HJNIVERSITY OF

Southampton

University of Southampton Research Repository

ePrints Soton

Copyright © and Moral Rights for this thesis are retained by the author and/or other
copyright owners. A copy can be downloaded for personal non-commercial
research or study, without prior permission or charge. This thesis cannot be
reproduced or quoted extensively from without first obtaining permission in writing
from the copyright holder/s. The content must not be changed in any way or sold
commercially in any format or medium without the formal permission of the
copyright holders.

When referring to this work, full bibliographic details including the author, title,
awarding institution and date of the thesis must be given e.g.

AUTHOR (year of submission) "Full thesis title", University of Southampton, name
of the University School or Department, PhD Thesis, pagination

http://eprints.soton.ac.uk

http://eprints.soton.ac.uk/

School of Electronics and Computer Science
Faculty of Engineering, Sciences and Mathematics
University of Southampton

Timothy Lewy
9" May 2006

A Consistent Reference Service for the
Interoperation of EPrint Repositories

Project supervisor: Eric Cooke
Second examiner: Adam Prigel-Bennett

A project report submitted for the award of
Computer Science (MENQ)

Abstract

Current Institutional Repository packages do a pobr of maintaining the article’s
metadata in a consistent fashion. Documents arel etttities are unreliably identified
and there exists no mechanism for correlating edldiata between multiple repositories.
A consistent reference service (CRS) mediates amosrbetween different identifiers,
from multiple sources. It overcomes the shortcomiafjpackages such as EPrints and
allows the construction of useful applications asefvices, such as automatic CV
generation or citation impact profiling. This projdas developed a highly efficient and
scalable CRS, capable of tracking many thousandtifas. It utilises semantic web
technologies to remain open and responsive, pmayithtuitive and flexible services for
searching and retrieving information. A sophistéchplug-in for the EPrints software
has been developed, which utilises the CRS to im®tbe inherent consistency of the
metadata; reinforce the use of local naming scheameks significantly enhance the
repository’s user interface. A CRS deployment isady in active use by researchers of
the ReSIST Project.

Contents

Y 013 = (o PP TPTPTRRR PP 2
LO70] 01 (=] 01 £ PP PRUPPP 3
ACKNOWIEAGEIMENTS ...ttt e e e e e e e 5
N |01 (o To [F o3 1T o FON PP 6
11 PrOBDIEM ... e e 6
1.2 GO@IS et e 7
2 BACKOIOUNG......uiiiiiiiiiiitie et ettt e e et e e e e e e eeeen s 8
2.1 Data HarveSHING...... oo et eeee s 8
2.2 The SemantiC WEDcooiiiiiiii s ettt 8
2.3 The MatChing PrOCESSuiii it ceemeee et e 9
2.4 PrevioUS WOTK.........uuieiiiiiiii it ettt e e eeeeeana 10
241 EXPressing COreferenCeo.ouuiiiuuceeaeii e 10
24.2 ACIS PrOJECT. ..ttt e et 11
3 SOMULION. e e e aeeaans 12
3.1 AREINALIVES ... e e 14
4 SYSIEM DESIGN ..ceeiiiiii ettt e et et e e e e 15
R © V=T V[PP T T R PP 15
4.2 Implementation NOTES...........iii i eeees 16
5 CRS Design and Implementation.............cccccoceeeiiieiiiiinnn e 17
5.1 Database StrUCIUIE.........couuiiii e eeeeees 17
511 SPARQL QUETIIES ...iiiiiiee ettt e e e e e e e eeees 9.1
5.2 CRS BACKENGcuuitiiii it e e e eeenees 21
5.3 CRS SBIVICES. ..iiititiiie ettt s ettt et e ettt e e e e e e e e e e eees 23
53.1 Add Reference / Remove Reference..........cooooovviiiiiiiiiinceecieiiiinn, 23
53.2 Add Equivalence / Remove Equivalence.......cc...cccccoeiiiiiiiiiiiiiinnnnn. 24
5.3.3 CRS by String / by Referencecoeeeeeiiiiiiiiii e 24
534 ONtOIOGY EXPOITEN ...t s ettt e et e e e e e 25
5.3.5 Entity INfO Pageoooiiiiiiiiii e 25
5.3.6 AdMIN INEITACEcoiiiiiiiii e e 25
6 EPrints Extension Design and Implementation................cccouuiiiiiiieeeeeiieeeninnnnn. 29
6.1 10101 [0 - To [T G TP U PRI 29
6.2 PIUG-IN. e e 30
6.2.1 INSEAI SCHIPT ... e 30
6.2.2 Search and AJAX ... e 30.
6.2.3 ID Selection and DOM INJECHION........cocaaaceieeee e 31
6.2.4 FOrm CompPletion..........ooiiiuiii e e 31
A = (] o TP PTUPRPOPPPPPPRPRR 32
7.1 Unit RegressSion TeSHNG ...ccooiviiuiiii i ieeeeeiae et e eees 32
7.2 Deployment / Scalability TESHING e enueeeeieeieiiiae e 32.
7.3 Informal UAT / Sponsor Feedbackcccoeeiiiiiiiiiiiii e, 33
8 EVAIUALION ...t e e e 35
8.1 REQUITEMENTS ... emememe et et e e e eeee e 35
8.2 Suitability and Competitioncoooiiiiiiiiiiie e 36
8.3 RETFIECHIONS ... e e e e eeeaaes 36
O FULUIE WOTK. ...t ee ettt e e e e e e eeenaaes 38

9.1 Further EXtensions t0 EPTINTScu e e 38

9.2 EXtensions t0 the CRS SEIVEr ... 39
10 FiNAl CONCIUSIONSottt eeemee et et e e e 40
RETEIEINCES ... ettt ettt e e e e e et e e e e eees 41
Appendix A. BUNIE SITUCIUI... ..ot e 43
Appendix B. SCREAUIE ... e 44
Appendix C. Class method and attribute detailscoovvuiiiiineeeeii, 46
Appendix D. Unit Testing SCreenShOt........coceeeeciiiieeeee e 50
Appendix E. Report on Hugh Glaser's Remarksccouviiiiniiiiiiiiiiii e 51

Acknowledgements

Many thanks to the AKT team, especially Hugh Glader ideas, expertise and
resource; to the ReSIST project for their intesaxt collaboration; to the EPrints team,
especially Chris Gutteridge, for technical help angport with the EPrints software; to
Les Carr for his support and for providing the depenent testbed; and to Eric Cooke
and Adam Prugel-Bennett for their continued suppod guidance.

1 Introduction

Since it was proposed that the UK Research CoREGUK) mandate that all council
funded research must be made available througituitishal repositories (IRs) [1],
Institutions have made considerable investmenssftware such as GNU EPrints [2] or
MIT DSpace [3]. This switch to open archiving hasulted in a rapid influx of,
potentially, very useful metadata, into the publamain. However the current available
repository packages do not promote or provide &ffeanechanisms for keeping data
reliable and consistent, especially when considetime use of data from multiple
repositories.

1.1 Problem

Within institutional repositories there is datarsth regarding many different entities;
not just documents, but anything that is referefogd document’s metadata, such as
authors, institutions, funding councils and jousnab name but a few. Ideally one would
be able to obtain a complete and consistent seataf about any given entity: this would
provide an invaluable service, upon which couldbét all manner of applications. It is
easy to envisage being able to automatically geaé&¥s, or at a glance see the citation
impact of a particular project or group. This ig oorrently possible, as repositories only
hold canonical representations of the documentssLirom documents to other types of
entities are left as free floating textual refes)cor use unreliable identifiers such as
email addresses. This makes it difficult to colldéta on a specific entity within a single
repository, let alone between multiple repositories

Whilst one could simply perform a text search, ¢herould be no way to tell that
“Wendy Hall” is the same person as “Hall, W” or as“Wendy Hall” in another
repository. By analysing the list of researcheesnes in the RAE 2001 returns [4, 5] the
extent of this problem becomes clear: 10% of ndee to a clash between two or more
individuals. So, for 1 in 10 people a free textrsbawill return references not only to
them, but to one or more others as well.

Some repositories, such as EPrints have the fatdiuse identifiers for some specific
entity types, such as authors and editors. Thistiiiler is generally an optional field on
the document deposition form. It is up to the imdiial repository administrator to
choose a format and ensure it is used consistafitéguently existing departmental ids
or email addresses are used. If used properlye tidesitifiers can resolve the problem of
local linking between the supported entities, byviing a unique identifier with which
entities can be linked and referenced. Howeverigttld are frequently left blank or
worse are completed incorrectly.

EPrints is able to make these identifiers exteynallailable; but even if the identifiers
are used effectively internally, they are only w&docally and each IR employs its own
conventions for assigning them. Therefore any ested party, wishing to gather data
on entities between different repositories, wowdérto manually map local identifiers
in one repository to those in another.

It would not be feasible to propose any scheme aming authority for providing
globally unique identifiers for every entity, in @&y repository. Such a system would
restrict the open growth of online academic commmesiiand would prove infeasible to
implement or enforce. Any proposed conventions doique identification would
inevitably leave parties or individuals (such aseign bodies or institutions) out of its
scope and would therefore fail to provide trulyglglly, unique identifiers.

A system is required that can serve to ensurediatifiers are used both accurately and
consistently within repositories, and that can ragdibetween the diverse array of
existing referencing systems. It should identifg gmovide suitable canonical references
for those entities which are not supplied locahtifeers.

1.2 Goals

The goal of this project is to design and develamasistent reference service (CRS).
This will aid cross-referencing across repositqri®g recording and making available,
mappings between equivalent local identifiers.

The system is required to provide several aredsnationality:

» Services, which can be used by any systems orithdils, to obtain identifiers
for specific entities. It should be able to perfotims function either given any
single identifier, or by somehow searching for it.

» Services for adding, removing and maintaining idiems and mappings.

* An interface for administrators or other authorisesers to manually map
between different entity's identifiers.

Plug-ins for EPrints can then be developed tosetithe CRS in order to allow users to
more easily and correctly identify entities and ithéetails when depositing new

documents. This should significantly increase tlaststency and reliability of the

repository’'s internal linking. The plug-in wouldsal aid the user in searching and
exploring the repository, by providing the facility utilise the canonically referenced
and matched entities when performing text searchigs.would yield far more accurate,
error free, results when searching for publicaticaiating to a specific entity.

Once established, the services provided by theesystust enable inter-repository data
sharing and efficient utilisation of extracted nuzt&; thus allowing third parties to

construct services such as automatic CV generafiba.CRS must be highly scalable,
readily deployable and reliable. The plug-in to IB®r must be seamless; it should
increase the consistency of EPrint’'s internal lgki whilst significantly easing and

benefiting user interaction.

