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Abstract: Adaptive digital filtering has traditionally been developed based on the minimum mean square error (MMSE)

criterion and has found ever-increasing applications in communications. This paper presents an alternative adaptive filtering

design based on the minimum symbol error rate (MSER) criterion for communication applications. It is shown that the

MSER filtering is smarter, as it exploits the non-Gaussian distribution of filter output effectively. Consequently, it provides

significant performance gain in terms of smaller symbol error over the MMSE approach. Adopting Parzen window or

kernel density estimation for a probability density function, a block-data gradient adaptive MSER algorithm is derived. A

stochastic gradient adaptive MSER algorithm, referred to as the least symbol error rate, is further developed for sample-

by-sample adaptive implementation of the MSER filtering. Two applications, involving single-user channel equalization and

beamforming assisted receiver, are included to demonstrate the effectiveness and generality of the proposed adaptive MSER

filtering approach.
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1 Introduction

Adaptive filtering has been an enabling technology
for communications. Traditionally, adaptive filtering
has been developed based on the minimum mean square
error (MMSE) principle[1,2]. One of the strengths of
this design is that effective adaptive implementation
can be achieved using the simple least mean square
(LMS) algorithm, thus readily meet the real-time com-
putational constraints of high-speed digital communi-
cation systems. For a communication system, how-
ever, it is the bit error rate (BER) or symbol er-
ror rate (SER), not the mean square error (MSE),
that really matters. In digital communication appli-
cations, the probability density function (p.d.f.) of
an adaptive filter output is generally a Gaussian mix-
ture. This non-Gaussian nature can be exploited ex-
plicitly, leading to alternative approaches to the MMSE
filtering. For single-user channel equalization applica-
tion, adaptive minimum BER (MBER) linear equal-
izers and decision feedback equalizers (DFE) have
been developed[3∼9]. Similar approaches have been
adopted for linear multi-user detection in code-division
multiple-access systems[10∼16]. The MBER beamform-
ing using an antenna array for wireless communication
has also been considered[17∼19]. These previous studies
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have demonstrated that the MBER approach offers a
potentially significant performance improvement and it
provides a viable alternative to the traditional adaptive
filtering based on the MMSE principle.

All these previous works on minimum error prob-
ability filtering are specifically designed for the sim-
plest binary digital modulation scheme. Increas-
ing demand for high-speed multimedia services over
limited radio spectrum requires the employment of
spectrum-efficient modulation schemes, such as multi-
level quadrature amplitude modulation (M -QAM)[20].
The main contribution of this paper is to extend the
minimum error probability filtering to the general M -
QAM case and to present a unified framework for adap-
tive MSER linear filtering. A complex-valued linear
filtering model is given in the general communication
setting, and the theoretical MSER filtering solution is
derived. To effectively implement the MSER solution,
a Parzen window p.d.f. estimation technique[21∼23] is
adopted to approximate the non-Gaussian probabil-
ity distribution of the filter output accurately, which
naturally gives rise to a block-data gradient adaptive
MSER algorithm. Sample-by-sample adaptive imple-
mentation of the MSER filtering is then considered,
and a stochastic gradient adaptive MSER algorithm,
referred to as the least symbol error rate (LSER), is de-
rived which has a similar low computational complexity
to the very simple LMS algorithm. Two applications,
involving channel equalization and beamforming with
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antenna array, are used to illustrate the generality and
effectiveness of the proposed adaptive MSER filtering.
Simulation results obtained confirm the superior per-
formance of the MSER filtering over the MMSE one.

2 System model

Consider the general tap-delay-line linear filter
whose output is given by

y(k) =
L−1∑
l=0

w∗
l xl(k) = wHx(k) (1)

where k denotes the sampling index, L is the fil-
ter length, x(k) = [x0(k) x1(k) · · ·xL−1(k)]T is
the complex-valued filter input vector and w =
[w0 w1 · · ·wL−1]T the complex-valued filter weight vec-
tor. Such a complex-valued filter can be found in re-
ceivers of various communication systems. In channel
equalization, for example, x(k) is generated from a tap-
delay-line of the received signal. In adaptive beamform-
ing assisted receiver, x(k) consists of received signals
at the antenna array. Generally, the underlying system
that produces the filter input x(k) can be modelled as

x(k) = Pb(k) + n(k) = x̄(k) + n(k) (2)

where the complex-valued Gaussian noise vector
n(k) = [n0(k) n1(k) · · ·nL−1(k)]T has zero mean and
covariance matrix E[n(k)nH(k)] = 2σ2

nIL with IL

denoting the L × L identity matrix, the complex-
valued system matrix P has dimension L × N , and
the transmitted information symbol vector b(k) =
[b0(k) b1(k) · · · bN−1(k)]T. Typically, bi(k) and bq(k)
are uncorrelated if i �= q. For single-user applications,
b(k) contains the current and previous N − 1 trans-
mitted symbols and, for multi-user applications, b(k)
consists of the transmitted symbols of different users.
The modulation scheme is assumed to be M -QAM, and
bi(k), 0 � i � N − 1, takes values from the symbol set
defined by

B � {bl,q = ul + juq, 1 � l, q �
√

M} (3)

where ul = 2l −√
M − 1 and uq = 2q −√

M − 1. The
sampling rate is assumed to be equal to the symbol
rate so that k also indicates the symbol index. The ap-
proach can be extended to the general case of sampling
faster than the symbol rate, referred to as fractionally-
spaced sampling[24].

