Automated Syntactic Medation for Web Service Integration

Martin Szomszor, Terry R. Payne and Luc Moreau
School of Electronics and Computer Science
University of Southampton
Southampton, SO17 1BJ, UK
{mns03r, trp, L.Moreau}lecs.soton.ac.uk

Abstract

As the Web Services and Grid community adopt Seman-
tic Web technology, we observe a shift towards higher-
level workflow composition and service discovery practices.
While this provides excellent functionality to non-expert
users, more sophisticated middleware is required to hide
the details of service invocation and service integration. An
investigation of a common Bioinformatics use case reveals
that the execution of high-level workflow designs requires
additional processing to harmonise syntactically incompat-
ible service interfaces. In this paper, we present an ar-
chitecture to support the automatic reconciliation of data
formats in such Web Service worklflows. The mediation of
data is driven by ontologies that encapsulate the informa-
tion contained in heterogeneous data structures supplying
a common, conceptual data representation. Data conver-
sion is carried out by a Configurable Mediator component,
consuming mappings between XML schemas and OWL on-
tologies. We describe our system and give examples of our
mapping language against the background of a Bioinfor-
matics use case.

1. Introduction

e-Science Grid applications are used to pool resources
from multiple, heterogeneous resource providers. By ex-
posing applications and data through Web Services, Web
Service workflow has been adopted to encode scientific
processes, allowing users to perform in silico science [4].
For many in the scientific community, this has resulted
in stronger support for complex experimentation spanning
both physical and organisational boundaries. The MYGRID'
project is an example of such a system supporting Bioin-
formaticians in the construction, execution and sharing of

'www.mygrid.org.uk

workflows through the Taverna® graphical workbench.

Recent work within the MYGRID project has focused on
supplying users with a richer, and more user-friendly envi-
ronment to aid in the discovery and composition of services.
FETA [7] has incorporated Semantic Web [2] technology
into the service description policy using ontologies to cap-
ture the semantics of Web Services - essentially supplying
users with conceptual definitions of what the service does
using domain specific terminology. This has proven to be a
valuable commodity in a system containing over a thousand
services where searching over service descriptions alone is
a cumbersome and tedious task.

With the introduction of Semantically annotated Web
Services, workflow composition within MYGRID has
shifted to a higher-level design process. While this makes
workflow design more accessible to untrained users, it does
lead to more complex architectual requirements. For exam-
ple, the situation often arises where a user wishes to connect
together two services that are conceptually compatible but
have different syntactic interfaces. The current solution to
this problem is entirely manual - users must insert media-
tion services into workflows to resolve any data incompati-
bilities.

This paper’s contribution is a dynamic invocation frame-
work designed to work in conjunction with existing work-
flow specification technologies (such as WSFL [6] and XS-
CUFL?) that provides automated data conversion when syn-
tactically incompatible services are encountered within a
workflow. This is achieved through a mapping language
that links elements and attributes within XML schemas to
concepts and properties in an OWL [10] ontology. By us-
ing the ontology as an intermediate representation, we are
able to transform data structures between different formats
using a Translation Engine. We present our Configurable
Mediator, used in a Web Service workflow to harmonise
data incompatibilities, and demonstrate it using a common
Bioinformatics use case.

Zhttp://taverna.sf.net
3http://www.ebi.ac.uk/ tmo/mygrid/XScufiSpecification.html

This paper is organised as follows: Section 2 introduces
the problem of service integration in terms of a Bioinfor-
matics use case. In Section 3, we present the theory of our
integration approach and the use of ontologies. Our Archi-
tecture is presented in Section 4 covering the invocation of
services and the use of our Configurable Mediator. In Sec-
tion 5, we give description of our mapping language, high-
lighting the complex mapping requirements and details of
the translation process before evaluating our work in Sec-
tion 6. Related work is examined in Section 7 before we
conclude and give further work in Section 8.

