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Abstract

A plant’s morphology is both strongly influenced by local light availability and,
simultaneously, strongly influences this local light availability. This reciprocal re-
lationship is complex, but lies at the heart of understanding plant growth and
competition. Here we develop a sub-individual-based simulation model, cast at the
level of interacting plant components. The model explicitly simulates growth, de-
velopment and competition for light at the level of leaves, branches, etc, located in
3-d space. In this way, we are able to explore the manner in which the low-level pro-
cesses governing plant growth and development give rise to individual-, cohort-, and
community-level phenomena. In particular, we show that individual-level tradeoffs
between growing up and growing out arise naturally in the model, and robustly give

rise to cohort-level phenomena such as self-thinning, and community processes such
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as the effect of ecological disturbance on the maintenance of biodiversity. We con-
clude with a note on our methodology and how to interpret the results of simulation

models such as this one.
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1 Introduction

Competition for light is a highly significant environmental influence on plants.
Successful plant life-history strategies maximise light capture (amongst other
things) despite the presence of competing plants (Crawley, 1986). Understand-
ing how plant-plant competition drives population-level phenomena is made
more difficult by the fact that plant structure is far more developmentally plas-
tic than that of most animals. Above-ground plant morphological plasticity is
largely the result of heterogeneity in the local light environment. Of course,
just as light availability influences a plant’s structure, so a plant’s structure af-
fects its ability to capture light. The intimate, reciprocal relationships between
a plant’s current morphology, the structure of its local environment (including
competing plants), its resultant ability to capture light, and any subsequent
changes to its structure are highly complex (Hutchings and de Kroon, 1994).
However, it is precisely these relationships that drive plant growth and deter-

mine competitive success when light limits growth.
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In order to answer questions about the nature of competition for resources,
ecologists have typically resorted to non-spatial models (Tilman, 1982). More
recently, ecologists have recognised that spatial heterogeneity (Pacala and
Deutschman, 1994) and asymmetry in the effects of competition on individu-
als can significantly effect the predictions of a model (Schwinning and Weiner,
1998). Although relationships between population-level characteristics (such
as mean size or density) have been derived empirically (Westoby, 1984), con-
structing analytically tractable models of these population level processes is
difficult. Consequently insights into the mechanisms driving such relationships
have been hard to come by (Weller, 1991). Equally, modelling populations at
the level of individuals (modelling competition in terms of, for instance, nearest
neighbour interactions, e.g. Benjamin and Sutherland, 1992), fails to capture
changes in individual performance as a result of “foraging for light” — i.e.,
processes of within- and between-plant competition. In order to explore the
manner in which foraging for light impacts on plant morphology, plant-plant
competition, and population-level phenomena, models must represent plant

growth and light capture at a level below that of individual plants.

Sub-individual based models address the problem of modelling the structure
and function of plants by dividing the structure of a plant into sub com-
ponents. The rate of production of new components may be coupled to the
transport and allocation of carbon, allowing the plant to grow in a morphologi-
cally plastic way (Prusinkiewicz, 2004). A variety of formalisms have been used
to explicitly capture plant structure in these “functional-structural” models,
a common formalism being Lindenmayer-Systems (Perttunen and Sievanen,
2005; Allen et al., 2005). An L-system is a formal grammar consisting of an

initiator and a set of rules, each describing a valid substitution (Lindenmayer,



1968). When repeatedly applied in parallel, such rule-sets are capable of gener-
ating complex structures. Until recently, such models have largely been applied
to problems in agricultural research (Hanan and Hearn, 2003; Ruiz-Ramos
and Minguez, 2006) and in computer graphics (Deussen et al., 1998; Lane and

Prusinkiewicz, 2002).