2 Background

2.1 Data Harvesting

In order for third party applications to utiliseetimetadata stored in repositories there
must be an open and standardised manner for abgaihe data. The Open Archives
Initiative (OAIl), one of the driving forces behirttie shift towards open access to
research [6], has done significant work in thisaar€hey have developed a standard
protocol, OAI-PMH (see [7]), for the harvesting ohetadata from compatible
repositories. Using this protocol, which is now ligdd with most IR packages as
standard, any interested party may harvest infdomain the documents stored within.

The OAI-PMH protocol generates metadata, adheing given standard (unqualified
Dublin Core [8] by default), based upon the infotima made available by the
repository. Any program fluent in Dublin Core catilise the interface. The OAI
protocol simply makes the internal identifiers #tities available externally; thus it is
still down to any system using the protocol to malesse of the data and to map
between identifiers.

Some services have already been built upon the aétocol as it is. These services
must either make do with very inconsistent datamaoist perform the entire mapping

process themselves. Citebase is one example ofssgelvice [9]. It provides a citation

based search engine for documents within its rafgepositories. Citebase attempts to
automatically link citation references to their doent instances. However, performing
this process from scratch, for a single applicatisna laborious process and once
complete there is no way for others to take adygntd the findings.

2.2 The Semantic Web

A great deal of research has been performed ondbeand storage of metadata on the
internet. One of the most significant outcomesleen the development of the semantic
web.

The current web is designed solely to be viewed @mderstood by human users; the
information is marked up in a way that, once intetpd, makes the pages easier for
users to view and browse. It is very difficult farcomputer system to discern useful
information from the web. The semantic web is a&tagf metadata added on top of the
existing web, designed to allow machines or progrdm navigate and process the
information more easily. It achieves this using adetta described by mark-up languages
such as RDF(S) [10] and OWL [11], which are extensiof XML. It is a semantic
network of knowledge, or information, rather thaebasites. Instead of pages connected
by hyperlinks, there are resources (the objectsthef knowledge e.g. a person),
connected to one another by predicates. For exaiigie (resource) is the brother of
(predicate) Sam (resource). The predicates theesealre in fact also resources, which
may have other connections to them. This subjesdipate-object structure is known as
a triple or statement. So that resources can bifigel and referenced, they are given
identifiers, which are URIs similar to the URLs dde locate web pages.

The semantic web allows applications to be develoftat take advantage of the
information and services available on the intemnighout human intervention. Simple
examples include automatic buying agents and igégit search services. However the
implications of the semantic web are more far reaghUltimately the semantic web
could enable a hitherto unseen integration andgséreness of knowledge technologies
in everyday life. It would allow semantic agentg&rform complex tasks on the behalf
of their user, with little or no interaction. TimeBiers-Lee gave an excellent example of
this in [12]. In his example, a semantic web agsnised not only to schedule doctors
appointments at times to fit several people, bs & find available reputable providers
of the prescribed treatment, within an acceptalsiadce.

The OAI-PMH protocol generates metadata that isy veasily converted into a

semantically compatible form. This allows semamt&b applications to be developed
that make use of the data stored within Instititiaepositories. The aforementioned
example applications, such as automatic citatigeeich profiling, are therefore examples
of semantic web applications.

Converting metadata from repositories into a semaftrm does not immediately
resolve the problem of reconciling different idéets. In fact, it is an inherent and
crucial problem within the semantic web that repnés a significant impediment to the
development of many semantic web applications. Hewethis existing compatibility
means the technologies and techniques that have dmeloped for the semantic web
can be utilised to resolve the problem for Insitidl Repositories.

2.3 The Matching Process

The job of a mapping process is to identify refeesnor identifiers that represent the
same entity. This issue is neither new nor nativthé semantic web, or even Computer
Science. It is prevalent in many items of clasgerature. As was explored in [13], the
great Roman orator and statesman know as Cicerdregsently referred to as Tully,
which is a confusing case of coreference (coretares when two references refer to a
common entity). Another, Marcus Porcius Cato, hapleat grandson of the same name,
both of whom were senators. It is understandabiy @ distinguish the two and to
identify which texts refer to the same person.

The problem has been encountered in the fieldsab@ifdl language processing and Al.
For language processing, the problem is the sanmbkaasbove. In text it is generally
easier to resolve; there is more information toogo the context that the reference
appears in can be utilised and combined with hicsiso determine coreference. In Al,
the approach largely taken is to use uhi&ue name assumption [14], whereby a 1 to 1
relationship between resources and identifiersniereed, thus avoiding the problem.
This is, unfortunately, not transferable to thiojpct as it would be impossible to
implement without using a naming authority.

Within the semantic web, some approaches to taglkficonsistent references have been
proposed. Many of these, such as Ontocopi [15]clvhtilises communities of practise
[16], attempt to automatically resolve matchingerehces and remove duplicates, based
upon available metadata. However, such solutionsadgick up every coreference and
only work well under an ideal environment (i.e. whé¢here is a lot of metadata). One,
sophisticated, system for automatically resolvingeéerence has been developed by the
University of Washington (see [17]). It operates ¢mthering positive and negative

evidence for potential resolutions, much like otegstems. However it is notable, as it
takes into consideration factors that others do lhaonsiders the impact of making a
resolution, looking at new evidence that would beated if the resolution were carried
out. It also compares the values of different typéshe resource’s attributes to one
another for similarity (for example, looking for mas within email addresses). These
extra considerations mean it is capable of findimaches between many references that
have little metadata attached.

Resolving coreference automatically is a difficaftd potentially risky process. If two
references that are resolved to be the same detimot, the data regarding the two
separate resources will be merged and become @utorddditionally, one incorrect
resolution could provide false evidence that ingisaother references should be
reconciled, creating a cascade affect. This makedl the more crucial that when a
mapping process is performed accurately, the eandt recorded and made available for
the use of others.

2.4 Previous Work
2.4.1 Expressing Coreference

The semantic web has an existing, rudimentary noefloo identifying coreference.
Information is added to the metadata, recording eqyivalence between references.
This is incorporated into the Web Ontology Langug@WNL) [11], as a set of
predicates. The predicate ‘owl:sameAs’ assertstiateferences are equivalent, whilst
‘owl:differentFrom’ asserts that two references ao¢ equivalent. The main advantage
of these predicates is that they may be utilisedhieyinference mechanisms built into
modern semantic data stores [18]. However, they @iNe a one-way association
(subject -> is the same as -> object) and onlyt@ 1 cardinality. The result of this can
be the creation of awkward networks, or graphs [Sgare 1). This structure presents
several disadvantages. In order to be able toiefiily retrieve the entire graph, given
any one of its nodes, the graph must be complete €very node connected to every
other node). Achieving this would result in the rben of triples required, increasing
exponentially with the number of nodes. OWL alsatesnents attach potentially
undesirable semantics. Asserting that two resowsoesowl:sameAs’ is a very strong
statement, especially when bearing in mind thadregfce resolution is a tricky process,
occasionally requiring equivalences to be revolð connotations are confusing and
obscure the genuine metadata. It is best to keepeolution process separate, so that it

can be treated as a separate exercise.

E—*D

Figure 1. An example owl:sameAs graph. Sourced from [17].

These disadvantages are addressed by [19], in Whiahe proposed a methodology and
ontology whereby equivalent references (duplicat@® grouped into sets, or ‘bundles’,

10

using RDF. Each equivalent reference is identifesdbeing a member of the bundle,
with a single triple that links back to the buneiatity. Each bundle is stored within a

separate graph, allowing them to be individuallpnoged, asserted or communicated,
maintaining a level of separation from the othetadata. This makes far more efficient
triple use and is preferable, as given any oné@ftéferences, it is easy to obtain all the
rest, unlike when attempting to traverse a gragated using OWL predicates. It also
allows the use of simple set theory upon the edgmees. For further details and

examples of the specific structure and syntax oflles, see Appendix A.

2.4.2 ACIS Project

The Academic Contributor Information System (ACI3D] is a system that is being

developed to aid academics in maintaining an orpiadile and CV. The system has a
sizeable overlap with this project; it represemisaiernative means of achieving some
of the goals, namely online CV generation.

ACIS harvests information from EPrints repositoriesth the aid of a purpose built
plug-in [21], which generates metadata wheneveregpesitory is updated. It stores this
data in its own database.

The onus for performing linking and coreferenceohaon is placed entirely on the
academic themselves. If they wish to participatd amaintain a profile, they must
register with the service and provide basic metadat themselves [22]. From this
metadata the system performs heuristic text searébe matching documents and
institutions; the user is presented with a lisippoksible matches and is asked to select
ones that relate to them. Selected items are addéé user's metadata.

ACIS then utilises its own author identificatiorugtin to keep the profile up to date.
When depositing documents into a repository, orramg author details, the depositor is
presented with a list of matching authors preserthe ACIS knowledge base. If the
depositor chooses one, the document is added tuther’s profile.

All linking of documents to authors is kept withime ACIS database; there is little or no

emphasis on improving linking within repositoriekEach document has to be
individually linked to its author.

11

3 Solution

Different processes have been proposed for autoatigtimapping between different
references, however they tend to be bespoke systasisicted to specific domains.
Rather than attempting to develop a universal nmapprocess, it would be far more
useful to provide a service that can record thelte®f each separate process and use
them to make a consistent set of references forrasgurce, available from a single
source.

Such a consistent reference service keeps a penmaaecessible, record of the
mappings between references. It provides interfdwdsallow one to upload established
mappings or to perform the process manually. Iveseras a medium through which
different parties communicate, by supplying recdrd@appings ‘on tap’ to any

interested application, as and when required (ggeé2). The CRS must be capable of
keeping track of thousands of different refereraes equivalences. If it is inefficient or
does not scale well, it will not provide sufficigntresponsive services in a live
deployment.

SERVICE BIBLI g,\’;'ETRIC OAl COMMUNITY EXPERT
PROVIDERS AGGREGATION VISUALISATION FINDERS
SERVICES
—————— CONSISTENCY REFERENCE SERVICES |
F nr
— INSTITUTIONAL INSTITUTIONAL INSTITUTIONAL ';,%"5'353?
PROVIDERS REPOSITORY REPOSITORY REPOSITORY DATABASE

Figure 2. The Consistent Reference Service acts as a l@yaebn other services,
through which they can communicate. Sourced frojn [5

From EPrint's perspective, identifiers can be ugémh to the CRS from multiple
repositories. There, they will be mapped either madlg by an administrator, or by an
automatic process. The mapped references can thesdd to gain greater returns. They
could be used to build services that cross-referdrgtween repositories, or to provide
user aids, such as an auto complete utility fordineument deposit form. By combining
the CRS with a plug-in that suggests identifiers &mtities in documents being
deposited, the number of new references beingesteéatreduced, limiting the amount of
mapping that needs to be done in the CRS.