2. Motivation and Use Case

For our use case, we examine a common Bioinformat-
ics task: retrieve sequence data from a database and pass
it to an alignment tool to check for similarities with other
known sequences. According to the service-oriented view
of resource access adhered to by MYGRID, this interac-
tion can be modelled as a simple workflow with each stage
in the task being fulfilled by a Web Service, illustrated in
Figure 1. Many Web Services are available for retriev-

Get Sequence Data

Accesssion Sequence Blast
: Nk st

DDBJ-XML

Figure 1. A simple bioinformatics task: get sequence data
from a database and perform a sequence alignment on it.

Sequence Alignment

ing sequence data. For our use case, we use the DDBJ-
XML (http://xml.ddbj.nig.ac.jp/) and XEMBL
(http://www.ebi.ac.uk/xembl/) services. To obtain
a sequence data record, an accession number is passed as
input and an XML document is returned. Such a document
essentially contains the same information, namely the se-
quence data as a string (e.g. atgagtga. . .), references to
publications, and features of the sequence (such as the pro-
tein translation). However, the format of the data returned
by each provider is different - XEMBL returns an INSD*
formatted record, whereas DDBJ-XML returns a document
using their own custom format. The next stage in the work-
flow is to pass the sequence data to an alignment service
such as the BLAST service at NCBI°. This service can con-
sume a string of FASTAS formatted sequence data.
Intuitively, a Bioinformatician will view the two se-
quence retrieval tasks as the same type of operation, expect-

“http://www.ebi.ac.uk/embl/Documentation/DTD/INSDSeq_v1.3.dtd.txt
Shttp://www.ncbi.nlm.nih.gov/BLAST/
Shttp://www.ebi.ac.uk/help/formats_frame html

At a conceptual level, the output of the DDBJ-XML Service is
compatible with the input to the NCBI-Blast Service.

Sequence
Conceptual Level

DDBJ-XML Y

Syntactic Level *

NCBI_Blast

DDBJ-XML FASTA :
Format Format

<DDBIML o

hitp: //thenindelectric. con'> >AB000059
100055 </ACCESSI0N-

\gtgatggageagt . .</SEQUENCE>

/DRI

At a syntactic level, the output from the DDBJ-XML Service is
not compatible with the input to the NCBI_Blast Service.

Figure 2. The output from the DDBJ-XML Service is not
compatible for input to the NCBI-Blast Serivce.

ing both to be compatible with the NCBI-Blast service. The
semantic annotations attached through FETA affirm this as
the output types are assigned the same conceptual type,
namely a Sequence Data Record concept. However, when
plugging the two services together, we see that the output
from either sequence data retrieval service is not directly
compatible for input to the NCBI Blast service. For exam-
ple, the DDBJ-XML Service produces a DDBJ formatted
XML document whereas the NCBI-Blast service consumes
a FASTA formatted sequence, as shown in Figure 2.

We use the term service integration to denote the combi-
nation of two or more web services within a workflow with
data passing from one service to another. In our use case,
service integration occurs between the sequence data re-
trieval service and the NCBI-Blast alignment service. Since
these two services have syntactically incompatible inter-
faces, successful service integration requires a translation
between the two data formats assumed. We define this
translation as syntactic mediation.

3. Ontologies for Data Integration

The service integration problem we present emanates
from the variety of data formats assumed by service
providers. Data Integration (the means of gathering in-
formation from multiple, heterogeneous sources) also ad-
dresses this problem. Building on existing data integration
models [12], we present our service integration problem
against a three-tier data representation model, separating the
storage, structure, and meaning of information:

1. Physical Layer - How the data is stored
Data can be stored in a variety of different formats:
proprietary binary files, text files, XML documents
and relational databases encompass the most common
methods.

/DDBJ_Sequence_Data_Recorh ﬁNSD_Sequence_Datu_Recorh

@ molecular_form @ topology
@ taxonomy @ release_created
\@ date_last_updated @ release_last_updated

[

Sequence_Data_Record
@ accession_id

@ division

@ definition

@ keyword

@ has_reference

@ has_sequence
@ has_feature
Sequence
@ data Feature

@ lenght @ has_position
AN

@ type
(Feature_Sour‘ce\ (Feature_CDS \

! @ DataType Propertyé
i @ Object Property
H 4\ Sub-Concept

Position

@ start
@ end

Reference
@ author
@ journal
@ title

@ organism @ translation
@ isolate @ protein-id
@ molecular-type @ product

@ lab-host

Figure 3. An ontology to describe sequence data.
See http://www.ecs.soton.ac.uk/mns03r/
ont/sequencedata for a full listing.

