
Workload-Ahead-Driven Online Energy

Minimization Techniques for Battery-Powered

Embedded Systems with Time-Constraints

YUAN CAI University of Iowa

MARCUS T. SCHMITZ Robert Bosch GmbH

BASHIR M. AL-HASHIMI University of Southampton

SUDHAKAR M. REDDY University of Iowa

This paper proposes a new online voltage scaling (VS) technique for battery-powered embedded
systems with real-time constraints. The VS technique takes into account the execution times and
discharge currents of tasks to further reduce the battery charge consumption when compared to
the recently reported slack forwarding technique [Ahmed and Chakrabarti 2004], whilst maintain-
ing low online complexity of O(1). Furthermore, we investigate the impact of online rescheduling
and remapping on the battery charge consumption for tasks with data dependency which has not

been explicitly addressed in the literature and propose a novel rescheduling/remapping technique.
Finally, we take leakage power into consideration and extend the proposed online techniques to
include adaptive body biasing (ABB) which is used to reduce the leakage power. We demon-
strate and compare the efficiency of the presented techniques using seven real-life benchmarks and
numerous automatically generated examples.

Categories and Subject Descriptors: J.6 [Computer-aided engineering]: Computer-aided de-
sign

General Terms: Design, Algorithms

Additional Key Words and Phrases: Dynamic voltage scaling, Embedded systems, Battery, Adap-
tive body biasing

1. INTRODUCTION AND PREVIOUS WORK

Dynamic voltage scaling (DVS) is a powerful technique to reduce the energy con-
sumption in embedded computing systems. DVS algorithms can be broadly classi-
fied into offline and online techniques depending on when the voltage settings are
computed. Offline (e.g. [Luo and Jha 2002a], [Andrei et al. 2004], [Schmitz and Al-

Authors’ addresses: Yuan Cai and Sudhakar M. Reddy, Department of Electrical
and Computer Engineering, University of Iowa, Iowa City, IA 52242, email: {yucai,
reddy}@engineering.uiowa.edu; Bashir M. Al-Hashimi, Department of Electronics and Computer

Science, University of Southampton, SO17 1BJ, Southampton, UK, email: bmah@ecs.soton.ac.uk;
Marcus T. Schmitz, Robert Bosch GmbH, Stuttgart D-70442, Germany, email: mar-
cus.schmitz@de.bosch.com;
This work is supported in part by the EPSRC, U.K., under grant GR/S95770
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 2006 ACM 1084-4309/2006/0400-0001 $5.00

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, July 2006, Pages 1–23.

2 · Yuan Cai et al.

Hashimi 2001]) approaches calculate voltage settings, at design time before actual
execution, based on worst case execution times (WCET) to guarantee satisfaction
of time constraints. Although offline DVS avoids a run-time overhead to compute
voltage settings, it fails to exploit online slack arising from tasks executing with less
than their WCET (differences >10 times have been reported [Ye and Ernst 1997]).
On the contrary, online DVS techniques (e.g. [Aydin et al. 2001], [Pillai and Shin
2001], [Kim et al. 2002], [Luo and Jha 2002b], [Zhu and Mueller 2004]) calculate
voltage settings during run-time to utilize such online slack by taking into account
the actual execution times (AET) of tasks. Clearly, online techniques have the po-
tential to achieve higher energy savings, however, it is necessary to carefully design
such online DVS algorithms in order to avoid high run-time overheads that could
jeopardize the achievable energy savings and the timing constraints. Many online
voltage adjustment approaches for independent tasks have been proposed ([Aydin
et al. 2001], [Pillai and Shin 2001], [Kim et al. 2002]). These approaches depend on
the schedulability check of the earliest deadline first (EDF) or the rate monotonic
(RM) algorithm, which can not be applied to task graphs where there are depen-
dent relationships among tasks. The online approach introduced in [Luo and Jha
2002b] calculates the scaling factor for soft aperiodic tasks and considers run-time
variations. Zhu and Muller [Zhu and Mueller 2004] utilize a feedback control loop
to facilitate DVS and integrated the controller into an earliest deadline first sched-
uler. Task scheduling and online voltage scaling are combined in [Zhu et al. 2003].
This work, however, is limited to identical processing element (PE) systems and
a straightforward extension toward heterogeneous systems is not apparent. Shin
and Kim [Shin and Kim 2001] give a path based intra-task DVS algorithm. The
task is modeled as a conditional flow graph in which there is a worst case execution
path (WCEP) and an average case execution path (ACEP). Their algorithm inserts
voltage scaling points at branch or loop nodes to scale the voltage online based on
the ACEP instead of the WCEP. The work in [Shin and Kim 2001] is orthogonal
to the proposed algorithm which determines the voltage settings on task-by-task
basis (i.e., inter-task voltage scaling). At inter-task level, tasks on every path of
the task graph will be executed and there is no separation between WCEP and
ACEP. However, for each task, possibility of a difference between its WCET and
AET exists. It is this difference that the proposed algorithm utilizes.

Although the offline and online voltage scaling techniques discussed above are
effective in reducing energy dissipation, they are not efficient in prolonging the
battery lifetime of mobile applications, since the non-linear battery characteris-
tics [Rakhmatov and Vrudhula 2003], [Chowdhury and Chakrabarti 2002] are ne-
glected during the optimization. In [Luo and Jha 2001] an offline DVS technique
for battery-powered systems was introduced, and it was demonstrated that up to
56% longer battery lifetimes could be achieved by taking into account the non-linear
battery behavior during the calculation of voltage settings. Recently the first online
and battery-aware DVS technique has been presented in [Ahmed and Chakrabarti
2004]. This technique specifically targets periodic, independent tasks and assumes
identical discharge currents for each task. According to this assumption, it is al-
ways better to exploit the available slack by the last task in the schedule [Ahmed
and Chakrabarti 2004]. Based on this, the authors introduce a slack forwarding

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, July 2006.

Online Energy Minimization for Battery-Powered Embedded Systems · 3

technique that delays the utilization of online slack as late as possible. However,
for many realistic multiprocessor systems executing heterogeneous tasks, this as-
sumption limits the achievable savings in battery charge consumption.

This paper makes the following contributions: (a) We introduce a workload-

ahead-driven online DVS technique which explicitly takes into account the workload-
ahead (the sum over all products of discharge current and WCET of remaining
tasks) to overcome the limitation of [Ahmed and Chakrabarti 2004] discussed
above. The proposed algorithm achieves longer battery lifetimes compared to
slack forwarding algorithm without sacrificing the online time complexity, which
remains constant, i.e. O(1), since the workload used in the algorithm is computed
in the offline phase. (b) We address for the first time the problem of online task
rescheduling and remapping for tasks with dependencies to further reduce the bat-
tery charge consumption, which is not addressed in [Ahmed and Chakrabarti 2004].
The proposed online rescheduling/remapping algorithm facilitates the usage of the
workload-ahead-driven DVS technique and also has a constant complexity. (c) We
extend the power model to include the leakage power and adaptive body biasing
(ABB) technique is utilized to reduce the leakage power. We believe that the
leakage power issue has not been studied by the battery aware design procedures
proposed earlier. A look-up-table (LUT) method is utilized to keep the complexity
of the combined DVS and ABB process to be still O(1).

Rao et al. [Rao et al. 2005] point out that in certain cases, energy-aware design
(E policy) should be chosen over battery-aware design (B policy) to reduce the bat-
tery charge consumption. Specifically, when there is a long rest period in the task
schedule or when the task execution times are on the order of ms, it is better to use
E policy. The proposed workload-ahead-driven voltage scaling is suitable for both
B and E policies. First, the workload of tasks is in fact the actual battery charge
lost, which must be considered in both B policy and E policy, as shown in [Rao
et al. 2005]. Second, it can be seen that in the proposed method, time unit is elim-
inated during the calculation of the slack distribution. Slack allocated to a task is
a function of the ratio of its workload and the total workload of the tasks yet to be
scheduled. Hence, the proposed procedure is insensitive to the real task execution
times and can be applied with either B policy or E policy. For both policies, the
reduction of the battery charge consumption in the experimental results will not
be changed and the conclusions on the effectiveness of the proposed methods will
hold independent of the policy used. In the paper, for the sake of illustration, we
assume battery-aware design or B policy.

The rest of the paper is organized as follows. Section 2 outlines the system
and battery models. Section 3 presents the problem formulation. The proposed
workload-ahead-driven online DVS technique is introduced in Section 4. Section
5 describes the proposed online rescheduling and remapping approach. The com-
bined online DVS and ABB is presented in Section 6. Experimental results and
conclusions are given in Sections 7 and 8, respectively.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, July 2006.

