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1. Introduction

Data is raw and does not, of itself, have meaning, whereas information is data
that has been processed to be useful, given meaning by way of relational
connections, semantics, etc. Knowledge results from reasoning over
information. The term ‘data’ is often used when, strictly speaking, ‘information’
is the correct word.

Data fusion is a set of techniques for combining data, which may be noisy or
conflicting, from multiple, heterogeneous sources. Data mining is the analysis
of data to establish relationships and identify patterns.

Data fusion and data mining can be considered as a pipeline that enables
data from a wide range of heterogeneous sources to be used in applications
such as anomaly detection, hypothesis testing, and epidemiological model
calibration for the detection and identification of infectious diseases (DIID) in
plants, animals and humans. This pipeline connects sensor networks and data
sources with the processes and tools that allow this data to be located,
datasets to be selected, and data to be collected, fused, visualised and mined.
The information extracted enables predictive models to be constructed,
conclusions to be drawn, decisions made and actions taken.

Fusing data from multiple heterogeneous sources and mining a single,
homogeneous database are well-established techniques. Distributed data
fusion and mining, where the analysis is performed across a network of
computers, are emergent technologies. For DIID, the data will be distributed
and heterogeneous, due to the wide-ranging (and potentially global) nature of
the problem, and the many ways of reporting behaviour and symptoms that
may characterise infectious disease. The task is to determine patterns that
may occur in a wide variety of data (sometimes linking and cross-referencing
data from different sources) in order to detect abnormalities that may indicate
infectious disease.

One of the main challenges for DIID is how to analyse data from such
distributed heterogeneous sources. Data can be continuous or categorical
(e.g. numerical values or discrete tags such as ‘bread’), and it can be
structured or unstructured. Structured data sources will be as disparate as
parametric data from sensors, medical records, satellite images, CCTV
images, audio, and so on. Unstructured data is likely to be important for DIID.
Sources such as news feeds and emails are well-established, and new
technologies, such as Blogs, Wikis and other methods of personal
communication that will supersede them, are spreading rapidly. Analysis of
such data poses particular challenges, not least the problem of semantic
mapping between domains, but it is likely to yield valuable information for
DIID.

We note that some of the challenges facing data analysis in DIID are
analogous to those faced by a computer network intrusion detection system
(IDS), used to detect unauthorised access and potentially malicious behaviour
(Denning 1986). An IDS is characterised by a set of data sources and a
process that monitors these sources, with the aim of detecting abnormal
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behaviour. This may be performed manually by examining the source data or
automatically by, for example, a rule-based system that looks for patterns in
the source data.

For DIID, we note the paramount importance of ethics, sovereignty,
confidentiality (commercial and otherwise), privacy, data protection, freedom
of information, and other rights and obligations when detecting, collecting and
processing data. Provenance and trustworthiness of data and information
must be factors in any decisions.

Many of the above issues are underpinned by IT security. Security is an
attribute of systems and procedures that minimises or manages the risk of
undesirable system behaviour, even in the presence of malicious, untrusted
parties. The internet presents new challenges for information security. It is no
longer possible to think of data as contained within an organisation or
administrative domain, accessible only to those with prescribed attributes. The
networked enterprise must allow its perimeter to become permeable to
support dynamic collaborations, and yet still be capable of controlling access.
However, each participating organisation and system has its own security
mechanisms, making it very difficult to maintain consistency across different
technical, organisational or administrative domains. This presents particular
problems for applications involving personal data, where consistent handling
is essential in order to maintain the levels of privacy demanded by citizens
and required by policies, regulations and laws.

The success of data fusion and data mining depends as much on the adoption
of appropriate methodologies and processes as it does on the availability of
suitable data and the use of appropriate technology. Without the formulation
of a well-defined business or research problem, the assembly of trusted and
representative data sources, and a way to validate the results, the output of a
data fusion or mining exercise will be untested at best and could be positively
misleading at worst. In data mining and data fusion: ‘If you put rubbish in, then
you’ll get rubbish out.” Moreover, the watchword is: ‘Make sure you answer
the question.’ If you are not sure what the question is in a data mining or
fusion exercise, the outputs cannot be interpreted and acted on with
confidence. Uncertainty leads to risk, and risk in turn leads to error and cost,
which in the case of DIID could be extremely serious.

An overarching, common methodology and process is important, otherwise ad
hoc techniques will be used and conclusions will be difficult to justify, as they
are unlikely to be repeatable. A methodology is just as important here as in
any other branch of science, whereby hypotheses are posed, experiments are
conducted to prove or disprove these hypotheses, results are derived and
conclusions are drawn. When the results and conclusions are published,
others can attempt the same experiment to validate, or contradict, these
conclusions.
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2. Data sources

Data for analysis for DIID will typically come from a variety of sources. A major
issue with such data is that it may be incompatible — from simple mismatches,
such as the use of different date representations, to more subtle matters of
semantics and interpretation. In general, the semantic gap refers to a
mismatch between understandings across domains. Zhao et al. (2002) refer to
the semantic gap that results from a user's web search and how the search
engines interpret and perform the searches. If the user understands a concept
differently from the search engine, a semantic gap arises, as the results will
not be what the user expects.

Semantic gaps may arise in DIID due to the heterogeneous nature of the
different sources of data. Ensuring that the same term in two different sets of
data actually means the same thing, and establishing the appropriate
transformation rules, is a major challenge. Even realising that there may be a
difference in the meaning of the two terms is generally difficult.

It is also important to distinguish between structured and unstructured data.
Structured data (e.g. derived from a form or a database table) is much more
easily mined than unstructured data. Traditional data mining tools are
designed for structured data. Unstructured data such as. a web page
containing a news story is more of a challenge. It either needs to be
transformed into structured data (involving disciplines such as natural-
language processing and semantic mapping), or specialist data mining tools
need to be created.

Often, data from many different sources needs to be combined. The resulting
conjunction of more than one dataset may be greater than the sum of its
parts, and may produce crucial discoveries. Also, data not directly connected
with infectious diseases may be extremely useful. For example, in order to
track a disease’s spread, symptom or other primary data will probably need to
be cross-correlated with other information from, for example, geographical
information systems (GIS), weather reports and travel records.

International awareness, co-operation and joint research efforts have
engendered the necessary political platform and international community for
global environment monitoring (e.g. UNEP 2005). Cross-border remote
sensing and data distribution networks (e.g. UNEP 2004) have been created
to make a wide variety of information from different sources and different
geographical locations available for analysis.

3. Data fusion

Data fusion is a set of techniques for combining diverse data from multiple
sources to create a more structured and coherent view of the data, thus
making it possible to conduct further analysis (e.g. data mining, decision
support). The technology was created primarily for military applications where
there is a regular need to quickly assess a complex situation based on a wide
range of observations (e.g. target tracking with multiple cameras) and to
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determine the optimal course of action (e.g. launching a missile). The
technology is now used in many military and commercial applications for
making complex information accessible to decision makers. Example
applications include surveillance, situation assessment, robotics,
manufacturing, medical diagnosis and remote sensing (Hall and McMullen
2004).

Data fusion is a combination of many disciplines. Communication and data
management technologies focus on the organisation, storage, preservation
and distribution of data. Mathematics, computer science and artificial
intelligence all contribute to the development of automatic and principled
methods for combining, restructuring and summarising diverse, incomplete
and conflicting information.

Data fusion covers an entire process: data gathering from multiple sources,
data format conversion, data combination, conflict resolution, data
summarisation and distribution. The process takes input from heterogeneous
sources and produces a coherent summary that makes it possible for decision
makers to quickly assess a complex situation and determine the best course
of action. A decision maker can either be a person (e.g. military officer,
business analyst) or an automated system (e.g. for generating alerts).