2. Logical Layer - How the data is structured
On top of the physical representation layer, the logical
organisation of the data describes the structure of phys-
ical data elements, such as XML schema and relational
database models.

3. Conceptual Layer - What the data means
Above the logical layer, the conceptual model of an
information source specifies what the data means us-
ing high-level language, such as an OWL ontology or
description logic.

Since XML is used to describe the data transported to and
from Web Services, we can assume a homogeneous phys-
ical layer. The data incompatibilities occurring in our
use case stem from different logical organisations of data,
i.e. service providers designing different XML schemas.
To enable the transformation of data between different
logical formats, we link conceptually equivalent elements
from different logical schemas to a common concept in
the conceptual layer via a set of mappings. An OWL on-
tology is used to describe the contents of XML schemas
with a custom mapping language to specify the correspon-
dence of XML schema elements’ to OWL concepts and
properties. Figure 3 shows a Sequence Data Record on-
tology we use to describe the data formats in our use
case. The main concept, Sequence_Data_Record , has
two sub-concepts: DDBJ_Sequence_Data_Record and
INSD_Sequence_Data_Record . This is used to express
the subtle differences between the two formats which con-
tain additional information while sharing common prop-
erties such as accession_id . If a service is described

TThe term elements is used to refer to XML schema elements, attributes,
and text values.

as consuming a Sequence_Data_Record , it should be
able to consume instances of either sub-concept because
the necessary information will be present. Each Sequence
Data Record has a Sequence that contains the string of se-
quence data, references to publications on the sequence,
and a number of Features. There is a variety of se-
quence features; we show two common ones in this exam-
ple: Feature_source (where and how the sequence was
gathered) and Feature_cCDS (which shows the protein se-
quence translation and id).

4. Architecture

Before presenting our architecture, we list the four prin-
cipal requirements of the system:

R1. The ability to harmonise data incompatibilities in Web

Service workflows using syntactic mediation driven by
ontologies that capture the semantics of data struc-
tures, and mappings between XML data sources and
their corresponding conceptual representations.
With this approach, users must define an ontology to
describe the contents of an information source and a
set of mappings to specify the translation of data to
and from the conceptual representation.

R2. A modular and composable mapping language to sup-
port sharing and reuse.
Since service providers often expose multiple opera-
tions over subsets of the same dataset, the mapping de-
sign overhead can be reduced through a modular and
composable mapping language.

R3. Support for the invocation of arbitrary WSDL Web Ser-
vices.
Since large scale e-Science Grid applications pull re-
sources from multiple providers into a dynamic and
volatile environment, the ability to invoke unseen ser-
vices is paramount because services may appear and
disappear without warning. Often, it is a requirement
to replace Web Services within a workflow with new
ones when the original services are unavailable.

R4. Minimise annotation overheads by utilising existing
semantic annotation techniques.
Rather than impose new annotation requirements, we
build our solution on existing semantic annotation
techniques, namely the association of WSDL message
parts with concepts in an ontology.

To automate the process of syntactic mediation, we require
a mechanism to link XML elements to OWL concepts and
properties. To simplify this problem, we assume a canon-
ical XML representation of an OWL concept instance, re-
ferred to in this paper as an OWL-XZ (i.e OWL XML in-
stance). In order to validate instances of OWL concepts,

Service Providers describe their Web -

Service interfaces using WSDL. Data WSDL
consumed and produced is defined
using XML Schemas. : XML SCHEMA

Service Provider

Serialisation and Realisation

Realisation Mappings describe how to
Mapping transform XML Documents
A to and from OWL-XI

XMLSCHEMA <€

Serialisation Service Provider

Mapping

Semantic
Annotation

WSDL Part —

OWL-XIS

poTTe,) Semantic Type [T

The OWL-XIS Generator
produces an XML Schema to
describe valid OWL-XI for

OWL-XIS

Generator

OWL Ontology

_WSDL Part

concepts within the ontology
® author
@ journal
@ title

Sequence

Key OWL Ontologies are created to | g aars

--) :is source of be the inf ¢ . gia
—) :refers to describe the information contained || 8 e

