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One of the active fields of research in epistemic logic is modeling interactive multi-agent
systems where agents communicate and as a result their knowledge gets updated. This research
line has led to the development of dynamic and temporal epistemic logics [8, 5, 9, 14, 4, 2, 7] and
their applications in reasoning about multi-agent protocols of Artificial Intelligence, Security
and E-commerce. Another active field of research in logic in Computer Science is coalgebraic
models for the study of automata and dynamic systems [13, 10, 3]; models of epistemic logic
are examples of such systems. Coalgebraic models provide a more general framework for the
underlying systems, one that treats different functionalities of the systems in a uniform and
modular way.

In this paper we develop a coalgebraic model for dynamic and epistemic systems and a coal-
gebraic logic in the style of the Temporal coalgebraic logic of [10]. This is a new model for
dynamic epistemic logic with several benefits: it is more general than the existing models, but
nicely relates to them, for example it can be seen as an action-labelled version of models of
Temporal Epistemic Logic. It introduces new colagebraic proof techniques, e.g. co-induction
and co-recursion to modeling of multi-agent systems. As an example we sketch a new recursive
proof of the muddy children puzzle, which nicely illustrates the importance of father’s initial an-
nouncement, as the halting condition for recursion. It provides a base for modeling other aspects
of such systems, for example probabilistic knowledge and update. It encodes actions and agents
uniformly: both as state transformers formalized by coalgebra maps. This uniformity makes our
approach different from that of [4] where first epistemic states are defined and fixed and then
the effect of actions is defined on them co-recursively in the final coalgebra. On the logic side,
we use projective predicate lifting instead of the usual predicate lifting method to obtain our
coalgebraic logic and thus directly get a logic with both dynamic and epistemic modalities. This
logic inspires by ways of application, new research in the field of coalgebraic modal logic, for
example proving completeness for modular modal logics [3] other than K with nested modal
properties and also for coalgebras with axiomatic restrictions.

Another contribution of our work is connecting our coalgebraic logic to the order-theoretic
models of temporal logic [12] and dynamic epistemic logic [2, 16]. The connection between the
Temporal coalgebraic logic of [10] and the Galois algebras of [12] has been investigated in [10].
On our part, we show how our dynamic epistemic coalgebraic logic gives rise to a dual Galois
Algebra and also to an appearance-update system, an instance of the algebraic logic of [2]. The
importance of this connection is three-fold: firstly, it relates our colagebraic model to the exist-
ing model-theoretic approaches of multi-agent systems, for example through the representation
theorem of [2, 16] that shows models of Baltag-Moss-Solecki logic are instances of this order-
theoretic models. Secondly, the coalgebraic logic relates to the Gentzen-style sequent calculus
of [2, 16], proven to be complete with regard to the order-theroetic model. Finally, it places our

?? Research supported by EPSRC grant EP/D000033/1.



colagebraic model in the wider area of modeling concurrent and distributed systems, since simi-
lar order-theoretic models have been used to study the semantics of concurrent systems in terms
of quantales [1].

To summarize, our work brings together current research from algebraic logic, coalgebraic
logic and dynamic epistemic logic communities, in the context of their applications to modeling
multi-agent scenarios.

1 From Relations to Coalgebraic and Sup-Lattice Maps

Multi-agent systems are usually modelled by relational structures such as Kripke structures. A
Kripke structure is a triple (S, R, V )At consisting of a set of states S, an accessibility relation R
on states R ⊆ S×S and a valuation relation V ⊆ S×At between the states and the set of facts
At. The accessibility relation tells us how one state is perceived by, or appears to an agent, for
example if we have (s, s′), (s, s′′) ∈ R, we say that s appears as s′ or s′′ to an agent. The choice
between s′ and s′′ expresses the non-deterministic appearance of the agent, and his uncertainty
about the real state. The valuation relation tells us which facts are satisfied in a state, for example
(s, p), (s, q) ∈ V says that s satisfies p and q. The appearance of multiple agents is encoded
by considering a family of accessibility relations {RA}A∈Ag , one for each agent A ∈ Ag; the
corresponding Kripke structure is denoted as (S, {RA}A∈Ag, V )At.