The purpose of the filter (1) is to enable an estimate
b̂d(k) of the “desired” symbol bd(k), the d-th element
of b(k), where 0 � d � N − 1. Consider the combined
impulse response of the filter and the system given by

wHP = wH[p0 p1 · · ·pN−1] = [c0 c1 · · · cN−1]. (4)

The filter’s output can be expressed as

y(k) = cdbd(k) +
∑
i�=d

cibi(k) + e(k) (5)

where the first term is the desired signal and the sec-
ond term is the residual interference. From (5), pro-
vided that cd is real and positive, i.e. cd = cRd

+ jcId

satisfying cRd
> 0 and

cId
= Im[wHpd] = 0 (6)

the symbol decision b̂d(k) = b̂Rd
(k) + jb̂Id

(k) can be
decoupled into the real and imaginary parts, given re-
spectively by

b̂Rd
(k)=

⎧⎪⎪⎨
⎪⎪⎩

u1, if yR(k) � cRd
(u1 + 1)

ul, if cRd
(ul−1)<yR(k) � cRd

(ul+1)
for 2 � l �

√
M − 1

u√
M , if yR(k) > cRd

(u√
M − 1)

(7)

b̂Id
(k)=

⎧⎪⎪⎨
⎪⎪⎩

u1, if yI(k) � cRd
(u1 + 1)

uq, if cRd
(uq−1)<yI(k)�cRd

(uq+1)
for 2 � q �

√
M − 1

u√
M , if yI(k) > cRd

(u√
M − 1)

(8)
where y(k) = yR(k)+jyI(k). Fig. 1 depicts the decision
boundaries associated with the decision b̂d(k) = bl,q. In
general, wHpd is complex-valued and the rotating op-
eration

wnew =
cold
d∣∣cold
d

∣∣wold (9)

Fig. 1 Generic decision boundaries associated with point

cdbl,q assuming cId = 0, and illustrations of symmetric

distribution of Yl,q around the mass center cdbl,q

can be used to make cd real and positive. This rotation
is a linear transformation and does not alter the SER
of the underlying system. For the QAM modulation,
the d-th column pd of the system matrix P is required
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at the receiver in order to make a decision regarding
the transmitted symbol bd(k).

The classical design for the linear filter (1) is based
on minimizing the MSE term of E[|bd(k) − y(k)|2],
which leads to the following MMSE solution

wMMSE =
(
PPH +

2σ2
n

σ2
b

IL

)−1

pd (10)

where σ2
b = E[|bi(k)|2]. The MMSE solution gener-

ally does not provide a minimum error probability, un-
less the conditional p.d.f. of y(k) given bd(k) = bl,q is
Gaussian. However, the p.d.f. of y(k) is obviously non-
Gaussian, as can be seen from (5). Since the SER is the
true performance indicator, it is desireable to consider
the optimal MSER filter solution.

3 Minimum symbol error rate solution

Denote the Nb = MN number of possible sequences
of b(k) as bi, 1 � i � Nb. Then x̄(k) can only take
values from the finite signal set defined by

X � {x̄i = Pbi, 1 � i � Nb}. (11)

This set can be partitioned into M subsets, depending
on the specific value of bd(k), as follows:

Xl,q � {x̄i ∈ X : bd(k) = bl,q}, 1 � l, q �
√

M. (12)

Recall that the filter’s output is given by

y(k) = wHx̄(k) + wHn(k) = ȳ(k) + e(k) (13)

where e(k) is Gaussian distributed with zero mean and
E[|e(k)|2] = 2σ2

nwHw. The noise-free part of the fil-
ter’s output, namely ȳ(k), only takes values from the
scalar set

Y � {ȳi = wHx̄i, 1 � i � Nb} (14)

and Y can be divided into the M subsets conditioned
on the value of bd(k):

Yl,q � {ȳi ∈ Y : bd(k) = bl,q}, 1 � l, q �
√

M. (15)

Lemma 1. The subsets Xl,q, 1 � l, q �
√

M , sat-
isfy the shifting properties:

Xl+1,q = Xl,q + 2pd, 1 � l �
√

M − 1 (16)

Xl,q+1 = Xl,q + j2pd, 1 � q �
√

M − 1 (17)

Xl+1,q+1 = Xl,q +(2+ j2)pd, 1 � l, q �
√

M −1. (18)

Proof. From the definitions of P and bi, for each
x̄(l,q)

i ∈ Xl,q, there exists a x̄(l+1,q)
i ∈ Xl+1,q, such that

x̄(l+1,q)
i = x̄(l,q)

i +(bl+1,q − bl,q)pd = x̄(l,q)
i +2pd. (19)

This verifies the shifting property (16). The proofs for
(17) and (18) are similar. �

Lemma 2. As a direct consequence of Lemma 1,
the subsets Yl,q, 1 � l, q �

√
M , satisfy the shifting

properties:

Yl+1,q = Yl,q + 2cd, 1 � l �
√

M − 1 (20)

Yl,q+1 = Yl,q + j2cd, 1 � q �
√

M − 1 (21)

Yl+1,q+1 = Yl,q + (2 + j2)cd, 1 � l, q �
√

M − 1. (22)

Lemma 3. The points of Yl,q are distributed sym-
metrically around the symbol point cdbl,q.

