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Abstract. Gait recognition has become a popular new biometric in the
last decade. Good recognition results have been achieved using different
gait techniques on several databases. However, not much attention has
been paid to get major questions: how good are biometrics data; how
many subjects are needed to cover diversity of population (hypothetical
or actual) in gait and how many samples per subject will give good rep-
resentation of similarities and differences in the gait of the same subject.
In this paper we try to answer these questions from the point of view of
statistical analysis not only for gait recognition but for other biometrics
as well. Though we do not think that we have a whole answer, we content
this is the start of the answer.

1 Introduction

Several biometrics databases were collected in the last decade and many good
recognition results have been reported in the literature. However, not much was
done to answer the questions will these results be valid for larger dataset? Some
studies include a measure of recognition uncertainty, which is a guide to perfor-
mance on a larger database and can serve to give confidence - the reliability of
results. How can these results be used to make conclusions about some popula-
tion? Is there enough data to get statistically significant results for chosen values
of Type I and II error? How does one design a new dataset to get statistically
significant results using available benchmark? In this paper we try to find some
answers to these questions. Previously several works were published which con-
cerned samples size [10, 9, 1, 5]. In this paper we use bounds on the minimum
number of samples that guarantees that our future datasets will provide a good
estimate of error rate using similar assumptions about distributions of error rates
as reported in [5]. We estimate sample size, number of subjects and number of
samples per subject assuming that the errors are independently distributed and
the binomial law can be approximated by the Normal law. We consider whether
some known databases have enough samples to make their results statistically
significant. Finally, we looked at how the size of population determines the num-
ber of subjects which required to obtain statistically significant results.

The paper is organised as follows. Section 2 presents problem formulation.
Formulas for calculating number of samples, number of subjects and number

* He who knows that enough is enough will always have enough. Lao Tzu



of samples per subject are given in Section 3. The design of future datasets is
summarized in Section 4. Section 5 verifyes results for some available databases.
How population size affects the required number of subjects is presented in
Section 6. Finally Section 7 concludes the paper.

2 Problem formulation

In biometrics, measurements are abstracted from sensor data. In vision-based
biometrics such as face, gait or palm-print recognition, measurements are de-
rived from image data which, say, reflect the topology of target features. When
multiple measurements are acquired and stored in a feature vector, each sub-
ject can be represented in a mutidimensional space; a 2D measurement space is
shown for convenience in Fig. 1. No assumptions have been made about distri-
bution of measurements and graphs are presented for illustration purpose only.
Graph a) shows a case when subjects are well separated and graph b) shows
more realistic case when feature spaces for different subjects are interconnect.
In this space there are a number of subjects for each of whom a number of
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Fig. 1. Possible feature locations for three different subjects (X, +,O) in 2D case

samples is taken. The complexity of biometric systems, and the need for stor-
age, can make it difficult to acquire multiple samples of biometric data. This is
complicated by the covariate structure which concerns factors which influence
the measurements or measurement process (and hence recognition capability),
but which do not influence the underlying identity of the subject. Should the
clusters of measurements, formed by the repeated sampling process, be separate
then recognition can be achieved. Recognition performance will suffer when the
variance of the clusters (the within-class variance) begins to exceed the variance
of the distance between the centres of the clusters (the between-class variance).
As such, the number of samples and the number of groups of samples contribute
to recognition performance, as do the variances already mentioned.