4 · Yuan Cai et al.

 (c)

CL
CI CI

 PE1PE0

PE0

CL

 PE1

CI: communication interface

 (a)

0τ 3τ

1τ 2τ

γ01 γ02
γ13

γ23

0.8ms

1.2ms0.6ms

1ms

τ

τ 0

1 2τ

τ 3

γ13
0.2ms

γ23
0.2ms

γ02
0.3ms

γ01
0.2ms

0.6 1 3.2 4 4.2

(ms)

online
slack

AET

31.81.20.8

offline
slack

WCETAETdeadline: 4.2ms

B: Battery
C: Converter

CB

(b)

Fig. 1. Task graph and system model

2. PRELIMINARIES

2.1 System Model and Task Graph

We consider battery-powered embedded computing systems, illustrated in Fig. 1(a),
which consist of multiple processing elements (PEs) connected by communication
links (CLs). A dc/dc converter adapts the battery voltage to the system supply
voltage. The system functionality is captured by a task graph model G(T , C),
shown in Fig. 1(b). Nodes (τi ∈ T) in this directed acyclic graph (DAG) represent
computational tasks. Edges (γj ∈ C) denote data communications between tasks.
As shown in Fig. 1(b), tasks/edges are associated with worst case execution times
(WCETs). The WCETs depend on the worst case number of cycles (Kw) required
for execution and the circuit frequency f , which in turn depends on the supply
voltage Vdd and threshold voltage Vt [Luo and Jha 2002a]. The following equation
gives the relationship between these parameters and the execution time.

t =
Kw

f
=

Kw · Vdd

k · (Vdd − Vt)α
(1)

where k and α are technology related constants. The power dissipation of a task
can be expressed as [Andrei et al. 2004]:

P = f · Ce · V
2
dd (2)

where Ce is the effective switched capacitance of the circuit. Eqs. (1) and (2)
provide the well-known energy/delay tradeoff exploited by all DVS procedures. In
a battery-powered system, the discharge current drawn from the battery, I, equals
P/(Vb·η), where Vb and η are the average battery voltage and the converter efficiency
respectively and both can be regarded as constants [Rakhmatov and Vrudhula
2003]. In this paper, we set Vb and η as 5V and 0.9 respectively. Since DVS can
reduce the power, P , it can be used to down scale the battery discharge current
and achieve savings in the battery charge consumption [Rakhmatov and Vrudhula
2003], [Chowdhury and Chakrabarti 2002]. We assume that tasks and edges have
been initially (offline) mapped and scheduled onto the target architecture, such
that resource and time constraints are satisfied under WCETs, as illustrated in
Fig. 1(c). At run-time, however, tasks might finish before their WCET, resulting
in online slack. For instance, in Fig. 1(c) τ0 has an actual execution time (AET) of

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, July 2006.

Online Energy Minimization for Battery-Powered Embedded Systems · 5

0.6ms, leaving an online slack of 0.4ms.

2.2 Battery Model

Rao et al. give a comprehensive survey on battery modeling in [Rao et al. 2003].
In this work we use an analytical high-level battery model proposed in [Rakhmatov
and Vrudhula 2003] whose accuracy has been demonstrated to be within 3% of the
physical battery. The battery charge consumption at time t is modeled as:

σ(t) =
N−1
∑

k=0

Ik · F (t, stk, stk + ∆k, β) (3)

where N is the total number of steps used to approximate the load current profile
(LCP), t is the time that the battery has been discharged for, and Ik, ∆k and stk
denote the current, the duration and the start time of stepk in the LCP, respectively.
Further, β is a constant related to the non-linear property modelled by function F :

F (x, y, z, β) = z − y + 2

10
∑

m=1

e−β2m2(x−z) − e−β2m2(x−y)

β2m2
(4)

If the capacity of the battery is α, then solving equation α = σ(L) will give the bat-
tery lifetime L. Here the values of α and β are set to 40375 and 0.273 respectively
according to [Rakhmatov and Vrudhula 2003]. Since smaller charge consumption
will lead to longer battery lifetime [Rakhmatov and Vrudhula 2003], our optimiza-
tion objective is the minimization of the charge consumption.

3. PROBLEM FORMULATION

We assume that the tasks T = {τi} and precedence constraints C = {γj} of task
graph G(T , C) have been initially mapped and scheduled onto a distributed archi-
tecture containing voltage scalable processors, which can vary their supply voltage
Vdd within a continuous range [Vmin, Vmax]. The worst case clock cycles (Kw)
that each task needs to be executed as well as its discharge current are known. In
addition, there may be a deadline dl associated with a task. The problem addressed
by the proposed online technique is twofold. Firstly, each time when a task τnext

is to be executed on a voltage scalable processor, an appropriate voltage Vnext for
its execution has to be selected such that the battery charge consumption is mini-
mized (taking into account the workload-ahead) and all imposed deadlines can be
guaranteed. This step is essential to exploit online slack that arises from variations
in the execution time of tasks. Secondly, for the initially (statically) given mapping
and scheduling, some online slack could be potentially wasted, as demonstrated in
the motivational example of Section 5. To avoid this waste, the initial mapping
and scheduling should be adapted in accordance to the available online slack, i.e.
online rescheduling and remapping should be performed. The online voltage scaling
problem is addressed in the next section, while rescheduling and remapping are the
subjects of Section 5.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, July 2006.

6 · Yuan Cai et al.

τ 4

τ 1 τ 2 τ 3

τ 5

τ 3τ 1 τ 2 τ 4 τ 5

t

(b)(a)

Fig. 2. Office-auto task graph [Dick] and execution order

4. BATTERY-AWARE ONLINE VOLTAGE SCALING

4.1 Motivational Example

The essence of the online voltage scaling problem is the online slack distribution, in
order to efficiently exploit slack resulting from tasks that execute faster than their
WCETs. In this motivational example we outline two different slack distribution
methods using a realistic task graph from the E3S suite [Dick], namely the office-
auto benchmark consisting of 5 tasks illustrated in Fig. 2(a). For simplicity we
consider here that all tasks have been mapped to a single processing element and
the execution order corresponds to Fig. 2(b). We assume that the PE can vary its
supply voltage between Vmin and Vmax, with Vmin = 0.4 ·Vmax. In accordance, the
task execution times follow Eq. (1). Table I gives the worst-case execution time
(WCET) and discharge current (I) of each task (in execution order of Fig. 2(b)),
when executing at Vmax. Furthermore, the table shows the actual execution time
(AET) of tasks at run-time (we assume here 80% of WCET), as well as the resulting
online slack (WCET-AET). The deadline is assumed to correspond to the finishing
time of the last task (τ3), when all tasks execute with their WCET. Table II shows
the outcome of two different techniques that distribute the available online slack.
Note that not all the available online slack might be exploited due to the limited
voltage range of the PE. The first technique is based on the slack forwarding idea
presented in [Ahmed and Chakrabarti 2004], in which all available online slack
is forwarded to the last task. Accordingly, task τ3 accumulates an online slack
of 7.84ms (0.16+2.16+0.96+4.56) before it starts execution. Nevertheless, due to
the limited voltage range of the PE, it is only possible to make use of 1.18ms
of the total slack, i.e., 6.66ms of slack remain unexploited. As a result, a battery
charge of 0.189mAs is consumed, which is calculated from Eqs. (1)–(4) and the task
properties given in Table I. A second approach (the approach we propose in this
paper) distributes the available online slack by explicitly considering the discharge
currents and WCETs of tasks. That is, each time a task finishes execution, the

Table I. WCETs, discharge currents, AETs and online slacks of auto-office tasks
τ1 τ2 τ4 τ5 τ3

WCET (ms) 0.79 10.80 4.80 22.81 0.79

I (mA) 0.256 4.066 3.990 4.243 0.256

AET (ms) 0.63 8.64 3.84 18.25 0.63

online slack (ms) 0.16 2.16 0.96 4.56 0.16

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, July 2006.