The passage from Kripke structures to coalgebras is made by considering functions for re-
lations. The accessibility relation R is lifted to a function ap : S → P(S) by gathering the
multiple outputs of R in one set. For example instead of (s, s′), (s, s′′) ∈ R we will have
ap(s) = {s′, s′′}. We refer to the set of states S as the carrier of the coalgebra and the func-
tion ap as the coalgebra map; the pair (S, ap) is called a coalgebra. More precisely, we have
the powerset functor P : Set → Set on the category of sets and functions, and a P-coalgebra
ap : S → P(S) maps each state to its appearance. The valuation relation is encoded in our
coalgebra in a similar way: by considering it as a function val : S → P(At). So instead of
(s, p), (s, q) ∈ V we have val(s) = {p, q}. We put the accessibility and valuation functions
together and obtain a pair 〈ap, val〉 : S → P(S) × P(At), corresponding to the coalgebra
(S, 〈ap, val〉). Our coalgebra functor becomes the product of a powerset and a constant functor.

We encode the appearance of multiple agents by making our ap map depend on two inputs: a
state and an agent ap : S ×Ag → P(S). So ap takes a state s and an agent A and returns agent
A’s appearance of s, for example ap(s,A) = {s′, s′′}. In order to use this in our coalgebraic
map 〈ap, val〉, we need ap to act on S rather than S × Ag, so we use the equivalent (curried)
form ap : S → P(S)Ag . The coalgebra corresponding to a multi-agent Kripke structure is

(S, 〈ap, val〉) where ap : S → P(S)Ag and val : S → P(At)

The passage from coalgebra maps to complete lattice maps is done by lifting the appearance
function on the set of states S to a union preserving map on its powerset ap : P(S) → P(S).
This map acts on singletons of states {s} rather than states s, so instead of ap(s) = {s′, s′′}, we
have ap({s}) = {s′, s′′}. By union preservation, this map extends to subsets of states P ⊆ S
by taking the union of appearances of all states in P , that is ap(P ) =

⋃
{ap(s) | s ∈ P}. The

appearance of multiple agents is encoded by considering a family of these maps {apA}A∈Ag ,
one for each agent. The set of facts and its valuation map get internalised in the lattice, in the
sense that each fact p will be represented by the set of states satisfying it {s ∈ S | p ∈ val(s)}.
We call a powerset with appearance maps an appearance powerset lattice:



Definition 1. An appearance powerset lattice (P(S), {apA}A∈Ag) is a powerset lattice with a
family of union-preserving maps on it.

The Galois theory [11] tells us that this map has a Galois right adjoint which preserves inter-
sections. So we directly get an algebraic logic on the subsets of states P (or predicates), with
inclusion as entailment and union and intersection as disjunction and conjunction, respectively.
Moreover, we have the appearance of agents apA P , and its right adjoint 2A P which stands for
the information or knowledge of agents.

2 Coalgebra for Actions and Agents

We aim to make our epistemic coalgebra dynamic by incorporating (the effect of) actions into
it. We start by thinking about actions in the same way as agents, as a set Ac whose elements
change the states. The effect of an action a ∈ Ac on a state s is modelled by a function up : S →
(1 + S)Ac. For example up(s)(a) stands for the effect of action a on the state s, or the update
of s by a. If this effect is the unique element ∗ of 1, that is, ap(s)(a) = ι1(∗), we say that action
a can not apply to state s; this is the case, for instance, when the content of an announcement
action is not in the valuation of the state. We add the action map to our coalgebra and obtain an
appearance-update coalgebra:

Definition 2. A T -coalgebra (S, ζ) for the functor T : Set→ Set defined by TX = P(X)Ag×
(1 + X)Ac × P(At) is called an appearance-update coalgebra.