Lemma 3 is obvious and is a direct consequence of
symmetric distribution of the symbol constellation (3).
This symmetric property is also illustrated in Fig. 1.
Note that the distribution of Yl,q is symmetric with re-
spect to the two vertical decision boundaries cRd

(ul±1)
and with respect to the two horizontal decision bound-
aries cRd

(uq ± 1).
For a linear filter to perform adequately it is implic-

itly assumed that the system is linearly separable. Lin-
ear separability is interpreted as follows: there exists
w satisfying condition (6) such that Yl,q is completely
separated from Yl+1,q by the line cRd

(ul + 1) + ju,
for 1 � l �

√
M − 1 and 1 � q �

√
M , and

Yl,q is completely separated from Yl,q+1 by the line
u+jcRd

(uq +1), for 1 � l �
√

M and 1 � q �
√

M −1,
where u ∈ (−∞, ∞) denotes a real-valued variable.
Linear separability is not always guaranteed in prac-
tice. When the underlying system is linearly insepa-
rable, a linear filter will have an irreducibly high SER
floor and nonlinear filtering is required to achieve ade-
quate performance[25∼31].

3.1 Symbol error rate expression

For the linear filter with weight vector w satisfying
(6), denote

PE(w) = Prob{b̂d(k) �= bd(k)} (23)

PER(w) = Prob{b̂Rd
(k) �= bRd

(k)} (24)

PEI (w) = Prob{b̂Id
(k) �= bId

(k)}. (25)

It is then easy to see that the SER is given by

PE(w) = PER(w) + PEI (w) − PER(w)PEI (w). (26)

The conditional p.d.f. of y(k) given bd(k) = bl,q is a
Gaussian mixture defined by

p(y|bl,q) =
1

Nsb2πσ2
nwHw

Nsb∑
i=1

e
− |y−ȳ

(l,q)
i

|2

2σ2
nwHw (27)

where Nsb = Nb/M is the number of points in Yl,q,
ȳ
(l,q)
i = ȳ

(l,q)
Ri

+ jȳ
(l,q)
Ii

∈ Yl,q, and y = yR + jyI .
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Note that cd is real and the symbol decision is
decoupled into (7) and (8). Taking into account
the symmetric distribution of Yl,q, see Lemma 3, for
2 � l �

√
M − 1, the conditional error probability of

b̂Rd
(k) �= ul given bRd

(k) = ul is

PER,l(w) =
1

Nsb2πσ2
nwHw

Nsb∑
i=1

∫ ∞

−∞
e
−

(yI−ȳ
(l,q)
Ii

)2

2σ2
nwHw d yI×

{∫ cRd
(ul−1)

−∞
+
∫ ∞

cRd
(ul+1)

}
e
−

(yR−ȳ
(l,q)
Ri

)2

2σ2
nwHw dyR =

2
Nsb

Nsb∑
i=1

Q(g(l,q)
Ri

(w)) (28)

where
Q(u) =

1√
2π

∫ ∞

u

e−
z2
2 dz (29)

g
(l,q)
Ri

(w) =
ȳ
(l,q)
Ri

− cRd
(ul − 1)

σn

√
wHw

. (30)

Further taking into account the shifting property, see
Lemma 2 and noting that the error only occurs at one
size in (28) if l = 1 or

√
M , it is straightforward to

show that

PER(w) =
√

M − 1√
M

2
Nsb

Nsb∑
i=1

Q(g(l,q)
Ri

(w)) =

γ
1

Nsb

Nsb∑
i=1

Q(g(l,q)
Ri

(w)) (31)

where γ =
2
√

M − 2√
M

. It is seen that PER can be eval-

uated using the real part of any single subset Yl,q.
Similarly, PEI can be evaluated using the imaginary

part of any single subset Yl,q as

PEI (w) = γ
1

Nsb

Nsb∑
i=1

Q(g(l,q)
Ii

(w)) (32)

with

g
(l,q)
Ii

(w) =
ȳ
(l,q)
Ii

− cRd
(uq − 1)

σn

√
wHw

. (33)

3.2 Minimum symbol-error-rate solution

The MSER solution wMSER in principle is obtained
by minimizing PE(w) with respect to w. However,
there is no simple way of doing so due to the cross
coupled term PER(w)PEI (w). Instead, the MSER so-
lution is defined as the one that minimizes the upper
bound of the SER given by

PEB (w) = PER(w) + PEI (w). (34)

That is,
wMSER = argmin

w
PEB (w). (35)

The upper bound PEB (w) is very tight, i.e. very close
to the true SER PE(w). Unlike the closed-form MMSE
solution (10), a numerical optimization has to be ap-
plied to obtain an MSER solution wMSER. The gradi-
ents of PER(w) and PEI (w) with respect to w can be
shown to be respectively

∇PER(w)=
γ

2Nsb

√
2πσn

√
wHw

Nsb∑
i=1

e
−
(

ȳ
(l,q)
Ri

−cRd
(ul−1)

)2
2σ2

nwHw

×
(

ȳ
(l,q)
Ri

− cRd
(ul − 1)

wHw
w − x̄(l,q)

i + (ul − 1)pd

)
(36)

∇PEI (w)=
γ

2Nsb

√
2πσn

√
wHw

Nsb∑
i=1

e
−
(

ȳ
(l,q)
Ii

−cRd
(uq−1)

)2
2σ2

nwHw

×
(

ȳ
(l,q)
Ii

− cRd
(uq − 1)

wHw
w + jx̄(l,q)

i + (uq − 1)pd

)
.

