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Abstract

The goal of this work is to use computer vision to measure 
crowd density in outdoor scenes.  Crowd density estimation is 
an important task in crowd monitoring.  The assessment is 
carried out using images of a graduation scene which 
illustrated variation of illumination due to textured brick 
surface, clothing and changes of weather.  Image features 
were extracted using Grey Level Dependency Matrix, 
Minkowski Fractal Dimension and a new method called
Translation Invariant Orthonormal Chebyshev Moments. The 
features were then classified into a range of density by using a 
Self Organizing Map.  Three different techniques were used 
and a comparison on the classification results investigates the 
best performance for measuring crowd density by vision.

1 Introduction

Safety at venues, in particular stadiums or other large scale 
locations, where crowds tend to appear can be a critical 
business consideration. This is suited to surveillance systems 
using Closed Circuit Television (CCTV) where particular 
objects and their behaviour can be monitored through a long 
period of time. However, a human observer might miss some 
information because monitoring crowds through CCTV is 
very laborious and cannot be performed for all the cameras 
simultaneously [17]. Therefore, the use of automated 
techniques for monitoring crowds such as estimating a 
crowd’s density, tracking a crowd’s movement and observing 
a crowd’s behaviour, is necessary.  

This paper focuses on crowd density estimation for several
reasons. According to Au et al. [19], one of the key aspects in 
developing and maintaining a crowd safety system is to 
identify areas where crowds build up. Areas where crowds are 
likely to build up should be identified prior to the event or 
operation of the venue. This is important as crowds usually 
exist in certain areas or at particular times of the day. Areas
where people are likely to congregate need careful 
observation to ensure crowd safety. Therefore, estimating 
crowd density may be a good solution for maintaining the 
crowds’ safety. 

Estimating a crowd’s density is also used for management 
and control. However, this can became more difficult when 
the subjects in the crowd are self-occluding [1]. Thus, this has 
become of interest to researchers to develop a solution to 
estimate the crowd’s density. Generally, there are two main 
targets when estimating crowd’s density: 1) providing an 
approximate number of how many people are in the target 
scene [16, 1, 18, 5, 13]; and 2) providing a range of people in 
the crowd i.e. determining the density in broad classes [2, 3, 
4]. The second target has been selected since it is more 
appropriate to general use.

In this paper, we develop three different techniques for 
estimating a crowd’s density in outdoor scenes. The 
difficulties in using outdoor scenes as input data include
variation of illumination from weather and clothes, and also 
the floor surface texture. Two best methods from the previous
work by Marana [2, 3, 4] have been chosen because they have 
previously demonstrated classification capability in indoor 
scenes.  A new algorithm was also chosen using Chebyshev 
moments to extract the features for subsequent classification. 
The results from the three different algorithms will be 
compared to determine which is the most effective in 
estimating crowd density in outdoor scenes. 

2 Methodology 

This section describes three different methods that were used 
as the feature extractor: the Grey Level Dependency Matrix 
(henceforth GLDM)[2, 3], Minkowski Fractal Dimension
(henceforth MFD)[3, 4] and our new method, Translation 
Invariant Orthonormal Chebyshev Moments (henceforth 
TIOCM).  The GLDM and MFD were chosen as they have 
previously been observed to be able to provide good 
classification results.

2.1 Grey Level Dependency Matrix 

The Grey Level Dependency Matrix (GLDM) was originally 
used in [12] to measure texture in satellite imagery, and in 
aerial and microscopic imagery. GLDM is also known as 
spatial grey level dependency matrix, grey level co-
occurrence matrix or grey tone dependence matrix [12, 2].  

In general, GLDM can be thought of as second-order joint 
conditional probability density functions, f(i,j|d,) which 
calculate the probability of the pair of grey levels (i,j)
occurring in the image given, where these pixels are separated 
by a distance d and a direction . In this work d = 1,  = 0o, 



45o,90o, 135o and G is the number of grey levels of the image. 
Four measurements [12, 2] to describe the GLDM will be
used: the Contrast C, the Homogeneity H, the Energy Eg and 
the Entropy Et. 
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In total, 16 features will be produced by the GLDM method 
for a moving window of size 20 x 20 sub-images with an 
interval of 10. Since the original picture is 200 pixels squared, 
361 sets of features are generated per image. 