Online Energy Minimization for Battery-Powered Embedded Systems · 7

Table II. Online slack distribution
“slack forwarding” proposed technique

Online slack (ms)
available exploits available exploits

τ2 0.16 0 0.16 0.04

τ4 2.32 0 2.28 0.38

τ5 3.28 0 2.86 2.85

τ3 7.84 1.18 4.57 1.18

workload-ahead (sum over products of discharge current and WCET of remaining
tasks) is evaluated to make a slack distribution decision. The method is outlined
in Section 4.2, however, the resulting slack distribution is given in Table II. As
we can observe from the table, using this method all tasks are assigned some of
the available slack. For instance, after task τ1 has finished execution the available
online slack that is exploitable by task τ2 is 0.16ms. However, it exploits only
0.04ms of this slack via voltage scaling, while the remaining 0.12ms are accumulated
for the workload ahead. Therefore, after τ2 finishes the available slack is 2.28ms
(2.16+0.12). As shown in Table II, task τ4 exploits 0.38ms of this slack. Similarly,
the slack is forwarded and distributed to the tasks τ5 and τ3. When τ3 is to be
executed, the available online slack (4.57ms) is still sufficient to scale its voltage
to the lowest level, i.e. τ3 obtains the same amount of slack then with the slack
forwarding approach. According to the second distribution, the consumed battery
charge is reduced to 0.154mAs, an improvement of 18.5% when compared to the
slack forwarding method [Ahmed and Chakrabarti 2004].

4.2 Workload-Ahead-Driven Online DVS Technique

As we have seen in the motivational example of Section 4.1, slack forwarding is not
particularly effective for heterogeneous tasks which draw different currents from
the battery and require different WCETs. An effective online DVS algorithm must
take these aspects into consideration to achieve a “globally” fair distribution of
online slack. To cope with this problem, we define two metrics that capture the
effects of tasks on the battery charge consumption. Let τnext be the next task to
be executed. Denote Tr the set of tasks that start later than τnext and τnext itself.
Mathematically, Tr = {τnext, τi|τi starts later than τnext}.
Definition 1: The workload (Wi) of a task τi is the product of its discharge current
Ii and WCETi, i.e. Wi = Ii · WCETi.
Definition 2: The workload-ahead (WAi) of a task τi is the sum of the workloads
of all tasks in Tr, i.e. WAi =

∑

τj∈Tr
Wj .

The workload-ahead-driven slack distribution gives the slack to the next task
based on the ratio of its W and WA:

slacknext =
Wnext

WAnext

· os (5)

where os is the available online slack. In Eq. 5, the slack allocated to a task is
a function of the ratio of its workload and the total workload of the tasks yet to
be scheduled, so the time unit of the task execution times is eliminated during
the calculation of the slack distribution. Hence, this procedure is insensitive to

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, July 2006.

8 · Yuan Cai et al.

the real execution times and can be applied with either B or E policies [Rao et al.
2005]. It should be noted that both W and WA for each task are computed in
the offline phase, so this computation does not contribute to the online complexity
of the algorithm. It is also important to note that it is our aim to develop an
effective yet fast online DVS technique, hence we intentionally avoiding a complex
online algorithm. Though there exist DVS algorithms that can achieve much lower
battery charge consumption ([Rakhmatov and Vrudhula 2003]), the high complexity
of these methods prevent them to be utilized in the online phase.

The underlying idea behind of Eq. 5 is based on the battery model, which is
described by Eq. 3 and Eq. 4. Substituting Eq. 4 into Eq. 3, we obtain

σ(t) =

N−1
∑

k=0

Ik

(

∆k + 2

10
∑

m=1

e−β2m2(t−stk−∆k) − e−β2m2(t−stk)

β2m2

)

=

N−1
∑

k=0

Ik∆k + 2

N−1
∑

k=0

10
∑

m=1

e−β2m2(t−stk−∆k) − e−β2m2(t−stk)

β2m2

Here ∆k is the WCET of task τk and Ik · ∆k is the workload of task τk. Hence a
task with larger workload will consume more battery charge and should be scaled
more aggressively. This has been reflected in Eq. 5, which gives more slack to a
task with larger workload so that the voltage of the task can be more aggressively
scaled. Another important factor affecting the battery charge consumption is the
position of a task in the schedule (the later a task is in the schedule, the smaller
should be the current it draws [Chowdhury and Chakrabarti 2002]). This factor is
also taken into account by Eq. 5: the later a task is in the schedule, the smaller
its WA, and as a result, it will receive relatively larger slack and its current will
be smaller as desired. For example, from Tables I and II we can observe that task
τ5 has the largest workload (22.81ms·2.243mA) and its position is close to the end
of the schedule and as a result, it obtains the largest slack portion (2.85ms). Note
that we only calculate the slack distributed to the next task. It is not necessary to
distribute slack to tasks beyond the next task because the total amount of online
slack will change with the execution of the next task, hence, a recomputation of
the distribution is required.

Based on the above outlined workload-ahead principle, Fig. 3 gives the pseudo
code of our workload-ahead-driven voltage scaling algorithm. Its input consists
of the information regarding the next task. This information includes the task’s
workload (Wnext) and workload-ahead (WAnext), its worst case number of cycles
(Kw) and execution time (WCETnext), as well as its offline decided start time
(STnext). In addition, the algorithm requires the current time (CurrT ime) in the
schedule. When a busy PE finishes executing a task or an idle PE receives an
incoming data communication, it calls the online voltage scaling algorithm. If the
next task on the PE can start immediately (line 1), the available online slack is
computed from the current time and the start time of the next task τnext (line 2).
The slack distributed to τnext is calculated based on Eq. (5) in line 3. According to
the amount of distributed slack, the frequency and voltage at which τnext has to be
executed are computed in lines 4 and 5. If the resulting frequency is less than the
minimum frequency (fmin) of the PE, then the minimum frequency will be used.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, July 2006.

Online Energy Minimization for Battery-Powered Embedded Systems · 9

Algorithm: WAD-DVS

Input: - Wnext, WAnext, Kw,
WCETnext, STnext, CurrT ime

Output: - Vnext

01: if the next task can start immediately then

02: online slack = STnext – CurrT ime;
03: slacknext = online slack × (Wnext/WAnext);
04: frequencynext = max{Kw/(WCETnext + slacknext), fmin};
05: Compute Vnext by solving Eq. (1)

with known Vt and frequencynext;
06: return max{Vnext , Vmin};
07: else

08: call RM-RS-DVS; // (Fig. 6)
09: end if

Fig. 3. Pseudo code: Workload-ahead-driven online DVS

If the resulting voltage is larger than the minimum voltage (Vmin) of the PE, it
will be returned. Otherwise, Vmin will be returned (line 6). On the other hand, if
the next task could not start at this moment due to the lack of needed input data
(e.g. τ3 in Fig. 1 (c) can not start when τ0 finishes since γ23 has not arrived yet),
the algorithm calls the online task rescheduling/remapping procedure described in
Section 5 (line 8). It is important to note that each step in the algorithm can be
performed in constant time, hence the overall complexity is constant. The constant
complexity allows the scaling overhead be incorporated into the WCET of tasks
during timing analysis [Shen et al. 1993]. In the above described online voltage
scaling algorithm, no task will start later than its offline decided start time, so the
timing constraint of each task is guaranteed and all hard deadlines are satisfied.
In the above DVS procedure, we did not consider the time and energy overheads
of the voltage transition. The issue of handling the transition overheads has been
addressed in [Andrei et al. 2004] and [Mochocki et al. 2005] for offline DVS and
online DVS respectively. According to [Mochocki et al. 2005], in the online phase,
when a task is ready to be executed, we can subtract the time overhead of the
transition from online slack and use the remaining slack as the available slack in
our DVS algorithm. If the overhead is equal to or greater than the online slack,
the DVS will not be involved. Similarly, we can compare the energy saving of the
ready task due to DVS with the energy overhead. If the energy saving is larger,
DVS will be called, otherwise, it is rejected. In this paper, however, we omit the
transition overheads for simplicity since they are not the focus of this paper.

5. ONLINE TASK RESCHEDULING AND REMAPPING

Due to the initial static schedule and mapping, it is possible that some of the
online slack is wasted when tasks execute faster than their WCET. The reason
for this is the fact that earlier finishing tasks might result in other tasks becoming
ready for execution earlier, however, the static schedule ”unnecessarily” delays such
tasks. To avoid this waste of online slack, we introduce online task rescheduling and

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, July 2006.

10 · Yuan Cai et al.

possible?

Re−
scheduling

Re−

possible?
mapping

next task

Information
of the task start

Can next

now?