The number of subjects/ groups is clearly of interest since biometrics con-
cerns identity, and identity is unique. Consider the introduction of one extra
subject: if the new subject falls without the features already recorded then the
recognition performance is unlikely to be affected. If on the other hand the ex-
tra subject falls within the stored features, then recognition will be influenced
by proximity to other subjects. For simplicity, we shall assume that subjects
have the same number of samples per subject. The goal of a biometric system
is to reduce recognition error by as much as possible for the sample population,
whilst leading to a more general conclusion for a larger population. The errors in
recognition (the misclassifications by the biometric system) can be represented
by a function of the feature vectors obtained for each subject. The dependancy
between biometric feature vectors and recognition errors is shown in Fig. 2 where
the recognition errors are binary.
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Fig. 2. Recognition process of gait data

Let X;;; will be fth feature for jth repeated samples of ith subject with f =
1,..., Ny, Ny is a number of features, i = 1,..., N,, IV, is a number of subjects
and j = 1,...,n4, ng is a number of samples per subject and n = Nyn, is a
total number of samples per database. Let Z;; be a binary variable and represent
the recognition results for jth sample obtained for ith subject, i.e. Z;; = 1 if
there is a recognition error for jth sample of ith subject, and Z;; = 0 otherwise.
Z;; are binomially distributed with probability p;; of drawing 1 and (1 — p;;)
of drawing a 0, i.e. PT‘(ZZ‘j = 1|XU) = DPij and ij = [Xij]XZ‘jQ...XZ‘ij].
Then dependency between the probability p;; of drawing 1 and feature vectors
X;j. can be expressed using the logit model. The logistic transformation of the
probability of drawing 1 is given by

logit(pi;) = log(L). (1)

We now treat (1) as a link function in the generalized linear model framework



and obtained the loglit model

f=Ny
Dij
log(—l 7; -) =i = Bio + BuXijt + ... + Bin, Xijn, = E BigXijr,  (2)
ij =0

where XijO =1.
Solving for probability p;;:

=Ny
exp( fX_:O Bir Xijf)

Dij = .
f

L+exp( > BifXijr)
f=0

For all possible values of X and 3, the logistic transformation ensures that p
remains in the [0, 1] interval.
The average error rate for an individual ¢ will be calculated as

7Lg

. 1
pi=_— Z Zij, (4)
g j=1

where ¢ = 1,..., Ny and again the dependency between the average error rate
for individual 7 and variable Z;; can be written as a loglit model

j:ng
i Jj=ng exp( 20 /Bszj)
log(=-) = > BiZy and pi= - . (5)
(3 jZO

L+exp( ). BZi;)
=0

These models can help to predict error rates due to new feature vectors.
The average error rate for a whole data set is computed as

P=~ ) bi (6)

Under assumption of identical and independently distributed data, recogni-
tion errors Z;; can be recognised as Bernoulli trials. Then the total number of
errors s in n = N,y*ng trials is distributed according to the binomial distribution:

o) = () (1=, (7)

S

of mean np and variance np(1 — p). And for a data set size of n samples, the
estimate of error probability p is p = 2, where s is the number of errors. The
expected value of the error rate is p and p is the empirical value of error rate

estimated on the data set.



In gait recognition we are interested in confidence intervals. With a certain
confidence (1 — ), 0 < o < 1, we want the expected value of the error rate p
not to exceed a certain value

p<p+en,a) 8)

where €(n, a) = fp, i.e. e(n, a) is fixed to a given fraction § of p. Then the null
hypothesis Hy is
Ho:p—p < Pp, (9)

and we want to test it with a confidence of being wrong o.

The random variable of which p + €(n,«) is a realisation is a guaranteed
estimator of the mean. We are guaranteed, with risk « of being wrong, that the
mean does not exceed p + €(n, a):

Prob(p > p+en,0)) = 3 puyls) <a. (10)
np—s>en

Now we want to find a number of samples n, number of subjects N, and a
number of samples per subject n, for which (10) holds.

3 Calculation of subjects number and number of samples
per subject for an infinite population
3.1 Number of samples in database

To estimate the total number of samples in the whole database, we will use the
Chernoff bound [3], which asserts that with probability (1 — «):

p—ﬁ<\/—21na\/5, (11)
n
ie. p—p < €(n,a) with

e(n,a) = \/—21noz\/g. (12)

A Chernoff bound is a lower bound and allows consideration of tails of distri-

bution. The latter feature is quite important for binomial distribution, since the

validity of the approximation of the binomial law by the Normal law in the tail

of the distribution is questionable even for large values of the product np.
Assuming that we can fix e(n, @) to a given fraction 8 of p

e(n, o) = Bp, (13)
we can assert, with risk a of being wrong that a number of samples
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is sufficient to guarantee that the expected value of error rate p is not worse
than p/(1 — 3). To use this formula, p needs to be estimated from the results of
previous benchmarks.