2.2 Minkowski Fractal Dimension (MFD)

Fractals have been widely used for various problems in image 
processing, image analysis, vision and pattern recognition. 
Generally, the fractal dimension is a measurement of 
roughness of a shape [11]. The advantage of choosing the 
MFD as the feature extractor is that it allows the estimation of 
the fractal dimension of a region and so can be used as fractal 
texture measure. 

The Minkowski sausages method is a straightforward 
technique to calculate an area’s influence by dilating a binary 
shape by a disk of diameter D [8]. For a single point the area 
of interest grows continually, however it tends to fill any 
holes in dense shapes so that it looks like a nearly filled 
region, growing more slowly. This concept is similar to the 
box-counting approach. The fractal dimension is obtained by 
analysing the log-log plot of the area of influence versus D,
where curves with higher slopes are obtained for simple 
shapes, and the Bouligand-Minkowsky [4] fractal dimension 
is defined as F = 2 - S, where S is the slope of the log-log plot
[4] defined by the logarithm of the number of white pixels, A, 
divided by the logarithm of the dilations size, r. 

log( )

log( )

A
S

r
 (5)

The first step in applying the MFD is to generate a 
thresholded version of the edge detected version of each input 
image, to generate a binary image. Phase congruency [10]
was chosen as the edge detector because it is an illumination 
and contrast invariant measure of feature significance. The 
threshold was set at the average value of the phase 
congruency of each image. Then, dilations with structuring 
elements of different sizes, ranging from 1 to r were applied 
to each binary image. Each dilation image will estimate the 

fractal dimension of the input image. F was used as the single 
feature.

2.3 Invariant Orthonormal Chebyshev Moments

Moments are powerful statistical tools for pattern recognition 
[7] and are known as a global descriptor [9]. Mukundan[14] 
proposed a discrete orthogonal moment, the Chebyshev 
moment. The advantages of the discrete orthogonal moments 
compared to continuous orthogonal moments such as 
Legendre and Zernike moments, are that; 1) there is no 
requirement of numerical approximation; 2) the orthogonality 
property is satisfied and defined in the image coordinate 
space; and 3) the results of reconstruction are of improved
quality.

However, the discrete orthogonal Chebyshev moments have 
numerical problems when the required moment order is large, 
due to the recursive nature of the polynomial evaluation. To 
solve this problem, Mukundan[15] proposed orthonormal 
Chebyshev moments where orthonormalization was used to
reduce the numerical instability while computing high order 
moments, although the recurrence relations can still induce 
large errors as the moment order increases. 

The discrete orthonormal Chebyshev moments of an order 
m+n, with the size of NxN for an image f(i,j), is defined  as:
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and the scaled Chebyshev polynomials  mt i


, m=0,1...N-1 are 

defined by using the following recurrence relation
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With initial condition for the above recurrence relation as
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Orthonormal Chebyshev moments are not invariant under 
translation, however, equation (6) can be modified as shown 
in equation (10) to include invariance. This is achieved by 
subtracting the centroid  ,c ci j from each pixel, so that it is 

independent of position.
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and the scaled Chebyshev polynomials  mt q


, where 

cq i i   and m=0,1...N-1 are defined using the following 

recurrence relation
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with an initial conditions of the above recurrence relation 
such as
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while 1 2 3, ,   remains the same as written in equation (8).

This formulation has been demonstrated numerically to be
invariant under translation as shown in Table 2.1.  The 
results were based on the images in Figure 2.1, where 2.1 (a) 
is a silhouette image and 2.1 (b) is the silhouette in (a) shifted 
to the right by 100 pixels. 
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11 116.49 116.49
Table 2.1: Comparison results between orthonormal 
Chebyshev moments and Translation Invariant 
orthonormal Chebyshev moments (modified). 