Rapid advances in sensing, communication and storage technologies have
created an explosion in data volume, sources and formats. Data integration
makes large volumes of disparate data sources accessible via a common
framework, often referred to as the data broker. The process involves
establishing a communication channel between a data supplier (e.g. a sensor)
and the data broker, to facilitate secured information transfer. The data broker
provides the access, selection and transformation capabilities that enable a
data consumer (e.g. a user or a data fusion system) to obtain all the relevant
data in the required format. This involves gathering all the required data from
multiple suppliers in multiple formats and repackaging the data in the required
format for delivery to the data consumer.

The emergence and wide adoption of data exchange standards (e.g. Yergeau
et al. 2004) has improved data sharing and reuse by encouraging suppliers to
provide data in a common format (e.g. XML) and to use metadata to describe
the data. This has enabled improvements to be made to automated search
and retrieval systems. Advances in distributed mass storage (e.g. RAID 2005)
and database management systems (e.g. Oracle 2005) have made it possible
to store, transform and distribute large, heterogeneous datasets. Current work
in data integration continues to focus on the integration of heterogeneous data
from proprietary systems. The main challenges include information extraction
from semi-structured data formats (e.g. spreadsheets), business process
optimisation, integration and automation (e.g. data validation and delivery),
standardisation of secured data exchange channels (e.g. policy-based access
control), metadata standards (e.g. data description vocabulary and ontology)
and data quality assurance (e.g. accuracy information). Different aspects of a
situation may be described by information from multiple sources. Observation
accuracy and coverage are improved by combining and comparing
overlapping and non-overlapping information. Information can be represented
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in disparate and ambiguous forms (e.g. numbers, symbols, rules and natural-
language statements). Some can be described in statistical form, whilst others
are more difficult to model and process mathematically. Data fusion is about
the combination of information for creating a more accurate and coherent
assessment of a situation. The process involves combining and consolidating
information at different levels of detail using well-established mathematical
techniques, including Bayesian inference (Punska 1999), fuzzy logic (Zadeh
1965), neural networks (Aleksander and Morton 1990), decision trees
(Quinlan 1993), support vector machines (Cristianini and Shawe-Taylor 2000)
and Kalman filters (Kalman 1960). A comprehensive review of the techniques
can be found in Klein (2004) and Hall and Llinas (2001).

The theoretical foundation for data fusion (Goodman and Nguyen 1985;
Goodman et al. 1997; Daley and Vere-Jones 1988; Hall and Llinas 2001) is a
rigorous mathematical formulation that is hard to translate into an engineering
solution (Mahler 2004). Data manipulation, modelling, integration and
forecasting algorithms are increasingly mature. Theoretical research
continues to focus on the formulation of a unifying and purely probabilistic
framework (Mahler 1994; Goodman et al. 1997) for combining diverse and
ambiguous information (Mahler 2000). New approximation techniques are
being sought to facilitate the integration of more information sources. Current
research focuses on the computational complexity of generalised system-level
solutions and the application of principled approximation techniques to make a
solution computationally tractable.

A standard model for data fusion was proposed by the US Department of
Defense to facilitate discussions, component reuse and system integration.
The Joint Directors of Laboratories (JDL) data fusion model (White 1988)
offers a multi-level functional model that describes how processing is
organised in a military data fusion system. The model can be generalised, and
it has been widely adopted in commercial applications and academic
research. It is continuously being revised, refined and expanded to
accommodate new requirements (Bowman 1994; Steinberg et al. 1999; Llinas
et al. 2004; Steinberg and Bowman 2004). The JDL data fusion model is
recognised as the de facto standard in data fusion and is likely to remain so
for the foreseeable future.
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Figure 1:. The JDL data fusion model (Steinberg and Bowman 2004)

The latest incarnation of the JDL model (Llinas et al. 2004; Steinberg and
Bowman 2004) defines five functional levels and a complementary set of
resource management levels. The purpose of each functional level can be
summarised as follows:

Level 0 extracts interesting features from raw data, e.g. enhancing a
satellite image to highlight colour variations in a field of crops.

Level 1 gathers information about individual entities, e.g. the colour,
location and health condition of each plant or cluster of plants.

Level 2 focuses on the relationships between entities and contextual
implications, e.g. estimating and predicting the spread of disease among
plants based on wind direction and geographical factors.

Level 3 assesses the consequence of applying known plans on the current
situation, e.g. predicting the impact of the disease on crop production if
remedial action is or is not carried out within the next 24 hours.

Level 4 measures the performance and effectiveness of the system to
facilitate refinement, e.g. comparing the predicted and observed spread of
a disease to determine and adjust the contribution of each feature to the
overall prediction.

Signal processing (Level 0) and multi-sensor integration (Level 1) are
increasingly mature fields of research, whereas the higher levels of
information fusion (Level 2—4) are in their infancy due to the absence of
unifying, theoretical foundations (Mahler 2004) and computationally tractable,
algorithmic solutions.

Advances in materials science, computer science, electronics,
nanotechnology, communication technology, engineering and manufacturing
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have all contributed to the development of robust, precise and affordable
sensor technologies and the associated data management framework.
Stationary and mobile wireless sensor networks for measuring a wide range of
parameters in extreme environments have been developed (see e.g. Karl and
Willig 2005; Zhao and Guibas 2004).

Advances in sampling techniques, data modelling, classification algorithms,
mathematically rigorous inference methods and computation hardware will
have a significant impact on data fusion. Principled sampling techniques and
faster computational hardware enable systems to handle more data. Data
modelling algorithms make it possible to process noisy data and identify
abnormalities in it. Classification algorithms identify salient features in a
dataset. Current work focuses on the development of methods that can solve
high-dimensional, non-linear classification problems, thus enabling a system
to assess more complex situations. Mathematically rigorous inference
methods facilitate principled and complex reasoning with disparate data. The
combination of all these advances will enable future data fusion systems to
use high-resolution observation data from diverse information sources to
accurately assess more complex situations, thus enabling decision makers to
make informed decisions about large, real-world events.

4. Data mining

Data mining is a relatively mature technique aiming to achieve business
benefit by providing tools that assist in the discovery of patterns and
relationships in large amounts of data, and in the prediction of the values of
unseen data based on information gained from seen data.

Current technology is based on well-established mathematical techniques for
identifying patterns in data. These are techniques for understanding and
modelling data. Summaries (aggregations of data), visualisation, clustering of
data records, and the discovery of associations and correlations between
datasets aid the understanding of data, and enable the acquisition of insights
for more detailed analysis. Mathematical models enable predictions of the
classification and value of unseen data.

The techniques are mature for data that has been structured into records with
clearly defined data types and collected in one place. Such a data warehouse
is a single, authoritative source of data, integrated from distributed (and
possibly differently structured) databases to facilitate a global overview and
comprehensive analysis of data at or up to a specific time. This is in contrast
with operational data systems e.g. transaction processing systems, where the
data is changing with every transaction (order, payment, or whatever). See
e.g. Data Warehousing Wikipedia.

The maturity of these data mining techniques is indicated by their deployment
in a number of commercial products and their migration into undergraduate
syllabuses. Goharian (2004) describes a process where undergraduates not
only use data mining tools, but also build them. Where mature techniques
exist, data mining is moving from the lab of the computer scientist to the office
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of the domain expert. These mature techniques are well described elsewhere:
a brief introduction to data mining is given by Moss (2003), and data mining
tools and techniques are introduced and discussed by Witten and Frank
(2005).