After recording a new database, it can be desirable to verify the statistical
significance of the results. In this case the binomial law is approximated by the
Normal law. We will not be able to say with certainty that we have enough
samples to represent the population distributed by binomial law, but we will
have the certain estimates for ideal case, i.e. normal distribution and it can
serve as a guidance for estimation of the sample size.

The best recognizer will obtain an error rate p and we would like to test the
hypothesis Hy:

p—p<pp (15)

which for small values of p and under the assumption of normal distribution

becomes:
. p
p—P < Za \/j (16)
n

22 anp
—p< 2(1 1+ — 17
p=p <o (I+4/1+—5) (17)
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Solving for p — p, we obtain

Therefore, if we pass the following test:

22 / 4dnp

we accept Hy with risk a of being wrong. Otherwise, the number of examples n
is too small to guarantee a relative error bar of 3.

Now we would like to find out the minimum number of subjects (groups) and
number of samples per subject needed in the new database.

3.2 Number of subjects

N
We denote by Z. = (1/N;) > Z;. the global mean over N, subjects, where
i=1

Zi = (1/ny) 3. Zij. The expected value of Z; is p; and realizations of Z; are
)
called p;. The expected value of Z_ is p and realizations of it is p.

We call 02 the “between-subject” variance and an estimate of this quantity
is given by:

N,
> (9 —)°

~2 i—1
~i=L 19
& N (19)
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Since Z__ is the mean over N, subjects of Z; _, its variance is 2 /N,. Under the
assumption that the subject error rates are Normally distributed, the random

variable
_p—Z.

2= GJIN.

obeys the standardized Normal law (with mean 0 and variance 1). Although
the approximation of the binomial law by the Normal law is questionable in the
tails of distribution it allows to get some estimates for the ideal case and these
estimates will serve as a low bound for a real case.

With a risk « of being wrong, we have

(20)

. o
p—p<Z<x\/—N—, (21)

where p is a realization of Z and z, a threshold obtained from table of the
Normal distribution or conveniently approximated by z, >~ v/ —Ina.
Then a guaranteed estimator of the average error rate per subject

a

Remembering (13), we can assert, with risk a of being wrong, that a number
of subjects

p—p < €e(Ng,a) with e(Ng, ) = 24 (22)

200
Bp
is sufficient to guarantee that the expected value of the average error rate across
subjects is not worse than p/(1 — 3).

It is worth noticing that o is a function of the number of examples per subject
ng. However, for large values of ng, it is largely independent of n,. Since \/p/ng
is a lower bound of o, the hypothesis that o is largely independent of n, will be
verified when ng > 1/p.

N, = (=) (23)

3.3 Number of samples per subject

Now the problem of determining the number of samples per subject is addressed.
We try to find a balance between “within-subject” and “between-subject” vari-
ance. The following assumption is made that the empirical subject error rates
are random variables Z; , normally distributed with mean p; and variance o2,
where 02 is “between-subject” variance, an estimate of which is given by (19).
The number of examples per subject ny can be expressed as a function of the
ration v of the “between-subject” variance o2 and the “within-subject” variance
w?, which can be estimated from a benchmark data or some assumption can be

made about it. Then

0,2

=2 (24
~ cannot be less than 1 by definition, therefore v ~ max(1, ). Then total number
of samples is n’ = yn, where n is calculated as (14).