The coalgebraic map is a triple ζ = 〈ap, up, val〉 : S → P(S)Ag × (1 + S)Ac × P(At).
One unfolding or application of the coalgebra map provides us with the appearance of states
to the agents ap(s)(A), the effect of actions up(s)(a) on states, and the valuations of states
val(s). Two successive unfoldings of the coalgebra map provide us with the appearance to agents
about the appearance of states to other agents, and moreover, with the appearance to agents
of the effect of an action ap(up(s)(a))(A) whenever the action can apply, and the effect of
an action on the appearance of states to agents up(ap(s)(A))(a). Valuations of each of these
val(ap(up(s)(a))(A)), val(up(ap(s)(A))(a)) are obtained from three successive unfoldings of
the coalgebra map. So we can tell how an agent perceives the effect of an action, and how
an action affects the appearance of an agent, and the facts satisfied by them. The iteration or
repeated unfolding of the coalgebra map reveals the behaviour of the system. Reasoning about
this behaviour is done in the final coalgebra (which exists if the first occurrence of the powerset
functor in the definition of T is replaced by the finite powerset functor), via the coalgebraic proof
method of coinduction.
Restrictions to the Coalgebras. We are interested in modeling the effect of epistemic actions,
these are actions that only affect the information state of agents and leave the facts of the world
unchanged. Examples of such actions are public or secret announcements made in a multi-agent
system. In order to limit the behaviour of our system to the effect of epistemic actions, we restrict
the coalgebra map by requiring that it satisfies some axioms. The first axiom is rationality; it says
that if action a can apply to state s, then the appearance of its effect to an agent ap(up(s)(a))(A)
is the same as the effect of a on the appearance to the agent of the original state up(ap(s)(A))(a).
So if up(s)(a) 6= ι1(∗), our axiom is

ap(up(s)(a))(A) =
{
up(t)(a) | t ∈ ap(s)(A), up(t)(a) 6= ι1(∗)

}



Our second restriction is the preservation of facts; it says that if applicable to a state, an an-
nouncement does not change the valuation of that state, that is, the valuation of the effect of the
state is the same as the valuation of the state before the action. So if up(s)(a) 6= ι1(∗), we have
val(s) = val(up(s)(a)). Finally, our third restriction requires each agent to have at least one
view of the state, that is ap(s)(A) 6= ∅.

An example of an epistemic action is a public announcement α! of α, for α a fact p (or
conjunction or negation of a fact) or knowledge of a fact 2A p. So α! can apply to the states s
that satisfy α, that is, if p ∈ val(s) for the case α = p, or ∀t ∈ ap(s)(A), p ∈ val(t) for the case
α = 2A p. The first two restrictions to the coalgebras correspond to the familiar axioms of Public
Announcement Logic [5]: rationality corresponds to the knowledge-announcement commutation
axiom, while the preservation axiom corresponds to the basic axiom for atoms. Another example
of an epistemic action is a private announcement α!β to a subgroup β ⊆ Ag, with α as above.
These announcements are encoded by assuming rationality with regard to the announcement for
the insiders B ∈ β, and rationality with regard to a neutral action τ ∈ Ac for the outsiders
C /∈ β.

The Muddy Children Puzzle. There are n children playing in the mud and k of them have dirty
foreheads. Their father announces that at least one of them is muddy, and asks if they know it
is them who is muddy. They look around and think and reply no, but after k − 1 rounds of no
answers, the dirty children know that they are dirty. We encode the assumptions of the puzzle
as further restrictions on our coalgebra and denote by Di the proposition saying child i is dirty,
by q0 the father’s initial announcement, and by q a round of no answers from the children. We
sketch the proof for the proposition saying that on a state sk with k dirty children, if father’s first
announcement followed by k−1 rounds of no answers go through, the k’th round of no answers
does not go through

upk−1(up(sk)(q0))(q) ∈ ι2(S) =⇒ upk(up(sk)(q0))(q) = ι1(∗)

where upk−1(s)(q) stands for k − 1 times updating state s with action q. Assuming the an-
tecedent, we have to show that the k’th round of no answers will not go through, which by restric-
tions to the coalgebra is equivalent to showing that the appearance of the state after k−1updates
to any dirty child i satisfies Di, that is

∀t ∈ ap(upk−1(up(sk)(q0))(q))(i), Di ∈ val(t)

By the rationality restriction applied k times, it suffices to show Di ∈ val(t) for all t in the
following set:{

upk−1(up(w)(q0))(q) | w ∈ ap(sk)(i),

up(w)(q0) ∈ ι2(S), up(up(w)(q0))(q) ∈ ι2(S), . . . , upk−1(up(w)(q0))(q) ∈ ι2(S)
}