Along with the references, metadata can be stavedllow them to be searched for.
Also, by recording where each reference has coomm,fisystems can better choose a
reference that is appropriate to them. For exangme;Prints repository could choose to
always use a native reference, where availablberahan a foreign one. For EPrints,
this represents a far more intuitive solution fatoanatic CV generation than the ACIS
system. Rather than laboriously linking each doaunfeom every repository to an
external profile, the use of existing local ideieti§ is reinforced (using an auto complete

12

plug-in). This improves the internal level of catency and linking between entities;
making it a simple matter of cross-referencingitlentifiers externally (using the CRS).
Once done, documents for a given author can besggtgd from each IR and presented
in CV form.

3Store

Perform Query

CRS

Revoke Equivalence
Establish Equivalence

Get references matching metadata
Get all references to resource

Add Reference

X

Mapping System

Admin Interface External Mapping System

External System

Map References {W

Repository Plugin Semantic Application

User

Figure 3. CRS Use Case Diagram.

There are essentially two classes of stakeholadgra CRS; these are shown on the left
and right hand sides of FiguBe The actors on the right are those that wishs® and
gain from the system. They could be individualsgains for software such as EPrints or
other semantic applications (some examples of tistgkeholders are displayed in
Figure2). The actors on the left are those that conteitatthe system, by aiding in the
mapping process. These could be administratorsonmeirig the task manually or
automatic mapping systems uploading their results.

Clearly it would be infeasible for a single CRSstyve every repository, in every field.
A CRS should be used to maintain consistent reée®mvithin a specific community,
such as UK computer science or semantic web rdseliris not necessary to try and
provide services for a very wide community; as merfiees are rarely used across certain
boundaries, like that between Computer Science ®hneology. Even on the odd
occasion when they are, it is far less crucialkifier references to be consistent.

13

3.1 Alternatives

It would be possible to achieve some of the objestiof this project by other means. A
system for suggesting identifiers or form valuebew submitting documents, could be
constructed, purely internally to EPrints, by searg for possible matches within the
EPrints database. However, this would not be abmake suggestions for any entities
that are foreign to the system. It would also n@table to facilitate any higher level of
interoperability between systems.

It is also possible that another method could ledofor allowing foreign repositories to
interact. A naming authority could achieve thist fmr the reasons discussed previously
(See section 1.1), this would not be feasible. Aty that attempts to automatically
match identifiers between repositories, as and wkqunired, could also be conceived.
Unfortunately, as desirable as this would be, tievitably poor accuracy of such a
system would make it, at best, very unreliable ainalorst positively dangerous.

This solution currently provides the most compkete reliable fulfilment of the project
requirements.

14

4 System Design

The system is broken down in to three subsysterhs: CRS server, which is the
backend of the system, keeps track of referencdspaovides services for using and
maintaining them; the administration interface, ethiallows a user to establish
equivalences between references manually; andy,lasé plug-in to EPrints, which
utilises the CRS to improve linking within the regitory by aiding document deposition
and search. The diagram in Figdreon the next page, shows the layout of the system

4.1 Overview

In order to be open and compatible, the systeneptoged onto the web. It is, after all,
essentially a semantic web application and theeetory parties wishing to interface
with it, would expect to use an open web interfamreservice. This also allows for a
lightweight implementation of the EPrints plug-imAdministration interface: both can
operate by parsing XML data from the CRS server.

The database behind the CRS is a 3store semanidéaige base [18]. This allows the
system to be flexible, whilst remaining highly eféint. The 3store software’s response
time has been proven to scale linearly with the amhof data stored. Knowledge bases,
instead of holding the data as columns and tugtese it as a semantic network. This is
very convenient, as the system is required to boldefined networks of metadata and
relations between references. It is highly flexibted allows the utilisation of inference
mechanisms and the advanced capabilities of seenaptery languages such as
SPARQL [23]. This means, otherwise very complicatieshsactions with the system,
can be carried out frequently with a single quérg relational database were used, the
system would have to adhere to a specific tablersah which would not allow for the
constantly changing and evolving data that comem fan institutional repository. It
would also be much more difficult to store and ies® XML metadata, lacking the
convenient compatibility that knowledge bases haitle the semantic web.

The CRS server is written in PHP, as this allowsrépid deployment and the fastest
and easiest connectivity with the web. It conneotshe database using purpose built
PHP API classes, which perform queries and assea @lia 3Store’s system tools. The
CRS makes itself available over the web via sinvpdd services, which accept HTTP
POST or GET requests, and return XML results inrésponse body. Each service has a
URL and an endpoint script, which calls the reléviamctions from the central CRS
classes.

By using such lightweight web services, it is vegsy for data obtained from the CRS
to be integrated into any other application. Thdy aequirement for use is a web
connection. This is demonstrated in the desigmefPrints plug-in, which uses AJAX
[26] techniques to pull XML in from the CRS dynasiiy, without having to reload the
page. The plug-in, on loading a page within an EBniepository, attaches itself to any
fields that it identifies as being suitable for anbement. Then, when the user types in
the field, it makes a connection with the CRS asarches for references matching the
entered text. If references are found, the usasked whether they wish to fill the form
with suitable metadata.

15

Data is uploaded to the CRS from EPrints via a 8nRERL script that exports any
entities that are not already present; again shéshieved via the web services.

l System Calls

HTTP POST / GET

2

/o Lon N

Figure 4. System Overview

=

4.2 Implementation Notes

Initially both the backend and the extensions taifE® were developed on the same
computer. Once development was completed, theraysias rolled out on a large?3

party server, in order to facilitate the deploymeand scalability testing. See Appendix B
for the implementation schedule.

5 CRS Design and Implementation

The consistent reference service’s main technitallenge is the ability to keep track of
virtually any number of references and equivalendéss is achieved by using a well
thought out database design and backend systemgfitibe rest of the system has been
built around the GNU EPrints software, the CRS Iasn deliberately made software
independent, allowing it to be used with any sofeysackage.

5.1 Database Structure

The CRS is built upon version 3 of the 3Store safev 3Store is a triple store
implementation that sits atop of MySQL. Queries eaa it are translated into SQL
queries upon the underlying relational database.aldvantage of this approach is that it
inherits the mature query optimisation present ySKIL, helping it to maintain a high
level of responsiveness and scalability.

Triple stores hold semantic networks, composed tatesents, or triples (thus the

name). As has been discussed in a previous sedidriple represents a subject —
predicate — object relation. Multiple, interrelatéaples create graphs of related data. In
order for graphs to express useful informationythmist adhere to a known structure.
This is known as the ontology and can be specdiddrnally to the triple store, using a

mark-up language such as OWL or RDFS [24]. SecZi@nl explored the difference

between two alternative graph structures, or ogiek) for expressing coreference, the
decision between them and the efficiently of thetey are inexorably linked. Through

the work done on reference bundling in [19], ameaxily efficient ontology has already

been developed that can be easily adapted anddextdor the CRS.

3Store only allows the assertion or removal ofreptiniquely named, graphs at a time.
Thus, not only is the structure of the data impartdut also the organisation and

division into individual graphs. It would be undedile to have to reassert all the

metadata for a reference, every time its equiva@erare updated. Therefore, metadata
and bundles should be very carefully divided inéparate graphs. This also allows

searches to be performed through the metadatapwtithaving to search through the

data comprising the bundles as well.

Figure5 shows the typical structure of a bundle. In tiegchm, the URIs are shown

without namespaces. The namespace used is httpu/aes.soton.ac.uk/~tmI203/CRS.

Each bundle represents a single entity within tystesn. References to the entity are
related to a central bundle resource. One referéooe each bundle is designated as
canonical, which is an entity selected to be recemued for people to use. It is simply
selected lexicographically, as the choice of caisomrelevant, as long as it remains

constant, whilst the bundle is constant. One auithii piece of metadata is recorded: the
date on which the bundle was last inserted, th@nal bundles to be sorted by most
recent activity.

As no reference can appear in more than one bysd@&h a situation would not make

sense: two bundles with a common reference musesept the same entity), the canon
is a convenient means of uniquely identifying thendlle. The Bundle URIs are

17

constructed by appending ‘http://www.ecs.sotonkdeinl203/CRS#bundle-’ to the
MD5 hash of the canon’s URI. Using a hash ensuhesremoval of any special
characters and shortens the URI to a more apptegdeagth. The graph containing the
bundle is identified by the same URI as the burtdéf.

Bundle

type

insertedOn

bundle-md5(canon) 20060228

isCanon

duplicate duplicate

duplicate

Reference Reference

A 4

Reference

Figure 5.Bundle Graph Structure.

Separate to the graphs containing the bundle$eigdst of the metadata. This too is
divided into separate graphs, this time with orepbrfor each reference’s metadata. By
dividing the metadata according to the reference rielated to, one can efficiently add,
update or remove a single reference. The metadgtafsh is named similarly to that of
the bundles, only using the prefix ‘metadata-' #mel MD5 of the reference’s URI. The
amount and type of metadata that can be storedtisestricted. However, as shown in
Figure 6, for complete functionality, each reference sticdve four specific pieces of
information available: An rdfs:label attribute, 8@ reference can be displayed with a
name; The URI of the reference’s origin (an EPregository OAI id for example); A
string of keywords called the search string; argpe attribute, which corresponds to
the rdfs:Class that the entity is an instance Gfdator’ or ‘EPrint’ for example).

The type attribute is handled specially by the exystAs different sources may use
different types to represent the same thing (foangxe, a creator in one EPrint
repository could mean the same thing as an authanother) the different types are
added into bundles, much like normal entities. Tdllsws them to be matched and
combined, when searching for an entity of a spetyfpe. The search string is a single
index of keywords, in a specific place, for the CR$erform searches on. If the CRS
had to search through every item of metadata, veryereference, when performing
keyword searches, it would be very inefficient.

18

Repository URI

origin

Reference

Example Title

searchstring

All Literals

Other Metadata

Figure 6. Metadata Graph Structure.
5.1.1 SPARQL Queries

Equally as important as the structure of the gragesthe queries that are used to
retrieve the data. SPARQL (Simple Protocol and RDkery Language) is the query

language employed by the latest version of 3StArbasic query consists of a list of

desired variables, followed by one or more tripiises. Filters, limits and order clauses
can also be appended. For a full description of SFARQL syntax, see [23]. This

section outlines the queries used by the systemhandthey work. Each query has been
carefully optimised for the best possible respdmses. There are four main queries.

SELECT ?predicate ?duplicate
WHERE {

<bundle-uri> ?predicate ?duplicate
}

Figure 7. Query to Obtain Bundle Contents Given URI.

The above query returns all the metadata assoamtedhe bundle object. Two types of
metadata are associated with bundles duplicates étuivalent references) and
insertedOn attributes; these are distinguishedyubia ‘?predicate’ variable.

SELECT ?bundle
WHERE {

?bundle <http://www.ecs.soton.ac.uk/~tml203/CRS#dhlicate> <reference-uri>
}

Figure 8. Query to Obtain Bundle Given a Reference.