Sequence_Data_Record)

Semantic Annotations associate

has_feature
.\)f Feature)

accession_id
division
definition

each WSDL message part with a
hoyord concept from the ontology
has_reference
has_sequence

Bioinformatics
Community

-3 :produces within Bioinformatics data structures

(@ hos_position] (

Figure 4. Architecture Overview: information sources and relationships.

we have built an XML schema generator to produce OWL-
XZS (OWL XML instance schemas) that validate OWL-
XZ. This component utilises the JENA® API to compute
concept hierarchies and produce XML schemas that mir-
ror them. With an OWL-XZS in place, the transforma-
tion of XML documents to and from an OWL-XZ can be
viewed as an XML to XML translation process. To dis-
tinguish between these translations, we define the terms
conceptual realisation - denoting the transformation from
XML to OWL-XZ, and conceptual serialisation - for the
transformation from OWL-XZ to XML. An OWL-XZS
for the ontology presented in Figure 3 can be found at
http://www.ecs.soton.ac.uk/ mns03r/ont/sequencedata.xsd.

Our architecture is built around the existing MYGRID
infrastructure. We assume service providers expose ser-
vices using WSDL descriptions with data structures speci-
fied using XML schemas. We show the relationship between
these existing WSDL descriptions, their semantic Annota-
tions which relate them to concepts within a Bioinformatics
ontology, and the serialisation and realisation mappings in
Figure 4. Dotted lines represent the source of information
and solid lines denote references (e.g. a serialisation map-
ping references elements in the WSDL description and the
OWL-XZS). In Figure 4, three information providers are
shown: two separate service providers (upper left and up-
per right) and the Bioinformatics community (bottom right).
Each service provider supplies a WSDL description of their
service, the Bioinformatics community collectively supply
the Bioinformatics ontology, semantic annotations for each

Shttp://jena.sourceforge.net/

service and the serialisation and realisation mappings.

To illustrate the mechanics of our system and the inter-
face to the Configurable Mediator (C-Mediator), we con-
tinue using our use case from Section 2. For demonstra-
tion purposes, we use the DDBJ Sequence retrieval service
and the NCBI-Blast service. In Figure 5, we give a vi-
sual representation of the workflow execution and syntac-
tic mediation. XML schemas for datasets and OWL-XZS,
as well as the serialisation and realisation mappings cor-
respond with those presented in Figure 4. Beginning at
the upper left of the diagram (marked 1), the workflow In-
put (accession id) is used to create an input message for
the DDBJ service. The Dynamic WSDL Invoker (DWI)
calls the service using SOAP encoding over HTTP trans-
port. The output message, containing the full sequence
data record, is then passed to the C-Mediator to be con-
verted into the correct format for input to the NCBI-Blast
service. The C-Mediator is comprised of three components;
two instances of a Translation Engine and a Mediation-
KB. During the first half of syntactic mediation (2), the
sequence data record is transformed to an instance of a
DDBJ_Sequence_Data_Record . This transformation is
performed by the Translation Engine which consumes XML
schemas for both the source and target representation as
well as the DDBJ-XML->Seg-Data-Ont mapping. The
output of this transformation is an OWL-XZ representing
the Sequence Data Record. This is passed to the Mediation-
KB which imports the individual into a JENA inference
model to perform reasoning (e.g. calculate concept hier-
archies). From the perspective of our use case, reason-

Workflow Input

wsdl:GetEntryln
*accession_id [xsd:string]

AP/ HTTP DDBJ
o Service: GetEntry
PortType: GetEntry

Web Services with WSDL
Descriptions

yras
From Semantic Annotation | [Sequence_Data_Record]

Workflow Output

wsdl:runAndWaitForOut
*result[resultType]

NCBI-Blast
Service: runAndWaitFor
PortType: runAndWaitFor

SOAP/HTTP| o

Out: GetEntryOut
*record [recordType]