We denote this set by K and show that all of its elements satisfy Di, by doing a case analysis
on w. If in w child i is dirty, that is, Di ∈ val(w), then by preservation of facts we get Di ∈
val(upk−1(up(w)(q0))(q)). But if in w child i is not dirty, then w has one less dirty child than
sk and we denote it by wk−1. We show that this state does not belong to K by showing that
upk−1(up(wk−1)(q0))(q) = ι1(∗). We distinguish two cases: (1) upk−2(up(wk−1)(q0))(q) =
ι1(∗), in which case we are done, and (2) upk−2(up(wk−1)(q0))(q) ∈ ι2(S). In the second case,
we know that k − 2 rounds of no answers are possible after father’s initial announcement, and



have to show that for all other dirty children j 6= i, they get to know after the k − 2 rounds, that
is

∀t′ ∈ ap(upk−2(up(wk−1)(q0))(q))(j), Dj ∈ val(t′)

In order to prove this, we repeat the steps above but on a state with one less dirty child, and
assuming one less update is possible; these steps get repeated (k−2 times) until we reach a point
where we need to show up1(up(w1)(q0))(q) = ι1(∗). For this we repeat the above steps one last
time and have to show that up(w0)(q0) = ι1(∗), which is true by our assumption since father’s
announcement can not go through in a state with no dirty child. This is where the repetition stops
and we are done.

3 Algebraic Logic for Actions and Agents

In this section we review the results from previous work [2, 16] and show how actions are added
to our appearance powerset lattice (P(S), {apA}A∈Ag), and an appearance-update algebraic
logic is obtained from the setting. The results of [2, 16] are developed in the more general setting
of sup-lattices, of which the powerset lattices of this paper are an instance.

In this setting, actions are considered as elements of another powerset lattice P(Σ) where Σ
is the set of atomic or deterministic actions. The order on this lattice is the order of information or
non-determinism, for example {σ} ⊆ {σ, σ′} says that the atomic action σ is more deterministic
than the mixed action {σ, σ′}, which stands for the choice of σ and σ′. From this it follows that
the union on actions is the non-deterministic choice of them. The intersection of actions does not
have an intuitive meaning so we do not interpret it. Sequential composition is a key operation on
actions which is missing from the powerset. We incorporate it by first assuming that Σ carries a
monoid structure (Σ, •, τ), where we read σ • σ′ as first do σ then do σ′. The order of execution
matters and thus − • − is a non-commutative operation. The unit of sequential composition is
the action τ or the skip action, which does not do anything, and we have τ • σ = σ • τ = σ.
We then lift the monoid structure on Σ to a monoid structure on P(Σ), such that the monoid
multiplication−•− is union preserving. We denote the resulting structure by (P(Σ),∪, •, {τ}).
This type of structure is referred to as a quantale in the literature [1] and has applications in
concurrency [1] and quantum physics [6], also in the semantics of Linear Logic [17].

The effect of actions on predicates (subsets of states) is modelled by defining an update
product−·− : P(S)×P(Σ)→ P(S) between the appearance powerset lattice and the quantale
of actions, satisfying the following properties for Pi ⊆ S and Σi ⊆ Σ

(
⋃
i

Pi) ·Σ1 =
⋃
i

(Pi ·Σ1), P1 · (
⋃
i

Σi) =
⋃
i

(P1 ·Σi) (1)

P1 · (Σ1 •Σ2) = (P1 ·Σ1) ·Σ2, P1 · {τ} = P1 (2)
apA(P1 ·Σ1) ⊆ apA(P1) ·Σ1 (3)

The first two conditions ask the update product to preserve unions of predicates and of actions,
be consistent with the order of sequential compositions of actions, and have the unit of com-
position of actions as a right unit. These make the lattice of predicates a right module of the
quantale of actions. The pair (P(S),P(Σ)) is referred to as a system in the literature [1]. The
last property, called the update inequality, is in line with the rationality restriction on the coal-
gebras: the appearance of the update of a predicate is stronger than the update of the appearance
of the predicate. We refer to this system as an appearance-update system:



Definition 3. A system with the update inequality (P(S),P(Σ), ·, {apA}A∈Ag) is called an
appearance-update system.