The use of XML (eXtensible Markup Language) as a representation format
can result in any amount of structure in data. XML is similar to the HTML used
for web pages but is more flexible. XML documents can also import
namespaces and refer to ontologies which provide meaning to the document,
and can help to address semantic gaps. The mathematics of Graph Theory
offers a means of mining semi-structured data such as HTML and XML.
Graph-based data mining aims to find structures embedded in semi-structured
data. See Washio and Motoda (2003) for an overview.

When faced with massive amounts of data, sampling may be used to reduce
this to manageable proportions. How the sampling is performed is critical to
ensuring that the sample accurately represents the dataset as a whole.
Examples of algorithms that attempt to automate the sampling problem are
FAST (Chen et al. 2002) and EASE (Brénnimann et al. 2003).

How do we determine when we have found a significant pattern? It is one
thing to find correlations, but the key to exploitable results is to uncover causal
relationships. For example, we discover in a shopping basket analysis that
most customers who bought butter also bought bread, and we make a rule
that says: ‘Butter implies bread.’ This seems like a good discovery, until we
realise that almost everyone bought bread, whether they bought butter or not.
The bare correlation of butter implying bread does not constitute information
gain, since almost everyone bought bread anyway. Only if we know that butter
is not universally purchased, and that the presence of bread significantly
increases the chances of butter being found in the same basket, do we have a
knowledge gain. This is known as ‘lift’.

Current work in this field concerns the theory of expected information (see e.qg.
Robson 2003). This involves the computation of degrees of mutual
dependency between variables, and the expected information gain from a
pattern. Based on Robson's work, IBM has demonstrated a tool (see
CliniMiner) that provides heuristics and other tools to detect rules that do not
contain significant information gain and prune them from a larger set of
discovered rules.

Several methodologies have been developed for data mining, of which the
most widely known and commonly adopted (kdnuggets 2004) is CRISP-DM
(Cross-Industry Standard Process for Data Mining; see CRISP-DM project),
created by a European consortium in the mid-1990s.
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Figure 2: The CRISP-DM model (reproduced from the CRISP-DM project)

Figure 2 shows the CRISP-DM model. In it, the lifecycle of a data mining
project consists of six phases. The sequence of the phases is not strict —
moving back and forth between different phases is always required,
depending on the outcomes of each phase, and which phase or which
particular task of a phase has to be performed next. The overall process is
cyclic, iterative and continues after initial deployment of the results. The six
main phases are as follows.

1. Business Understanding, which focuses on understanding the project
objectives and requirements from a business perspective, and converting
this into a data mining problem definition and plan.

2. Data Understanding, which starts with data collection and includes
activities to discover first insights into the data, to detect interesting
subsets and form hypotheses about hidden information, and to identify
data quality problems. There is a strong element of 'playing' with the data
in this phase — the analyst can cut the data, visualise it, find out ranges
and perform analyses on it in many different ways. The result is a deeper
understanding of the data and clues for the next phases of the process:
for example, which features may be the most promising for further
analysis.

3. Data Preparation, which covers all activities to construct the final dataset
(data that will be fed into the modelling tool(s)) from the initial raw data.
Data preparation tasks are likely to be performed multiple times, and not
in any prescribed order.
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4. Modelling, where various techniques are selected and applied, and their
parameters are calibrated to optimal values. Typically, there are several
techniques for the same data mining problem type. Some techniques
have specific requirements on the form of data. Therefore, stepping back
to the data preparation phase is often needed.

5. Evaluation follows construction of a model (or models) that, from a data
analysis perspective, appears to have high quality. Before proceeding to
final deployment of the model, it is important to more thoroughly evaluate
the model and to review the steps executed to construct it, in order to be
certain that it properly achieves the business objectives.

6. Deployment is where the knowledge gained will need to be organised and
presented in a way that can be used, i.e. action can be taken.

Other data mining processes include the SAS Institute’s SEMMA, an acronym
for Sample, Explore, Modify, Model, Assess (see SEMMA). SEMMA is not a
data mining methodology in itself, and can be used within an overarching
framework such as CRISP-DM, where steps such as formulating a well-
defined business or research problem and assembling quality representative
data sources are critical to the overall success of a data mining project.

CRISP-DM, SEMMA and other methodologies and processes have typically
arisen to deal with data mining in relatively controlled and centralised
environments, for example, within an enterprise. As distributed computing and
grid technologies have developed, data mining is starting to be applied in
much more distributed and heterogeneous environments, where there is no
longer centralised control or enforcement of standards, practices and
processes. This is exactly the scenario in which DIID is likely to take place.

5. Enterprise information integration

Enterprise information integration is now regarded as fundamental to
corporate life, and is appearing in commercial and off-the-shelf products. Its
emphasis is on making the large amount of disparate information owned by a
typical enterprise indexable, searchable and behave like a single repository,
even though it may be physically distributed and highly heterogeneous.

An example of this type of tool is the IBM Information Integrator (see DB2II),
which enables searching of many different types of data, from databases to
text, and on different platforms, internal and the web. Information Integrator
also provides a single point of access with an SQL-like interface directly
connectable to data mining suites. The data mining is, however, still
centralised. Distributed data mining, performed across a network of
computers, and the mining of data within transaction processing systems,
where the data is changing with every transaction (e.g. stream data mining),
are emergent technologies in this area.

Page 12



6. Sequential and stream data

Data fusion algorithms can make use of data that is changing over time by
adding a time parameter to the calculations. There are several well-
established techniques for processing data which is sequential in time, for
instance, ARIMA (AutoRegressive Integrated moving Average; see e.g.
Pankratz 1983; Brockwell and Davis 1996) and GARCH (Generalised
AutoRegressive Conditional Heteroskedasticity, due to Bollerslev 1986; see
also Hamilton 1994), which can keep track of a changing mean and variance.

If a database or data source is changing over time, the addition of time series
in data mining allows the discovery of rules that concern not only a set of
antecedents, but also their order in time (their sequence). An example quoted
by Masseglia et al. (2003) is that if someone rents the film Star Wars, followed
by The Empire Strikes Back, there is a high chance that they will rent Return
of the Jedi. Here, we can see the sequence of operations in the rental of the
films in the antecedent. In this example, the rule will only become relevant
after rental of The Empire Strikes Back, which is a subsequent event to rental
of Star Wars. The body of discovered knowledge will also change over time as
more events are added to the database. Masseglia et al. (2003) propose an
algorithm named ISE (Incremental Sequence Extraction) that computes the
frequent sequences in the updated database when new transactions and new
customers are added to the original database.

The sequential aspect is also represented in stream-based data mining. This
is where the data arrives as a stream, and a goal can be the detection of
abnormalities in this stream. An example is in stock market share prices (Zhu
and Shasha 2003), which are streamed to their consumers. Zhu and Shasha
(2003) present an algorithm that uses a window of varying width, which is
applied over the data stream to determine trends in the data. For example,
how is a particular stock changing over time? We have its value over history,
and when we get a new value, the trend will be adjusted given this new
information. We may have a trigger that uses the gradient of the price change
to determine if we buy or sell that stock.

The temporal aspect of data fusion and mining is highly relevant to DIID, as
the detection of disease may occur in the change pattern of the source data
rather than patterns found in static datasets.