Here we explore the manner in which low-level processes governing plant
growth and development are implicated in plant competition for light, and
how this competition gives rise to higher-level effects typically associated with
plant populations (Takenaka, 1994; Colasanti and Hunt, 1997; Colasanti et al.,
2001). As such, the model is cast at a level below that of most models of plant
competition. For example, a plant’s height is not encoded explicitly anywhere
in the model, but arises as the result of an interplay between influences on
plant growth at each of its apices. By taking this perspective we are able to
explore the effects of competition without making a priori assumptions about
its nature. For instance, we do not need to make assumptions concerning the
degree or character of competitive asymmetry (Weiner, 1990), nor fix the scale
over which plants interact competitively (Sletvold and Hestmark, 1999). By
contrast with previous models, these important elements of plant competition
become dependent rather than independent model variables. In addition, we
are able to explore how morphological characteristics such as branching an-
gle and branching frequency affect relative competitive ability and how these
effects propagate up to population and community-level processes such as
succession (Horn, 1971; Niklas and Kerchner, 1999). This approach allows
ecologists to test the effects of low-level constraints on plant structure and the
interaction between structure, light-capture and growth (Pearcy et al., 2005;

Sterck et al., 2005)



In the next section we present the model in detail. The model’s results at
the level of the individual, the population and the community are provided in
Section 3. In Section 4 we discuss these results and their relation to the major

empirical findings in plant ecology, before concluding in the final section.

2 Method

In this section we describe the structure of our model and the behaviour of
the component parts and their interactions. A more formal description of the

model is given in Appendix A.

Plants are modelled as a list of components. Each component type is sub-
ject to one or more context-sensitive growth rules or productions. This means
that the behaviour of individual components depends upon the state of com-
ponents before and after them, allowing them to interact in a local manner.
Each iteration, growth rules are applied to the list of components in parallel

(Figure 1).

One of the most important parts of the model is the flow of photosynthate
between components. Photosynthate is produced by each leaf and is trans-
ported between adjacent components along a concentration gradient at each
iteration of the model. Photosynthate is consumed in the production of new

internodes, the growth of leaves, and the production of new seeds by flowers.

Every plant begins life as a single seed component. A seed has a probability,
each iteration, of germinating and being replaced by an internode, a leaf, and

an apex. This is the basic form of a plant.



Each iteration, the amount of light reaching each leaf is estimated using the
technique described in Section 2.1. If the shading of a leaf is greater than
a threshold value, it is shed (and removed from the model). Otherwise, the
amount of photosynthate contained in the leaf is increased at a linear rate
proportional to its area and inversely proportional to its shading. A proportion
of the photosynthate is consumed as the leaf grows and the radius of the leaf
increases. The remainder of the photosynthate is contributed to the internode
subtending the leaf. Leaves increase in size up to a predefined limit which is
the same for all species. A plant is considered to have died, and is removed

from the model, if it has no leaves.

If the loading of an internode (the number of internode components it sup-
ports) exceeds a critical value that is proportional to its strength and radius
and a function of its orientation then it breaks, and is removed from the model,
along with all of its descendant components (i.e., those further up the branch).
Otherwise an internode persists and increases in radius such that its radius is
larger than that of the internode(s) it supports. The length of an internode
remains constant: longer gaps between branches consist of larger sequences of
internodes. Internodes transport photosynthate into neighbouring components
at a rate proportional to the concentration gradient between the internode and

the components above and below them.

At each iteration, photosynthate is transported into each apex at a rate pro-
portional to the concentration gradient between the apex and its preceding
internode. If the age of the apex exceeds the age at which the plant becomes
reproductively active, then it is replaced with a flower. Otherwise, given that
enough photosynthate is available, it extends the branch by producing intern-

odes, placing them between itself and the preceding internode, finally produc-



ing a single leaf. At each iteration there is a probability that each apex will
branch, dividing into two separate apices with altered orientation !. Flowers
persist until the plant dies or until the end of the simulation. At each iteration,
photosynthate is transported into the flower at a rate proportional to the con-
centration gradient between the flower and its preceding internode. The flower
will produce new seeds at a rate proportional to the amount of photosynthate

present in the flower.

Seeds disperse according to a Gaussian distribution centred on the flower
producing them. At each iteration, a dormant seed will germinate with fixed

probability.