RemappingRescheduling

Perform
WAD

PE
remains

idle

No NoNo

Yes Yes Yes

Fig. 4. Integrated workload-ahead-driven DVS and rescheduling/remapping

τ 1

τ 3

τ 1

τ 6τ 3τ 4

AET WCET

τ 6

τ 4

τ 2

τ 0
1ms

τ 5
1ms

τ 5

os

(a) (b)

PE2

PE1

PE0

remapping
rescheduling

1 3.5 4.5 7 8 10 (ms)

wasted without rescheduling
or remapping

2ms

1ms slack
usable

not

4.5ms 4ms

2ms

τ 2

τ 0

Fig. 5. Online task rescheduling and remapping

remapping as supplements of the proposed online DVS (Section 4.2). Fig. 4 outlines
the integration of the workload-ahead-driven DVS technique with the rescheduling
and remapping strategy. The necessity for online rescheduling and remapping is
illustrated through a motivational example.

5.1 Motivational Example

Fig. 5(a) shows a task graph consisting of 7 nodes. The WCETs of tasks are
indicated, and the tasks are mapped and scheduled on 3 PEs, in accordance to
Fig. 5(b). For simplicity we neglect communications in this example, however, they
are considered in our algorithm. As we can observe from Fig. 5(b), τ1 has a longer
WCET (4.5ms) than τ2 (4ms). However, let us assume that τ1 requires only 2.5ms
for execution at run-time, i.e. it finishes at 3.5ms. When τ1 finishes, there is an
online slack appearing on PE2 (indicated as os in Fig. 5(b)), but τ4 can not start
its execution earlier because its parent task τ2 has not terminated at this moment.
Clearly, a large portion of the online slack on PE2 is wasted. To avoid this waste,
task τ3 on PE2 can be placed before τ4 to fill the available online slack. That
is, we change the execution order of the remaining tasks (rescheduling). However,
the WCET of the rescheduled task must be smaller than the available online slack
to avoid the delay of the start time of the remaining tasks, which could result in

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, July 2006.

Online Energy Minimization for Battery-Powered Embedded Systems · 11

Algorithm: RM-RS-DVS

Input: - Wnext, WAnext, WCETnext, STnext, Kw,
CurrT ime, M

Output: - Vnext

01: int k = min(M, size of PE[p].exe Queue);
02: bool search result = false;
03: for j = 1 to k //online rescheduling
04: if PE[p].exe Queue[j] satisfies rescheduling conditions then

05: search result = true;
06: move PE[p].exe Queue[j] to the head of PE[p].exe Queue;
07: break;
08: end if

09: end for

10: if search result == true then

11: call WAD-DVS; // (Fig. 3)
12: else // online remapping
13: for i = 1 to n && i ! = p
14: k = min(M, size of PE[i].exe Queue);
15: for j = 1 to k
16: if PE[i].exe Queue[j] satisfies remapping conditions then

17: search result = true;
18: fetch task PE[i].exe Queue[j] from PE[i] and

put it to the head of PE[p].exe Queue;
19: break;
20: end if

21: end for

22: if search result == true then

23: break;
24: end if

25: end for

26: if search result == true then

27: call WAD-DVS; // (Fig. 3)
28: else

29: let PE[p] be idle;
30: end if

31: end if

Fig. 6. Pseudo code: Online rescheduling/remapping

potential deadline violations. For example, to be rescheduled, the WCET of τ3

must be smaller than os. If the WCET of τ3 is longer than the slack, then we can
further search the remaining tasks of other PEs to see if there is suitable task. In
the example of Fig. 5(b), τ5 on PE1 can be fetched from PE1 to fill the online slack
on PE2, i.e., τ5 is remapped online.

5.2 Online Task Rescheduling and Remapping Technique

Our aim is to facilitate online voltage scaling to avoid online slack waste. Simi-
lar to our online voltage scaling, we want the online rescheduling and remapping
techniques to be independent of the number of tasks, in order to minimize its
computational overhead. Therefore, we will not take all the remaining tasks into
consideration, instead, an effective yet fast local search strategy is proposed. The

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, July 2006.

12 · Yuan Cai et al.

pseudo code of our online task rescheduling/remapping is given in Fig. 6. Suppose
there are n PEs in the system and the pth (1 ≤ p ≤ n) PE is the one with the
potentially wasted online slack. Let each PE have an exe Queue storing tasks to
be executed and let M be a constant integer called the search window size. The
search window size represents the maximal number of tasks in exe Queue that
may be rescheduled or remapped. The complexity of the algorithm is bounded by
the search window size, which is constant. The algorithm first restricts the search
window size if the number of tasks in exe Queue is smaller than M (line 1), then
searches exe Queue of PE[p] within the search window M to fill the online slack on
PE[p]. To be a rescheduling candiate, a task should satisfy two conditions (line 4).
First, its WCET (we still only know WCET of remaining tasks at this moment) is
less than the online slack so that the next task will start no later than its offline
decided start time. For example, in Fig. 5, the WCET of τ3 is less than the online
slack and τ4 is guaranteed to start on time. This condition prevents any deadline
violation. The second condition is that at the time of the search, all its incoming
data communications have arrived so that it can start at this moment. If these two
conditions are true, the found task is moved to the head of the execution queue
and placed before the next task τnext (line 6). Then the proposed online DVS pro-
cedure is called (line 11) to utilize the otherwise wasted online slack. As indicated
in Fig. 4, if no suitable task for rescheduling has been found, task remapping will
be performed (line 12-31). Similar to online rescheduling, online remapping checks
tasks in the search window of exe Queue of other PEs to find a task that can utilize
the available online slack (line 12-22). Nevertheless, the selection is more strict in
remapping phase (line 16). Tasks can only be fetched from another PE if they
fulfill the two conditions mentioned in the rescheduling phase as well as if their
remapping does not introduce new communications. The reason is that new data
communications may delay the transfer of some other scheduled communications
on the CLs. This, in turn, may cause some tasks not to start on time and result
in the risk of deadlines violation. After a task is remapped it is removed from the
task queue of its originally mapped PE to exe Queue head of PE[p] (line 18), which
then will call the proposed voltage scaling procedure (line 27). If no task can be
found remappable, the idling of PE[p] is not avoided and the online slack is wasted
(line 29).

The complexities of the rescheduling and remapping algorithms are O(M) and
O(n × M) respectively, where M is the search window size and n is the number of
PEs. Neither M nor n will change at runtime, resulting in a constant complexity
of the rescheduling/remapping algorithm. Usually, n is a small integer and as we
will see in Section 7, the search window size is also a small number, hence the
computational overhead of the rescheduling/remapping algorithm is very low.

6. COMBINED ONLINE DVS AND ABB

In Section 4, we mainly considered the dynamic power, which has been the dominant
source of power consumption in contemporary CMOS digital systems. However,
with ever-shrinking feature sizes, leakage power is becoming comparable to dynamic
power [Martin et al. 2002]. For the 0.05µm predictive technology, the leakage
power is estimated to be almost equivalent to the dynamic power [Yan et al. 2003].

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, July 2006.

Online Energy Minimization for Battery-Powered Embedded Systems · 13

Though DVS can decrease the dynamic power significantly, it is not very effective
in reducing leakage power. To tackle this problem, adaptive body biasing (ABB)
has been introduced. ABB takes advantage of the fact that the leakage current can
be exponentially reduced by dynamically changing the body-bias voltage (Vbb) of
transistors [Keshavarzi et al. 2001]. A microprocessor prototype which can change
Vbb continuously was introduced in [Miyazaki et al. 2002]. Kim and Roy proposed
a scheme to scale Vbb, which can be included in any processor [Kim and Roy 2002].
In order to minimize the overall power, combined DVS and ABB can be utilized
[Martin et al. 2002], [Yan et al. 2003], [Andrei et al. 2005]. In this section, we
extend the workload ahead-driven DVS technique introduced in Section 4 towards
the consideration of the leakage power, i.e., we combine DVS and ABB (referred to
DVSABB from now on) to achieve power efficiency in terms of leakage and dynamic
power.

The leakage power is mainly caused by subthreshold leakage currents in the
CMOS circuitry and it can be modeled as [Martin et al. 2002]

Pleakage = Vdd · K3 · e
K4Vdd · eK5Vbs (6)

where Vbs is the body-bias voltage and the fitting parameters K3, K4, K5 are
technology dependent constants. For clarity reasons we maintain the same indices
as used in [Martin et al. 2002]. Actual values for these constants are provided in
[Martin et al. 2002], given a Transmeta Cruose processor. Considering Eq.2, the
total power of one task can then be expressed as

Ptotal = Pdynamic + Pleakage = f · Ce · V
2
dd + Vdd · K3 · e

K4Vdd · eK5Vbs (7)

The operational frequency f depends on Vdd as well as Vbs and can be expressed as
[Martin et al. 2002]

f =
((1 + K1) · Vdd + K2 · Vbs − Vth1)

α

K6 · Ld · Vdd

(8)

where Ld is the logic depth, and α, K1, K2, K6 and Vth1 denote circuit dependent
constants [Martin et al. 2002]. From Eq.7, we can find that scaling Vdd (DVS) and
Vbs (ABB) simultaneously can effectively reduce the overall power, which will in
turn reduce the current drawn from the battery. Extending the online DVS to online
DVSABB does not change the workload and workload-ahead defined in Section 4.2.
The only difference is that the current of the task is modified to I = Ptotal/(Vb · η).