(37)

With the gradient ∇PEB (w) = ∇PER(w) + ∇PEI (w),
the optimization problem (35) can be solved for iter-
atively using a gradient-based optimization algorithm.
Since the SER is invariant to a positive scaling of w,
it is computationally advantageous to normalize w to
a unit-length using

w := w/
√

wHw (38)

after every iteration, so that the gradients (36) and (37)
can be simplified to:

∇PER(w) =
γ

2Nsb

√
2πσn

Nsb∑
i=1

e
−
(

ȳ
(l,q)
Ri

−cRd
(ul−1)

)2
2σ2

n ×
((

ȳ
(l,q)
Ri

− cRd
(ul − 1)

)
w − x̄(l,q)

i + (ul − 1)pd

)
(39)

∇PEI (w) =
γ

2Nsb

√
2πσn

Nsb∑
i=1

e
−
(

ȳ
(l,q)
Ii

−cRd
(uq−1)

)2
2σ2

n ×
((

ȳ
(l,q)
Ii

− cRd
(uq − 1)

)
w + jx̄(l,q)

i + (uq − 1)pd

)
.

(40)

The rotating operation (9) should also be applied af-
ter each iteration to ensure a real and positive cd. A
further saving in computation is achieved by choos-
ing the subset with l, q = 1 +

√
M/2, giving rise to

ul − 1 = uq − 1 = 0. We point out that the simplified
conjugate gradient algorithm[15,32] provides an efficient
means to find an MSER solution.
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4 Adaptive MSER filtering

To derive an adaptive version of the MSER filter-
ing, it is more convenient to explicitly write down the
p.d.f. of y(k)

p(y) =
1

Nb2πσ2
nwHw

√
M∑

l=1

√
M∑

q=1

Nsb∑
i=1

e
− |y−ȳ

(l,q)
i

|2

2σ2
nwHw (41)

and to express the two error probabilities alternatively
as

PER(w) =
γ

Nb

√
M∑

l=1

√
M∑

q=1

Nsb∑
i=1

Q(g(l,q)
Ri

(w)) (42)

PEI (w) =
γ

Nb

√
M∑

l=1

√
M∑

q=1

Nsb∑
i=1

Q(g(l,q)
Ii

(w)). (43)

In reality, the p.d.f. of y(k) is unknown. Parzen
window or kernel density estimate[21−23] is a well
known method for estimating a probability distribu-
tion. Parzen window method estimates a p.d.f. using
a window or block of y(k) by placing a symmetric uni-
modal kernel function on each y(k). Kernel density
estimation is capable of producing reliable p.d.f. es-
timates with short data records and is natural when
dealing with Gaussian mixtures, such as the one given
in (41). In our application, it is obvious and natural to
choose a Gaussian kernel function with a kernel width
ρn

√
wHw that is similar in form to the noise standard

deviation σn

√
wHw.

4.1 Block-data gradient adaptive MSER
algorithm

Given a block of K training samples
{x(k), bd(k)}K

k=1, a kernel density estimate of the p.d.f.
(41) is readily given by

p̂(y) =
1

K2πρ2
nwHw

K∑
k=1

e
− |y−y(k)|2

2ρ2
nwHw (44)

where the scaling parameter ρn is related to the stan-
dard deviation σn of the system noise. In [22], a lower

bound of ρn =
(

4
3K

) 1
5 σn is suggested. In practice, ρn

can often be chosen from a large range of values.
From this estimated p.d.f. (44), the estimated

upper-bound SER expression is given by

P̂EB (w) =P̂ER(w) + P̂EI (w) =

γ

K

K∑
k=1

(Q(ĝRk
(w)) + Q(ĝIk

(w)))
(45)

with

ĝRk
(w) =

yR(k) − ĉRd
(bRd

(k) − 1)

ρn

√
wHw

(46)

ĝIk
(w) =

yI(k) − ĉRd
(bId

(k) − 1)

ρn

√
wHw

(47)

where ĉRd
= Re[wHp̂d] and p̂d an estimate of pd. The

gradient of P̂EB (w) can readily be calculated with

∇P̂ER(w)=
γ

2K
√

2πρn

√
wHw

K∑
i=1

e
−(yR(k)−̂cRd

(bRd
(k)−1))2

2ρ2
nwHw

×
(

yR(k)− ĉRd
(bRd

(k)−1)
wHw

w−x(k)+(bRd
(k)−1)p̂d

)
(48)

∇P̂EI (w)=
γ

2K
√

2πρn

√
wHw

K∑
i=1

e
−(yI (k)−̂cRd

(bId
(k)−1))2

2ρ2
nwHw

×
(

yI(k)− ĉRd
(bId

(k) − 1)
wHw

w+jx(k)+(bId
(k)−1)p̂d

)
(49)

Upon substituting ∇PEB (w) by ∇P̂EB (w) =
∇P̂ER(w)+∇P̂EI (w) in the simplified conjugate gradi-
ent updating mechanism, a block-data based adaptive
algorithm is obtained. The step size µ of the conjugate
gradient algorithm and the scaling parameter ρn are
two algorithmic parameters, which control the rate of
convergence and determine the accuracy of the p.d.f.
and hence SER estimate.

4.2 Stochastic gradient adaptive MSER
algorithm

In the Parzen window estimate (44), the kernel
width ρn

√
wHw depends on the filter weight vector w.