Our actions are epistemic, so they do not change the facts of the world. The content of an action
is modelled by a map ker : P(Σ) → P(S), which assigns to each action the set of states to
which the action cannot be applied, that is ker(Σ1) ·Σ1 = ∅. Facts can now be formalised in a
better way than before: as the subsets of states (in which the fact is true) that are not changed by
any update called stabilizer Stab(P(Σ)) = {P1 ⊆ S | ∀Σ1 ⊆ Σ, P1 ·Σ1 ⊆ P1}. This says that
if a fact is true before doing an action, it will remain true after the action.

Other operations of our logic are the right adjoint to the appearance of predicates, and the
right adjoint to the update product. The former 2A P stands for the knowledge of agent A about
predicate P . The latter [Σ1]P says after action Σ1 predicate P holds, and stands for the dynamic
modality of Propositional Dynamic Logic and the weakest precondition of Hoare Logic. The
adjunction equations are the usual ones, apA(P ) ⊆ P ′ ⇔ P ⊆ 2A P ′ and a similar one for
update. These allow us to derive knowledge from appearances, and the updated predicate from
the update product. Applications of this logic to multi-agent scenarios such as the muddy children
puzzle and security protocols have been discussed in detail in [16]. More complicated actions
such as cheating and lying are encoded in this setting by endowing the quantale of actions with
union preserving appearance maps and also encoding them in the update inequality. The system
with the endowed quantale is called an Epistemic System, for details see [2, 16].

4 Coalgebraic Logic for Actions and Agents

Coalgebras give rise to modal logics in different ways, for example the coalgebraic logic of
Moss [13], the temporal logic of Jacobs [10] and the modular logic of Cı̂rstea and Pattison [3].
In this section we show how our appearance-update coalgebra admits a coalgebraic logic in the
style of Jacobs.

The method is based on the notion of predicate lifting, which sends a subset P of a set X
to its image under the coalgebra functor F (P ), and we have F (P ) ⊆ F (X). The lifting of P
under F is denoted by Pred(F )(P ), and can be defined inductively for polynomial functors
(i.e. functors built from constant and identity functors using binary products and coproducts,
exponentials with constant exponent, and powersets) [10]. We apply the inductive definition to
our appearance-update coalgebra functor T and obtain Pred(T )(P ) as follows

{〈a, u, v〉 | ∀A ∈ Ag. a(A) ⊆ P, ∀q ∈ Ac. u(q) ∈ ι2(X)⇒ u(q) ∈ P, v ⊆ >P(At)}

which is equivalent to T (P ) = P(P )Ag×P(P )Ac×P(At). Using this predicate lifting and the
coalgebra map ζ = 〈ap, up, val〉, we define a modality for the whole functor© : P(S)→ P(S)
on the powerset of the carrier set of a T -coalgebra (S, ζ) as follows

©P = ζ−1(Pred(T )(P )) = {s ∈ S | ζ(s) ∈ Pred(T )(P )}

Jacobs interprets this modality as a temporal next time modality and reads©P as ’in the next
state of the system, P holds’. This logic is a powerset or a Boolean Algebra with an operator
providing the base for a Coalgebraic Temporal Logic. However, we want a logic with dynamic
and epistemic modalities to interpret our appearance-update coalgebra on information flow in
multi-agent systems. So instead of using predicate lifting and defining one modality for the whole



functor, (as a first approximation) we use projective predicate lifting and define two modalities
for each projection of the functor as follows

2 P = ap−1((Pred(π1 ◦ T )(P ))), [ ]P = up−1((Pred(π2 ◦ T )(P )))

where π1 : P(S)Ag×(1+S)Ac×P(At)→ P(S)Ag and π2 : P(S)Ag×(1+S)Ac×P(At)→
(1 + S)Ac are the first and second projections, respectively. The first modality will stand for our
epistemic modality and the second one for the dynamic modality. However, since we would like
to reason about the next state of the system after specific actions, and about the knowledge of
specific agents, we consider labelled versions of these modalities as follows

2A P = {s ∈ S | ap(s)(A) ⊆ P}
[a]P = {s ∈ S | up(s)(a) ∈ ι2(S)⇒ up(s)(a) ∈ P}

More precisely, the labelled modalities arise from the labelled projective predicate lifting as
follows

2A P = (apA)−1((Pred(πA ◦ π1 ◦ T )(P )))
[a]P = (upa)−1((Pred(πa ◦ π2 ◦ T )(P )))

where πA : P(S)Ag → P(S) selects the A component, apA : S → P(S) is given by apA(s) =
ap(s)(A), πa : (1 + S)Ac → 1 + S selects the a component, and upa : S → 1 + S is given by
upa(s) = up(s)(a).