Several life-history parameters govern the behaviour of the L-system described
above. The probability of branching determines the rate of occurrence of
stochastic branching events during plant growth. Branching frequency in-
creases linearly with apex order. Branching events result in two apex com-
ponents oriented in different directions (Figure A.1). The orientation of the
apices relative to their parent is governed by two angles (branching angle 1
and branching angle 2). Low branching angles result in a small change in
orientation of the apex relative to its parent branch. An internode with a
branching angle of 90° grows perpendicular to its parent branch. Internode
strength is determined by a parameter representing the amount of secondary
compounds within each branch. Internodes which have a higher strength take

more photosynthate to produce, but can support more child nodes.

L The production of new branches through the division of apex nodes differs from
the production of new growth via sub-apical buds in biological plants, although the

overall branching patterns that are produced are similar.
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Fig. 1. A schematic figure depicting, symbolically and graphically, the development
of an L-system with the following alphabet and rule-set: a seed (dark gray oval),
S +— ILA; an internode (stem or branch, dark gray cylinder), I — I; a leaf (light
gray oval), L — L; an apex (tip of plant, white cone), A — IL[A]A; the beginning

of a branch, [ — [; the end of a branch, | — |.

The age at which a plant begins to produce seeds is determined by a single
parameter. Since we are not particularly interested in the trade-offs associated
with reproductive aspects of plant life-history strategies, we model the onset
of reproduction as a plant-wide switch from vegetative to reproductive activity
triggered at a particular age. At this point, growth ceases, and seed production
begins. In addition, we set the probability of germination to 1.0 to avoid
the complexity of introducing a seed bank into the simulations examining

competition between individuals (Section 3.3).

A plant’s development is modelled as a consequence of many iterations of
the simple rules outlined above. Figure 2 presents an example of plant mor-

phology generated by the model. The image was generated by translating the



Fig. 2. Visualisation of an example plant morphology generated by the model.
Life-history parameters are Branching Probability 0.3, Branching Angle 1 1.0°,

Branching Angle 2 30°, Internode Strength 572 (arb units), run for 36 iterations.

formal representation of plant structure employed by the model into a 3-d

visualisation.

Note that model plants only interact in terms of competition for light. Neither
direct physical interference, nor below-ground competition are simulated. As
such, the differential photosynthate production across a plant’s leaves is a
crucial determiner of plant morphology. Consequently, it is important to model
the manner in which light falls across a plant. To achieve this we employed a

simple, but computationally expensive, ray-tracing technique.



2.1 FEstimating the Light Environment

Sophisticated light models have been developed in order to address this type
of problem (Brunner, 1998; Chelle and Andrieu, 1998, 1999). Monte Carlo
ray-tracing, for example, is a numerical technique that is simple and intu-
itive. Particles representing photons are projected into a scene that contains
a number of surfaces such as leaves. The direction of the particle is based on
a stochastic function. If the path of the particle intersects with a surface then
the particle is either transmitted, reflected, or absorbed according to the prop-
erties of the surface and the angle of intersection. If the particle is absorbed
or crosses the boundary of the simulation, then it is no longer considered. By
repeated sampling, the optical properties of a scene, such as the number of
photons absorbed by each leaf surface in the scene, can be estimated (Smits,

1998).

Here, we use a much simpler approach to assess the amount of light falling on
each leaf, accounting for the effects of self-shading and between-plant shading.
The light environment was modelled as a set of 9 point sources suspended some
distance above the population. A ray (a straight line-segment in 3-D space)
was projected from each of these points to the centre of each leaf in turn.
Leaves were considered to be circles of varying radius parallel to the x-y plane.
The degree of shading experienced by a leaf was calculated as proportional
to the number of intervening leaves intersected by each ray. This technique
has the advantage of explicitly calculating the light levels incident to each leaf
surface, and also models shading in three dimensions. Internodes and other
components were ignored in these calculations. In addition, light is modelled

as straight line segments, so reflection of light is not considered in this model.
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Explicitly calculating the shading for each leaf in the population is a com-
putationally intensive task (it scales with time-complexity O(n?)). In order
to improve the tractability of the model, we implemented an optimisation
technique that grouped the population of leaves into smaller sub-populations,

allowing fast rejections of unimportant regions of space (Smits, 1998).