In a general density estimate, there is no reason why
the width parameter should be chosen in such a way
except that the dependency of the width parameter to
w in the true density (41) is noticed. However, the
SER is invariant to wHw. To fully take advantage of
this fact, it is proposed to used a constant width ρn

in density estimates. One advantage of using a con-
stant width ρn, rather than a variable one ρn

√
wHw,

in the density estimate is that the gradient of the re-
sulting estimated SER has a much simpler form, which
leads to considerable reduction in computational com-
plexity. This is particularly relevant to the derivation
of stochastic gradient updating mechanisms. Adopting
this approach, an alternative Parzen window estimate
of the true p.d.f. (41) is given by

p̃(y) =
1

K2πρ2
n

K∑
k=1

e
− |y−y(k)|2

2ρ2
n (50)

and an approximation of the upper-bound SER is

P̃EB (w) =P̃ER(w) + P̃EI (w) =
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γ

K

K∑
k=1

(Q(g̃Rk
(w)) + Q(g̃Ik

(w)))
(51)

with

g̃Rk
(w) =

yR(k) − ĉRd
(bRd

(k) − 1)
ρn

(52)

g̃Ik
(w) =

yI(k) − ĉRd
(bId

(k) − 1)
ρn

. (53)

This approximation is valid, provided that the width
ρn is chosen appropriately.

To derive a sample-by-sample adaptive algorithm,
consider a single-sample “estimate” of p(y), namely

p̃(y, k) =
1

2πρ2
n

e
− |y−y(k)|2

2ρ2
n (54)

and the corresponding one-sample SER “estimate”
P̃EB (w, k). Using the instantaneous stochastic gradi-
ent of ∇P̃EB (w, k) = ∇P̃ER(w, k) + ∇P̃EI (w, k) with

∇P̃ER(w, k) =
γ

2
√

2πρn

e
− (yR(k)−ĉRd

(k)(bRd
(k)−1))2

2ρ2
n ×

(−x(k) + (bRd
(k) − 1)p̂d) (55)

∇P̃EI (w, k) =
γ

2
√

2πρn

e
−(yI (k)−ĉRd

(k)(bId
(k)−1))2

2ρ2
n ×

(jx(k) + (bId
(k) − 1)p̂d) (56)

gives rise to a stochastic gradient adaptive algorithm,
referred to as the LSER algorithm:

w(k + 1) = w(k) + µ
(
−∇P̃EB (w(k), k)

)
(57)

ĉd(k + 1) = wH(k + 1)p̂d (58)

w(k + 1) =
ĉd(k + 1)
|ĉd(k + 1)|w(k + 1) (59)

where the adaptive gain µ and the kernel width ρn

should be set appropriately to ensure an adequate per-
formance in terms of convergence rate and steady-state
SER misadjustment. Note that there is no need to
normalize the weight vector to a unit-length after each
update.

It is interesting to see some analogy between the
traditional adaptive filtering approach based on the
MMSE criterion and the proposed adaptive MSER fil-
tering approach. The second-order statistics required
to compute the Wiener solution can be estimated using
a block of samples, and by considering a single-sample
estimate, a stochastic gradient adaptive MMSE algo-
rithm, namely the LMS, is derived. The p.d.f. required
to determine the MSER solution can be approximated

with a kernel density estimate based on a block of sam-
ples, and by considering a single-sample density esti-
mate, a stochastic gradient adaptive MSER algorithm
is formulated.

5 Application examples

The effectiveness of the proposed adaptive MSER
filtering approach is demonstrated using two applica-
tions.

5.1 Single-user channel equalization

In the communication system involving a dispersive
channel, the received signal sample can be expressed
as[20]

r(k) =
na−1∑
i=0

aib(k − i) + n(k) (60)

where na is the channel impulse response (CIR) length,
ai are complex-valued channel taps, {b(k)} is the trans-
mitted data symbol sequence, and n(k) a complex-
valued additive white Gaussian noise with E[|n(k)|2] =
2σ2

n. The system signal to noise ratio (SNR) is defined
as SNR = aHaσ2

b /2σ2
n, where a = [a0 a1 · · · ana−1]T is

the channel tap vector and E[|b(k)|2] = σ2
b . A decision

feedback equalizer (DFE) is employed at the receiver,
which takes the form

y(k) = wHr(k) + fHb̂fb(k) (61)

where r(k) = [r(k) r(k − 1) · · · r(k − L + 1)]T is
the observation vector, b̂fb(k) = [b̂(k − d − 1) · · ·
b̂(k − d − nfb)]T is the past detected symbol vector,
w and f = [f1 · · · fnfb

]T are the feedforward and feed-
back filter coefficient vectors with orders L and nfb

respectively. At symbol instance k, the DFE provides
an estimate b̂(k−d) of the transmitted symbol b(k−d),
where d is called the decision delay. The DFE structure
parameters will be chosen as

L = na, nfb = na − 1, d = na − 1 (62)

as this choice is sufficient to guarantee a desired linear
separability, see Lemma 4.

The DFE (61) can be translated into the linear fil-
ter (1) under the assumption that the past decisions
are correct (also see [6]). The received signal vector
can be expressed as

r(k) = r̄(k) + n(k) = Ab(k) + n(k) (63)

where the L× (L+na −1) CIR matrix A has the form

A =

⎡
⎢⎢⎢⎢⎣

a0 a1 · · · ana−1 0 · · · 0

0 a0 a1 · · · ana−1
. . .

...
...

. . .
. . .