19

The query in Figur® is used to obtain the URI of a bundle, giventhd of one of its
references. Having obtained the bundle URI, thst fjluery can be used to get the
contents.

SELECT DISTINCT ?bundle

WHERE {
?bundle <http://www.ecs.soton.ac.uk/~tml203/CRS#dhlicate> ?ref.
?bundle <http://www.ecs.soton.ac.uk/~tml203/CRS#sertedOn> ?date.
?ref <http://www.ecs.soton.ac.uk/~tml203/CRS#sednstring> ?string.

?typebundle <http://www.ecs.soton.ac.uk/~tml203/C&#duplicate> <type-uri>.
?typebundle <http://www.ecs.soton.ac.uk/~tml203/C&¢4duplicate> ?type.
?ref <rdfs:type> ?type.

FILTER (
regex(?string, ‘search string’) &&
regex(?string, ‘search string2’)

)

}
ORDER BY DESC(?date)
LIMIT 50

Figure 9. Query to Obtain Bundle from Metadata.

Figure9 shows an example query for searching for a bulgllts metadata. The query

is generated dynamically, when needed, and can dapgending upon the supplied

parameters. The first three clauses within the WHERatement are always present.
These find the date on which the bundle was indede that the results can be ordered
and the searchstring indexes. The search is pestbioy filtering the returned bundles

by a regular expression match on the searchstr@gly. bundles that have a reference,
with a searchstring matching all the search temams,returned. As each searchstring is
every term that can be searched upon for thateleder, concatenated into a single string,
an ‘all keywords’ match can be performed by testing string with a separate regular
expression for each keyword.

The, optional, second block of clauses restricesdbarch to a specific type of entity.
The type resources are all members of bundlessdinkith equivalent types; the added
clauses check that the bundles returned, contaéieaence of a type equivalent to the
one specified.

SELECT ?ref ?predicate ?object
WHERE {
<bundle-uri> <http://www.ecs.soton.ac.uk/~tml203/&S#duplicate> ?ref.
?model <rdfs:type> <http://www.ecs.soton.ac.uk/~tt203/CRS#metadata-model>.
GRAPH ?model {
?ref ?predicate ?object
}

}

Figure 10.Query for Obtaining Metadata for a Bundles Refeesnc

The last query, shown in Figur0 obtains all the metadata associated with all the
references in a given bundle. This is a relatiatgightforward process; it simply finds

20

every triple associated with every reference. Tharch is restricting to only the
metadata models; this prevents the bundle strutome being unnecessarily returned.

5.2 CRS Backend

On top of the 3Store, is a PHP system that intedfawith the database. It converts
method invocations into query calls and result 8ts objects. 3Store is supplied with
several utilities for querying and asserting dRtdP interfaces with these utilities, using
its built in ‘system’ function. Asserting is straitiorward; the utility accepts plain RDF,
along with flags to specify the model name and ‘wer not to flush the existing
model. PHP is capable of producing RDF via the R&F for PHP (RAP) [25]. The
query utility accepts SPARQL queries and returrsulte in XML format, on the
standard output. This is read by a custom-madeepatmss ‘SPARQLer’, which
employs a SAX parser to return an associative dordlye calling environment.

SPARQLer
-db:int
- server : int
+ performQuery()

1

BundleStore

- spargl : int

- impaort : int

+ getBundleByRef()

+ getBundleByMamel)

Bundle + getBundleByURI()

-date : int + getBundlesByMetadatai)
- canon : string + insertBundle()
- references : array + deleteBundle()
- name : string + getXMLWithMetaData()
+ getModel() + getRDFWithMetaData()
+ getURI{ + newType(
+ getName() + setMetadatal) BundleSet
+ setCanoni) - bundles : array
+ setDate() + getNumBundles()
+ getDate() + getBundles()
+ addReference() + addBundle()
+ removeReference() + removeBundle()
+ merge() + getXMLO
+ getRDF() + getRDF()
+ getXML() + getModel()
+ getNumReferences()
+ getReferences()
+ getCanon()
+ makeNameUnigue()

Figure 11.CRS Backend Class Diagram.

Rather than each web service implementing the reduunctionality itself, the basic

operations upon the database and upon bundlesrevelgd by a set of classes (see
Figure 11). By providing this extra layer of abstractidhe amount of code reuse is
increased, making debugging easier. There are teatal classes: the BundleStore
class, which provides functions on the knowledgeseband utilises the SPARQL

21

gueries; the Bundle class, which models a singtedlay and the BundleSet, which is a
class for providing enhanced handling of multiplenttles. For details of the
specification and implementation of these classes,Appendix C.

A

. Add Equivalence

: getBundleByRef() I sp: SPAROLer

. performQueryiget bundle) |

Obtain
first
Bundle

I bl : Bundle
i

. performQueryiget bundle)

getBundleByURI(b2 uri)

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

| Obtain
| second
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Bundle

|—bE . Bundle

I
T
|
|
|
|
. |performQueryiget contents) |
|
|
|
|
|

|
|
|
deleteBundle(blur) |
] e

deleteBundle(b2uri)

C

insertBundle(bl)

L]

Figure 12.Sequence diagram for add equivalence function.

22

The sequence diagram in Figur2 shows a typical interaction within the classteys
It shows the action of establishing and recordingquivalence between two bundles in
the knowledgebase.

5.3 CRS Services

The web services are very open and straightforiardse. They have well defined,
clear functions, to allow easy integration withestlsystems. Requests are made using
either HTTP POST or GET requests, variables passele service become the input
parameters. The relevant SPARQL queries are caikedhe backend classes and the
results are returned, in plain XML or RDF, like abpage, to the requesting browser.
The services are located within the root directwiryhe CRS server, addressable by the
service name.

5.3.1 Add Reference / Remove Reference

The ‘addreference’ service is used for adding a neference into the CRS. If the
reference is not present in the CRS, a new burigjexbis created and then inserted into
the store. When inserting a reference, the lalb@bate must be included.

This service can optionally be used to set the datafor the reference. The variables
‘type’, ‘typel’, ‘type2’ etc are used to set th@eyof the reference. Multiple types can be
used in cases such as when an entity is both amtEd a Journal Article. If a new
type is used, it is added to its own bundle andriesl. The type is also asserted to be a
subclass of rdfs:Class, this allows it to be pick@dby the knowledge base’s inference
mechanism as a resource class. A type may be edseithout a reference, if just the
type variable is used. Other metadata can alsonberted by setting the variable
corresponding to the predicate URI, to the valuthefobject.

addreference

Variable Values

reference URI of the Reference.

type, typel... typen Type(s) of entity being addedn NiiRIs supplied are
appended to the CRS Namespace.

metadata Any other variables are added as metald@aame of
the variable becomes the predicate. Non URIs segbpli
are appended to the CRS Namespace.

label String to be used as label for the reference.

The ‘rmreference’ service removes a reference ftloensystem. If the reference is in a
bundle with other references, it is extracted dnedrést of the bundle is left intact.

rmreference
Variable Values
reference URI of the Reference.

23

5.3.2 Add Equivalence / Remove Equivalence

‘addequivalence’ asserts an equivalence betweemdfgoences. This effectively merges
the bundles that the references belong to.

addequivalence
Variable Values
referencel URI of first Reference.
reference2 URI of second Reference.

The ‘rmreference’ service takes a single referemwd removes all equivalences to it. It
removes the reference from its current bundle dackg it in one on its own.

rmequivalence

Variable Values

reference URI of the Reference.

5.3.3 CRS by String / by Reference

There are two services for retrieving data from @RS. The basic retrieval service is
simply called ‘crs’. This service takes a URI refece for an entity and returns all other
references to that entity (the bundle).

crs
Variable Values
reference URI of Reference.
format Format of output: XML or RDF.
findmetadata Include reference metadata: TRUE dtSEA

The second retrieval service is named ‘crsbystritigs used for searching for an entity
by matching the metadata attached to its referememanst some list of keywords. It is
also possible, though optional, to restrict thed®#o a specific type of entity.

crsbystring
Variable Values
string, stringl... stringn Keywords for searching
format Format of output: XML or RDF.
findmetadata Include reference metadata: TRUE drSEA
type Restrict search to type of reference. Non UR[splied
are appended to the CRS Namespace.

24

5.3.4 Ontology Exporter

As new types, or classes, are added to the sysfetineatime, the knowledge base’s
ontology is dynamic, rather than static. This medngannot be easily defined
beforehand. To combat this, and provide a downloledantology for those who wish to
use RDF from the CRS directly, a dynamic versiorhef ontology is made available.
Located at ‘/ontology’ on the CRS web server, ioyides an OWL document that
reflects the current state of the CRS ontology. Wmeultiple types have been asserted
to be equivalent, owl:sameAs statements are indlu@ibe bundles themselves are not
exported, as people wishing to employ the ontolsigyuld not need to have knowledge
of bundles.

5.3.5 Entity Info Page

The entity info page, located at /admin/eninfo.plgixes the URI of a reference, in its
‘reference’ variable, as input. It displays the auzita relevant to that reference and also
lists other entities that it is in some way coneddb. This page is very useful as part of
the mapping process, it provides extra details mrmtity, allowing a more informed
mapping decision to be made.

5= = [W) | L ML TESIS LU S S UL AL LTS U ST UL P TETETE U= UL /03 /0 F /0L FEPITILS . ELS S0 | 7

http://eprints.ecs.soton.ac.uk/authors#60
Details:

#searchstring Les A. 60 Carr, Les A.Carr

#amily Carr
#label Carr, Les A.
#origin http:/leprints.ecs.soton.ac.uk

#shortid 60
#given Les A.

#iype http:/iresist.ecs.soton.ac.uk/ers/ontology#authors
Connected With:

Exploiting Serendipity Amongst Users To Provide Support for Hypertext Navigation {oai:eprints.ecs.soton.ac.uk:806)

Exploiting Serendipity Amongst Users To Provide Support For Hypertext Navigation (oaizeprints.ecs.soton.ac.uk:7359)

Enhancing OAl Metadata for Eprint Services: two proposals (oai:eprints.ecs.soton.ac.uk:7711)

Publication At Source: Scientific Communication from a Publication Web to a Data Grid (paiteprints.ecs.soton.ac.uk:7852)

AHA! meets Auld Linky : Integrating Designed and Freeform Hypertext Systems (oaizeprints.ecs.soton.ac.uk:8031)

Applying Open Hypertext Principles to the WWW (oai:eprints.ecs.soton.ac.uk:704)
The Distributed Link Service: Multiple Views on the WWW (oai:eprints.ecs.soton.ac.uk:705)

Towards Universal Linking for Electronic Journals (oai:eprints.ecs.soton.ac.uk:711

Webs of Research: Putting the User in Control {oai:eprints.ecs.soton_ac.uk:712)

A Distributed Hypermedia Link Service (oai:eprints.ces.soton.ac.uk:715)

Enhancing the Distributed Link Service for Multimedia and Collaboration {oai:eprints.ecs.soton.ac.uk:732)

Figure 13.Screenshot of eninfo.php
5.3.6 Admin Interface
The administration interface provides a small systd web pages for performing the

mapping process manually. Access to the interfac®mtrolled through a login, which
requires the user to specify the URI of the repogithat they control. Each user is

25

restricted to only being able to assert equivalengbere at least one of the bundles
contains a reference from their repository.