Configurable Mediator

(2] 5
DDBJ_Sequence_Data_Record et OWL-XI
OWL-XI e

In:runAndWaitForln
* sequence_data[xsd:string]

Concept URI

Sequence_Data_Record

Sequence Data Ontology

NCBI Blast WSDL: -

Manually
Specified

DDBJ XML->Seqg-Data-O
Mapping

Manually
Specified

Seg-Data-Ont -> FASTA
Mapping

Figure 5. The Configurable Mediator

ing is required because the output concept of the DDBJ-
XML service (DDBJ_Sequence_Data_Record) is sub-
sumed by the input concept of the NCBI-Blast service
(Sequence_Data_Record). Therefore, an instance of the
DDBJ_Sequence_Data_Record concept is compatible for
input to the NCBI-Blast service - this can only be deduced
using the ontology definition and a reasoning engine such
as JENA. The second half of syntactic mediation is to con-
vert this OWL-XZ to a different representation, in this case
FASTA format (3). Again, the Translation Engine is used to
achieve this, consuming the Seq-Data-Ont->FASTA map-
ping along with the relevant XML schemas. The output of
mediation stage is then used to create an input message for
the NCBI-Blast service which is called by the DWI (4). The
service invocation output message, containing the results of
the sequence alignment, is then passed back as the workflow
output.

5. Mapping Language

A single Web Service may offer a number of different
operations, each having different inputs and outputs. Of-
ten, different operation’s input and output types overlap, in
effect reusing types defined in a global schema. For exam-
ple, the DDBJ-XML service in our use case offers many
operations over sequence data records. When passing an
accession id as input, the user can retrieve records from dif-
ferent databases (e.g. SWISS and EMBL) or different parts

of the record such as the isolated sequence data or a par-
ticular sequence feature. Because of this schema reuse, we
design our mapping language to be modular and compos-
able to minimise design effort. Therefore, transformations
are specified using a set of mappings which describe the re-
lationship between either single, or groups of elements and
attributes. In this Section, we describe the requirements of
our mapping language against our use case datasets, provide
an overview of the transformation mechanics, and give a
small example. A full and formal specification of our map-
ping language is in preparation.

We stated in Section 4 that we simplify the transforma-
tion requirements for conceptual realisation and conceptual
serialisation by assuming a canonical XML representation of
XML concept instance (OWL-XT). Examination of use case
datasets reveals that the mapping requirements are com-
plex, as we illustrate in Figure 6 with a subset of the use
case transformation. We describe these mappings below
and form a list of requirements:

1. Single element to element mapping
The mapping language should enable to association of
elements from the source document to the destination
document. In Figure 6, The <DDBJXML> element is
mapped to the <DDBJ_Sequence_Data_Record> el-
ement.

2. Element contents mapping
The <ACCESSION> element and its text value are
mapped to the <accession_id> element.

<ACCESSION>ABO00@59</ACCESSIONS ©
ZFEATURES> ™

<sources
<locationé)®/location>

<qualifiers name="isolate">Soml</qualifiers>

<qualifiers name="lab_host">Felis domesticus</qualifierss>

</source>

<DDBJ_Sequence_Data_Records
<accession_id>AB@0@0059</accession_id> >
<Feature_Source>
<isolate>Soml</isolate>
<<lab_host>Felis domesticus</lab_hosts o
<location>
<Feature_Location>
<start§1Ystart>
<end$1755%/end>

</Feature_Location>

Figure 6. Mapping of Elements between
a DDBJXML Sequence Data Record and a
DDBJ-Sequence-Data-Record OWL-XZ.

3. Multiple element mapping
A <FEATURES> element containing a <source> ele-
ment is mapped to a <has-feature> element con-
taining a <Feature—Source> element.

4. String manipulation support
The <location> element has text containing the start
and end position, delimited by a ". ." . Each of these
positions must be mapped to separate elements in the
destination document.

5. Predicate support
The contents of the <qualifiers> element should
be mapped differently depending on the value of the
name attribute - in the case of Mapping 5, when the
string equals "lab-host" the value is mapped to the
<lab-host> element.