. . . · · · . . . 0
0 · · · 0 a0 a1 · · · ana−1

⎤
⎥⎥⎥⎥⎦ =
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[P | Pfb] (64)

with P having a dimension of L ×L and Pfb having a
dimension of L × (na − 1), and

b(k) = [b(k) b(k − 1) · · · b(k − d) |
b(k − d − 1) · · · b(k − L − na + 2)]T =

[bT
ff (k) | bT

fb(k)]T. (65)

Noticing (62), the last column of P is pd =
[ana−1 · · ·a1 a0]T. Under the assumption that the past
decisions are correct, b̂fb(k) = bfb(k) and r(k) can be
expressed as

r(k) = Pbff (k) + Pfbb̂fb(k) + n(k). (66)

Thus, the decision feedback translates the original ob-
servation space r(k) into a new space x(k) defined by

x(k) �r(k) − Pfbb̂fb(k) = Pbff (k) + n(k) =

x̄(k) + n(k). (67)

In this translated observation space, the DFE (61) be-
comes

y(k) = wHx(k) = ȳ(k) + e(k). (68)

The feedback filter coefficients do not disappear.
They have been set to their optimal values fopt =
−PH

fbwMMSE, where wMMSE denotes the MMSE so-
lution for w. There is no need to explicitly estimate
fopt, because the elements of x(k) can be computed
recursively according to [6] as⎧⎨
⎩

x(k − i) = z−1x(k − i + 1) − ana−ib̂(k − d − 1),
i = L − 1, · · · , 2, 1

x(k) = r(k)
(69)

where z−1 denotes the unit delay operator. Thus, in
an adaptive implementation, one needs to estimate the
CIR using for example the LMS algorithm, rather than
estimate f . Note that the CIR is needed anyway in or-
der to make the symbol decision according to (7) and
(8).

The equalizer (68) and its observation model (67)
have identical forms to the linear filter (1) and its ob-
servation model (2), with N = L = na. Furthermore,
the DFE has the following desired property of linear
separability.

Lemma 4. With the choice of DFE structure (62),
Yl,q , 1 � l, q �

√
M , are linearly separable.

Proof. Choose the weight vector w =
[0 0 · · · 0 1

a∗
0
]T. It is obvious that condition (6) is sat-

isfied, as wHpd = 1. For l = 1, · · · ,√M − 1 and
1 � q �

√
M , it is easy to see that

wHx̄(l,q)
i = bl,q, ∀x̄(l,q)

i ∈ Xl,q (70)

wHx̄(l+1,q)
i = bl+1,q, ∀x̄(l+1,q)

i ∈ Xl+1,q. (71)

That is, Yl,q is completely separated from Yl+1,q by
the line (ul + 1) + ju. Similarly, for 1 � l �

√
M and

q = 1, · · · ,√M − 1, Yl,q is completely separated from
Yl,q+1 by the line u + j(uq + 1). �

In the simulation, the 16-QAM symbols were trans-
mitted through the two-tap channel aT = [0.2−j0.2 −
1.0+j1.0]. The DFE structure parameters were set ac-
cording to (62) as L = 2, d = 1 and nfb = 1. Fig. 2
compares the SER performance of the MMSE DFE
with

Fig. 2 Symbol error rate performance comparison of the

MMSE and MSER DFEs

that of the MSER one, where it can be seen that the
MSER solution offers more than 5 dB improvement in
SNR at the SER level of 10−4 over the MMSE solu-
tion. The conditional p.d.f. p(y|bl,q), the two marginal
conditional p.d.f’.s p(yR|bl,q) and p(yI |bl,q), the subset
Yl,q and its real and imaginary parts of the MMSE
DFE output, given b(k − d) = 1 + j and with an SNR
= 27 dB, are compared with those of the MSER DFE
in Fig. 3. For this example, the total number of signal
points is Nb = 162 = 256 and therefore Yl,q contains
Nsb = 16 points. In Fig. 3, the equalizer weight vector
w has been normalized to a unit length, so that the
SER is determined by the minimum distance from the
subset Yl,q to the corresponding decision boundaries.
It can be seen from Fig. 3 that this minimum distance
is about 0.4 for the MMSE DFE and about 0.6 for the
MSER DFE. This explains why the MMSE DFE has a
higher SER than the MSER DFE. The conditional den-
sity distribution of y(k) for the MMSE DFE looks more
like a Gaussian one, while the non-Gaussian nature of
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this density distribution is evident for the MSER DFE.

(a)

(b)

Fig. 3 Conditional probability density functions
p(y|+ 1 + j) (surfaces), marginal conditional probability

density functions p(yR| + 1 + j) and p(yI | + 1 + j)
(curves), signal subsets Y3,3 (dots) and their real and

imaginary parts (dots) for: (a) the MMSE DFE, and (b)
the MSER DFE, given SNR = 27 dB. The equalizer
weight vector has been normalized to a unit length