The interface is broken into two sections. Thet faaction, shown in Figurg4, is the
type matching page. This page is to be used byasitery administrator to establish
equivalences between the types of entities usetieim repository and those that are
already present in the CRS. The page displays ldigulof every type in the system
(even in a fully deployed CRS this should not beeawcessive). The administrator is
invited to match equivalent types by selecting dppropriate checkboxes and clicking
on the ‘Match’ button. This page also has the fgcib manually add new types. Every
reference displayed in the admin interface is mlediwith a link to its entity info page.
Clicking on the link will open the info page in aw window.

<JZ| - LL M @ @ | http://resist.ecs.soton.ac.uk/crs/admin/types.php

Types and fields

Match equivalent types (such as creators and authors).
Match search fields with rdfiresource (such as #meta or #full)
Add New Search Field:

I Add

[httpsiiwww.w3.org/2000/0 L idf-schema# Class

r

http:/fresist.ecs soton ac.ukfers‘ontology#article

[hutp:iiresist.ecs soton.ac.ukfersfontology#gron,

[~ http:/iresist.ecs.soton.ac.uklerslontology#techreport

[http:iivesist.ecs.soton.ac.ukfcrsfontology#institution

[~ http:firesi st.ecs soton.ac.uk/ersfontology#authors

Match

Figure 14.Screenshot of Type Matching Page.

The second half of this system is the entity matctés is the central matching system
for manually mapping between entities. In orderesiablish equivalences between
references, one must first be able to explore th&ents of the CRS. This is done
through the use of the search page, shown in Figarerhis form allows the user to
perform a keyword search, optionally restrictecehtity type and repository of origin.

26

Entity Matcher

The left pane allows exploration of the references, the right pane allows

references to be held onto while searching.
Enter Search Terms:

Keywords (required):

Type:

[~ Restrict search space to own repository.

Search |

Figure 15. Screenshot of Search Fields.

Having submitted the search form, the page in F&d6ris returned. The matcher works
in a similar way to an online shop. There is artitgrbasket’ on the right that the user
can use to hold any interesting entities while thegwse around (this is necessary as it
is unlikely that every equivalent reference to atite will be on the same page). On the
left, the top 50 search results are displayedphaibetical order. The idea is that the user
browses through the entities in the repository,irggltb the basket any references that
they think might have duplicates.

QEI v S - (%] @ ‘ |1 http://resist.ecs.soton.ac.uk/crs/admin/entities. php !Vl ®co |@,
uuuuuuuuu =
oulieprints.ecs.soton. oz, k257 Entity Basket
ive Neurofuzzy Control for A Class of State Ds
T | [Carr. L.
Processes i ton. ic.
oulzeprints.ecs.soton. oz, uk: T
¥l Carr.Les A.
Aeroacoustic Sources in a Vocal Tract Model Add > | bipetieprints e soton oe. uksantharsaso
onleprints.ecs.saton. o0, uk: 173
Link Pry Add >
oufzeprints.ecs.saton. o, uk 820
Attentive Visunl Tracking Add >
oui:eprints.eos.soton. oz uk: 367 —l
Carr. L.
etk Add >
hitpedicprints. cos soton. o, ukled i tors#60 ——l
Carr.Les A.
et Add >
Itpefieprints.cos soon. ac, ukdantherssei ——l
Exact tests for two-way symmetric contingency tables
Add >
onleprints.ecs.soton. o2, uk: 799 ——l
High resoluti i ic imaging of painti
Add
e e q e
lear atc
HyperCard Extensions for Multimedia Databy e i

Nana

Figure 16.Screenshot of Entity Matcher.

27

When they are happy they have located all the daiels, the references are matched
using the checkboxes and ‘Match’ button. Figdie shows the two entities from the
basket in Figurel6 having been matched; the listing on the lefalso automatically

updated.

QE' ~ B - (%] E;?ﬂ | LI http:/fresist.ecs.soton.ac.uk/crs/admin/entities. php !" @ co ‘ Gl
onleprints.ces,soton, uc. uk: 257 [2
Entity Basket

Adaptive Ni Control for A Class of State Dy e

Add> | — lattte
Processes 4 hitp:feprints.cos soton. e, kedi os#e0
ot:eprints ecs soton 1k T

Carr.Les A,
hitp:/feprints.cos soton. ac.o kfmihors#ao
Aeroacoustic Sources in a Vocal Tract Model Add >
o zepri nks. oo, soton. o ki 173
ion-1 Link Py Add >

aleprints. e soton. ac, kS
Attentive Visual Tracking Add >
ot:eprints.ecs soton. a1 k36T —I
Carr.L.
e Add >
hitp:feprimts.oos. soton. i ukied i o600 4
Carr.lLesA.
hitp:Adeprints.ocs. soban, g ukf an thorsen
Exact tests for two-way symmelric contingency tables

Add >
oul:eprints.ecs soton. ac,1k: 756 —I
High resoluti il ic imaging of painti

Add >
ol epri k. o0, solon. o u k683 4

Clear Match

HyperCard Extensions for Multimedia Databases.

oul:eprints.ces.soton. k35

Add >

=

Figure 17.Screenshot of Entity Matcher after Matching.

28

6 EPrints Extension Design and Implementation

The objectives of the EPrints extensions are tegmate EPrints with the CRS and to
exploit the CRS to enhance EPrints as much aslges3ihere are two extensions. The
uploader script extracts entities from the repogittnd uploads them to the server via
the appropriate web services. The plug-in direa@hhances the EPrints interface,
providing user aids, where possible, to help filferms. The plug-in promotes the use
of references present in the CRS, preventing thation of too many new identifiers.

6.1 Uploader

The uploader works by using a small utility supgligith EPrints called ‘export_xml'.
This dumps the entire contents of a repository dhéostandard output. The uploader,
which is a PERL script, parses this and detectsienamongst the metadata to upload.
The types of entities that the repository admiaistr wishes to export are specified in a
regular expression at the top of the script.

The script works by constructing Entity objectstgsarses the data. URIs for the entities
are generated either from local identifiers, if q@et, or if not, by concatenating and
hashing all of the Entity's metadata into a singteng. Unless a local identifier is
detected to already be a URI, identifiers are agpdrto the CRS namespace by the
CRS. Precise details of the process are showreiadtivity diagram, Figur&8.

(Create Entity with EPiint]

Get Next Metadata ltem

Add Metadata to Entity

Process Metadata

Open pipe to XML

Get Next EPrint

[Is Desired Entity]

[Creare Entity With Meradara]

[Has SubMetadata]

Get SubMetadata
Add Metadata to Entity

[End of SubMetadata)

Upload Entity

Process Eprint

Process Metadata

[End of Metadata]

[else]
Upload Entity

[Reached End]

Process Metadata

[If Not In CRS Add Ref and Metadata

Add Metadata
[elseif Update TRUE]

“Jq Upload Entity

]

[else]

Figure 18.Activity Diagram for the Complete Uploader Process.

29

6.2 Plug-in

The plug-in for the EPrints interface attacheslfitsetext fields and attempts to make
suggestions as to what the user is wishing to ehtekes what the user types, performs
metadata searches on the CRS and displays thésrdauhis way, it both helps the user
to deposit properly linked articles into the reposi and helps the user in performing
searches on the repository. For example, if wheguosiing a document, the user isn'’t
sure of the name of the publisher, or the ID ofathor; by entering what they know
into the form, the plug-in will suggest possibletaieng entities and, if selected, will

complete the form for the user. There are seveegl dhallenges here, notably: only
returning results that are relevant to the givezidfiand being able to choose an
appropriate ID that reinforces the repository'®inal identification scheme.

6.2.1 Install Script

EPrints is highly configurable and abstract. Thisves administrators to be in complete
control of the look and structure of the repositdtyis achieved through heavy use of
XML configuration files, templates and PERL scripdsgenerate pages, as required. As
a result of this, very few pages are staticallyirggf in files within EPrints. It is not
possible to simply add action listeners manuallgvery text field. The solution to this
is to include a JavaScript program at the top @rgpage (which is possible as every
page shares a common header). When the page edlogis program gets every input
field present on the page and attaches itselfdsethwhich are suitable for enhancement
(i.e. are text fields and are visible on the page).

When a suitable field is found, the script recoesds much information about it as
possible. Conveniently, the fields within the EBsisoftware adhere to a rough naming
convention. Input tags that represent hidden otrobelements have names starting
with an underscore; these can all be ignored bypthg-in. Tags that represent a field
for the user to fill in, employ the naming convemtshown below.

Entity-Type [_prefix] [_metadata-item]
Example: ‘authors_1_surname’ or ‘authors_1 fname’

This allows the script to determine the field's responding entity type, the metadata
item that is required and, using the prefix, wherdtiple fields relate to the same entity.
If a field is a general, non type specific seartie, entity-type part corresponds to the
name of the search.

6.2.2 Search and AJAX

The plug-in is triggered to perform a search byuker entering some text into a field
and then either pausing or changing focus to anofiedd. The plug-in opens a
connection to the CRS server, using an XMLHTTPReguaJAX [26] object
(Asynchronous Javascript and XML). An HTTP POST uesi is made to the
‘crsbystring’ service. It divides the entered texb words, which are used as the search
terms. Where multiple fields relate to the samétyeriext from each of them is used to
generate the terms. The entity type, as discoveydtie install script, is used to restrict
the search by type. Generic search fields can beifsggd by a regular expression in the
plug-in script, searches on fields matching thigregsion are not restricted by type.

30

6.2.3 ID Selection and DOM Injection

AJAX is a set of technologies that allows JavaSdiopget and parse information from
websites, after the parent page has finished Igadimiormation acquired can either be
treated as text or can be parsed into a DOM hikyaj27]. When the script sends a
POST request to the CRS server, the results anenset in XML and are parsed by the
DOM. The object tree is then used to create HTMHigplay to the user.

