly.

Mappings 4 and 5 map the contents of the location ele-

ment to two different elements in the destination. A regular

expression is attached to the string selection statements

(e.g. "$ˆ[ˆ.]+") to separate the string values.

6. Evaluation

This paper demonstrates a proof of concept solution to

the service integration problem associated with multiple

service providers assuming different data formats. Our sys-

tem has been tested against the use case presented in Section

2 using a Sequence Data ontology and a set of serialisation

and realisation mappings. The requirements presented in

Section 4 are met as follows:

R1. The Configurable Mediator is able to translate con-

ceptually equivalent XML documents between differ-

ent logical organisations to resolve workflow data in-

compatibilities.

R2 . Our mapping language adheres to conventional XML

namespace declarations and supports document inclu-

sion. Document translations are expressed in terms of

the relationship between XML schema elements. The

Translation Engine interprets these statements at run-

time so service operations that reuse XML schema def-

initions are supported by one set of mappings.

R3 . The Dymanic WSDL Invoker is able to invoke previ-

ously unseen WSDL services. The current implementa-

tion supports the most widely used invocation methods

(i.e. SOAP encoding over HTTP transport).

R4. By extending existing ontologies used to semantically

annotate Web Services with more detailed ontologies

that capture the semantics of the data content, we are

able provide the necessary information to support our

mediation approach without imposing a new annota-

tion policy.

7. Related Work

We position related work against the three-tier data rep-

resentation model presented in Section 3. The TAMBIS

project [13] provides a data integration framework that op-

erates in the molecular biology domain. TAMBIS sup-

ports the gathering of information from varying data sources

through a high-level, conceptually driven query interface.

In this system, information sources are typically proprietary

flat file structures, the outputs of programs, or the product of

a services, none of which share a common query interface.

A molecular biology ontology, expressed using a descrip-

tion logic, is used in conjunction with functions specifying

how each concept is accessed within a data source to deliver

an advanced querying interface. TAMBIS supports data in-

tegration across all three layers of the three-tier model, but

only one direction, namely from physical up to conceptual.

For Web Service integration, two way translation is required

so data can be converted between different logical represen-

tations.

Moreau et al [9], have also investigated the need to in-

tegrate data from heterogeneous source, in this case, within

the Grid Physics Network, GriPhyn9. Like the bioinformat-

ics domain, data source used in physics Grids range across

a variety of legacy file formats. To provide a homoge-

neous access model to these varying data sources, Moreau

et al proposes a separation between logical and physical

file structures. This allows access to data sources to be ex-

pressed in terms of the logical structure of the information,

rather than the way it is physically represented. To achieve

this, XML schema is used to express the logical structure

of an information source, and mappings are used to relate

XML schema elements to their corresponding parts within a

physical representation. The XML Data Type and Mapping

for Specifying Datasets (XDTM) prototype provides an im-

plementation which allows data source to be navigated us-

ing XPATH. This enable users to retrieve and iterate across

data stored over multiple, heterogeneous sources. While

this approach is useful when amalgamating data from differ-

ent physical representations, it does not address the problem

of data represented using different logical representations.

Our service integration problem arises from the fact that dif-

ferent service providers use different logical representations

of conceptually equivalent information.

The SEEK project [3] specifically addresses the problem

of heterogeneous data representations in service oriented

architectures. Within their framework, each service has a

number of ports which expose a given functionality. Each

port advertises a structural type which defines the input and

output data format by a reference to an XML schema type.

If the output of one service port is used as input to an-

other service port, it is defined as structurally valid when

the two types are equal. Each service port can also be al-

located a semantic type which is specified by a reference

to a concept within an ontology. If two service ports are

plugged together, they are semantically valid if the output

from the first port is subsumed by the input to the second

port. Structural types are linked to semantic types by a reg-

istration mapping using a custom mapping language based

on XPATH. If the concatenation of two ports is semantically

valid, but not structurally valid, an XQUERY transformation

9http://griphyn.org/

can be generated to integrate the two ports, making the link

structurally feasible. The SEEK system provides data inte-

gration between different logical organisations of data using

a common conceptual representation, the same technique

that we adopt. However, their work is only applicable to

services within the bespoke SEEK framework. The archi-

tecture we present is designed to work with arbitrary WSDL

Web Services annotated using semantic Web techniques.

Hull et al [5] have also investigated the service integra-

tion problem within the MYGRID application. They dictate

that conversion services, or shims, can be placed in between

service whenever some type of translation is required - ex-

actly as the current MYGRID solution. They explicitly spec-

ify that a shim service is experimentally neutral in the sense

that it has no side-effect on the result of the experiment.