3 Results

3.1 Individual Level

Leaf shedding, internode strength, photosynthate transport, and the invest-
ment required in order to produce new plant structures impose significant
trade-offs that constrain plant growth and development, and restrict plant
life-history strategies. The interactions specified in the model were between
neighbouring components, but gave rise to behaviour at the level of individual
plants. We selected 4 parameters and varied them across a range of values,
examining the growth rate and light capture of individual plants. All other
parameters were set at the values given in Figure 2. We have defined effective
leaf area as the sum of the unshaded leaf area of the plant (e.g. each leaf ¢ has

radius 7; and shading s;, ELA =" (1 — s;) wr}).

As branching angles 1 and 2 were increased from 1° to 90°, the efficiency of light
capture increased because self-shading was decreased. However, increasing the
branching angle decreased the rate of vertical growth, leading to smaller plants.
There is a direct trade-off between efficient light capture and rate of vertical

growth (Figure 3).

11
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Fig. 3. Trade-offs between (a) growing up and (b) growing out for the plant pic-
tured in Figure 3. Two contour plots depict the impact of branching angles on (a)
maximum apical height (lighter contours represent taller plants) and (b) effective
leaf area (lighter contours represent plants with a greater unshaded leaf area). Each
contour plot comprises 121 points each representing the mean of 10 replicate simu-
lations after 36 iterations. Plants with the lowest branching angles grow faster but

capture less light.

We also varied the strength of internode components. Because strong intern-
odes were more energetically expensive to produce, plants with strong in-
ternodes grew slowly. However, strong internodes are able to support more

biomass, leading to a higher effective leaf area in the long term (Figure 4).

Finally, we varied the age at which a plant became reproductive. Plants that
become reproductive later were able to produce more flowers, and were also
able to produce more leaves which capture more energy to produce seeds. How-
ever, plants that become reproductive earlier were reproductive over a longer
period. Consequently, for a given set of parameters and a given simulation
length, there was an optimal age for plants to switch from vegetative growth

to reproduction (Figure 5).

12
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Fig. 4. Trade-offs between internode strength and (a) plant height and (b) effec-
tive leaf area. Each data point represents 10 replicate simulations (mean +/— one
standard deviation). 4(a): Plants with strong stems grow slowly because stronger
tissue is more energetically expensive to manufacture. 4(b): Ultimately, plants re-
quire strong tissue in order to support the biomass associated with a high effective

leaf area.

Since we model growth as dependent on the local light environment of each
leaf, we would expect that the same plant would exhibit a degree of mor-
phological plasticity in the presence of varying illumination regimes. Figure 6
demonstrates that, as the source of illumination changes from a highly direc-
tional over-head spotlight to a more ambient diffuse regime, the morphology
of a particular plant varies considerably. In the case of Figure 6(a), light was
available from directly above the plant only. Consequently self-shading was
strong and leaves towards the base of the plant were shed. In contrast, the
oblique angle at which the rays intercepted leaves in Figure 6(b) resulted in
relatively little self-shading and greater persistence of leaves. In addition, the

larger amount of light captured by the plant resulted in more growth.

13
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Fig. 5. There is a trade off between delaying reproduction (which results in the plant
accruing more energy-producing tissue and increases its photosynthetic capacity)
and reproducing early (which guarantees reproduction at a lower rate). In any given
time frame, there is an optimum age at which plants should switch to reproduction.

Points represent 10 replicate simulations (mean +/— one standard deviation).

At the level of the individual plant, the model exhibits many well-characterised
trade-offs between different plant life-history characteristics. These relation-
ships are not explicitly represented within the model, but arise as a result of

the low-level mechanisms implemented within it.