The ‘crsbystring’ script returns the top 5 searelults, along with their associated
metadata. Each result line represents an entibu(alle) and all of its references. The
plug-in script chooses one references for eachyeitirecommend to the user. It selects
references in the following order, preferring thesth identifiers local to the repository:

1. Alocal reference with a short id (a non URI loka)
2. A local reference without a short id
3. The canonical reference

Having chosen the appropriate references, thetdwuifls a table in HTML to display
to the user. This table shows a line, with a lab@i, each entity. Local and foreign
entities are displayed separately, local first, generally local references will be
preferred over foreign ones. It puts two links @tle line; one opens the eninfo.php
page that corresponds to the reference and the s¢hects the reference as the one to
use. The plug-in uses DOM injection to insert thEMAL into the current page, beneath
the field that started the search. Figlifeshows an example of the plug-in in action.

fess—

4| Hall | H

Are you looking for?

Local Entities:

Foreign Entities:

& Hall, W. (1650) Details yes?
® Hall, J. Details yes?

® Hallett, Jon. (448) Details yes?
® Hall, S Details yes?

c | I I (]

Figure 19 Screenshot of plug-in results table.
6.2.4 Form Completion

When the user chooses an entity, the plug-in tiilés form using the metadata supplied
with the reference. For each field in the form, pheg-in cycles through the metadata
and matches it to an attribute in the data, byttoosng and using regular expressions.
For ID fields, if available, the plug-in uses adbshort id, otherwise it uses the full URI.
This means that whenever possible, the plug-is toeeinforce local ID schemes.

- e | L = E
4 W Hall 1650 %l
5. I I (]

Figure 20.Form having been filled in using the plug-in.

31

7 Testing

The system was developed using an iterative desidrtest model. Each time a piece of
code was completed, it was immediately tested:rttake it and break it" method. This
design and test technique produces a system tbatesvand matures over the course of
development. The testing at this level is very fnain, attempting to report the result of
every test would be equivalent to trying to repbe life history of every line of code in
the system. On a higher level, where appropriatandsrdised unit testing was
performed.

7.1 Unit Regression Testing

The system utilises a number of different languagese of which are ‘organically’
object orientated. However, despite this, a conscieffort was made to utilise object
orientation where available. This provides the lienef easily readable, reusable and
testable code, to otherwise frequently obfuscaaduages.

The CRS runs on a fully OO backend, as such andtdute importance of this
subsystem, a durable set of test harnesses wadopledeto ensure the consistent
integrity of the CRS’ essential functions. The us#ting system used was ‘Simple Test’
[28]. This package was chosen for its flexibilitydeease of use.

For each of the three central classes in the CREeld, a test harness was constructed
to perform a series of tests, to ensure the esdemtctions continued to work as
prescribed. The tests are run from a single wele,pabere test results and errors, if any,
are displayed. This allows the CRS to be autonltitested every time any changes or
bug fixes are implemented. See Appendix D for aestshot of the unit test results page.

Unit testing was performed on the other subsystéosthe EPrints plug-in, the script
was supplied with a sample XML result set. The vem$ shown to be successful as the
plug-in was able to display the results as a tahtwas able to fill the forms using the
metadata. The web services were tested by compdreig behaviour, given specific
parameters, to what they were expected to do. Igaafiready tested the CRS backend,
this was a simple and straightforward task.

7.2 Deployment / Scalability Testing

During development of the project, a consideralant of third party interest was
generated. One party was the ReSIST Project [B8) wished to make use of a CRS
server, combined with the data from the ECS ER8erver (eprints.ecs.soton.ac.uk). To
this end, they donated the use of their servetterdeployment of a CRS. From this
arrangement, the project benefited from havinge déind substantial server to perform a
test deployment on.

In order for the system to be deployed on a thiadypmachine, the code had to be
refactored into a format that was highly portalyiid aonfigurable. This was achieved by
improving the system’s directory structure, ensyiatl the required files belonged to a
single hierarchy, and by reinforcing the use oftayswide constants. This exercise
proved to be a successful test of the systemsmesslifor live deployment. The only

32

problems encountered were compatibility issues tdudifferences between the older
version of PHP, on the ReSIST server, and thetla®sion, on the project test bed. To
overcome this, the syntax used was converted toltler standard.

Having successfully deployed the server, scalgbiéists were performed to show that
the CRS is capable of handling the amount of de¢agmt in a sizeable live deployment.
Two subsystems were tested: The EPrints uploadeérttaa crsbystring service. The
uploader was tested by timing how long it took f@load an increasing number of
EPrints. The web service was tested by compari@geablponse time for the service with
different quantities of data in the server. Thebgstring service was chosen as it
performs the most complex queries. It would theretee the first subsystem to show a
drop in performance and is an ideal candidateefstirig. See below for the results.

Number of Estimated Number | Cumulative CRS response
EPrints of Unique Entities | Upload Time time
(hh:mm:ss)

10 50 00:00:11 <1sec
100 500 00:01:23 <1sec
200 1000 00:02:32 <1sec
500 2000 00:06:12 <1sec
1000 4000 00:13:23 <1 sec
2000 8000 00:23:35 <1sec
5000 20000 01:01:17 <1sec
10000 40000 01:49:35 <1sec

Figure 21.Scalability Test Results.

The uploader was shown to scale in roughly line@shibn. It took almost two hours to
upload the full, 10,000 EPrint, repository. Thouah the uploading process would
probably be performed only once a week and consigiehat this was a very sizeable
test set, two hours is an entirely acceptable tifiine. performance of executing a search
on the repository did not noticeably degrade witl increasing number of entities: a
very favourable result, as the performance of tlheerg engine is crucial to the
performance of any plug-in, or software utilisiige tCRS. Less than one second is an
acceptable time for the user to have to wait fer slgstem to display suggestions. In
many cases, the user will not be expecting to vedeelp and so will not be aware of the
lag at all.

7.3 Informal UAT / Sponsor Feedback

The overall functionality and appropriateness efslgstem in fulfilling the requirements
is crucial to the success and future uptake ofsystem. However, it is difficult to
quantitatively test such abstract qualities. Faataly, the system has been demonstrated
to a wide range of interested people. The broaderari feedback received reflects the
success of the project.

The system has been demonstrated to members ofid@aption ECS, the AKT IRC,
who developed the original coreference framewdi&, ReSIST Project and the EPrints

33

development team. Feedback was very positive, assliawn by the different party's
reactions.

As discussed, the ReSIST Project wished to makeentimie use of the system; they
came to the arrangement of allowing their servdvdaised for testing, in exchange for
the deployment of a CRS.

The AKT Project had actually previously applied $ewveral thousand pounds of funding
for a similar system. They were very impressed wwglefficiency and drew attention to

the significance and implications of such a systsimgngly encouraging its integration

with a future version of EPrints. See 51AppendifoE a report of the feedback from

Hugh Glaser, a member of the AKT and ReSIST prsject

The EPrints development team, who were contactednmection with cloning the ECS

repository for the use of the ReSIST project, wezgy interested. They remarked that
the system provided effective solutions to sevieegl problems with future extensions to
EPrints.

Generally feedback was very positive. Praise wadicpéarly given regarding the

sophistication and integration of the plug-ins witie EPrints repository. Those in the
semantic web field identified the usefulness ofsiistem in a wider community; whilst
people from other areas remarked upon the significanefits provided for EPrint users
and administrators, by the plug-in.

Some constructive criticism was received. Minor dugere identified within the
administration interface, which came to light byoaing other users to utilise the
interface with the browser of their choice. It alsecame apparent that the plug-in's
initial restriction of displaying only 4 entitieg a time was slightly insufficient and so
was increased to 5.

34

8 Evaluation

8.1 Requirements

The feedback and test results strongly indicate tiia project is both successful and
suitable for combating the problems it was desigtee@dddress. The CRS fulfils its

requirements of being able to track equivalencesvden references, be highly
compatible and provide useful and efficient inteels Through rigorous testing the
system has been proven to be highly responsiva) eden dealing with very large

amounts of data. It has also been shown to be readive deployment and use. The
table below shows a summary of the system’s regugires and achievements.

Requirement Achievement

Enable Cross Referencing The system records mappiegveen identifiers for
any entity type, allowing cross referencing between
any system, not just EPrints

Enhance EPrints The plug-in provides auto comdietetionality for
all of EPrint’'s forms. It suggests completions for
fields regarding any type of information.

Reinforce Existing Identifiers The plug-in uses tRRS to find existing local
identifiers, which it uses in favour of others, g
the repositories identifiers consistent.

Be Open The system employs very lightweight welvices
that can be integrated easily into any system daat
make HTTP requests.

Be Flexible The 3store backend allows any type ofitye or
metadata to be seamlessly added to the system.

Be Scalable The backend scales in a linear fashiolmas beer
successfully tested with up to, approximately, 4D00
entities.

Be Deployable The system is portable, requirinchimgt more than

PHP and MySQL. It is readily deployable and highly
compatible, as testing has shown.

Be Efficient The system uses the minimal numbertrigfles to
record each equivalence and reference. It achieves
this through the use of advanced coreference
techniques

Figure 22.Table of comparing the CRS’ requirements and aehnmants.

Feedback regarding the EPrint plug-in was equalppsrtive. Comments indicated that
the utilisation of the CRS to aid the user in ifdgeing with EPrints was extremely
useful; specifically, the effort required in depogj articles into the repository was
significantly reduced.

35

8.2 Suitability and Competition

In terms of competition, there is little to compatlee CRS to. For allowing
interoperation between repositories, the only offystems available are those bespoke
solutions, built into specific applications. Thekelittle in the way of promoting the use
and usability of Institutional Repositories, as aeafit data sources. The CRS is open to
all to use and contribute to. It facilitates easipplication development, to the point that
it could potentially support an open community afademics, aimed at providing
software for gaining greater returns from the merstself-archived, academic output.

For adding enhanced interface features to the BPsaftware, the only similar system is
the ACIS project. Section 2.4.2 outlines the mdorcomings of the ACIS system. See
the below table for a comparison of the projeclternative solutions.

Alternative Comparison
CRS
ACIS Only aids registered users. The system is @i

linking articles back to the ACIS and does nothing
improve internal consistency. It provides |no
interoperability with other systems, as the CRSsdoge

Naming Authority Would be hard to implement, poodgalable and
would restrict open growth. The CRS allows
repository owners the freedom of choosing their own
identifiers.

Automatic Mapping Very unreliable. Would only wowkth a significant
amount of metadata available. The CRS creates an
open forum for mapping where anyone can contribute
results or corrections.

Do Without Metadata from different repositories Wbuemain
incompatible, making it virtually impossible to
provide useful services based on data from IRs.

EPrints Plug-in

EPrints Internal Auto completel Whilst this wouldnferce the internal consistency,
it would be unable to provide linking with external
entities. The CRS both promotes the use of internal
identifiers and provides identifiers for foreigntiéns.

Do Without Identifiers within EPrints would contiauto be
inconsistent. Data from within repositories woulel |b
hard to correlate, let alone data between repasior

Figure 23.Table comparing the CRS against alternative salatio
8.3 Reflections

The CRS provides functionality allowing institutedirepositories and potentially many

other semantic data providers to more easily iperate and share data. However, its
success is dependant not only on its functionality performance, but on its uptake by
the community as well. If the CRS is not utiliseden it is unable to provide useful

services. This project has developed the systeirit bannot ensure its use.