To give an overview of the transformation mechanics, we
supply a simple example, shown in Figure 7 where the up-
per layer shows the desired transformation. Our transla-
tion approach is recursive, starting from the root node of
the source document, mappings are applied to create ele-
ments in the destination document. For example, Stage 1
in Figure 7 identifies the element <a> containing the two
 elements and constructs an <x> element containing
two <y> elements using the mapping a/b —> x/y. After
Stage 1, a recursion is made on element so each
element’s value is inserted in the <y> element’s in the des-
tination document according to the mappingb/$ -> vy/$
(where $ denotes text value). Example mappings to de-
scribe the translation in Figure 6 are given in Figure 8.
Mapping 1 maps the <ACCESSION> element and its text
value. Mapping 2 associates the <Features>/<Source>
elements and Mapping 3 maps the lab_host qual-

Destination Document

Source Document

Desired transformation

_>

a/b->x/y

Mapping Execution stage 2

Figure 7. The execution of a mapping.

<binding xmIns="http://www.ecs.soton.ac.uk/~mns03r/mapping/ddbj-to-ont-mapping"
xmlns:sns="http://jaco.ecs.soton.ac.uk/schema/DDBJ"
xmlns:dns="http://jaco.ecs.soton.ac.uk/ont/sequencedata">

<mapping id="1">
<source match="sns:DDBJXML/sns:ACCESSION"/>
<destination create="dns:DDBJ_Sequence_Data_Record[join]/dns:accession_id[branch]/"/>
<mapping>
<source match="sns:ACCESSION/$"/>
<destination create="dns:accession_id[join]/$"/>
</mapping>
</mapping>

<mapping id="2">
<source match="sns:DDBJXML/sns:FEATURES/sns:source"/>
<destination create="dns:DDBJ_Sequence_Data_Record[join]/
dns:has_feature[branch]/dns:Feature_Source[branch]"/>
</mapping>

<mapping id="3">
<source match="sns:source/sns:qualifiers[sns:qualifiers/sns:name/$ = "lab_host"]'/>
<destination create="dns:Feature_Source[join]/dns:lab-host[branch]"/>
<mapping>
<source match="sns:qualifiers/$"/>
<destination create="dns:lab-host[join]/$"/>
</mapping>
</mapping>

<mapping id="4">

<source match="sns:location/$A[A.]+"/>

<destination create="dns:Location[join]/dns:start[branch]/$"/>
</mapping>
<mapping id="5">

<source m atch="sns:location/$[A.]+$"/>

<destination create="dns:Location[join]/dns:end[branch]/$"/>
</mapping>

</binding>

Figure 8.

mapping for our use case can be found at

An example mapping - The full

http://www.ecs.soton.ac.uk/mns03r/
mapping/ddbj-to-ont-mapping.xml.

ifier. Mapping 3 contains a predicate evaluation
[sns:qualifiers/sns:name/$ = "lab_host"]

to ensure the qualifier element is mapped correctly.
Mappings 4 and 5 map the contents of the 1ocation ele-
ment to two different elements in the destination. A regular
expression is attached to the string selection statements
(e.g. "s"[~.1+") to separate the string values.

6. Evaluation

This paper demonstrates a proof of concept solution to
the service integration problem associated with multiple
service providers assuming different data formats. Our sys-
tem has been tested against the use case presented in Section
2 using a Sequence Data ontology and a set of serialisation
and realisation mappings. The requirements presented in
Section 4 are met as follows:

R1. The Configurable Mediator is able to translate con-
ceptually equivalent XML documents between differ-
ent logical organisations to resolve workflow data in-
compatibilities.

R2 . Our mapping language adheres to conventional XML
namespace declarations and supports document inclu-
sion. Document translations are expressed in terms of
the relationship between XML schema elements. The
Translation Engine interprets these statements at run-
time so service operations that reuse XML schema def-
initions are supported by one set of mappings.

R3 . The Dymanic WSDL Invoker is able to invoke previ-
ously unseen WSDL services. The current implementa-
tion supports the most widely used invocation methods
(i.e. SOAP encoding over HTTP transport).