Experimentally, binary images were generated as described in 
Section 2.2. Zero up to 2nd order moments were then 
calculated and used as feature vectors.
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(a) Original Image (b) Translated Image
Figure 2.1:  Image of Silhouettes.

2.4 Training and Self Organizing Maps (SOM)

The SOM classifier was proposed by Kohonen[20] as a 
technique to aid visualization and interpretation large and 
high-dimensional data sets, reducing them onto a much lower 
dimensional network in an orderly manner. Marana [2, 3, 4] 
used a SOM to classify the images of crowd density specified 
ranges, using it both to reduce the dimensionality of the 
GLDM and as a final classifier. We have chosen not to use 
other classifiers to maintain fidelity with his work.

A SOM contains a number of neurons which is represented by 
a d-dimensional weight vector {m}=[m1, m2... md] where d is 
equal to the dimension of the input feature vector. First, the 
weight vectors are initialized with small random values. Then 
in each training step, a sample vector is chosen randomly 
from the input data x and a similarity measurement between it 
and all weight vectors of the SOM map are calculated. The 
similarity measurement is usually defined by a distance 
measure such as Euclidean distance. Best matching unit 
(BMU), denoted as c represents as the greatest or closest 
similarity with the input sample x and can be defined as 
below;

║x – mc║ = mini {║x – mi║} (13)
where ║.║ is the distance measure.

After the BMU has been determined, the BMU and its’
neighbours were updated and moved towards the input vector 
in the input space according to equation (14) below; 

mi (t+1) = mi (t) + (t)h ci [x(t) – mi(t)]} (14)

where t denotes time, x(t) is an input vector taken randomly 
from the input data at time t, hci is the neighbourhood kernel 
around the BMU and (t) as a learning rate is a deceasing 
function of time between [0,1]. Here, the neighbourhood 
kernel around the BMU is the Gaussian neighbourhood 
function, defined as:
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where rc is the location of unit c, ri is the neighbourhood node 
location on the SOM map while  2 is the neighbourhood 
radius at time t. 

In early stages of training, relatively large initial learning rate 
0 and neighbourhood radius  2 are used.  As the training 
progresses, the neighbourhood radius is decreased with time. 
In the beginning of the training stages, SOM learns to roughly 
cover the space, while in the later stages, SOM fine tunes to 
describe the local details. After training, the SOM map is then
labelled. 

In our experiments SOM networks with 7 clusters were used 
in an unsupervised manner to dimensionally reduce the 
GLDM. The feature vectors were the activation patterns of a 
SOM after training on each image. SOM networks were then 
used in a supervised training mode for classification.



3 Data 

The data used for this experiment is video recorded at an 
outdoor reception where people congregated at different times 
during one day, simulating a surveillance application. The 
data comprises a range of densities from very low to very 
high crowds density. Three different datasets, labelled
morning data, afternoon data and combined data (a 
combination of morning and afternoon data) were used. Each 
dataset has 50 images of training data and 25 images of test 
data, with equal numbers of images from each class.
Examples of images are shown in Figure 3.1. 

Very 
Low

Low Moderate High 
Very 
high

Figure 3.1: Sample Image of Crowds at Differencing Density

Images were classified according to the scheme described by 
Polus [2, 6], and shown in Table 3.1. In order to perform a 
standard comparison with the automatic crowd estimation, the 
number of people in each image was counted manually. In 
determining this ground truth, a person was counted in whole 
or partial body could be determined in the original colour 
images.

Level of Service
Range of 
Density 

(people/m2)

Range 
of 

People
Group

A: Free (normal ) 
flow

< 0.5 < 7 Very Low

B: Restricted flow 0.5 – 0.80 7 – 10 Low
C1: Dense flow 0.81 – 1.26 11 – 16 Moderate
C2: Very Dense 
flow

1.27 – 2.0 17 – 26 High

D: Jammed > 2.0 > 27 Very High
Table 3.1: Level of Service

Each original image was 720 x 576 pixels and images were 
recorded every 10 seconds. A 200 x 200 region of the picture 
was used, representing an area brick pavement approximately 
13m2. Training and test sets were chosen at random after 
images had been manually classified. The scene was viewed 
from a third floor window and recording took place in the 
morning and afternoon on a day with mixed weather 
conditions.