7. Unstructured data

Well-established data mining techniques require the data to be structured into
records with clearly defined data types and to be accessible as a single,
authoritative source integrated from distributed (and possibly differently
structured) databases. However, in addition to the structured data sources
(e.g. record-based, forms, fields-with-values) that have fed traditional data
mining systems and algorithms, a wealth of information is stored in
unstructured data, and these sources are likely to contribute enormously to
DIID.
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There is much interest in applying search technology developed for the web to
the files on a computer (e.g. Google Desktop). Tools such as these specialise
in unstructured searches of many different types of data on a user's computer,
including files of many formats, email and also web searches. Thus, the user
can run queries on data without caring what format the data is in.

7.1 Computational linguistics and text mining

Computational linguistics and text mining are essential techniques for working
with unstructured text and natural speech. This is a valuable capability for
DIID.

Computational linguistics has been an active field of research for some 40
years. The aim is to create machines that can understand and generate
natural language. Early work focused on surface-level and syntactic analysis,
distinguishing abbreviations and sentence boundaries, identifying structured
information such as time and date, and determining how words are combined
to form a grammatical sentence. More recent work has been concerned with
semantic analysis, determining and representing the meaning of words,
sentences or texts, identifying people, locations, concepts and their
relationships. The techniques have been widely applied to intelligence
gathering, information retrieval and translation, for example.

The ability to extract information from different languages and present the
result in a single language has been identified by the US Government as one
of the grand challenges in national security (see GALE project). The Topic
Detection and Tracking (TDT) and Message Understanding Competitions
(MUC) have contributed to the rapid development of information extraction
and retrieval technologies in recent years (see NIST for further information).
Current systems can identify structured information (e.g. time, date, address),
named entities (e.g. organisations, people, places), concepts (e.g. actions,
objects) and their relationships (e.g. ‘he’, ‘she’, ‘it’ or ‘they’ references) in
unstructured text (see ACL for further information). Existing solutions are
typically domain-dependent. The research challenge is open domain, multi-
lingual information extraction: a system that can understand everything in
many languages.

Text mining is an increasingly mature field of research (Hearst 1999). State-
of-the-art systems use information extraction technologies to gather structured
information from free text (e.g. personal names), and information retrieval
technologies to relate documents in a text collection, thus discovering new
knowledge (e.g. friends of a friend). Text mining has been applied to
bioscience literature to discover causes of rare diseases (Swanson and
Smalheiser 1997) and biomedical literature to discover medically interesting
genes (see BioText). Chung and& McLeod (2003) describe a topic mining
framework that supports the identification of meaningful topics (themes) from
news stream data. It aims to utilise the mapping from news feeds to content
descriptions (ontologies) in order to determine the higher-level meanings of
the stories. This involves clustering and hierarchical document searching in
order to provide classifications that can be mapped onto the ontologies.
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Advances in computational linguistics and text mining will enable an
automated system to gather up-to-date information in a variety of languages
from unstructured information sources and generate a translated summary of
the information to aid decision support.

7.2 Multimedia content

Much of the data used in DIID will be non-textual, for example, satellite
imagery, video surveillance footage, or photographs of the symptoms of a
disease in the various stages of its lifecycle. As a result, image and video
processing using content-based analysis techniques are likely to become
significant features of data mining in DIID. Some examples are: automatically
analysing satellite images to detect regions of crop failure based on colour;
detecting body temperature anomalies using infrared video as people move
through airports or other public places; and automatic diagnosis of a condition
by analysing photographs of skin lesions and comparing them with known
cases in a database. Analysis of video surveillance footage has already been
applied to situations relevant to DIID, including surveillance in public transport
(Sun 2004), and image analysis has been used as the basis for automated
condition classification (Lewis 2004).

Image processing is a subset of the wider field of signal processing, and also
forms the functional Level 0 of data fusion. Data fusion techniques would
rarely be applied directly to raw image data because of the complexity
involved in making inferences using such a large amount of data. Typically,
image data is pre-processed using standard segmentation techniques before
data fusion is applied.

Image and video processing is a large and active research field, and we do
not review it in detail here. The state of the art can be assessed by examining
the topics of discussion and paper presentations at international conferences
in this area, including the Conference of Image and Video Retrieval (see
CIVR), an international forum for discussing research challenges and
exchanging ideas among researchers and practitioners in image/video
retrieval technologies. It addresses innovative research in the broad field of
image and video retrieval. A unique feature of the conference is the high level
of participation from practitioners.

There is also significant activity at the European level through several projects
supported by the European Commission, including: SCHEMA (see SCHEMA
project) which aims to bring together a critical mass of industrial partners, end
users, universities and research centres in order to improve the systematic
exchange of information on content-based semantic scene analysis and&
information retrieval; AceMedia (see AceMedia project) which is developing
and implementing a system based on an innovative concept of knowledge-
assisted, adaptive multimedia content management; and PrestoSpace
(PrestoSpace project), which aims to apply image processing to particular
problems such as indexing and the retrieval of audiovisual material.

A good survey of the underlying techniques used for content analysis can be
found in the PrestoSpace report on the State of the Art of Content Analysis
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Tools for Video, Audio and Speech (Bailer et al 2005), a survey of the tools
and algorithms for analysis of audiovisual content for the purpose of metadata
extraction.

Applications of image processing include video processing (for example, shot
boundary detection and motion tracking), as well as analysis of single images
(for example, Content Based Image Retrieval in large image libraries). Image
processing techniques are often used to extract features that represent a
particular aspect of an image in a compact and machine-processable form.
These features can be used, for example, to measure the similarity between
images as part of content-based retrieval. Also referred to as content
descriptors, they can be generated at several levels. At the lowest level,
image analysis is used to produce basic descriptors of colour (in various
colour spaces), texture (repeating patterns in the image), and shape (for
example, boundary and contour detection).

Lower-level descriptors are then used to extract higher-level features, for
example, salient region identification and image segmentation. Image
segmentation uses lower-level features such as edge detection and colour to
segment an image into regions that are relatively uniform. Segmentation is
often used as the basis for differentiating between foreground and background
objects within images. Segmentation can be applied in a hierarchical (tree-
like) scheme to segment at increasingly finer granularity. Image analysis can
also be tailored to specific application areas such as human face location. In
the case of face location within an image, a range of descriptors are used, for
example, colour as the basis of segmenting an area with human skin tones
and then looking for specific features within this region, e.g. changes in
intensity to locate the eyes.

It should be noted that image descriptors extract information such as colour,
shape, texture, segments; they do not identify the domain semantics of the
subject matter of an image. For example, image analysis can detect a disc of
a white or yellow colour within an image, but cannot determine whether this is
the sun, the moon, a tennis ball, or the top view of a round cheese.

Bridging the semantic gap between the image analysis domain and the user's
application domain is one of the major problems of image classification and
content-based search and retrieval. Techniques do exist to help bridge this
gap, but these are relatively immature compared with the larger body of work
on content descriptors. In general, supervised learning techniques (e.g.
training of neural networks) are used with an example set of images with
known application-domain semantics to build classifiers that can label images
based on the value of one or more content descriptors.

Instead of developing ever more sophisticated content descriptors, one
approach to the problem of 'bridging the semantic gap' is to propagate existing
human annotations, e.g. semantic annotations extracted from existing textual
descriptions, across a collection of content items. We rely on people to
describe the semantics of a subset of images or video, either by providing
new annotations, or by using existing metadata. These human-authored
annotations are then propagated to similar items in a database. Propagation is
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done via content-based analysis to identify similar items. In this way, content
analysis is not used to attach semantics to content per se, but instead to
propagate high-quality, manual annotations from items with known semantics
to items that need further semantic annotation.