In online DVS, we only need to compute the Vdd of the next task to be exe-
cuted based on the slack assigned to the task (see Fig.3). The difference in online
DVSABB is that except for Vdd, the body bias voltage Vbs of the next task has to
be calculated. Now the problem of online DVSABB can be formulated as given a
task and a certain amount of slack, finding a pair of (Vdd, Vbs) such that the total
power of the task is minimized. According to Eq.8, both DVS and ABB will cause
the reduction of the operational frequency and slow down the task execution. This
indicates that both techniques have to utilize the online slack and they compete
with each other for the available slack. Accordingly, we have to decide the optimal
portion of the slack distributed between DVS and ABB in order to calculate the
voltage pair (Vdd, Vbs). Once the amount of slack assigned to DVS and ABB is
known, it is easy to compute the Vdd and Vbs based on Eq.8. Since the total power

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, July 2006.

14 · Yuan Cai et al.

depends nonlinearly on Vdd and Vbs (Eq. 7), this results in a nonlinear optimization
problem. Numerical methods that are commonly used to address such optimiza-
tion problems are unsuitable for online techniques due to their large time overhead
compared to the application running on the system. Therefore, we utilize the idea
of a look-up-table (LUT) approach proposed by [Andrei et al. 2005] to solve the
problem.

In this approach, each task will have a specific LUT which is set up before the
actual execution (i.e., in the offline phase). Each entry of the LUT corresponds to
a possible slack that the task may have. A pair of Vdd and Vbs are pre-computed
based on this slack and stored in this entry. Then in the online phase, each time
when a task is to be executed, the PE will look up the voltage pair in the LUT
according to the actual online slack obtained by the task. In the LUT, the step
between two entries is a constant. For a given slack, we can use ⌈ slack

step
⌉ to find

its entry. For example, the slacks in the table are 0, 0.2, 0.4, 0.6, 0.8 ms and the
step is 0.2ms. If the slack distributed to the next task is 0.5ms, then ⌈ 0.5

0.2⌉ = 3,
i.e., (Vdd, Vbb) in the 3rd entry will be used. Since this entry found procedure is
quite simple, the overhead due to the table lookup is very small and constant. If
the actual slack falls between two entries of the LUT, the voltage pair in the lower
entry will be simply used. Though this is conservative and the slack is not fully
used, the time-constraint will be guaranteed. The space complexity of the LUTs
depends on the number of tasks, T , and the average number of entries of one table,
E. We assume it takes 4 bytes to store the slack, Vdd and Vbs respectively, then the
space to store the LUTs will be 12 × E × T . For example, if E = 20 and T = 100,
then the LUTs needs 24,000 bytes (approximately 23.44 KB) memory.

The LUT setup procedure is outlined next. First, we compute the possible online
slack range of each task, i.e., the difference between the worst case slack (WCS)
and the best case slack (BCS) that each task may have. The WCS that every task
would have is clearly zero. This is the case where all tasks are executed with their
WCETs. We assume each task will obtain the BCS when the AETs of all tasks are
30 percent of their WCETs. For each task, the LUT is set to be empty initially,
then starting from its WCS, we add entries to its LUT with certain interval until
its BCS is reached. Hence each entry of the LUT corresponds to a possible slack
that the task may obtain at run time. For each entry, we use exhaustive search to
find the optimal pair of (Vdd, Vbs) . Let p be the percentage of the slack distributed
to DVS, then 1 − p percent of slack will be given to ABB. We change p from 0
to 100 percent with an interval of 1 percent. With each p, a pair of (Vdd, Vbs) is
computed according to Eq.8. Then we calculate the total power Ptotal based on the
computed voltage pair and Eq.7. The voltage pair corresponding to the minimum
Ptotal is the optimal pair and will be chosen to fill the table entry. The computation
of (Vdd, Vbs) is repeated until every entry of the LUT is filled. It can be seen that
the above LUT setup procedure is time consuming, but the setup speed is not our
concern since the it is carried out in the offline phase. Once the tables are set up,
the online lookup will be very fast and the complexity is O(1).

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, July 2006.

Online Energy Minimization for Battery-Powered Embedded Systems · 15

Table III. Results of online DVS in single PE systems
Bench- battery charge consump. (mAs) Improvem. (%)

mark SF ACD WAD BE WAD
SF

WAD
ACD

BE
WAD

(# task) O(1) O(1) O(1) O(nnrC)

Auto-ind. (28) 0.314 0.314 0.224 0.177 28.66 28.66 20.98

Consumer (27) 12.141 12.141 7.004 4.383 42.31 42.31 37.42

Office-auto (5) 1.224 0.991 0.933 0.861 23.77 5.85 7.72

Network (23) 0.237 0.237 0.166 0.115 29.96 29.96 30.72

Telecom (42) 0.438 0.438 0.310 0.189 29.22 29.22 39.03

GSM decoder (34) 3.906 3.826 2.831 1.224 27.52 26.01 56.76

GSM encoder (53) 3.534 3.249 2.417 1.168 31.61 25.61 51.68

7. EXPERIMENTAL RESULTS

In order to validate the effectiveness of the proposed online voltage scaling and
rescheduling/remapping strategies in reducing battery charge consumption, we con-
ducted several experiments using 15 hypothetical examples as well as 7 real-world
benchmakrs. The hypothetical examples have been automatically generated using
TGFF [Rhodes and Dick], a pseudo-random task graph generator. The first 5 real-
istic examples have been taken from the E3S benchmark suit [Dick] (auto-indust,
consumer, office-auto, networking and telecomm), while the task graphs for GSM
decoder and encoder have been derived from publicly available C code [Schmitz].
All reported results have been obtained using the battery model of Section 2.2 and
the evaluation criterion is the battery charge consumption. Further, the evaluation
is based on the same normal distribution (mean: 0.6 times the WCET, standard
deviation: 0.13 times the WCET) of the actucal execution times of tasks that has
been used in [Ahmed and Chakrabarti 2004].

In the first set of experiments, we evaluate the efficiency of our workload-ahead-
driven DVS algorithm (WAD, Fig. 3) by means of a comparison with 4 different
online DVS techniques, summarized for reference in the following: 1. SF: The
slack forwarding approach is based on the technique presented in [Ahmed and
Chakrabarti 2004]. Its time complexity is constant (O(1)). 2. ACD: The average
current-based distribution is a heuristic that leverages information regarding the
task discharge currents to distribute slack: if the current of the next task to be
executed is less than or equal to average current of tasks, it gets no slack; else,
it gets some slack such that its current decreases to the average value. When
there is only one task left, all slack is assigned to it. The time complexity of this
method is constant, too. We use this heuristic to underline the importance of the
workload-driven technique that considers discharge currents as well as remaining
task execution times. 3. WAD: This represents our workload-ahead-driven distri-
bution technique, as introduced in Section 4.2. It has also a complexity of O(1).
Since the slack forwarding idea [Ahmed and Chakrabarti 2004] is most suitable for
task sets without data communications, we executed the 7 realistic benchmarks on
single PE systems1, in which the inter-PE communications between tasks can be
neglected. 4. BE: A best effort slack distribution adapted from an offline DVS

1Note that not all these benchmarks can be executed on a single PE without violating timing
constraints. We therefore adjusted the deadlines such that no violation occurred under WCETs.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, July 2006.

16 · Yuan Cai et al.