36

To ensure the CRS enjoys true success, furthestigations should be carried out to
find how best to build a community of users andtesys to utilise it. One way to
achieve this might be to deploy relatively smalivees at first, providing functionality
for domains of a limited size. Once establishedséhcould then be merged or expanded
to enlarge their user bases.

Adoption would also be better facilitated if theéeak software (the EPrints extensions)
were made widely available, reducing any disina@stito employing a CRS. Perhaps
the plug-ins could be provided optionally, or e standard, with a future EPrints
release. This has already been proposed (see Apdend

37

9 Future Work

Whilst the CRS developed by this project is, irlitsa fully developed system, ready
and able for deployment and use; there are indyitaiother avenues of research that
might provide enhanced functionality. This sectiontlines some proposals for
extensions that have arisen during development.

9.1 Further Extensions to EPrints

At current the EPrint plug-in displays, for eachitgnthe label and the ID. For more
information, the user may visit the entity info padVith a CRS server populated by
very many different entities, there is a higherrd®aof very similar entities appearing,
that are not equivalent. This would provide a mimmonvenience for a user of the
system as it is, they would have to refer to tHie page to choose between the entities.
A more sophisticated solution to this would be mopéoy something similar to what is
used by the Internet Movie Database (IMBBJjhere, when searching for a film or actor
and there are multiple matches of the same naneeretbults are listed along with a
single item of most significant metadata. SearcliorgRobin Williams’, for instance,
returns ‘Robin Williams (Actor, Good Will Hunting)’and ‘Robin Williams
(Miscellaneous Crew)’. This allows the user to veasily make a decision, without
being overloaded with data. Within EPrints, thisghibe achieved by using the most
recent piece of work for an academic, or for a deent, the most noteworthy author.

If the mapping process is performed entirely magual would prove a very time
consuming and arduous task for a single admingstrdihe job might be better achieved
if the matching interface was integrated into th&rift registered user pages. Each user
could take responsibility for matching entitiesateig to their deposits. This would be a
step closer to the ACIS system described in se@idr2. Though, rather than having a
user’s effort in mapping go solely towards CV gaen, they would leverage many
advantages and useful applications. It would atdor@quire registration with a separate
interface to EPrints, as ACIS does.

Institutions that decide to gain greater returnysysing a CRS system with their existing
repository, do not enjoy improved internal congsiste of articles that are already
present. This is because the EPrint plug-in do¢sittempt to correct metadata, once it
has been entered into the repository. An interfacescript, could be designed that
would highlight possible discrepancies within thetadata and suggest alternative
values.

It is planned that in the near future EPrints viidlve better support for third party
extensions. This will most likely be in the form @fmodular system. Plug-ins, written
implementing the appropriate interfaces, would bk @o link automatically into the
EPrints system and be supplied with required dBt@ implications of this would be
greater efficiency, ease of development for extersiand greater interest from
developers in the EPrints software. If, as and wties new version of EPrints is

! The Internet Movie Database (IMDB) and all relatedtent and technologies are Copyright © 1990-
2006 Internet Movie Database Inc.

38

released, the CRS plug-ins were rewritten to tak# &dvantage of the new
functionality, the system might enjoy faster andsether integration.

An obvious extension to the project would be tovpte plug-ins for repositories other
than EPrints. EPrints was chosen due the interespeoximity of the EPrints team and
the availability of support. A plug-in for DSpaceutd, perhaps, be developed by
someone with similar resources available.

9.2 Extensions to the CRS Server

The CRS is designed to be integrated with extemagdping processes, but does not by
default provide any automated matching facilitiksmight add to the system if some
form of ‘in house’ mapping system were made avéglaBerhaps not to perform the task
automatically, as this has inherent risks, but tovigle suggestions and to highlight
possible duplicates in the administration interfa¢avould then be left to the user, or
administrator to accept or ignore the suggestions.

Whilst a CRS is designed to provide functionalityyoto the community it was set up
for, there are conceivable circumstances in whicé might wish to link two servers
together. If, say, two areas of computer scienckethair own CRS servers and at some
point, after they were set up, the work of these areas started to merge; one may well
wish to be able to use information from both sesv@&he current recommended solution
for this would be to merge the two CRS servers anie. However, if the arrangement
was temporary, merging would not be ideal. A waynab this would be the ability to
link CRS servers together. This could be achiewed bimple linking, whereby a search
in one CRS also searched the other.

Alternatively, a more sophisticated solution: wkemew reference is added to a local
CRS, it could be searched for in a list of afféidtservers. If the reference is found
elsewhere, some form of remote link could be addetthe local CRS, pointing to the
location of the other server. This would allow thhge of the foreign bundle locally,
whilst leaving control and ownership of the buntdieghe hands of the foreign server.
The foreign bundle would be returned whenever ecbaaatched the reference that was
added to the local CRS. This solution would be moure efficient than searching
laboriously through every server, for every sear€breign servers would only be
searched on the addition of the reference, themetfe foreign bundle can be addressed
directly via the remote link.

The web services used by the CRS are deliberaiggleight and simplistic. This
keeps the weight of implementation, and therefbee derver load, down. However, a
number of new semantic web applications are oriedtaround web service standards,
such as SOAP [30]. To facilitate the use of thetesysby these applications, an
alternative set of web services could be develoget provide a more standard
compliant interface. Alternatively, a standardisetirectory like, system could be
supplied. By utilising a system such as LDAP [3hE contents of the CRS could be
accessed by anyone, whether they were familiar sathantic web technologies or not.
Such extensions, while useful, were deemed to biphmzal to the central goals of the
project, and therefore fell outside its scope.

39

10 Final Conclusions

Current applications attempting to gain added vdioen EPrint repositories have to
overcome significant hurdles in order to producdierent results. These obstacles
provide disincentives for developers to provideeottise extremely useful and timely
applications.

This project helps to overcome these barrierschieves this by providing and utilising
a consistent reference service, which maps betweedifferent identifiers both within
and between different repositories. It allows refees to be mapped both manually and
by new or existing mapping processes. Using thesgpings, applications are able to
cross-reference data from multiple sources, in otdeprovide useful and interesting
services.

The CRS utilises semantic web techniques to effibjestore metadata and provide both
XML and RDF output, allowing for maximum compatitjilwith 3 party applications.
The bundle structure used stores references angingspin a retrievable and scalable
manner, whilst the unique division of data into gpe identifiable, graphs allows
equivalences to be easily updated and manipulaBzdefully optimised SPARQL
queries ensured that data retrieval is performedemmost efficient time.

The EPrints plug-in aids users in completing fonwithin repositories. This not only
helps to make the metadata more consistent froroukeet, but also makes interacting
with EPrints significantly easier. The plug-in uségnamic HTML and JavaScript
(AJAX techniques) to obtain data, make suggestansfill forms without ever having
to reload the page. The plug-in intricately insgtatéelf only onto suitable fields and is
able to restrict searching to the specific typesrtities relevant to each form.

Through rigorous testing and the large volume wbtaable feedback that the CRS has
received; the system has been demonstrated t@d#yrdeployable, scalable and highly
usable. It has even been deployed on a live sefoerthe use of researchers in the
ReSIST project.

With continued interest and uptake, the CRS repisssn original and efficient method

for tackling the problem of referential inconsistess, not only for institutional
repositories but within the semantic web at largevall.

40

References

[1]

[2]

[3]

[4]
[5]

[6]

[7]

[8]
[9]

[10]

[11]

[12]

[13]

[14]

Great Britain, House of Commons, Science aadhhology Committee, Scientific
Publications: Free for all? Tenth Report of Ses@&003-04 HC 399- | & II, 2004,
London, The Stationery Office Limited ISBN 02150184for HC 399-1,
0215018419 for HC 399-11 web reference:
http://www.publications.parliament.uk/pa/cm20030d¢elect/cmsctech/399/399.p
df

C. Gutteridge. GNU EPrints 2 Overview. In Peedings of 11th Panhellenic
Academic Libraries Conference, Greece, 2002.

M. Smith et al. DSpace: An Open Source DynaBigital Repository, D-Lib
Magazine, January 2003.

RAE 2001 Results. http://www.hero.ac.uk/raefitiss, 2001.

H. Glaser. Consistent Reference Service. foalProjects in Digital Repositories.
JISC Circular 03/05

C. A. Lynch. Metadata Harvesting and the Opeohives Initiative. ARL
Bimonthly Report 217, August 2001.

C. Lagoze, H. Van de Sompel, N. Nelson an@arner. (editors), The Open
Archives Initiative Protocol for Metadata Harvegtv2.0, 2002.

Dublin Core. Dublin Core Metadata. In http:/fparg/metadata/dublin_core, 1997.

Brody, T. Citebase Search: Autonomous Citafimiabase for e-Print Archives.
http://eprints.ecs.soton.ac.uk/10206/, 2003.

O. Lassila and R. Swick. Resource Descripfoamework (RDF) Model and
Syntax Specification. W3C recommendation, 1999.

D. McGuinnes, F. van Hermelen. OWL Web Ontglag@nguage Overview. W3C
recommendation, W3C, Feb 2004.

T. Berners-Lee, Hendler J., and O. Lassilze $emantic welscientific American,
May 2001.

H. Alani, S. Dasmahapatra, N. Gibbins, H.$&la S. Harris, Y. Kalfoglou, K.
O'Hara, and N. Shadbolt. Managing Reference: EmgWReferential Integrity of
Ontologies for the Semantic Web. In 13th InternaicConference on Knowledge
Engineering and Knowledge Management (EKAWO02), p&je/-334, Siguenza,
Spain, 2002.

R. Reiter. Equality and domain closure intfivsder databases. Journal of the
Association of Computing Machinery, 10(4):334-32001.

41

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

H. Alani, K. O'Hara, and N. Shadbolt. ONTOCOM®ethods and tools for
identifying communities of practice. In Proceedingshe 2002 IFIP World
Computer Congress, Montreal, Canada, August 2002.

E. Wenger. Communities of Practice: The KeXnowledge Strategy. Cambridge
University Press, 1998.

X. Dong, A. Halevy, and J. Madhavan. RefeeeReconciliation in Complex
Information Spaces. Technical Report 2005-03-04y.f Washington, 2005.

S. Harris and N. Gibbins. 3store: EfficieniloRDF storage. In Proceedings of the
1st International Workshop on Practical and Scal&#mantic Systems (PSSS'03),
Sanibel Island, Florida, pages 1-15, 2003.

T. Lewy, H. Glaser and N. Shadbolt. A Framexor Reference Management in
the Semantic Web. Submitted to World Wide Web Crarfee 2006.

Academic Contributor Information System Pmjenttp://acis.openlib.org/, 2006.