We interpret the first modality 2A P as ’agent A knows that P ’, and the second one [a]P
as ’if action a is possible, then after action a predicate P holds’. Similar to Jacobs’s next time
modality, our labelled projective modalities are intersection preserving and have unique Galois
left adjoints that preserve unions. We will have two adjoint modalities as follows

2←−A P =
⋃
{ap(s)(A) | s ∈ P}

[a]
←−

P =
⋃
{up(s)(a) | s ∈ P, up(s)(a) ∈ ι2(S)}

The adjoint modality of Jacobs is interpreted as the temporal previous time modality. We do not
provide new interpretations for our adjoint modalities, since they are extensions of our appear-
ance and update maps to subsets of the set of states, discussed in the appearance powerset lattice
of the first section.

From Jacobs’s construction, one obtains a Temporal coalgebraic logic on the power set of the
carrier set, that is, a powerset logic with operators and their adjoints. The application of Boolean
Algebras and adjoint maps to reason about the temporal evolution of systems has also been con-
sidered by von Karger in [12], where he shows how a Boolean Algebra with adjoint operators
gives rise to a Computational Tree Logic (CTL). Jacobs shows how his Temporal coalgebraic
logic gives rise to a Galois Algebra and that the two methods yield the same logic. Our con-
structions provide us with a coalgebraic powerset logic but with two families of operators and
their adjoints (P(S),2A, [a]). This logic gives rise to the new notion of a dual Galois Algebra,
defined as

Definition 4. A dual Galois algebra is a Galois Algebra with two meet-preserving operators
(GA, f, g), each of them having join-preserving Galois left adjoints f∗ a f and g∗ a g .



However, we have restrictions on our coalgebras that should also be accounted for in the dual
Galois Algebra. We discuss the logical form of these restrictions below, and in the next section
we show how the algebraic logic of the previous sections is the counter part of this coalgebraic
logic.

Restrictions to the dual Galois Algebras. We reflect the rationality restriction on coalgebras in
our logic by using the adjoint modalities 2←−A and [a]

←−
, since these correspond to the appearance

and update maps. We ask for the following as our rationality axioms

2←−A [a]
←−

P ⊆ [a]
←−

2←−A P

We use the inclusion rather than the equality in the logic so that we do not have to mention the
empty domain of the update. In this version, we do not need to exclude the states in which a
cannot apply since if [a]

←−
P = ∅ then by union preservation of 2←−A we have 2←−A ∅ = ∅, and ∅ is

the subset of any set. In dealing with concrete examples, one wants to compute the right hand
side to be able to derive the effect of an action on the knowledge of agents. This axiom tells us
that it is enough to compute the left hand side, which is itself derivable by applying the initial
assumptions on the appearances of states and the content of actions.

A similar form is derivable for the knowledge and dynamic modalities

Proposition 1. Learning. The effect of an action on the knowledge of an agent is derivable from
his knowledge about the effect of the action 2A[a]P ⊆ [a]2A P .

Proof. By adjunction it suffices to show that 2←−A [a]
←−

2A [a]P ⊆ P . But because of the rationality

axioms, this can be reduced to showing that [a]
←−

2←−A 2A [a]P ⊆ P , which, in turn, follows easily

from the corollary of adjunction that 2←−A 2A Q ⊆ Q and similarly for [a]
←−

[a], together with the

monotonicity of [a]
←−

.

In the same lines as in the previous section on algebraic logic, facts φ ∈ P(At) are considered
as sets of states Φ that satisfy them. The logical form of our second restriction to the coalgebras,
that is preservation of facts, is [a]

←−
Φ ⊆ Φ. which reflects the algebraic notion of stability of facts

under any update. Finally, the third restriction on coalgebras can be captured in our logic using
the axiom 2A∅ ⊆ ∅.