3.2  Cohort Level

In order to explore the effects of competition between individuals with the
same life-history strategy, we simulated populations of same-aged plants shar-
ing identical life-history parameters (given in Figure 2). A simulation was
initialised with 512 of seeds distributed at random across a square plot. Seeds

germinated asynchronously, allowing those that germinated early the potential

14



(d)

Fig. 6. Variation in plant morphology caused by different light environments. Pa-

rameters & random seed are the same as used in Figure 2, with plants grown for
36 iterations. In 6(a) the light sources are located directly above the plant. This
leads to greater self-shading due to more rays intersecting the upper leaves of the
plant (6(c)).In 6(b) the light sources are spread further apart, leading to fewer rays

intersecting the upper leaves and less self-shading (6(d)).

to benefit from a relatively competition free environment. Each plant shared
the same life-history parameters, but differed from its conspecifics as a result
of the local variation in its light environment. In this section, plant reproduc-
tion is switched off. All results presented in this paper exclude plants at the
periphery of the plot in order to minimise any edge effects that might arise as

a result of the favourable conditions enjoyed by these plants.

15
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Fig. 7. Time series of simulations started at different initial densities. As time goes
on they all converge to a single final density. Points are means of 10 replicate sim-

ulations.

Figure 7 shows the decay of plant density over time, demonstrating density-
dependent mortality rates characteristic of natural stands. In this model, com-
petition for light alone, ensures that increasingly dense populations suffer in-
creased mortality. Regardless of initial plant density, populations tend to the

same density at equilibrium.

Figure 8 shows that the simulated populations self-thin, although the fitted
relationships deviate from the —3/2 exponent found in natural plant popula-
tions (Yoda et al., 1963). Once a population achieves canopy closure, mortality

is directly compensated for by growth in surviving individuals, resulting in a

16
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Fig. 8. Self-thinning curves for simulations started at different initial densities. Ini-
tial populations (indicated by crosses) increase in volume without suffering any
mortality. Eventually the canopy closes and the smaller individuals begin to suffer
mortality. The populations shown here have self-thinning exponents between —1
and —2 (shown on the graph as trend lines for the two most extreme cases). Each
point is a mean of 10 replicate simulations each run for 128 iterations. Plant volume
was calculated by summing the volumes of each internode for each plant in the

population. Leaves, apices and flowers were assumed to have zero volume.

log-log relationship between plant density and volume with an exponent of

between —1 and —2.

The asymmetric nature of competition for light ensures that the size distri-

butions of plant populations become increasingly skewed over time. Figure 9

17
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Fig. 9. Skewness in the height distribution of the population increases with the initial
density. Low density populations have many tall plants and few small plants. High
density populations have many small plants and a few tall plants. At each density,

the sample skewness for 10 replicates is plotted, where skewness for a sample of
3

N values is g1 = /n Zfil (z; — )%/ (Zfil (zi — ($))2) * (Sokal and Rohlf, 1995,

page 111). In the boxplot, the central bar shows the median while the box denotes

the first and third quartile, and the error bars denote the 95% confidence interval.

Circles represent, outliers.

demonstrates that, in accordance with empirical studies (Thomas and Weiner,
1989), increasing initial plant density results in final size distributions that are

increasingly positively skewed towards the tallest plants.

As a result of the competition for light arising in the model, simulated popula-
tions exhibit several important population-level relationships. Despite not ex-

plicitly specifying competitive asymmetry, density-dependent mortality, etc.,

18



these phenomena arise naturally in the model as a result of low-level compet-

itive processes.

3.3 Community Level

Morphological differences between species have long been thought to con-
tribute to differences in their competitive ability for light (Horn, 1971). In or-
der to explore this class of question, we simulated two stereotypical life-history
strategies—one modelled on an r-selected species (strategy r), the other mod-
elled on a K-selected species (strategy K). Figure 10 depicts visualisations of

the two strategies.