By enumerating the types of shims required in bioinformat-

ics Grids and classifying all instances of shim services, it

is hoped that the necessary translation components could

be automatically inserted into a workflow. However, their

focus is not on the translation between different data rep-

resentation, rather the need to manipulate data sets; extract-

ing information from records, finding alternative sources for

data, and modifying workflow designs to cope with itera-

tions over data sets.

8. Conclusions and Future Work

In this paper, we have used a bioinformatics Grid appli-

cation to show the problem of data integration in open, ser-

vice oriented architectures. With OWL ontologies in place to

capture the semantics of a data source, we can use instances

of these ontology concepts as an intermediate representa-

tion to support the conversion of data between different for-

mats. Our mapping language has been specially designed

to be modular, to support sharing and reuse, as well as ex-

pressive to cope with the complicated mappings required

in Bioinformatics data structures. We have implemented

novel features which allow two-way integration across the

conceptual and logical layers of the three-tier data model,

supporting the conversion of data between logical formats

using the conceptual layer as a common model.

While our Architecture has been designed to fit within

the existing MYGRID application, its principles apply to any

Grid or Web Services architecture. When incorporating the

use of Semantic Web technology, namely the association of

WSDL message parts with concepts from an ontology, we

have followed existing practices such as those used by the

FETA system, OWL-S [8], WSMO [11], and WSDL-S [1].

Within our current architecture, it is assumed that the se-

rialisation and realisation mappings are known at execution

time. To fully automate the mediation process, we intend

to develop a mapping registry which supports users in the

uploading and sharing of mappings and provides a query in-

terface to retrieve mappings. With such a registry in place,

it would also be possible to infer the semantics of a Web

Service by finding existing mappings within the registry for

the data types consumed and produced.

9. Acknowledgment

This research is funded in part by EPSRC myGrid

project (reference GR/R67743/01).

References

[1] R. Akkiraju, J. Farrell, J.Miller, M. Nagarajan, M. Schmidt,

and A. S. K. Verma. Web service semantics - WSDL-S.

Technical report, UGA-IBM, 2005.
[2] T. Berners-Lee, J. Hendler, and O. Lassila. The semantic

web. Scientific American, pages 34 – 43, 2001.
[3] S. Bowers and B. Ludascher. An ontology-driven frame-

work for data transformation in scientific workflows. In

Intl. Workshop on Data Integration in the Life Sciences

(DILS’04), 2004.
[4] C. Goble, S. Pettifer, R. Stevens, and C. Greenhalgh. Knowl-

edge Integration: In silico Experiments in Bioinformatics.

In I. Foster and C. Kesselman, editors, The Grid: Blueprint

for a New Computing Infrastructure Second Edition. Mor-

gan Kaufmann, November 2003.
[5] D. Hull, R. Stevens, and P. Lord. Describing web services

for user-oriented retrieval. 2005.
[6] F. Leymann. Web services flow language (WSFL 1.0), May

2001.
[7] P. Lord, P. Alper, C. Wroe, and C. Goble. Feta: A light-

weight architecture for user oriented semantic service dis-

covery. In The Semantic Web: Research and Applications:

Second European Semantic Web Conference, ESWC 2005,

Heraklion, Crete, Greece, pages 17 – 31, Jan. 2005.
[8] D. Martin, M. Burstein, G. Denker, J. Hobbs, L. Kagal,

O. Lassila, D. McDermott, S. McIlraith, M. Paolucci, B. Par-

sia, T. Payne, M. Sabou, E. Sirin, M. Solanki, N. Srinivasan,

and K. Sycara. OWL-S: Semantic markup for web service.

Technical report, The OWL Services Coalition, 2003.
[9] L. Moreau, Y. Zhao, I. Foster, J. Voeckler, and M. Wilde.

XDTM: the XML Dataset Typing and Mapping for Speci-

fying Datasets. In Proceedings of the 2005 European Grid

Conference (EGC’05), Amsterdam, Nederlands, Feb. 2005.
[10] P. F. Patel-Schneider, P. Hayes, and I. Horrocks. OWL web

ontology language semantics and abstract syntax. Technical

report, W3C, 2004.
[11] D. Roman, H. Lausen, and U. Keller. D2v1.0. web ser-

vice modeling ontology (WSMO), September 2004. WSMO

Working Draft.
[12] J. F. Sowa and J. A. Zachman. Extending and formalizing

the framework for information systems architecture. IBM

Syst. J., 31(3):590–616, 1992.
[13] R. Stevens, C. Goble, N. W. Paton, S. Bechhofer, G. Ng,

P. Baker, and A. Brass. Complex Query Formulation Over

Diverse Information Sources in TAMBIS. In Z. Lacroix and

T. Critchlow, editors, Bioinformatics: Managing Scientific

Data. Morgan Kaufmann, May 2003.