5 Embedding of the Coalgebraic Logic in the Algebra

In this section we show how our coalgebraic logic (P(S),2A, [a]) with rationality and preser-
vation of facts as restrictions can be embedded in our appearance-update algebraic logic. By
definition and union preservation of 2←−A it follows easily that

Proposition 2. The powerset of states and the adjoints of the epistemic modalities form an ap-
pearance powerset lattice (P(S), {2←−A}A∈Ag).

Similarly, by the union preservation of [a]
←−

and the rationality restriction on coalgebras it follows

that



Proposition 3. In the powerset of states with the adjoints of the epistemic modalities and the
adjoints of the dynamic modalities (P(S), {2←−A}A∈Ag, {[a]

←−
}A∈Ac), we have that [a]

←−
is union

preserving and also satisfies the update inequality.

From this we define this powerset as

Definition 5. The triple (P(S), {2←−A}A∈Ag, {[a]
←−
}a∈Ac) where (P(S), {2←−A}A∈Ag) is an ap-

pearance powerset lattice and the above proposition holds is called an appearance-update pow-
erset lattice.

Gathering the previous two propositions we obtain our main theorem

Theorem 1. Every appearance-update powerset lattice can be embedded in an appearance-
update system.

We draw a sketch of the proof, the details are easy and follow by set-theoretic constructions on
powerset and the adjunction equations.

Proof Sketch. The family of adjoints to the dynamic modalities {[a]
←−
}A∈Ac : P(S) → P(S)

is generalized to a binary map [ ]
←−

: P(S) × Ac → P(S). By Proposition 3 above, this map

has the properties of the update map of an appearance-update system, but with regard to a set
Ac, rather than a quantale. We freely generate a quantale Q(Ac) on Ac; this is obtained by
first generating the free monoid (Ac∗, •, τ) over Ac, and then lifting this monoid structure to a
monoid structure on P(Ac∗), such that − • − preserves unions of actions. The set of actions
embeds in the resulting quantale by inclusion, so we have Ac ⊆ Q(Ac). We extend our update
map [ ]
←−

: P(S)×Ac→ P(S) first to a map P(S)×Ac∗ → P(S), which preserves the monoid

multiplication, and then to a map P(S) × P(Ac∗) → P(S), which preserves both the union
of actions and the monoid multiplication. It then follows that (P(S), Q(Ac), {2←−A}A∈Ag, [ ]

←−
)

satisfies all the properties of an appearance-update system.

6 Future Work

Fixed Point Operators. We can follow Jacobs’s construction and add dynamic and epistemic
fixed point modalities to our appearance-update coalgebraic logic. On the part of dynamics, we
obtain labelled temporal fixed-point operators, defined as [α]∗ P := νZ.(P ∩

⋂
a∈α[a]Z) and

〈α〉∗P = µZ.(P ∪
⋃

a∈α〈a〉Z) (where 〈a〉 denotes the de Morgan dual of [a], and therefore
〈a〉P is interpreted as ’action a is possible, and after action a, predicate P holds’). Similarly, the
addition of epistemic fixed-point operators allows us to formalise common knowledge between
(a subset of) the agents as 2∗

β P := νZ.(P ∩
⋂

B∈β 2B Z). These fixed points enable us to use
the invariant proof method of Jacobs’s logic to solve the muddy children puzzle in our logic,
where we have to show that eventually after the repetition of the announcement q, it will become
common knowledge between the dirty children D that the dirty ones know that they are dirty:
〈{q}〉∗2∗

D
∧

i∈D Di.
Applications to Security Protocols. One nice feature of the coalgebraic approach to deriving
a specification logic is that we have a uniform way of adding probabilistic information to the
modelling of both actions and appearances. We aim to use this feature in encoding and reasoning
about security protocols. A typical security protocol is a series of send and receive actions by



agents who aim to reach ’authentication’ to be able to share a secret. But the communication
is done over an unsafe channel watched by an active intruder, and this makes it hard for honest
agents to be sure of the originality of messages. We use the elements of Ac for communication
actions and the power set structure to capture the non-deterministic views of agents about actions.
The algebraic way of reasoning about authentication in security has been exploited in [16]. We
hope to mirror these algebraic constructs in the coalgebraic setting, and to use the coalgebraic
approach to reason about the non-deterministic and probabilistic behaviour of these systems.
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