Table IV. Battery charge consumption of multiple periods
Bench- battery charge consump. (mAmin) Improvem. (%)

mark SF ACD WAD WAD
SF

WAD
ACD

(# task) O(1) O(1) O(1)

Auto-ind. (28) 5.041 5.041 3.618 28.22 28.22

Consumer (27) 24.406 24.406 17.187 29.58 29.58

Office-auto (5) 5.114 4.246 4.068 20.47 4.20

Network (23) 3.771 3.771 2.634 30.14 30.14

Telecom (42) 0.705 0.705 0.501 28.91 28.91

GSM decoder (34) 0.270 0.265 0.198 26.69 25.07

GSM encoder (53) 0.249 0.230 0.173 30.58 24.68

procedure of [Rakhmatov and Vrudhula 2003]. It divides the online slack into small
steps. For each step, every remaining task is tried to be scaled by using this step of
slack and the task which can cause the minimum battery charge consumption will
be assigned with this step. This procedure is repeated until all the steps are dis-
tributed, i.e., the available online slack is used up. The complexity of this method
is O(nnrC), where n is the number of all tasks, nr is the number of the remaining
tasks and C is the number of slack steps. This technique can achieve much lower
battery charge consumption than the above three heuristics due to the complicated
search it uses. However, its high complexity prevents it to be utilized at run-time

Table III gives the results of the four different DVS methods in terms of bat-
tery charge consumption. In the table, the first column gives the benchmark name
and the number of tasks in the benchmark. The results of the four online DVS
techniques are given in Columns 2–5. In columns 6-7, we show the percentage
of improvement in battery charge consumption using the proposed WAD method
over methods SF and ACD. The improvement of BE over WAD is given in the
last column. Consider, for instance, the GSM decoder benchmark. Here BE ob-
tains the minimum battery charge consumption of 1.224mAs. SF and ACD result
in 3.906 mAs and 3.826mAs, respectively and WAD achieves 2.831mAs, resulting
in improvements of 27.52% and 26.01% over SF and ACD. We can observe that
BE yields consistently the lowest battery charge consumption among the four tech-
niques, but its computational complexity is also much higher than the other three.
Among the three heuristics with constant complexity, WAD achieves lower battery
charge consumption than SF and ACD. Table III gives the battery charge consump-
tion that the applications run for one period. We also repeat the experiments of
the three heuristics with constant complexity for several thousand periods so that
the total operation time reaches the scale of minutes. The resulting battery charge
consumptions are shown in Table IV. From this table we can find that WAD is still
more effective than SF and ACD.

The second set of experiments was conducted to validate the workload-ahead-
driven DVS as well as the rescheduling/remapping techniques in the context of
systems consisting of multiple processing elements. We used LOPOCOS [Schmitz
et al. 2002], an academic system-level synthesis tool, to find suitable multiple PE im-
plementations and to generate the offline mappings and schedules for all 36 bench-
marks (GSM decoder and encoder have been combined into a single benchmark). In
all experiments we set the search window size (M) of the rescheduling/remapping

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, July 2006.

Online Energy Minimization for Battery-Powered Embedded Systems · 17

Table V. Experimental results in multi-PE systems

Bench- # task/ # Battery charge consumption (10−2mAs) Percentages (%)
marks edge PE No DVS WAD WAD+RS WAD+RSRM 1 2 3

Auto-ind. 28/25 2 22.134 17.317 17.317 17.317 21.76 0 0
Consum. 27/30 3 851.32 613.38 613.38 613.38 27.94 0 0
Office-au. 5/5 1 15.578 12.768 12.768 12.768 18.03 0 0
Network. 23/19 2 12.295 10.404 10.404 10.404 15.38 0 0
Telecom. 42/40 2 46.181 36.118 36.054 36.031 21.79 0.17 0.24

GSM 87/138 6 10.399 7.581 7.458 7.458 27.09 1.62 1.62
tgff1 84/109 3 1.6536 1.2294 1.2060 1.1407 25.65 1.90 7.21
tgff2 196/236 3 5.9416 4.4459 4.1119 4.0206 25.17 7.51 9.57
tgff3 149/180 3 4.2885 3.2265 3.0185 2.9791 24.76 6.44 7.66
tgff4 81/103 3 2.4865 1.8633 1.7925 1.7306 25.06 3.81 7.12
tgff5 149/167 5 5.3703 4.0737 3.8586 3.8368 24.14 5.28 5.81
tgff6 70/94 2 1.0458 0.7840 0.7249 0.7248 25.02 7.54 7.55
tgff7 102/152 3 3.9872 2.8624 2.6778 2.6188 28.21 6.45 8.50
tgff8 117/170 3 3.9352 2.9009 2.7473 2.7429 26.28 5.29 5.44
tgff9 316/413 4 8.3134 6.0926 5.7592 5.6844 26.71 5.47 6.70
tgff10 269/348 3 5.4967 4.1520 3.8301 3.8114 24.46 7.75 8.20
tgff11 331/408 4 8.1994 6.0464 5.5650 5.4978 26.25 7.96 9.07
tgff12 280/341 4 10.097 7.4264 6.8689 6.7069 26.45 7.50 9.68
tgff13 378/443 4 1.3623 9.9426 9.1701 8.9537 27.01 7.77 9.94
tgff14 252/312 4 6.6971 5.0638 4.7497 4.6449 24.38 6.20 8.27
tgff15 210/234 3 0.3786 0.3183 0.2746 0.2735 15.92 13.71 14.08

Ave. percents 24.80 4.89 6.03

1: WAD
NoDV S

; 2: WAD+RS
WAD

; 3: WAD+RSRM
WAD

algorithm to 10, empirically found to be a good value. Nevertheless, due to the
importance of the window size on the solution quality we have devoted an extra
set of experiments on this subject, presented later in this section. Since the slack
forwarding technique [Ahmed and Chakrabarti 2004] was particularly introduced
for independent tasks, we refrain in these experiments from a direct comparison.

The results of our experiments are summarized in Table V. The first, second,
and third columns give the benchmark name, the number of tasks/communication
edges, and the number of PEs in the system, respectively. Columns 4–7 show the
battery charge consumptions in 4 different scenarios. Column 4 (No DVS) repre-
sents the nominal charge consumption, i.e., when no online voltage scaling is em-
ployed; Column 5 (WAD) shows the results of the proposed workload-ahead-driven
DVS technique; Columns 6 (WAD+RS) and 7 (WAD+RSRM) give the charge con-
sumption when integrating WAD with online rescheduling and rescheduling with
remapping, respectively. Columns 8–10 summarize the achieved battery charge sav-
ings in percent. Consider, for instance, benchmark tgff2. Here the nominal and the
WAD-based charge consumptions are 5.941610×10−2mAs and 4.4459×10−2mAs,
respectively, representing a saving of 25.17%. This can be further improved by
using rescheduling as well as rescheduling with remapping to 4.1119×10−2mAs and
4.0206×10−2mAs, respectively, obtaining further saving of 7.51% and 9.57% when
compared to using WAD only.

As mentioned above, the window size used by the rescheduling and remapping

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, July 2006.

18 · Yuan Cai et al.

−
2

 6.6

 6.8

 7

 7.2

 7.4

 7.6

 7.8

 0 1 2 3 4 5 6 7
search window size (M)

battery charge conumption

ba
tte

ry
 c

ha
rg

e
co

ns
um

pt
io

n
(1

0
 m

A
s)

Fig. 7. Influence of search window size on rescheduling/remapping results

technique has an influence on the achievable savings in battery charge consumption
as well as on the online complexity. The following experiment is used to clarify this
aspect and to provide an insight into which window size should be typically used.
Fig. 7 shows the battery charge consumption of benchmark tgff12 depending on the
window size M . As it can be observed, a window size of zero, i.e. no reschedul-
ing/remapping is performed, results in a charge consumption of 7.43×10−2mAs.
However, with an increasing window size this value decreases to 6.7×10−2mAs. In
general, we have observed that for all investigated benchmarks, the window size is
no larger than 10.

The above experiments were also repeated for 10 thousand times and the overall
schedule lengths reach the scale of minutes and the results are given in Table VI.
From this table, it can be seen that the online DVS still achieves remarkable battery
charge saving compared to the situation where there is no DVS. While averagely,
the rescheduling/remapping algorithms do not further reduce the battery charge
consumption too much, they are effective in some benchmarks, for instance, more
than 10 percent battery charge can be saved in tgff15 by using rescheduling or
remapping. Hence,the rescheduling/remapping algorithm can still be utilized in
certain applications.

The third set of experiments was carried out to evaluate the effectiveness of
the proposed online DVSABB when the leakage power is taken into account. In
the sinlge PE systems, we compare the online DVSABB with the online DVS. The
proposed LUT based DVSABB (DVSABB LUT) is also compared with the opti-
mal DVSABB obtained through exhaustive search (DVSABB ES). All three scaling
methods are workload-ahead-driven. Initially, we assume that before scaling the
leakage power of each task is equal to its dynamic power, a realistic assumption
for the next generation technology [Yan et al. 2003], and the results are shown in
Table VII. We generalize this assumption in a later experiment. The battery charge
consumption of the three scaling approaches are given in columns 2-4 and column 5

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, July 2006.