4 Results and Discussion

This section describes results of experiments using three 
different datasets (recorded in the morning, recorded in the 
afternoon and combined) of images according to the 
techniques described in Section 2. As previously stated the 
images are outdoor images with variation of illumination due 
to weather, cloth, and textured surface floor. 

The number of people in each image was first counted 
manually to provide a ground truth estimation.  Then, the 
images were selected and randomly divided into training and 
testing data. For each technique the training data was used to 
train a SOM with 5 clusters, corresponding to the number of 
density classes, which was subsequently used to classify the 
test data.

Figure 4.1 shows a graphical representation of the best results 
on test data, based on three different techniques according to 
three different datasets. Generally, the afternoon and 
combined data gives better results when compared to morning 
alone. This is because the afternoon data has smaller variation 
of illumination when compared with morning data.

Figure 4.1: Comparison classification for 
testing data of all datasets and all techniques

The results in Figure 4.1 show that both GLDM and 
Chebyshev methods out perform the fractal method, showing 
that on performance these experiments offer little to 
discriminate between them.

An investigation on why images were misclassified was 
carried out. There were two factors that influence the results 
to be misclassified. For example it was found that;

1) Shadow
The input data is an image of crowds outdoors where 
illumination due to sunshine may influence the object or 
cause the building to present shadows. Unfortunately, 
shadows can prove difficult to remove and could influence 
classification. This applies to all techniques.

2) Noise and clutter
In MFD and TIOCM classification, binary images were 
generated after obtaining the edge detection using phase 
congruency.  Phase congruency has the capability to 
recognize a significant edge very well as it is invariant in 
illumination and contrast. However, the textured surface floor 
which is not the target object was also recognized and this 
became noise in the images.  Figure 4.2 is an example of 
wrong classification due to this clutter. Figure 4.2 (a) is the 



original image, followed by obtaining the edges using phase 
congruency in 4.2 (b). Here, it can be seen that the textured 
surface floor was also recognized and when binary images 
were generated, noise also appears. This process leads to 
misclassification.

ImT529000
M

.png Reduce Noise

a) Original Image c) After filter
Edge Detection

b) After Phase Congruency
Figure 4.2: Example of misclassification

To reduce the effects of the unwanted texture in MFD and 
TIOCM images, they were filtered with a 2D box function to
remove isolated white points. Unfortunately, some 
information was been removed too. This led to additional 
misclassification and did not improve matters.

All algorithms were coded in MATLAB and used the Image 
and SOM toolboxes as required.

5 Conclusions 

This paper presents three different ways to measure the crowd 
density in an outdoor scene by computer vision.  Two 
methods, which are the Grey Level Dependency Matrix and 
the Minkowski Fractal Dimension, were used as they have 
previously shown good performance in classification.  A new 
method, named as Translation Invariant Orthonormal 
Chebyshev Moments was also evaluated in this paper.

The images were taken during a graduation day ceremony. 
The number of people in the images was counted manually
and then divided into three different test and training datasets, 
morning, afternoon and a combination of both. Each data 
contains a range of densities from very low to very high 
crowd density.

GLDM and TIOCM both out perform MFD under all 
conditions, however there was little to choose between them, 
given the small number of samples in this experiment. There 
is also some evidence that the GLDM requires almost an 
order of magnitude more time to classify a test image. If 
substantiated this would mandate the choice of TIOCM in 
practical situations.

Generally, the morning data gave worse results compared to 
afternoon and combined data. This is because the afternoon 
data has a much smaller variation of illumination compared 
with the morning data. Thus, we predict that the TIOCM, like 
GLDM may perform well when used for the estimation of 
crowd density for indoor scenes or other places where small 
variations of illumination appear. 

It is clear that future evaluation is required, to determine how 
robust TIOCM is, especially when there are variations of the 
background.
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