At the same time a total number of samples n’ = Nyng, then the number of
samples per subject can be calculated as

ng = ——. (25)

4 Designing database sizes for future acquisition

We need to find out how many samples, subjects and samples per subject are
needed for gait recognition to get statistically significant results. Gait recognition
aims to discriminate individuals by the way they walk and has the advantage of
being non-invasive, hard to conceal, being readily captured without a walker’s
attention. It is less likely to be obscured than other biometric features. The large
database (LDB) described in [8] is used as benchmark for calculating sample
sizes for the new database. LDB consists of 115 subjects performing a normal
walk and can help to determine which image information remains unchanged for
a subject in normal conditions and which changes significantly from subject
to subject, i.e. it represents subject-dependent covariates. We used our own
database as benchmark for convience, since we know its structure and good
recognition results were reported using this database [11]. It is assumed that a
new database will be recorded in similar or near conditions to the recording of
the benchmark and the quality of images in the new database will be not much
worse than in the benchmark. These assumptions are quite realistic and ready
to achieve. With confidence of 95% (o = 0.05), we want the expected value of
error rate p to be not worse than 1.25 times the error rate of the best recognizer
1.25p, i.e. B = 0.2, z, = 1.65. We will calculate samples size for the expected
values of error rates 0.01, 0.02 and 0.03, since many recognition papers reported
the correct classification rate around or above 97%; and p = 0.0153 which was
estimated from LDB for the best classifier. Then the choice of samples size will
be trade off between the expected error rate and time and recourses needed
to record the new database. The following values were estimated using LDB:
“between-subject” variance 62 = 0.0019 and v ~ 3.

Then using formula (14), the number of samples n in new database should be
as in Table 1, i.e. to guarantee correct classification rate (CCR) of 99% we need
almost 15000 samples in the database, practically 7500 samples are needed for
CCR of 98% and lastly 5000 samples are needed for CCR of 97%. The numbers

Table 1. Number of samples, subjects and number of samples per subject needed

p | 0.01 {0.02]|0.03
n (14975|7490|5000
N| 1294 | 324 | 144
ng| 35 | 70 | 105

of subjects N from formula (23) are presented as well in Table 1, i.e. this number



of subjects will be sufficient to guarantee that the expected error rate across all
subjects is not worse than 1.25p. Approximately 1300 subjects are needed to
guarantee 99% CCR, 324 subject for 98% CCR and 144 subjects for 97% CCR.
Since a number of subjects was obtained by approximation of the binomial law,
it is better to take more subjects than the numbers reported if resourses and
time are available for collecting bigger data sets. Finally, using formula (25)
and results presented in Table 1 so far, we can calculate the number of samples
per subject ny. The results are presented in Table 1. The number of samples
needed per subject is 35, 70 and 105 for 99%, 98% and 97% CCRs recpectively.
When collecting 70 or 105 samples per subject, extra attention should be paid
to the design of the experiment. Since walking for too long (around one hour
for 70 samples) will make a person tired and the tiredness will affect their gait.
Therefore it is advisable to divide recording to several slots and record the person
during a couple of days. As it was reported previously gait is not affected by
time when only days pass between recording sections [13].

5 Verifying the statistical significance of the results for
available databases

Several databases were recorded recently describing different biometrics such
as gait, face, iris, finger print. We would like to look at some of the them
from the point of the view of statistical significants of the results using formula
(18). The databases considered are LDB describing gait from the University of
Southampton mentioned above [12], CASIA iris image database [4, 2], FERET
database of facial images [6], subset of BEN database of fingerprint images [14]
and FRVT2002 database of faces [7]. CCRs reported for these databases and a
number of samples used to obtain these CCRs are presented in Table 2. All these

Table 2. Characteristics of databases
database| LDB | BEN |FRVT2002|FERET|CASIA

P 0.0153|0.0103 0.27 0.03 |0.0086
n 2161 |12000| 121589 2392 756

databases have a good number of samples collected in the similar conditions and
CCRs around or above 97% were reported for all of them except FRVT2002,
where CCR is 73%. We included FRVT2002 in our investigation since it has the
highest number of samples n = 121589. It would be interesting to see the results
of applying formula (18) to such a big dataset.