Both strategies had a positive growth rate in isolation and were capable of
sustaining a population in the long term. In order to further quantify whether
one strategy is more “competitive” than the other we examined whether ei-
ther strategy can have a positive rate of growth and reproduction when rare
in an environment dominated by the other strategy. By seeding the initial
population with individuals of mainly one strategy or the other, distributed
at random, we modelled the growth and development of a mixed community
of plants where one species was rare. If a strategy is a poor competitor we
would expect it to be unable to establish itself in an environment dominated
by the other strategy. If both strategies are able to establish themselves in
environments dominated by the other strategy then they will be able to coex-
ist in the long term. Figure 11 shows that while K can successfully invade an

established population of r, the converse is not true.

In summary, competition between simulated plants with different life-history

19



(a) “r-selected” (b) “K-selected”

Fig. 10. The morphology of the “r-selected” strategy (r) and the “K-selected” strat-
egy (K). Life-history parameters for r are: Branching Probability 0.3, Branching
Angle 1 30.0 °, Branching Angle 2 30.0°, Internode Strength 500 (arb units), Seed
Energy 1.0 (arb units), Age at Maturity 10 (iterations). Life-history parameters for
K are: Branching Probability 0.3, Branching Angle 1 30.0, Branching Angle 2 30.0°,
Internode Strength 500 (arb units), Seed Energy 4.0 (arb units), Age at Maturity

36 (iterations). Both plants were grown until they were mature.

strategies reproduced results derived from theoretical and empirical plant ecol-
ogy. The overall results of the simulations show that a simple model cast at
the level of sub-individual processes can capture ecological phenomena across

many levels of description.

4 Discussion

In this section, we relate the results presented above to previous models of

plant competition. Since the methods used here are relatively new, we also

20
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Fig. 11. Invasion time series for K (filled diamonds) and r (open diamonds) averaged
over 10 replicate simulations. 11(a): Strategy K exhibits a positive growth rate as
an established population of r is invaded. 11(b): Strategy r does not increase as K

successfully resists an invasion.

address some of the methodological issues that surround the use of individual-
based models in ecology. In particular, we suggest valid ways of interpreting
results from models such as the one presented here. Finally, we review the

potential for further theoretical research involving this modelling approach.

4.1 Implications

The results presented in the previous section demonstrate that the high-level
behaviour of the model conforms with existing notions regarding plant popula-
tion ecology. As such, these results will not surprise plant ecologists. However,
they were achieved without making the simplifying assumptions regarding
plant-plant competition that are typical of higher-level models. Rather, we

allowed this competition to arise naturally from the interplay between the
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low-level constraints and mechanisms implemented explicitly in the model.

While the character of competition within the model is doubtless not iden-
tical to that experienced by real plants, the fact that there is a close agree-
ment between the model’s results and general findings from empirical plant
ecology suggest that the model is capturing elements fundamental to plant
competition. Many of the relationships modelled are very simple, especially
in comparison with more detailed structural-functional models, parameterised
from natural plants (such as LIGNUM or ALMEDA; Perttunen et al., 1990;
Ruiz-Ramos and Minguez, 2006), and we would anticipate that a more rigor-
ous modelling approach would be necessary if our aim was to obtain results

that could be directly compared with empirical data.

These results were obtained despite modelling plant growth and the physics of
light capture in a very simple manner. The former was modelled as a handful
of growth rules, with, for instance, no role for global co-ordination mechanisms
such as plant hormones, while the latter was modelled as merely the capacity

to position leaves such that they intersect individual rays of light.

It is important to stress that these results were achieved for a relatively ar-
bitrary set of model parameters. They are not the result of fine-tuning the
model, but appear to be robust features of almost any model sharing this
basic form. As such, the strength of this model lies in its ability to answer

questions about constraints universal to all plants.

The model presented here should not be regarded as somehow competing
with models cast at higher levels of description. By contrast, in some sense it
can be understood to underwrite these models by supporting the simplifying

assumptions upon which they rely, for instance, those concerning the character
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of competitive asymmetry. This type of support for higher-level models is
important. Since the simplifying assumptions that drive these models enable
them to achieve a level of simplicity that keeps them mathematically tractable
and comprehensible, it is critical that we have evidence that these assumptions

are valid.