The performance of the block-data based adaptive
MSER algorithm with the simplified conjugate gradi-
ent updating mechanism was next studied. A perfect
estimate p̂d was assumed and the step size µ and the
kernel width ρn were determined empirically to provide
the best performance in terms of convergence speed and
estimation accuracy. Fig. 4 illustrates the convergence
rate of the algorithm under SNR = 27 dB and given
two different initial weight vector conditions, where two
block sizes K = 50 and 100 were used. From Fig. 4, it
can be seen that the convergence speed of this block-
data adaptive MSER algorithm is rapid. As the SER
estimate P̂EB (w) is a complicated nonlinear function

of w, the initial condition affects convergence speed.
For this example, with w(0) chosen arbitrarily to be
[0.0 + j0.0 0.1 − j0.1]T, it took only one iteration to
converge, compared this with about 40 iterations that
was needed with w(0) = wMMSE. The performance
of the stochastic gradient adaptive MSER algorithm
was then investigated. Fig. 5 shows the learning curves
of the LSER algorithm averaged over 100 runs, given
SNR = 27 dB and two different initial weight vector
conditions. From Fig. 5, it can be seen that this LSER
algorithm has a fast convergence rate. There are two
learning curves in both Fig. 5 (a) and (b), correspond-
ing to training and decision directed (DD) adaptation
in which b(k − d) is substituted by the equalizer’s esti-
mate b̂(k − d). It is seen that even with the DD adap-
tation, the LSER algorithm performs well.

(a)

(b)

Fig. 4 Convergence rate of the block-data gradient
adaptive MSER algorithm for the equalization example
given SNR = 27 dB: (a) w(0) = wMMSE, µ = 0.8 and

ρ2
n = σ2

n ≈ 0.02, and (b) w(0) = [0.0 + j0.0 0.1 − j0.1]T ,
µ = 0.8 and ρ2

n = 2σ2
n ≈ 0.04
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(a)

(b)

Fig. 5 Learning curves of the stochastic gradient adaptive
MSER algorithm averaged over 100 runs for the
equalization example given SNR = 27 dB: (a)

w(0) = wMMSE, µ = 0.9 and ρ2
n = 50σ2

n ≈ 1.04, and (b)
w(0) = [0.0 + j0.0 0.1 − j0.1]T, µ = 0.9 and

ρ2
n = 100σ2

n ≈ 2.08, where DD denotes decision directed

adaptation with b̂(k − d) substituting b(k − d)

5.2 Adaptive beamforming assisted re-
ceiver

The ever-increasing demand for mobile communica-
tion capacity has motivated the employment of space
division multiple access for improving the achievable
spectral efficiency. A particular approach that has
shown real promise in achieving substantial capacity
enhancements is the use of adaptive beamforming with
antenna arrays. Adaptive beamforming is capable of
separating signals transmitted on the same carrier fre-
quency, provided that they are separated sufficiently in
the spatial domain. Consider the system that supports
N users (sources) which transmit on the same carrier
frequency ω = 2πf , and assume that the channel is

narrow-band which does not induce intersymbol inter-
ference. The linear antenna array considered consists of
L uniformly spaced elements, and the signals received
by the L-element antenna array can be expressed in
the form of (2), where the L × N system matrix P is
defined by

P = [A0s0 A1s1 · · ·AN−1sN−1] (72)

with Ai denoting the channel coefficient for user i and
the steering vector for source i

si = [exp(jωt0(θi)) · · · exp(jωtL−1(θi))]T (73)

with tl(θi) being the relative time delay at array el-
ement l for source i and θi the direction of arrival
for source i. The transmitted user symbol vector is
b(k) = [b0(k) b1(k) · · · bN−1(k)]T. Without any loss of
generality, source 0 is assumed to be the desired user
and the rest of the sources are the interfering users. The
desired user’s SNR is defined as SNR = |A0|2σ2

b /2σ2
n

and the desired signal to interference ratio (SIR) with
respect to interfering user i is defined as SIRi = A2

0/A
2
i

for 1 � i � N − 1. The beamformer at receiver is a
linear filter in the form of (1) with d = 0 in the decision
rule (7) and (8).

The simulation example consisted of three 16-QAM
signal sources and a two-element antenna array. Fig. 6
shows the locations of the desired source and the inter-
fering sources. The minimum spatial separation was
the difference in angles of arrival between the desired
user 0 and the interferer 2, which was θ � 70◦. Fig. 7
compares the SER of the MMSE solution with that of
the MSER one, given θ = 60◦ and under two different
conditions: (a) the desired user and the two interfering
sources had equal power, and (b) the desired user and

Fig. 6 Locations of the desired source and the interfering

sources with respect to the two-element linear antenna

array having λ/2 element spacing, where λ is the

wavelength
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the interfering source 1 had equal power, but the in-
terfering source 2 had 6 dB higher power than the de-
sired user. It can be seen that when the 2nd interfering
user’s power was increased by 6 dB, the MMSE beam-
former’s performance degraded considerably while the
performance of the MSER beamformer was only af-
fected slightly. Thus, the MSER beamformer is robust
to the near-far effect. Figs. 8 and 9 depict the condi-
tional p.d.f. p(y|1 + j), the two marginal conditional
p.d.f.’s p(yR|1+ j) and p(yI |1+ j), the subset Y3,3 and
its real and imaginary parts for the MMSE and MSER
beamformers, given θ = 60◦, SNR = 27 dB, and two
SIR conditions, respectively. The total number of sig-
nal points was Nb = 163 = 4096 and the subset Y3,3

contained Nsb = 256 points. It is seen from Fig. 8 that
in the equal user power case, the minimum distance
from Y3,3 to its corresponding decision boundaries for
the MSER solution was slightly larger than that for the
MMSE solution. This explains the slightly better SER
performance of the MSER beamformer over the MMSE
one as shown in Fig. 7 with SIR1 = SIR2 = 0 dB. When
facing a strong interference signal, Fig. 9 (a) shows that
the minimum separation between Yl,q for the MMSE
solution was reduced dramatically, thus causing a sig-
nificant performance degradation as seen in Fig. 7 for
the case of SIR2 = −6 dB. The reason of near-far ro-
bustness for the MSER solution can be seen clearly
from Fig. 9 (b), which shows an almost unchanged min-
imum separation between Yl,q compared with the equal
user power case.