R4. By extending existing ontologies used to semantically
annotate Web Services with more detailed ontologies
that capture the semantics of the data content, we are
able provide the necessary information to support our
mediation approach without imposing a new annota-
tion policy.

7. Related Work

We position related work against the three-tier data rep-
resentation model presented in Section 3. The TAMBIS
project [13] provides a data integration framework that op-
erates in the molecular biology domain. TAMBIS sup-
ports the gathering of information from varying data sources
through a high-level, conceptually driven query interface.
In this system, information sources are typically proprietary

flat file structures, the outputs of programs, or the product of
a services, none of which share a common query interface.
A molecular biology ontology, expressed using a descrip-
tion logic, is used in conjunction with functions specifying
how each concept is accessed within a data source to deliver
an advanced querying interface. TAMBIS supports data in-
tegration across all three layers of the three-tier model, but
only one direction, namely from physical up to conceptual.
For Web Service integration, two way translation is required
so data can be converted between different logical represen-
tations.

Moreau et al [9], have also investigated the need to in-
tegrate data from heterogeneous source, in this case, within
the Grid Physics Network, GriPhyn®. Like the bioinformat-
ics domain, data source used in physics Grids range across
a variety of legacy file formats. To provide a homoge-
neous access model to these varying data sources, Moreau
et al proposes a separation between logical and physical
file structures. This allows access to data sources to be ex-
pressed in terms of the logical structure of the information,
rather than the way it is physically represented. To achieve
this, XML schema is used to express the logical structure
of an information source, and mappings are used to relate
XML schema elements to their corresponding parts within a
physical representation. The XML Data Type and Mapping
for Specifying Datasets (XDTM) prototype provides an im-
plementation which allows data source to be navigated us-
ing XPATH. This enable users to retrieve and iterate across
data stored over multiple, heterogeneous sources. While
this approach is useful when amalgamating data from differ-
ent physical representations, it does not address the problem
of data represented using different logical representations.
Our service integration problem arises from the fact that dif-
ferent service providers use different logical representations
of conceptually equivalent information.

The SEEK project [3] specifically addresses the problem
of heterogeneous data representations in service oriented
architectures. Within their framework, each service has a
number of ports which expose a given functionality. Each
port advertises a structural type which defines the input and
output data format by a reference to an XML schema type.
If the output of one service port is used as input to an-
other service port, it is defined as structurally valid when
the two types are equal. Each service port can also be al-
located a semantic type which is specified by a reference
to a concept within an ontology. If two service ports are
plugged together, they are semantically valid if the output
from the first port is subsumed by the input to the second
port. Structural types are linked to semantic types by a reg-
istration mapping using a custom mapping language based
on XPATH. If the concatenation of two ports is semantically
valid, but not structurally valid, an XQUERY transformation

http://griphyn.org/

can be generated to integrate the two ports, making the link
structurally feasible. The SEEK system provides data inte-
gration between different logical organisations of data using
a common conceptual representation, the same technique
that we adopt. However, their work is only applicable to
services within the bespoke SEEK framework. The archi-
tecture we present is designed to work with arbitrary WSDL
Web Services annotated using semantic Web techniques.

Hull ef al [5] have also investigated the service integra-
tion problem within the MYGRID application. They dictate
that conversion services, or shims, can be placed in between
service whenever some type of translation is required - ex-
actly as the current MYGRID solution. They explicitly spec-
ify that a shim service is experimentally neutral in the sense
that it has no side-effect on the result of the experiment.
By enumerating the types of shims required in bioinformat-
ics Grids and classifying all instances of shim services, it
is hoped that the necessary translation components could
be automatically inserted into a workflow. However, their
focus is not on the translation between different data rep-
resentation, rather the need to manipulate data sets; extract-
ing information from records, finding alternative sources for
data, and modifying workflow designs to cope with itera-
tions over data sets.

8. Conclusions and Future Work

In this paper, we have used a bioinformatics Grid appli-
cation to show the problem of data integration in open, ser-
vice oriented architectures. With OWL ontologies in place to
capture the semantics of a data source, we can use instances
of these ontology concepts as an intermediate representa-
tion to support the conversion of data between different for-
mats. Our mapping language has been specially designed
to be modular, to support sharing and reuse, as well as ex-
pressive to cope with the complicated mappings required
in Bioinformatics data structures. We have implemented
novel features which allow two-way integration across the
conceptual and logical layers of the three-tier data model,
supporting the conversion of data between logical formats
using the conceptual layer as a common model.