4.2 Methodology

The style of model presented here is relatively novel. While the last two decades
have seen an increase in the publication of individual-based models such as
this one, a consistent methodology guiding their use remains elusive (Grimm,
1999; Di Paolo et al., 2000). As a result, the way in which these models are

interpreted varies widely.

Those familiar with more traditional equational models, may have developed
certain expectations of models in general. To some extent, individual-based
models do not conform to these expectations. Rather than yielding simple re-
lationships between explicitly defined model variables (e.g., “A must be larger
than B in order for behaviour C' to be stable”), these models merely generate
observable behaviour under different conditions. Deriving equivalently simple
statements describing model behaviour in terms of model parameters is an

additional task, and one which may be very difficult.

This difficulty stems from the relatively opaque relationship between the low
level at which the model is implemented and the higher level at which the
model’s results are collected. Individual-based models involve at least two lev-

els of description, the explicitly represented individuals, and the “emergent”
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population-level behaviour. Casting our model at the sub-individual level in-
troduced added complexity. The model’s atomic entities, components, interact
in complicated and highly non-linear ways in order to generate both plant-

and population-level behaviour.

The complexity that often results from this type of model is sometimes re-
garded as a strength, allowing the exploration of subtle relationships between
different levels of description (Parrott and Kok, 2000). However, there is some-
times a temptation to add complexity to such models in an attempt to increase
their realism. This can make them difficult to understand, and as a result can
lead modellers to treat their exploration as some kind of empirical enquiry (Di

Paolo et al., 2000).

A more successful strategy is to search for the minimal model capable of
exhibiting the behaviour of interest (Grimm et al., 2005). Such models are
often simpler than their complex behaviour would lead an observer to infer
(Braitenberg, 1984). An important class of result that can be validly drawn

from simulation models of this kind has the following form:

“Theory suggests that phenomenon P requires mechanisms A, B, & C, but
an individual-based model exhibits behaviour akin to P through the action

of A & B alone.”

This type of “existence proof” often reveals that co-ordinated high-level be-
haviour can arise from low-level mechanisms without the need for central
control (e.g. flocking behaviour in birds, Reynolds, 1987). In the case of plant
growth and development, given the lack of a central nervous system, one would
expect many examples of this type of reasoning to hold. Considerations of par-

simony demand that we entertain these simpler models before complicating
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them further by adding centralised control mechanisms.

4.8 Further Work

One area in which physiological mechanisms achieve apparently high-level
co-ordinated control of plant behaviour concerns the role of plant hormones
in the coordination of reproduction and branching (Ward and Leyser, 2004;
Thomas et al., 2005). Extensions to the model considered here could explore
how such mechanisms interact with the resource-based mechanism of control

to determine the growth and structure of individual plants.

At the level of plant-plant competition we identify two areas worthy of further
exploration. First, the spatial range over which competition takes place could
be assessed for different general classes of plant morphology (Purves and Law,
2002). Second, the significance of differences between morphological charac-
teristics of life-history strategy could be assessed directly through competitive
simulation. To what extent must branching angles differ before there is sup-
port for the conjecture by Horn (1971), that plants with narrow branching
angles are favoured early in succession while those with wide-angled branches

dominate at equilibrium?

At the level of interspecific competition, by wrapping a simple steady-state
genetic algorithm (Ochoa, 1998) around the model, the coevolution of plant
life-history strategies could be explored under various regimes. In the model,
successful plants generate more seeds than their competitors. If each offspring’s
life-history parameters were to differ slightly from those of their parents, mu-

tants with better-adapted life-history strategies would tend to dominate the
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population at the expense of their competitors—coevolution would result.
Simulations such as these would allow the dynamics of life-history strategy

coevolution to be explored in the context of a plant community:.

5 Conclusion

We have presented a model of plant growth, development and competition
for light in three dimensions, making use of a simple L-system and ray trac-
ing algorithms. Although the model is cast at the level of plant components,
individual-, cohort- and community-level phenomena were robustly exhibited.
We use the model to support assumptions frequently made in the plant ecol-
ogy literature concerning the nature of plant-plant competition, and suggest

avenues of future research in a similar vein.
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