Online Energy Minimization for Battery-Powered Embedded Systems · 19

Table VI. Experimental results in multi-PE systems with multiple periods

Bench- # task/ # Battery charge consumption (mAmin) Percentages (%)
marks edge PE No DVS WAD WAD+RS WAD+RSRM 1 2 3

Auto-ind. 28/25 2 88.858 59.580 59.580 59.580 32.95 0 0
Consum. 27/30 3 916.53 777.34 777.34 777.34 15.19 0 0
Office-au. 5/5 1 18.780 15.289 15.289 15.289 18.59 0 0
Network. 23/19 2 29.450 20.653 20.653 20.653 29.87 0 0
Telecom. 42/40 2 57.569 43.400 43.327 43.311 24.61 0.17 0.21

GSM 87/138 6 11.576 7.725 7.601 7.601 33.26 1.61 1.61
tgff1 84/109 3 4.918 2.982 2.931 2.702 39.37 1.71 9.39
tgff2 196/236 3 10.156 6.399 5.911 5.658 36.99 7.63 11.58
tgff3 149/180 3 8.501 5.265 4.938 4.810 38.07 6.21 8.64
tgff4 81/103 3 6.515 4.032 3.891 3.668 38.11 3.50 9.03
tgff5 149/167 5 10.047 6.240 5.906 5.804 37.89 5.35 6.98
tgff6 70/94 2 3.918 2.457 2.303 2.301 37.29 6.26 6.35
tgff7 102/152 3 7.419 4.412 4.134 4.021 40.53 6.30 8.86
tgff8 117/170 3 7.893 4.735 4.498 4.442 40.01 5.02 6.19
tgff9 316/413 4 12.159 7.501 7.093 6.913 38.31 5.44 7.83
tgff10 269/348 3 9.832 6.137 5.680 5.631 37.58 7.45 8.24
tgff11 331/408 4 11.861 7.507 6.915 6.756 36.71 7.88 10.00
tgff12 280/341 4 13.644 8.631 7.981 7.588 36.74 7.53 12.08
tgff13 378/443 4 16.431 10.664 9.832 9.495 35.10 7.79 10.96
tgff14 252/312 4 10.982 6.935 6.510 6.285 36.85 6.12 9.37
tgff15 210/234 3 1.686 1.340 1.156 1.140 20.52 13.73 14.89

Ave. percents 33.34 4.96 6.61

1: WAD
NoDV S

; 2: WAD+RS
WAD

; 3: WAD+RSRM
WAD

shows the improvement of DVSABB LUT over DVS. It can be seen that when the
leakage power is considered, DVSABB LUT is more effective than DVS in reduc-
ing the battery charge consumption. For example, in the Auto-indust benchmark,
DVS achieves the battery charge consumption of 0.973 mAs while DVSABB LUT
consumes only 0.715 mAs, resulting an improvement of 26.53%. Although DVS-
ABB ES can obtain even lower battery charge consumption, its high run time
overhead prevents it to be used online. More importantly, from Table VII it can
be seen that the results of DVSABB LUT are quite close to that of DVSABB ES.
This demonstrates the high quality of DVSABB LUT which is fast enough to be
involved online.

In the above experiment, we assume that the leakage power of each task is
equal to the dynamic power. However, the ratio between the leakage power and the
dynamic power is both technology and application dependent [Wu et al. 2005] and
this ratio is an important factor heavily affecting the effectiveness of DVSABB. In
this experiment, we use the improvement of DVSABB over DVS as the measure of
the effectiveness of DVSABB. In Table VIII, we show the effectiveness of DVSABB
with six different leakage/dynamic ratios, and the results are in columns 2-7. It
can be seen that with the increase of leakage/dynamic ratio, DVSABB becomes
more effective compared to DVS. When the leakage power is 25% of the dynamic
power (column 7), the improvement of DVSABB over DVS is marginal, e.g., 2.51%
in the Auto-ind. benchmark. This indicates that when the leakage power is below

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, July 2006.

20 · Yuan Cai et al.

Table VII. Results of online DVSABB in single PE systems
Benchmark battery charge consump. (mAs) Improvemment (%)

(# task) DVSonly DVSABB LUT DVSABB ES DV SABB LUT
DV Sonly

Auto-ind. (28) 0.973 0.715 0.697 26.53

Consumer (27) 9.337 6.684 6.464 28.41

Office-auto (5) 0.574 0.494 0.490 13.86

Network (23) 0.395 0.317 0.313 19.87

Telecom (42) 0.875 0.627 0.613 28.38

GSM decoder (34) 22.22 16.86 16.58 24.11

GSM encoder (53) 31.70 22.92 22.37 27.39

Table VIII. Effectiveness of DVSABB with different leakage/dynamic ratio

Pleakage/Pdynamic

Benchmark (more leakage power <————-> more dynamic power)

(# task) 1.5 1.25 1 0.75 0.5 0.25

Auto-ind. (28) 33.37 29.65 26.53 18.91 12.50 2.51

Consumer (27) 34.05 31.25 28.41 23.44 12.83 3.58

Office-auto (5) 18.73 15.17 13.86 7.53 6.27 1.58

Network (23) 32.68 26.23 19.87 13.34 9.47 2.55

Telecom (42) 32.75 30.31 28.38 21.83 13.05 2.91

GSM decoder (34) 38.32 33.71 24.11 20.84 11.72 1.97

GSM encoder (53) 34.12 29.40 27.39 22.49 13.83 3.01

25% of the dynamic power, ABB technique is not necessary and we can utilize DVS
solely. On the other hand, when the ratio is above 1, which represents the case of
the incoming technologies (0.05µm and below), much more battery charge can be
saved by combining DVS with ABB, e.g., in the Auto-ind. benchmark, DVSABB
can save 33.37% battery charge compared to only DVS when the leakage power is
1.5 times of the dynamic power.

We also compare the workload-ahead-driven DVSABB (WAD DVSABB) with
DVSABB combined with slack forwarding (SF DVSABB) and the results are sum-
marized in Table IX. After the online DVS is extended to online DVSABB, the
proposed WAD approach also performs better than SF in terms of battery charge
consumption, with up to 50% improvement.

Finally, we implement the DVSABB technique in the multiple PE systems and in-
tegrate it with online rescheduling and remapping. We compare the DVSABB with
DVS in two frames: with rescheduling (RS); with both rescheduling and remap-
ping (RSRM), and assume that for each PE, the leakage power equals the dynamic
power. The battery charge consumptions and the improvement of DVSABB over
DVS are summarized in Table X. From the table we can see that in each frame,
DVSABB results in lower battery charge consumption compared to DVS in both
RS case and RSRM case. This indicates that DVSABB is also more effective than
DVS in reducing the battery charge consumption in the multiple PE systems, with
up to 29% improvement.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, July 2006.

Online Energy Minimization for Battery-Powered Embedded Systems · 21

Table IX. Comparison of WAD DVSABB with SF DVSABB
Benchmark battery charge consump. (mAs) Improvemment (%)

(# task) WAD SF WAD
SF

Auto-ind. (28) 0.715 1.407 49.17

Consumer (27) 6.684 13.59 50.82

Office-auto (5) 0.494 0.718 31.16

Network (23) 0.317 0.494 35.93

Telecom (42) 0.626 1.186 47.16

GSM decoder (34) 16.863 31.178 45.91

GSM encoder (53) 22.928 41.356 44.56

Table X. Results of online DVSABB in multiple PE systems
Bench- RS RS+RM
marks DVS DVSABB Imp.(%) DVS DVSABB Imp.(%)