The semantic gap in the field of image and video content-based analysis is
clearly a research challenge that needs to be addressed if these techniques
are to be successfully applied in DIID. There is a considerable gap to bridge,
for example, between the low-level information that can be extracted from
colour-based segmentation of satellite images and the application-domain
semantics of failing crops or animal migration, which might be the purpose for
analysing the images in a DIID scenatrio.

8. Distributed data fusion and mining

As distributed computing and grid technologies have developed, data fusion
and mining is starting to be applied in far more heterogeneous environments.
As this is exactly the scenario in which DIID is likely to take place,
developments in this area are particularly relevant.

8.1 Web mining

The web is a massive source of information. To attempt to mine this huge
resource is an obvious target, and this is a current field of research. There are
three different types of web mining (Liu 2004):

e web content mining, where the actual content of web pages is analysed

¢ web usage mining, where common patterns of the web’s usage are found
from access logs

e web structure mining, where the focus is on deriving patterns from the
structure of the hyperlinks in the web pages.

8.2 Web content mining

Web content mining offers considerable opportunities and presents
considerable challenges due to its characteristics. These are discussed
below, paraphrased and adapted from Liu (2004).

e There is a huge amount of information on the web. This is probably the
main driver for web content mining, coupled with the fact that it is easily
accessible.

e On the web, there is information about almost anything. Again, this is a
primary driver for web content mining.

e There exist many different data types, often on the same page (for
example, plain text, multimedia, tables, etc.).

e A great deal of information on the web is redundant, i.e. it is repeated in
many pages.
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e The web is very noisy. A page may contain irrelevant information (for
example, adverts, or links to unrelated subjects). Sorting the useful
information from the useless is a considerable challenge (especially as the
concept of ‘useful’ depends on one’s point of view).

e The web is dynamic; it is always changing. What is present and relevant
today may be gone or out of date tomorrow.

e Above all, the web is a community. It represents society more than it
represents information, data and computers. Many lessons regarding
society can be learned from the web. However, there are downsides due to
its societal nature. Anyone can author and host a page containing
erroneous information, and if this is relied on in mining, there will be
problems. A useful counter measure to this problem is the redundancy
feature of the web highlighted above. If a fact can be cross-checked, a
consensus can be formed. Wikipedia (see Wikipedia project) is an
interesting reflection of this and promotes self-regulation. Anyone can alter
an article, but everyone is free to dispute what someone else has written,
thus promoting a consensus on a particular topic.

8.3 Web usage mining

In general, web mining involves the automatic discovery of user access
patterns from one or more web servers. An overview and taxonomy of the
applications of web usage mining is presented by Srivastava (2000). Briefly,
they are: personalisation (target marketing for e-commerce sites); system
improvement (determine usage patterns with the aim of improving
performance and other service quality attributes); site modification (the
improvement of sites’ design based on feedback from user patterns); and
business intelligence (how the customers are using a site).

Note that, when dealing with usage data that may be tracked back to
individuals, privacy issues are important, and data protection guidelines
should be adhered to.

8.4  Web structure mining

Much less work has been done regarding web structure mining, but a large
part of what has been done involves considering hyperlinks in terms of
graphs. Desikan (2004) considers this with the added dimension of time, and
how the link structure can change over time.

8.5 Grid-based data fusion and mining

The term ‘grid computing’ originated in the early 1990s as a metaphor for
making computer power as easy to access as an electricity distribution grid.
The original view of grid computing in e-Science was to use the resources of
many separate computers connected by a network (usually the internet) to
solve large-scale computation problems. Many people still identify grid
computing solely with 'number-crunching’, but for some years the term has
embraced all kinds of networked resources, notably data. Today, there are
many definitions of grid computing (see e.g. Grid Computing Wikipedia), and
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unfortunately the term has been adopted for marketing purposes by vendors,
e.g. to describe software for cluster computing. But the sharing of resources
across administrative domains sets grid computing apart from traditional
computer clusters or traditional distributed computing.

An oft-cited definition (Foster et al., 2001) is ‘flexible, secure, coordinated
resource-sharing among dynamic collections of individuals, institutions, and
resources’. We say that: ‘Grid computing involves sharing heterogeneous
resources which are under different ownership or control, over a network
using open standards.’ In short, it involves virtualising computing resources.

Grid computing is clearly of enormous importance to DIID. It is the subject of
much current research and development (R&D), but, in itself per se, it is
outside the scope of this review, and we confine our attention to some
especially relevant work.

There is as yet little published research on grid-based data fusion, though grid
computing clearly has great potential as an enabling technology for
decentralised data fusion: see e.g. the ESA SpaceGRID project (Marchetti et
al. 2002), the Foresight DARP ARGUS Il project (ARGUS II), the ESRC INWA
project (INWA) and the NASA GENESIS project (Wilson 2005).

Gathering all relevant data in one data warehouse is unlikely to be fruitful for
the vast amount of disparate time-varying data needed for DIID. Middleware
to facilitate access and integration of data from separate sources is therefore
a key requirement which is being addressed by e.g. the Open Grid Services
Architecture Data Access and Integration project (see OGSA-DAI project).
This is supported by several current grid middleware projects (see Globus,
GRIA and OMI).

Grid-based data mining, and the workflow necessary to orchestrate it, is at the
leading edge of current work.. (Au et al. 2004) describe work done in the
Discovery Net e-Science project (see Discovery Net project), and highlights
the following major benefits:

e Data from disparate sources may be mined and patterns found in the data
as a whole rather than in its source components.

e Workflows can dynamically integrate many different (non-co-located) data
and analysis services.

e The large computational resources available to a grid user permit different
(more computationally intensive) analyses.

Discovery Net has already been applied in areas relevant to DIID, including
SARS (Curcin et al. 2004), crop monitoring (Hassard et al. 2004), urban air
pollution (Ghanem et al. 2004) and processing of satellite imagery (Liu et al.
2003). In each case, an e-Science data analysis process has been developed
for a scientific knowledge discovery process conducted in an open
environment and making use of distributed data and resources.
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In the study of urban air pollution (Au et al. 2004), a sensor array generates
huge amounts of data, and the large number of computational resources
available on a grid is ideal for processing this data and also permits the
correlation with other data sources of different types (for example, weather on
the day of collection, traffic concentration, and a wide variety of data about the
population’s health).

In the analysis of the evolution of the SARS epidemic (Curcin et al. 2004),
multiple sources of data were used and integrated into a workflow that
correlated aspects of the data from the different sources. This workflow
combines elements of data mining and grid computing:

e The data is gathered from disparate sources, filtered and cleaned.
e Visualisation tools are used when needed to explore the data.

e Computation is outsourced where required to remote compute clusters on
a grid, thus providing considerable reductions in execution time.

The DataMiningGrid project (see DataMiningGrid project) recognises that,
currently, there is no coherent framework for developing and deploying data
mining applications on a grid. It is addressing this gap by developing generic
and sector-independent data mining tools and services for grid computing. To
demonstrate the technology developed, the project is implementing a range of
demonstrator applications in e-Science and e-Business.

DataMiningGrid has identified a set of requirements (Stankovski and Trnkoczy
2004) that need to be addressed. Requirements areas include: identifying
(locating) resources by using metadata; accessing and selecting subsets of
data; data transfer; data (pre-) processing; and data mining tasks. These can
immediately be seen to align with the data mining processes and
methodologies outlined earlier. However, DataMiningGrid also identifies
further requirements that are concerned with the wider issues of finding data
sources, moving data, and the need for security. These include: text mining
and ontology learning; workflow editing and submission; data privacy, security
and governance; integration of domain knowledge, grid infrastructure and
middleware functionality; usability, response times and user-friendliness.