Using the data from Table 2 the left-hand side of the formula (18) is cal-
culated for each dataset with o = 0.05 and results are presented Table 3. For
B = 0.2 the right-hand side of the formula (18) gives 0.002, 0.004 and 0.006 for
p =0.01,0.02 and 0.03 respectively. It can be seen from Table 5, that only BEN



Table 3. Verification of the statistical significance of the results

LDB | BEN |FRVT2002|FERET|CASIA
0.0051|0.0016| 0.0025 | 0.0064 |0.0076

database has enough samples for all expected values of the error rates to guar-
antee a relative error bar of 5. FERET and CASIA do not have enough samples
for any chosen expected values of the error rates to guarantee a relative error
bar of 5. LDB and FRVT2002 have enough samples for some expected values of
the error rate. All this means that either the number of samples in data bases
has to be increased or if it is not possible the relative error bar of 8 should be
increase if it is possible for a given applications.

6 Database size for a population of finite size

The number of subjects N, obtained in Table 1 was calculated without tak-
ing into consideration the size of the population. When the population is large
enough in comparison to the sample size or it is desirable later to extend analysis
of data for larger population, then the number of subjects in Table 1 is valid.
However, when population is comparibale in size with the sample size, the finite

population correction factor is needed, i.e. the final number of subjects n; will

be
N,

_ s 26)
Ny’ (
I+%

ny
where N is a population size, Ny is a sample size. These statements are made
under assumption that the population is sampled uniformly. When it is not
possible to sample uniformly from the population bigger sample sizes will be
meeded.

Biometrics can be used both on a large population and on a relatively small
one. For instance, gait recognition can be used to make identification and sta-
tistical conclusions for population of Britain (58 million people) or to gain a
security access to the firm of 10000 people. The question arises how the size
of the population will affect the number of subjects needed for investigation?
To get some approximate knowledge about final size, we look at the concrete
example from Table 1, when number of subjects Ny = 324 for p = 0.02. The
dependency between size of population /N and final number of subject ny was
calculated, where N will change from 500 to 15 million people by 100 people.
The calculations showed that after some size of population the number of sub-
jects needed to characterise this population stays practically the same. In this
case, from size of population NV equals around 10.5 million people, the corrected
number of subjects stays at the same level of 323.9 subjects, thus ny = 324,
and we got the final number of subjects 323.007 or ny = 324 for a population
size from 104400. This means that if we are dealing with the population size of
N = 104400 people, sample of 324 people will be enough to draw statistically



significant conclusions about this population and the finite population correction
factor does not affect the results. So far we looked at what happens when the
population is quite large. However, it is interesting how the number of subjects
needed will change when the size of population is comparable to the sample
size (here number of subjects). Fig. 3 shows a dependency between population
size and the final number of subjects needed when the former is comparable in
size with the later, i.e. in this case N = 15000 or below. In this case the finite
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Fig. 3. Dependency between population size and the number of subjects for smaller
populations

population correction factor helps to reduce the small size noticeably for the
population of 3000 people or below. After that the growth in the sample size is
very slow and increase is from 293 subjects for the population of 3000 people to
317 subjects for the population of 15000 people. All these conclusions are valid
when the population was uniformly sampled.

7 Conclusions

In this paper we tried to answer the question how much biometrics data needed
from the point of view of the error rates of the best classifier and statistical
significance of the results. The logit model of dependency between recognition
errors and feature vectors is described, since binomial variables (error rates)
are dependent on continuous variables (feature vectors). The estimates for sam-
ple size, number of subjects and a number of samples per subjects are given
for several expected error rates and Type I error of 0.05 and power 0.8 using
bounds for binomial distribution when it is possible or using approximation of
the binomial law by the Normal law in other cases. Several existing databases
were checked whether they have enough samples to obtain statistically signifi-
cant results. Lastly it was shown how the number of subjects required changes
for different sizes of population, and it is interesting that it appears to be largely
independetnt of the population, when population size is bigger than sample size.
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