T. Krichel and I. Kurmanov. ACIS Stage Thielan,
http://acis.openlib.org/stage3/, 2005.

T. Krichel and I. Kurmanov, ACIS project: g&l requirements,
http://acis.openlib.org/documents/kathmandu.htid032

SPARQL Query Language for RDF. W3C Workingar
http://iwvww.w3.org/TR/rdf-spargl-query/, 2005.

RDF Vocabulary Description Language 1.0: RBthema W3C Recommendation
http://www.w3.0org/TR/rdf-schema/, 2004.

D. Westphal and C. Bizer. Introduction to RARAP - RDF API for PHP
Documentation, http://www.wiwiss.fu-
berlin.de/suhl/bizer/rdfapi/tutorial/introductionRAP.htm, 2004.

J. J. Garrett. “Ajax: A New Approach to Welpgications”.
http://www.adaptivepath.com/publications/essaysfiars/000385.php, 2006.

Philippe Le Hégaret, Document Object Moddp #www.w3.0rg/DOM/, 2005.

Simple Test for PHP. Marcus Baker. http://wiastcraft.com/simple_test.php,
2006.

ReSIST: Resilience for Survivability in IST.
http://lwww?2.laas.fr/RESIST/index.html, 2006.

SOAP Version 1.2 Part 1: Messaging FramewWwBC Recommendation
http://www.w3.0org/TR/soapl12-partl/, 2003.

Yeong, W., Howes, T., and S. Killd,ightweight Directory Access Protocol",
RFC 1777, March 1995.

42

Appendix A. Bundle structure

Bundle

—> hasduplicate
L » hasduplicate
—> hasduplicate
—> hasduplicate
—> notDuplicate
—> hasPredicate = #fullName

RN

Figure 24. Visualisation of a bundle

<?xml version="1.0" encoding="UTF-8" ?>

<rdf :RDF

xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmlns:nsl="http://www.aktors.org/ontology/coref#">

<nsl:Bundle rdf:about="http://www.aktors.org/ontology/coref#bundle-
26cd8e445b1254ffd8663d13c588e394">

<nsl:duplicate
rdf:resource="http://nlp.shef.ac.uk/#ARM_AUTHOR_Hugh__Glaser"/>

<nsl:duplicate
rdf:resource="file:/usr/local/share/akt/Researchmap/akt-map-
onto.rdf#Knowledge-Services" />

<nsl:duplicate)
rdf:resource="http://www.ecs.soton.ac.uk/info/#person-00021"/>

<nsl:duplicate
rdf:resource="file:/usr/local/share/akt/ResearchMap/akt-map-
owl.rdf#DOME" />

<nsl:duplicate)
rdf:resource="http://www.ecs.soton.ac.uk/info/#person-00021"/>

<nsl:hasPredicate
rdf:resource="http://www.aktors.org/ontology/portal#full-name" />

</nsl:Bundle>

Sgggigescription rdf:about="http://www.ecs.soton.ac.uk/info/#person-
>

<nsl:isCanon
rdf:resource="http://www.aktors.org/ontology/coref#bundle-
26cd8e445b1254ffd8663d13c588e394" />
</rdf:Description>

</rdf:RDF>

Figure 25. Example Bundle RDF.

43

Appendix B. Schedule

O epUuaWng e

yoIeasay

yoday waul

Jang paloig
Yoleasay adualajalo’)
yaieasay spupdy
ya1easay punoibyoeg

yoleasay palonrg

Figure 26.Gantt Chart Schedule of Project Development Stage 1

44

UOREIIBWNI (]
bunsa|
wawdojanag

uoneiedalg earp

uoday jeuly

uonenjeay waisig

bupsa | yoleas

mbn|d yoieas

bunsa | usodag

wibn|g 1oymy

B1Ep 158] DIR [N

2EHAI| AdUEUILIER]

125 159) yum arendo g

wduos wodxg

Aepy

judy

TEXTIT]

Aenigaq

Aenuep

Figure 27.Gantt Chart Schedule of Project Development Stage 2

45

Appendix C. Class method and attribute details

Bundle

The Bundle class models the behaviour of a Burtdletsire. It provides methods for
performing essential operations on bundles. The RBIF API for PHP is used to
generate RDF.

Private Properties:

date: int

Date integer, for recording when the bundle wasupdated. Is an integer
corresponding to a ddmmyyy date format.

canon: string

URI of the canonical reference. Is set automatiaasing a lexicographical ordering.

references: array

Array of URIs for the references contained by tbadie.

name: string

Name of the bundle. Automatically generated ageefses are added. It corresponds to
the string 'bundle-' concatenated to the MD5 hdtheocanonical reference’'s URI.

Public Methods:

getModel();

Returns the RAP model object corresponding to thedle's RDF.

string getURI();

Returns the URI of the bundle.

string getName();

Returns the name of the bundle.

setCanon();

Forces the canonical reference to be recalculated.

setDate(int date);

Sets the date attribute to the passed integer.

int getDate();

Returns the date attribute.

addReference(string reference);

Adds the passed URI to the array of references Adsalculates the canonical reference
and bundle name in case the new reference replaeesnon.

removeReference(string reference);

46

Removes the reference corresponding to the padkédrduim the bundle.

merge(Bundle bundle);

Merges the current bundle with that passed. Rethienaew combined bundle.

string getRDF();

Returns an RDF XML document, as a string, corredpgto the bundle.

string getXML();

Returns a plain XML document, as a string, corresijrgg to the bundle.

int getNumReferences();

Returns an integer corresponding to the numbegfefences present in the bundle.

array getReferences();

Returns the array of reference URIs.

string getCanon();

Returns a string corresponding to the URI of theooical reference. If the canon has
not yet been set, it is calculated before beingrned.

makeNameUnique();

Forces the name of the bundle to be recalculatad the canonical URI.

BundleSet

The BundleSet class provides operations for cdyréeindling multiple bundles
simultaneously. The RAP RDF API for PHP is useddaerate RDF.

Private Properties:

bundles: array

Array of all the Bundle objects in the set.

Public Methods:

char getNumBundles();

Returns an integer corresponding to the numbewuot® Objects in the set.

array getBundles();

Returns the array of Bundle objects.

addBundle(Bundle bundle);

Adds a passed bundle object to the set.

removeBundle(string bundlename);

Removes the Bundle in the set that correspondetpassed bundle name.

47

string getXML();

Returns a single plain XML document, as a strimgresponding to the all the bundles
in the set.

string getRDF();

Returns a single RDF XML document, as a stringresponding to the all the bundles
in the set.

getModel();

Returns the RAP model object corresponding to thedles RDF.

BundleStore

The BundleStore class models the behaviour of dlewenabled triplestore. It interacts

with a 3store knowledgebase via a SPARQL web sera the 3store import script. It

provides methods for inserting, removing and reing bundles from the database. The
RAP RDF API for PHP is used to generate RDF.

Private Properties:

spargl: string

URI of the SPARQL service to be used by the SPARQibject.

import: string

Location of the 3store 'ts-import' script beingdise import RDF.

Public Methods:

Bundle getBundleByRef(string RefURI);

Method for returning a bundle from the store, giegry one of the references that it
contains. Returns a Bundle object if found, O if.no

Bundle getBundleByName(string BundleName);

Method for returning a bundle from the store, gitemame. Returns a Bundle object|if

found, O if not.

Bundle getBundleByURI(string BundleURI);

Method for returning a bundle from the store, giitsrlJRI. Returns a Bundle object if
found, O if not.

BundleSet getBundlesByMetadata(array arrayofstringsint limit, string origin,
string type, int fromdate);

Method for searching for bundles in the store byadata. The method takes an array of
strings that are used as keywords for searching.s€arch can optionally be restricteg
to: bundles containing references of a specifiginyibbundles newer than a certain date;
or bundles containing at least one reference gpa equivalent to a specified type. The
maximum number of bundles returned can also beaffggedReturns a BundleSet object
if found, O if not.

48

insertBundle(Bundle bundle);

Method for inserting a new Bundle into the knowledgse.

deleteBundle(string bundlename);

Removes the bundle from the store that corresptuntie passed bundle name.

string getXMLWithMetaData(Bundle bundleorset);

Returns XML for the passed Bundle(s), with all esponding metadata from the
knowledge base added.

string getRDFWithMetaData(Bundle bundleorset);

Returns RDF for the passed Bundle(s), with allesponding metadata from the
knowledge base added.

newType(string newtype);

Adds a new type to the bundle store. Adds the iy to its own bundle and asserts
to be a rdfs:Class.

setMetadata(string ref, array metadata);

Sets or updates the metadata for the given referdnetadata is supplied as an
associative array where the keys correspond tpribgicates and the values to the
objects. Any predicates that are not URIs will ppended to the CRS namespace be
used.

SPARQLer

The SPARQLer class performs SPARQL queries upost@@ and returns the results
associative arrays. It uses a SAX parser to readetults from the XML output by
3store.

Private Properties:

db: string

String corresponding to the 3store database tlmding used.

server: string

String corresponding to the URI of the SPARQL welvie that is being used for
qguerying.

Public Methods:

array performQuery(string query);

Performs the passed SPARQL query and returns sdtseas an associative array. Th
keys of the array represent the variable namegstandalues the results. The keys
[variablename]_type is used to return the typerdit of URI) of the variable value.

49

ing

as

Appendix D. Unit Testing Screenshot

Hadress I‘EI RELpffresist, ecs, sokbon, ac, ukjcrs/stest, php

bundletest

bundlesettest

bundlestoretest

|@ Dane

1/1 test cases complete: 8 passes, 0 fails and 0 excepfions.

1/1 test cases complete: 4 passes, 0 fails and 0 exceptions.

1/1 test cases complete: 1 passes, 0 fails and 0 exceptions.

l_ l_ l_ l_ l_ | mternet

S | S

Figure 28.Screenshot of Unit Testing Results Page.

50

Appendix E. Report on Hugh Glaser's Remarks

University School of Electronics and Computer Science

of Southam pton 1AM Research Group
Eric Cooke, Senior Tutor
University of Southampton T +44 (0)23 8059 3271
Highfield F +44 (0)23 8059 2865
Southampton E ecc@ecs.soton.ac.uk
S0O17 1BJ United Kingdom www.ecs.soton.ac.uk

9th May 2006

Hugh Glaser’s opinion on Timothy Lewy’s Project

Hugh Glaser and Les Carr submitted a grant proposal for £90K to satisfy
the specification of this project. In the event, the work has been done by
Timothy. Hugh is very satisfied by the project: it proves the value of his
concept of general plug-ins for ePrints and it improves the functionality
of ePrints by implementing a Consistent Reference Service (CRS). The
project is currently successfully running on a clone of the ECS ePrints
repository and it will be released with future releases of ePrints.

Eric Cooke

51