DataMiningGrid has also identified a set of challenges and issues for grid-
based data mining (Stankovski and Trnkoczy 2004), including the problems of
distributed data, distributed operations, and data privacy, security, and
governance.

Grid-based data mining operations must be orchestrated in a workflow, with
data passing between them in such a way that the operations can use the
data. This means that there must be published interfaces, so that the data
may be transformed in such a way that the operations may run.

Given that data is under the control of its owner, another party including it in a
workflow is relying on the data owner to keep the data available and accurate.
If the workflow is saved, and the data is required again, how can users
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executing the workflow be sure that they will be retrieving the same data as
the first time the workflow was enacted?

We note that there is, as yet, no established best practice for building secure
systems or detecting security breaches in distributed, multi-owner systems
like grids. This is a key research challenge that has only just begun to be
addressed (see e.g. Surridge 2002; Herveg et al. 2004).

Privacy is an issue of sufficient relevance and magnitude to merit discussion
at length.

9. Privacy

There is a considerable ongoing debate about breaching privacy with data
fusion and mining. Central to this is what is known as the inference problem,
described by Farkas (2002). This is the situation whereby a user may deduce
sensitive information from raw data that is essentially public. For example, a
set of employees’ names and a set of numbers representing salaries may be
published separately. However, if it were possible to infer which employee
earned which salary, the result would be private. Such problems are highly
complex and involve technology, sociology and law (Thuraisingham 2002).
The debate has intensified post-9/11 as counterterrorism and civil liberties
advocates argue from both sides. Whatever conclusions are reached from
time to time will crucially influence the progress and adoption of data fusion
and mining in circumstances where privacy is an issue.

An architecture has been proposed for privacy considerations to be integral to
database design in the so-called ‘Hippocratic Database’ (Agrawal 2002). This
takes its name from the Hippocratic Oath, whereby medical doctors swear
they will keep confidential anything discovered as a result of their professional
relationship with a patient, thus protecting the patient’s privacy regarding their
health. The Hippocratic Database takes its basic principles from the OECD
data protection guidelines (OECD 1980). Countries around the world have
used these as the basis for data protection laws. The principles, adapted for
the Hippocratic Database, are listed below and are quoted verbatim from
Agrawal (2002).

1. Purpose Specification. For personal information stored in the database,
the purposes for which the information has been collected shall be
associated with that information.

2. Consent. The purposes associated with personal information shall have
consent of the donor of the personal information.

3. Limited Collection. The personal information collected shall be limited to
the minimum necessary for accomplishing the specified purposes.

4. Limited Use. The database shall run only those queries that are consistent
with the purposes for which the information has been collected.
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5. Limited Disclosure. The personal information stored in the database shall
not be communicated outside the database for purposes other than those
for which there is consent from the donor of the information.

6. Limited Retention. Personal information shall be retained only as long as
necessary for the fulfilment of the purposes for which it has been
collected.

7. Accuracy. Personal information stored in the database shall be accurate
and up-to-date.

8. Safety. Personal information shall be protected by security safeguards
against theft and other misappropriations.

9. Openness. A donor shall be able to access all information about the donor
stored in the database.

10. Compliance. A donor shall be able to verify compliance with the above
principles. Similarly, the database shall be able to address a challenge
concerning compliance.

Central to the architecture is the concept of purpose — the purpose for which
the data is accessed. In compliance with the OECD data protection
guidelines, this must be stated and available to the person the data
represents. An example of a purpose could be the purchase of a book from an
online bookseller. To complete the transaction, the bookseller needs to know
certain information (namely, the customer’'s name, address, credit card
number and the book they want). The OECD guidelines also state that the
data must not be kept for longer than the stated purpose. If the only purpose
is the purchase of a book, the bookseller is obliged to delete the data as soon
as the transaction has been completed. (In reality, this may be impractical for
customers, since they have to re-enter their address every time they want to
buy a book. So, in this instance, there may be another purpose, namely
registration. This has a different lifetime than the purchase, namely the lifetime
of a customer’s relationship with the bookseller).

Work has continued using the Hippocratic Database concept, and has
resulted in IBM’s Hippocratic Database Technology (HDB), described by
Agrawal (2005). This is a commercial product based on the Hippocratic
Database Architecture.

In terms of security in grid computing, we note that there is, as yet, no
established best practice for building secure systems or for detecting security
breaches in distributed, multi-owner systems like grids. This is a key research
challenge which has only just begun to be addressed (see e.g. Surridge 2002,
Herveg et al. 2004).

Privacy is most acute in distributed data fusion and mining due to the very
distribution of data. Once data has been released to a third party it is no

longer completely under the control of its owner, and thus the potential for
violations is magnified. The inference problem is also magnified. The data

Page 22



owner may not necessarily know with which other data theirs will be cross-
referenced and thus has no way of knowing which patterns will emerge. The
only simple solution is to ensure that any data used for distributed data fusion
and mining is not personal data. Otherwise, data fusion and mining activities
will have to be highly specific and have informed consent from the individuals
concerned.

10. Provenance

The provenance of data is of paramount importance for DIID, as itis a
measure of the credibility and reliability of the data. In essence, it is an audit
trail of where the data originated and any transformation it has undergone.

Mark-up languages, such as XML and its derivatives, and their use for
metadata, are key to self-describing datasets. Provenance information may
mark up the data it applies to, and thus will be carried with the data, but
validating and using provenance metadata is a significant challenge.

For example, the internet is a largely unregulated community. Anyone can
author and host a web page that may contain erroneous information.
Establishing the provenance of the page enables one to rely on the
information contained within it. However, this is seldom straightforward.

Provenance is also extremely important to the e-Science community and is
the focus of a great deal of current work. The research agenda is to provide
mechanisms that allow information to be proven and trusted. This means that
the history of the information, including the processes that created and
modified it, are documented in a way that can be inspected, validated and
reasoned about by authorised users who need to ensure that information
controls have not been altered, abused or tampered with (see e.g. the
PROVENANCE project).

In the myGrid project (see myGrid project), data is generated by experiments
and its provenance is measured in two ways: its derivation path (i.e. how the
data was created); and annotation (a means of adding notes relevant to the
data, for example, when it was updated, what was changed, who changed it,
etc). (Greenwood et al. (2003;) Zhao et al. 2004). As the data progresses
through a workflow, annotations can be added describing the transformations,
or, if new data is generated, derivation paths must be added to the new data.

11. Realising the vision of DIID

Effective DIID will only become a reality when the underlying challenges
outlined below are addressed in a cohesive way by the research community.
Many of these challenges are shared by other domains where intensive
research is already underway, for example, in e-Science, autonomic systems
and pervasive computing.
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The advancement of DIID needs to build on, combine and stimulate further
work in these research communities. In this section, we review the major
challenges of DIID, identify the research communities that are addressing
some of these challenges, and enumerate some of the key enabling
technologies that are emerging from these communities.

11.1 The challenges of DIID

Data generation. The results of fusion and mining can be expected to feed
back into sensors and collection. For example, a sensor network
configuration and the data it collects might be altered in response to the
data needed for a particular mining scenario or the development and
calibration of an epidemiological model. Sensors will need to be adjusted
or added to a DIID scenario as it unfolds, which creates new challenges of
how to do this in real time and in a way that is integrated into the process
of analysis or hypothesis testing.