While our Architecture has been designed to fit within
the existing MY GRID application, its principles apply to any
Grid or Web Services architecture. When incorporating the
use of Semantic Web technology, namely the association of
WSDL message parts with concepts from an ontology, we
have followed existing practices such as those used by the
FETA system, OWL-S [8], WSMO [11], and WSDL-S [1].

Within our current architecture, it is assumed that the se-
rialisation and realisation mappings are known at execution
time. To fully automate the mediation process, we intend
to develop a mapping registry which supports users in the
uploading and sharing of mappings and provides a query in-

terface to retrieve mappings. With such a registry in place,
it would also be possible to infer the semantics of a Web
Service by finding existing mappings within the registry for
the data types consumed and produced.

9. Acknowledgment

This research is funded in part by EPSRC myGrid
project (reference GR/R67743/01).

References

[1] R. Akkiraju, J. Farrell, J.Miller, M. Nagarajan, M. Schmidt,
and A. S. K. Verma. Web service semantics - WSDL-S.

Technical report, UGA-IBM, 2005.
[2] T. Berners-Lee, J. Hendler, and O. Lassila. The semantic

web. Scientific American, pages 34 — 43, 2001.
[3] S. Bowers and B. Ludascher. An ontology-driven frame-

work for data transformation in scientific workflows. In
Intl. Workshop on Data Integration in the Life Sciences
(DILS’04), 2004.

[4] C.Goble, S. Pettifer, R. Stevens, and C. Greenhalgh. Knowl-
edge Integration: In silico Experiments in Bioinformatics.
In I. Foster and C. Kesselman, editors, The Grid: Blueprint
for a New Computing Infrastructure Second Edition. Mor-

gan Kaufmann, November 2003.
[5] D. Hull, R. Stevens, and P. Lord. Describing web services

for user-oriented retrieval. 2005.

[6] F. Leymann. Web services flow language (WSFL 1.0), May
2001.

[7] P. Lord, P. Alper, C. Wroe, and C. Goble. Feta: A light-
weight architecture for user oriented semantic service dis-
covery. In The Semantic Web: Research and Applications:
Second European Semantic Web Conference, ESWC 2005,
Heraklion, Crete, Greece, pages 17 — 31, Jan. 2005.

[8] D. Martin, M. Burstein, G. Denker, J. Hobbs, L. Kagal,
0. Lassila, D. McDermott, S. Mcllraith, M. Paolucci, B. Par-
sia, T. Payne, M. Sabou, E. Sirin, M. Solanki, N. Srinivasan,
and K. Sycara. OWL-S: Semantic markup for web service.
Technical report, The OWL Services Coalition, 2003.

[9] L. Moreau, Y. Zhao, 1. Foster, J. Voeckler, and M. Wilde.
XDTM: the XML Dataset Typing and Mapping for Speci-
fying Datasets. In Proceedings of the 2005 European Grid

Conference (EGC’05), Amsterdam, Nederlands, Feb. 2005.
[10] P.F. Patel-Schneider, P. Hayes, and I. Horrocks. OWL web

ontology language semantics and abstract syntax. Technical

report, W3C, 2004.
[11] D. Roman, H. Lausen, and U. Keller. D2v1.0. web ser-

vice modeling ontology (WSMO), September 2004. WSMO

Working Draft.

[12] J. F. Sowa and J. A. Zachman. Extending and formalizing
the framework for information systems architecture. /BM
Syst. J., 31(3):590-616, 1992.

[13] R. Stevens, C. Goble, N. W. Paton, S. Bechhofer, G. Ng,
P. Baker, and A. Brass. Complex Query Formulation Over
Diverse Information Sources in TAMBIS. In Z. Lacroix and
T. Critchlow, editors, Bioinformatics: Managing Scientific
Data. Morgan Kaufmann, May 2003.