Auto-ind. 28.516 25.917 9.11 28.516 25.917 9.11

Consumer 925.78 787.78 14.91 925.78 787.78 14.91

Office-au. 57.395 49.441 13.86 57.395 49.441 13.86

Network. 15.419 12.330 20.03 15.419 12.330 20.03

Telecom. 51.904 42.179 18.74 51.853 42.092 18.81

GSM 17.010 11.977 29.59 17.010 11.977 29.59

tgff1 1.6245 1.3233 18.55 1.4975 1.2298 16.48

tgff2 5.4656 4.5889 16.04 5.1114 4.3027 14.70

tgff3 4.0303 3.4909 13.38 4.0248 3.3696 16.26

tgff4 2.6146 2.1238 18.77 2.6146 2.0979 19.76

tgff5 5.4529 4.4664 18.09 5.3567 4.3950 17.64

tgff6 1.0527 0.8846 15.97 1.0527 0.8846 15.97

tgff7 3.8230 3.2150 15.90 3.6591 3.0970 14.70

tgff8 3.9305 3.3675 14.33 3.9270 3.3541 14.57

tgff9 7.7105 6.7814 12.05 7.1859 6.4756 9.21

tgff10 5.2881 4.6182 12.67 5.1270 4.4986 11.88

tgff11 7.5737 6.4379 15.00 7.3026 6.2677 13.66

tgff12 9.3853 7.8316 16.55 8.9440 7.4716 15.69

tgff13 1.2847 1.0868 15.40 1.2226 1.0516 13.31

tgff14 6.5825 5.5682 15.41 5.5939 5.2927 9.82

tgff15 0.3499 0.3142 10.20 0.3481 0.3128 10.15

8. CONCLUSION

In this paper, we have presented a workload-ahead-driven voltage scaling technique
which explicitly takes the discharge current and execution times into account to
make battery-aware scaling decisions. To further improve the battery charge con-
sumption, we have presented an online rescheduling/remapping technique that aims
to reduce the waste of online slack when using static schedules and mappings. To
the best of our knowledge, this is the first online approach that addresses voltage
scaling as well as rescheduling/remapping in conjunction. All presented techniques
are of constant time complexity, making them suitable for applications with hard
real-time systems. The efficiency of the proposed techniques have been experimen-
tally validated using automatically-generated as well as real-life benchmarks. It has
been demonstrated that significant savings of up to 36% in the battery charge can

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, July 2006.

22 · Yuan Cai et al.

be obtained when compared to approaches that delay the slack utilization as late
as possible. All proposed online techniques are extended to combine the adaptive
body biasing with dynamic voltage scaling so that the leakage power can also be
effectively reduced.

ACKNOWLEDGMENTS

This work is supported in part by the EPSRC, U.K., under grant GR/S95770,
the authors would like to acknowledge this support. The authors also wish to
acknowledge the reviewers for their comments based on which we could improve
the clarity of this work.

REFERENCES

Ahmed, J. and Chakrabarti, C. 2004. A dynamic task scheduling algorithm for battery powered
dvs systems. In Proceedings of Int. Symp. Circuits and Systems. 813–816.

Andrei, A., Schmitz, M. T., Eles, P., Peng, Z., and Al-Hashimi, B. M. 2004. Overhead-
conscious voltage selection for dynamic and leakage energy reduction of time-constrained sys-
tems. In Proceedings of Design, Automation and Test in Europe Conf. 518–523.

Andrei, A., Schmitz, M. T., Eles, P., Peng, Z., and Al-Hashimi, B. M. 2005. Quasi-static
voltage scaling for energy minimization with time constraints. In Proceedings of Design, Au-
tomation and Test in Europe Conf. 514–519.

Aydin, H., Melhem, R., Mosse, D., and Mejia-Alvarez, P. 2001. Dynamic and aggressive
scheduling techniques for power-aware real-time systems. In Proceedings of Real-Time System
Symp. 95–105.

Chowdhury, P. and Chakrabarti, C. 2002. Battery aware task scheduling for a system-on-
a-chip using voltage/clock scaling. In Proceedings of IEEE Workshop on Signal Processing
Systems. 201–206.

Dick, R. E3s benchmark suite. http://www.ece.northwestern.edu/ dickrp/e3s/.

Keshavarzi, A., S. Ma, S. N., Blocechel, B., K. Mistry, T. G., Borkari, S., and De, V. 2001.
Effectiveness of reverse body bias for leakage control in scaled dual-vt cmos ics. In Proceedings
of Int. Symp. Low Power Electronics and Design. 207–212.

Kim, C. H. and Roy, K. 2002. Dynamic vTH scaling scheme for active leakage power reduction.
In Proceedings of Design, Automation and Test in Europe Conf. 163–167.

Kim, W., Shin, D., Yun, H. S., Kim, J., and Min, S. L. 2002. Performance comparison of dynamic
voltage scaling algorithms for hard real-time systems. In Proceedings of IEEE Real-Time and
Embedded Technology and Applications Symp. 219–228.

Luo, J. and Jha, N. K. 2001. Battery-aware static scheduling for distributed real-time embedded

systems. In Proceedings of IEEE Design Automation Conf. 444–449.

Luo, J. and Jha, N. K. 2002a. Low power distributed embedded systems: Dynamic voltage
scaling and synthesis. In Proceedings of the International Conference on High Performance
Computing.

Luo, J. and Jha, N. K. 2002b. Static and dynamic variable voltage scheduling algorithms for real-
time heterogeneous distributed embedded systems. In Proceedings of Asia and South Pacific
Design Automation Conf. 712–719.

Martin, S., Flautner, K., Mudge, T., and Blaauw, D. 2002. Combined dynamic voltage
scaling and adaptive body biasing for lower power microprocessors under dynamic workloads.
In Proceedings of IEEE/ACM Int. Conf. Computer-Aided Design. 721–725.

Miyazaki, M., Ono, G., and Nagamatsu, T. 2002. A 1.2-gips/w microprocessor using speed-
adaptive threshold-voltage cmos with forward bias. IEEE Trans. on Solid-State Circuits 37, 2,
210–217.

Mochocki, B., Hu, X. S., and Quan, G. 2005. Practical on-line dvs scheduling for fixed-priority
real-time systems. In Proceedings of IEEE Real-Time and Embedded Technology and Applica-
tions Symp. 224–233.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, July 2006.

Online Energy Minimization for Battery-Powered Embedded Systems · 23

Pillai, P. and Shin, K. G. 2001. Real-time dynamic voltage scaling for low-power embedded

operating systems. In Proceedings of ACM Symp. Operating Systems Principles. 89–102.

Rakhmatov, D. and Vrudhula, S. 2003. Energy management for battery-powered embedded
systems. ACM Trans. on Embedded Computing Systems 2, 3, 277–324.

Rao, R., Vrudhula, S., and Chang, N. 2005. Battery optimization vs energy optimization:
Which to choose and when? In Proceedings of IEEE/ACM Int. Conf. Computer-Aided Design.
438–444.

Rao, R., Vrudhula, S., and Rakhmatov, D. 2003. Battery modeling for energy-aware system
design. IEEE Computer 36, 12, 77–87.

Rhodes, D. and Dick, R. Task graph for free (tgff). http://ziyang.ece.northwestern.edu/tgff/.

Schmitz, C. Gsm phone task graphs. http://kbs.cs.tu-berlin.de/ jutta/toast.html.

Schmitz, M. T. and Al-Hashimi, B. M. 2001. Considering power variations of dvs processing
elements for energy minimization in distributed systems. In Proceedings of Int. Symp. System
Synthesis. 250–255.

Schmitz, M. T., Al-Hashimi, B. M., and Eles, P. 2002. Synthesizing energy-efficient embedded
systems with lopocos. Design Automation for Embedded Systems 6, 401–424.

Shen, C., Ramamritham, K., and Stankovic, J. A. 1993. Resource reclaiming in multiprocessor
real-time systems. IEEE Trans. on Parallel and Distributed Systems 4, 4, 382–397.

Shin, D. and Kim, J. 2001. A profile-based energy-efficient itra-task voltage scheduling algorithm
for hard real-time applications. In Proceedings of Int. Symp. Low Power Electronics and Design.
271–274.

Wu, D., Al-Hashimi, B. M., Schmitz, M. T., and Eles, P. 2005. Power-composition profile
driven co-synthesis with power management selection for dynamic and leakage energy reduction.
In Proceedings of Euromicro Digital System Design. 34–41.

Yan, L., Luo, J., and Jha, N. K. 2003. Combined dynamic voltage scaling and adaptive body bi-
asing for heterogeneous distributed real-time embedded systems. In Proceedings of IEEE/ACM
Int. Conf. Computer-Aided Design. 30–37.

Ye, W. and Ernst, R. 1997. Embedded program timing analysis based on path clustering and
architecture classification. In Proceedings of IEEE/ACM Int. Conf.Computer-Aided Design.
598–604.

Zhu, D., Melhem, R., and Childers, B. R. 2003. Scheduling with dynamic voltage/speed
adjustment using slack reclamation in multi-processor real-time systems. IEEE Trans. on
Parallel and Distributed Systems 14, 7, 686–700.

Zhu, Y. and Mueller, F. 2004. Feedback edf scheduling exploiting dynamic voltage scaling. In
Proceedings of IEEE Real-Time and Embedded Technology and Applications Symp. 84–89.

...

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, July 2006.