Discovery, integration and semantic mapping. Inputs to data fusion and
mining for DIID are wide-ranging and include biosensing, remote sensing,
global positioning systems (GPS) and tracking, web content, and hospital
records, to name but a few. Each new DIID scenario will raise questions of
what data to collect, how to combine more than one source of data, and
how to analyse that data. Integrative models will emerge to combine data
at various scales, from earth observation down to cellular function and
genetics. Such a wide range of heterogeneous and distributed data
sources creates real challenges for locating and combining relevant data
sources. Achieving interoperability between data sources through well-
defined semantics is an essential yet challenging part of this process.

Trust and provenance. Support for provenance is a fundamental
requirement to enable a scientific approach to be taken to DIID.
Provenance covers: data sources (what the data is, where it came from,
and its quality and accuracy); analysis processes (who did what using the
data, and what tools and methods they adopted); and derived results (what
conclusions were drawn, what interpretations were made, and confidence
levels). In addition to a DIID infrastructure that records provenance, there
is a need for policies and processes that ensure provenance recording and
provenance assessment in DIID.

Privacy and security. Distributed and unstructured data in multi-owner and
distributed systems creates major challenges for privacy and security.
Flexible but highly managed control over who can access what data, and
how they can use it, is needed. Distributed, dynamic and semantic-based
security is a major challenge.

Distribution, optimisation and robustness. The data sources for fusion and
mining are manifold, highly distributed, heterogeneous, with variable
reliability, and do not have guaranteed availability. The volumes of data are
potentially huge, and there will be many computationally intensive
processing steps that need to be applied. Centralising the data and the
computation is not a scalable or robust option. Distributed approaches will
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be required that are resilient to failures or disruption to networks, data
sources, analysis services (overload, deliberate attack, censorship of
information, quarantine of sources etc.). This, in turn, requires processes
and strategies distributing the steps in DIID and optimising the use of
resources.

e Collaborative and team-based approaches. Collaborative approaches to
DIID will be necessary to combine the expertise of various geographically
distributed experts and analysts and to bring this to bear on a particular
DIID scenario. This requires the assembly, operation and management of
distributed collaborations supported by tools and infrastructure for
collaborative working.

e Agile systems and methods. The data that needs to be captured for DIID
and how it needs to be analysed will change over time, for example, as a
disease spreads. Changes will include geographical areas, data volumes,
and the type of data required. Interpretation of data sources will change as
the provenance and reliability of data becomes clearer, or when further
scientific research is done on the cause and origin of a disease, which
changes the initial interpretation of the data. The dynamics of DIID (e.g.
the transition from a monitoring phase to the outbreak of an epidemic)
require agile use of data fusion and mining — very different from most
current applications, which have relatively static geographies, sensor
configurations, data types and data volumes.

¢ Methodologies and best practice. There is normally a delay between the
development and establishment of new tools and infrastructure and the
development of methodologies and processes for best use of those tools
and infrastructure. Whilst methodologies and processes exist for both data
fusion and data mining, a unified and integrated approach has yet to be
developed to cover both. The need for appropriate best practice in
distributed data mining is becoming evident, just as it did for enterprise
data mining in the late 1990s.

11.2 Research communities and technologies

Many of the challenges faced in DIID are currently research topics in the e-
Science, autonomic computing, agent, semantic grid, and pervasive networks
and computing communities. Relevant research is being carried out in
universities, defence and other government research agencies, and in medical
and health protection, aerospace, automotive and robotics communities
worldwide.

e-Science is an exemplar research community that is tackling many of the
same challenges faced by DIID. e-Science refers to the large-scale science
that is increasingly carried out through distributed global collaborations
enabled by the internet. . Typically, a feature of such collaborative scientific
enterprises is that they will require access to very large data collections, very
large-scale computing resources and high-performance visualisation. e-
Science addresses many of the issues relevant to data fusion and mining in
DIID. For example, myGrid, Integrative Biology (Gavaghan et al. 2004) and

Page 25



Discovery Net (DiscoveryNet project) are UK e-Science projects undertaking
computer science research into how data-intensive scientific analysis activities
can be supported by grid and knowledge technologies. In each case, an e-
Science data analysis process has been developed for scientific knowledge
discovery conducted in an open environment making use of distributed data
and resources.

The key challenges in data analysis for DIID will be addressed by combining a
number of emergent software technologies. Data fusion and mining systems
have hitherto been static client/server-orientated architectures. Distributed,
dynamic, autonomous, intelligent data fusion and mining will be possible
through the integration of current research activities. This is likely to be in a
service-oriented architecture (SOA), in which resources are made available as
independent services that are accessed in a standardised way. Web services
are the leading current technology, but one can implement SOA using any
service-based technology.

11.2.1 Web services

Web services provide access to modern and legacy systems through XML
protocols, such as SOAP over the web. Web services are now at a stage
where data can be transmitted between heterogeneous systems while
maintaining data integrity and confidentiality (see WS-Policy, WS-Security
Policy). Workflow standards such as BPEL4WS (Business Process Execution
Language for Web Services) describe how to tie together different web
services, for example, in automatic business processing systems. UDDI
(Universal Description, Discovery and Integration protocol) adds the ability to
discover services through centralised repositories.

11.2.2 Workflow

There is an active research community concerned with how to support
scientific workflows involving data processing, in particular using data from
multiple, distributed and heterogeneous sources. Examples include: the
Taverna workflow workbench (Oinn et al. 2004), which includes support for
semantic service discovery and provenance; the Kepler workflow system
(Altintas et al. 2004), developed for scientists with a range of interests and
built on Ptolemy Il (Ptolemy project); the Triana data analysis problem-solving
environment (Shields and Taylor 2004); Geodise (Jiao et al 2004), which has
a focus on engineering design search and optimisation; and Pegasus (Gil et
al. 2004) which abstracts the user from the detail of workflow design. This
collective body of research forms the building blocks for developing
processes, systems and best practice for the agile analysis systems needed
for data mining and data fusion in DIID.

11.2.3 Semantic web

‘The Semantic Web is an extension of the current Web in which information is
given well-defined meaning, better enabling computers and people to work in
cooperation’ (Berners-Lee 2001). The aim of the semantic web is to enhance
the web with metadata that is machine-readable. This metadata can then be
searched for and aggregated with existing knowledge.
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By far the most promising aspect of the semantic web is the use of ontologies
for describing domains of knowledge. Ontologies are used as the basis for
semantic inferencing, where new, implicit knowledge can be generated from
existing, explicit knowledge using rule-based systems. These techniques are
beginning to be researched in areas relevant to DIID (see e.g. Crubézy et al.
2005).

Currently, two competing standards exist for representing data on the
semantic web, namely the Resource Description Framework (RDF) and Topic
Maps. The Web Ontology Language (OWL) is the only description logic
standard.

The semantic web has the potential to help solve the interoperability problems
that exist in DIID. Semantic mark-up provides a semi-structured and
standardised format for data interchange; ontologies provide formal semantics
for concepts and relationships in datasets as well as semantic interoperability;
and semantic inferencing yields new knowledge.

11.2.4 Semantic web services

Semantic web services extend basic web services. Such services are
accompanied by a semantic description, written in an OWL-based Web
Service Ontology (OWL-S), which helps find services of a certain type and
can also help dynamically create new services. Whilst many semantic web
services exist, these tend to be rather simple, reflecting the learning curve
required to utilise semantic frameworks effectively. Currently, the Semantic
Web Services Framework (SWSF) appears to be the future path for semantic
web service development.

11.2.5 Grid services

Unlike web services, which tend to exist in isolated environments within
organisations, grid services are intended to be deployed within virtual
organisations. Grid services can be viewed as web services that hold state
that can be referenced by other grid Services within the virtual organisation.
The Web Service Resource Framework (WSRF) is the proposed definition of
an open framework for modelling and accessing stateful resources using web
services.