Fig. 7 Symbol error rate performance comparison of the

MMSE and MSER beamformers, given θ = 60◦,
SIR1 = 0 dB, and two SIR2 (0 dB and -6 dB)

(a)

(b)

Fig. 8 Conditional probability density functions
p(y| + 1 + j) (surfaces), marginal conditional probability

density functions p(yR| + 1 + j) and p(yI | + 1 + j)
(curves), signal subsets Y3,3 (dots) and their real and

imaginary parts (dots) for: (a) the MMSE beamformer,
and (b) the MSER beamformer, given θ = 60◦, SNR
= 27 dB and SIR1 = SIR2 = 0 dB. The beamformer
weight vector has been normalized to a unit length

(a)
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(b)

Fig. 9 Conditional probability density functions
p(y|+ 1 + j) (surfaces), marginal conditional probability

density functions p(yR|+ 1 + j) and p(yI |+ 1 + j) (curves),
signal subsets Y3,3 (dots) and their real and imaginary

parts (dots) for: (a) the MMSE beamformer, and (b) the
MSER beamformer, given θ = 60◦, SNR = 27 dB,

SIR1 = 0 dB and SIR2 = −6 dB. The beamformer weight
vector has been normalized to a unit length

The performance of the two beamformers was also
investigated under the equal user power condition. The
varying minimum spatial separation θ, and the results
are depicted in Fig. 10. For θ = 70◦, the performances
of the two beamformers were indistinguishable. When
θ was reduced to 60◦ and 58◦, the MSER beamformer
achieved above 1 dB and 3 dB improvements in SNR,
respectively, at the SER level of 10−4 over the MMSE
solution. For θ = 55◦, the MMSE beamformer could
not achieve linear separability and exhibited an irre-
ducible SER floor, while the MSER beamformer could
still manage to achieve a linear separability. When the
minimum spatial separation was below 55◦, the system
was inherently linearly inseparable.

Performance of the block-data gradient adaptive
MSER algorithm was next tested. Again a perfect esti-
mate p̂d was assumed and the step size µ and the ker-
nel width ρn were found empirically to provide the best
performance in terms of convergence speed and estima-
tion accuracy. Fig. 11 illustrates the convergence rates
of the algorithm given SNR = 27 dB, SIR1 = 0 dB and
SIR2 = −6 dB, and with the two different initial weight
vectors. It can be seen that this block-data adaptive
MSER algorithm converges rapidly. Performance of the
stochastic gradient adaptive MSER algorithm was also
investigated. Fig. 12 shows the learning curves of the
algorithm averaged over 100 runs, under the same con-
ditions of Fig. 11, where DD denotes decision-directed
adaptation with b̂0(k) substituting b0(k) as the desired
response. It can be seen that once the SER is below
certain level (0.01 for this example), DD adaptation

can be applied.

(a)

(b)

Fig. 10 Symbol error rate performance comparison of the
MMSE and MSER beamformers given SIR1 =

SIR2 = 0 dB: (a) θ = 70◦ and 60◦, and (b) θ = 58◦ and 55◦

(a)
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(b)

Fig. 11 Convergence rate of the block-data gradient

adaptive MSER algorithm for the beamforming example

given SNR = 27 dB, SIR1 = 0 dB and SIR2 = −6 dB:

(a) w(0) = wMMSE, µ = 0.05 and ρ2
n = σ2

n ≈ 0.01,

and (b) w(0) = [0.7 − j0.1 0.6 + j0.1]T ,
µ = 0.05 and ρ2

n = σ2
n ≈ 0.01

(a)

(b)

Fig. 12 Learning curves of the stochastic gradient
adaptive MSER algorithm averaged over 100 runs for the
beamforming example given SNR = 27 dB, SIR1 = 0 dB
and SIR2 = −6 dB: (a) w(0) = wMMSE, µ = 0.0005 and
ρ2

n = σ2
n ≈ 0.01, and (b) w(0) = [0.7 − j0.1 0.6 + j0.1]T,

µ = 0.0005 and ρ2
n = σ2

n ≈ 0.01, where DD denotes

decision directed adaptation with b̂0(k) substituting b0(k)

6 Conclusions

An adaptive linear filtering technique based on the
novel MSER principle has been proposed for applica-
tions to communication systems with complex-valued
filters and M -QAM signalling. It has been demon-
strated that the MSER filtering is capable of achieving
significant performance gains in terms of reduced SER
over the traditional MMSE filtering. This is due to the
fact that the MSER filtering can exploit effectively the
non-Gaussian nature of the underlying system density
distribution. Adaptive implementation of the proposed
MSER filtering has been developed based on the Parzen
window estimation for the p.d.f. of the filter’s out-
put. A block-data based simplified conjugate gradient
adaptive MSER algorithm has been shown to converge
rapidly and requires a reasonably small data block size
to accurately approximate the theoretical MSER solu-
tion. An LMS-style stochastic gradient adaptive MSER
algorithm, referred to as the LSER, has been shown to
perform well, and the algorithm has similar computa-
tional requirements to the low-complexity LMS algo-
rithm.
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