11.2.6 Semantic grid services

The semantic grid is the anticipated result of research by both grid and
semantic web communities. Described by De Roure et al. (2003, 2005), the
semantic grid is envisioned as an extension of the current grid, in which
information and services are given well-defined meaning, better enabling
computers and people to work in co-operation.

Advances in semantic web technology will allow grid services to include
semantic inferencing. This will be especially useful for data fusion and mining,
as computational overhead could be reduced through intelligent resource
management and task decomposition.
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11.2.7 Peer-to-peer networks

Peer-to-peer (P2P) networks go beyond the classic client/server paradigm,
treating a computer on a network as both a consumer and producer of
services or resources. Since each peer on the network can serve and
consume, the emergent behaviour of the system normally leads to higher
availability of services and resources — a highly desirable feature for DIID.

Availability is an important issue, especially when we consider the increased
occurrences of Denial-of-Service (DoS) attacks against corporate and public
web-hosted services. Effective DIID demands access to data and to services
that perform the required data fusion or mining when needed. P2P systems
like BitTorrent (Cohen 2003) alleviate the effects of DoS for file sharing, which
could also be applicable for service-based architectures for DIID.

P2P networks are also highly dynamic, allowing peers to join and leave the
network quickly and painlessly. File-sharing networks are among the most
successful P2P systems. Popular files maintain high availability due to the
number of peers holding portions or full copies of that file.

It should be perfectly feasible for future P2P networks to provide many of the
features that exist in SOAs of all flavours (web, grid, semantic web, semantic
grid, etc.).

11.2.8 Agent-based systems

Agent-based computing is also a service-oriented model, in which software
agents can be the producers, consumers and brokers of services. An agent is
defined as ‘an encapsulated computer system that is situated in some
environment, and that is capable of flexible, autonomous action in that
environment in order to meet its design objectives’ (Wooldridge 1997).

De Roure et al. (2005) argue that the autonomous behaviour and other
qualities of multi-agent systems are vital to realise virtual organisations (VO)
in grid computing. Foster el al. (2004) note a convergence of interests in the
grid and agent communities. Grid computing requires the autonomous nature
of agents, while agents require a robust infrastructure.

Agents or the agent philosophy would be applicable for deployment in a DIID
environment, especially considering the dynamic and autonomous decision
making that components in such a system would be required to make.

11.2.9 Autonomic Computing

Autonomic computing is a systemic view of computing modelled on self-
regulating biological systems (IBM 2001). Its aim is to overcome the rapidly
growing complexity of modern computer systems and to help enable further
growth. This growing complexity is seen as the limiting factor to future
development.

At the core of autonomic computing is the concept of closed-control loops, a
well-known term taken from process control theory. Control loops are used to
manage selected resources that automatically self-regulate to maintain
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parameters within a predefined range. Furthermore, autonomic computing
systems are characterised as being self-configuring. They are able to adapt
automatically in dynamic environments. They are self-healing: able to
discover, diagnose and react to disruptions. They are self-optimising: able to
monitor and tune resources automatically. And they are self-protecting: able to
anticipate, detect, identify and protect themselves from attack, independent of
location (Ganek and Corbi 2003). Work in this field has led IBM to release an
autonomic computing toolkit and to integrate a number of autonomic features
into their enterprise product range.

11.2.10 Blogs, Wikis and collaborative personal communication

There is an implicit expectation that the discovery of the spread of infectious
diseases will be through analysing clinical and biosensor data. However, the
rapid spread of disruptive technologies such as Blogs and Wikis and new
collaborative means for personal communication will also be important
sources — perhaps the most important. Using these new technologies, people
share a wide range of personal information including health matters and
medical concerns. Such publicly -accessible information is becoming
universally available. The dynamic social networks by which it spreads can be
analysed and may reveal the emergence of new diseases much more rapidly
than any other method. Targeted analysis of clinical and biosensor data may
then be used to discover if there is any substance behind the concerns being
expressed in the personal communications. This is clearly a worthwhile area
for further research.

12. The future

The detection and identification of infectious disease through distributed data
fusion and data mining creates many challenges. Intelligent and agile
semantic data integration is needed in order to deal with the complexity and
heterogeneity of DIID data. Distributed processing, analysis and knowledge
management techniques are the only way to solve the problem of such large
and dynamic datasets. New methodologies, processes and best practice have
to be developed to ensure confidence in the results. Last, but certainly not
least, privacy, trust, provenance and security are bedrocks for addressing the
wider issues of ethics, sovereignty, data protection, freedom of information,
and other rights and obligations when detecting, collecting and processing the
data involved in DIID.

We believe that the underpinning processing power, data storage and network
bandwidth will continue to increase for many years to come. When current
technologies reach physical limits, new technologies such as quantum
computing and holographic storage will come into play. These will not only
enable ever-increasing volumes of data to be collected and stored, but will
also underpin the use of new software technologies to analyse it.

While available processing power will continue to increase, the explosion in
data volumes will nevertheless require advances in computational efficiency.
Many data fusion and mining algorithms are computationally expensive. If
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massive amounts of data are being analysed, large amounts of computing will
be required on demand. Grid computing is an emergent solution, but much
remains to be done before we can readily share heterogeneous resources
that are under different ownership or control.

Intelligent semantic web services and grid services will find patterns in
massive datasets from remote sensors, news feeds and publicly accessible
personal communications. Massive distributed systems in dynamic, virtual
organisations will deliver the required analytical capability. Grid systems will
allow for automated load balancing of tasks, and workflow engines will help
choreograph task decomposition. Agents will be important in dynamic and
autonomous environments, especially if coupled with sensor networks. Agents
will be used in conjunction with grid and semantic web technologies to
produce intelligent and robust services that can reason about data being
fused and mined.

Distributed data fusion and data mining using pervasive and grid techniques
will be truly enabled only when we have addressed one of the key challenges
in distributed computing: homogeneous access to, and use of, heterogeneous
data. Much remains to be achieved in enabling the analysis of unstructured
data, particularly multimedia data. Bridging semantic gaps, semantic mapping
and semantic interoperability are all key research areas.

Privacy and security will always be major factors in DIID. Increasing volumes
of distributed, unstructured and multi-owner data only serve to increase the
scale of the problem. What matters is who can access what and what they
can do with it in some defined context, not their logon credentials or what their
role is, or where they are or where the data is. Dynamic semantic security and
(business) process-based access control are among the research issues.
Web services and semantic web technologies present an opportunity to
introduce security as a fundamental aspect of shared information. Web
services have well-defined interfaces with message format and transport
specifications, including security headers for, among others, authentication
and encryption. Semantic web technologies provide a means to annotate
documents with machine-readable descriptions of their content and meaning,
including their relationships to other documents and resources. If these
mechanisms were applied to service security policies, they would become
semantically aware (based on the meaning or the contents of documents) and
dynamic (sensitive to the process or context in which access is requested).

No single technology or research focus taken in isolation will deliver clear
benefits. For example, the grid may bring efficient and scalable data fusion
and mining, but this will fall short of the truly autonomous computing that DIID
requires. However, once other technologies are added to the mix, there is the
long-term potential for powerful, intelligent systems that can analyse vast
datasets in remote locations, categorise information according to known,
agreed taxonomies, discover patterns using semantic inferencing, and reason
over the results to provide augmented cognition for decision support — all
achieved securely and reliably. It is a combination of technologies and the
interdisciplinary collaboration of a wide range of research communities that is
essential to the success of DIID.
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