
PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems

Contract Number: 511085

PrIMe: A Methodology for Developing
Provenance-Aware Applications

Authors: Steve Munroe
Simon Miles

Reviewers: Paul Groth
Sheng Jiang
Victor Tan
Luc Moreau
John Ibbotson
Javier Vazquez

Identifier: D3.2.2
Type: Discussion
Version: 0.2.2
Version: August 2, 2006
Status: internal

PrIMe is a methodology for adapting applications to make themprovenance-aware,
that is to enable them to document their execution in order to answer provenance ques-
tions. A provenance-aware application can satisfyprovenance use cases, where a use
case is a description of a scenario in which a user interacts with a system by performing
particular functions on that system, and a provenance use case requires documentation
of past processes in order to achieve the functions. In this report the PrIMe is de-
scribed. In order to illustrate the steps necessary to make an application provenance
aware, an Organ Transplant Management example application is used.

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

1

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems

Contract Number: 511085

1 Introduction

Provenance is already well understood in the study of fine art where it refers to the
trusted, documented history of some art object. Given that documented history, the
object attains an authority that allows scholars to understand and appreciate its impor-
tance and context relative to other works. Art objects that do not have a trusted, proven
history may be treated with some scepticism by those that study and view them. This
same concept of provenance may also be applied to data and information generated
within computer applications.

In general, computer applications produce data, and making applications prove-
nance aware allows its users to understand the provenance of their data, where this
is defined asthe process that led to that data. To be able to determine the prove-
nance of data, documentation of an application’s execution must be available, and so
provenance-aware applications must document their own execution. Such documenta-
tion is calledprocess documentationand is comprised of multiple individual pieces of
information, calledp-assertions, which are recorded during execution and then stored
and maintained in a repository of such information called aprovenance store. This
ensures that necessary and sufficient forms of process documentation can be captured
to give a complete account of any data item’s provenance. For example, p-assertions
allow application developers to document various aspects of execution, and thus pro-
vide descriptions of those parts of an execution that relate to, or impact upon, a given
data item. This allows the determination of a data item’s relationships to other data
items and processes, such as its dependencies or causal effects and, at the same time,
provides a description of the data flow through an application.

In order to facilitate the development of provenance-aware applications it is essen-
tial that developers have at their disposal a structured approach to integrating prove-
nance functionality into their own applications.

To enable such an approach the PrIMe is presented, which stands for aPRovenance
Incorporating Methodology. In the remainder of this document, PrIMe and how it can
be applied to computational systems, or applications composed of computational enti-
ties, is described in detail. Though the effects of physical entities on such applications
(such as humans or machines) and how PrIMe can deal with them are dealt with briefly
(see Section6.1.2), PrIMe focuses mainly on computational entities.

The format of this document is as follows. In the next section, PrIMe is introduced,
and some assumptions adopted by PrIMe as well as its overall structure is presented.
In Section3, an example application from the medical domain is introduced in order
to ground the subsequent discussion and explanation. In Section4, the process for
identifying provenance use cases is described as well as how to identify the kinds
of information required for answering such use cases. Section5 then describes how
to decompose applications and how to map out the flow of information within them.
Section6 then goes on to describe different kinds of adaptations that can be made
to applications in order to facilitate the recording of process documentation. Finally,
Section10offers some concluding remarks.

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

2

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems

Contract Number: 511085

2 Introducing PrIMe

PrIMe is a guided approach for making applicationsprovenance aware. This is achieved
by exposing application information that can then be documented through a series of
analysis steps and well-specifiedadaptations, where an adaptation is a modification to
the application design, each of which is supported in implementation by elements of
theprovenance architecture[?].

In the development of PrIMe, the following desirable criteria were used as guide-
lines.

Usability PrIMe should be easy to apply.

Traceability All design decisions made using PrIMe should be traceable back to one
or more use case requirements.

Applicability It should be possible to successfully apply PrIMe to a wide range of
applications.

2.1 Initial Assumptions

PrIMe adopts a particular view on the way that applications are constructed, in partic-
ular, one in which applications are composed ofactorsthat interactwith one another
through the exchange ofmessages. An actor is defined as a component of an appli-
cation that performs some functionality and interacts with other actors. Adopting this
view, however, does not limit the range of applications to which the provenance ar-
chitecture is applicable since it is argued that all applications can be mapped onto this
view with more or less effort (for example, the EU Provenance project [?] is using
PrIMe to develop provenance-aware systems in two very different exemplar applica-
tion: organ transplant management [AVSK+06], and aerospace engineering [KS06]).
The key aspects of this actor-based view are described below.

• All changes in an application are produced by the actions ofapplication actors.

• All actions by an application actor are triggered by the receipt of new informa-
tion/data by that actor.

• All information received by an application actor is sent by another application
actor.

• All assertions in a provenance store have been submitted by application actors
that have direct access to the information being asserted, i.e.

– If an actor receives or sends data, it can record that data.

– At the time of receiving/sending, an actor has a given state and so can
record details about that state.

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

3

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems

Contract Number: 511085

– An actor can know, and so record, how the information in two messages it
has sent/received are related, e.g. one is in response to another.

2.2 Structuring PrIMe

The overall structure of PrIMe is shown in Figure1. Each oval in the diagram corre-
sponds to a set of entities identified within the application and each has a numbered
step showing the order that each set of entities is to be identified. The lines between
sets of entities indicate how identifying one set influences how the subsequent sets
are identified. The dashed ovals delimit different phases of the methodology. Phase
1 involves the identification of provenance use cases and the pieces of information
that will be used to answer the use cases. Phase 2 involves the decomposition of the
application into a set of actors, and their interactions. Phase 3 involves making prin-
cipled adaptations to the application in order to ensure the required information items
are available for documentation. Traversing these steps, PrIMe starts from the appli-
cation itself. PrIMe assumes that the structure and purpose of the application is known
beforehand. This does not mean that the application must already exist, but that the
overall functionality of the application has been identified and the general structure has
been determined. Given this assumption, the steps through PrIMe are as follows.

• Phase 1

– Step 1.1: Provenance use case analysis.

– Step 1.2: Identify use case information items.

• Phase 2

– Step 2.1: Identify application actors.

– Step 2.2: Map out actor interactions.

– Step 2.3: Identify knowledgeable actors.

• Phase 3

– Step 3.1: Introduce application adaptations.

The steps are taken as follows. First, an analysis is performed to identify the set of
provenance use casesthat are to be answered by the provenance architecture (Step 1.1),
then theinformation items(pieces of information) that are required in order to answer
these use case questions are identified (Step 1.2). The application structure is then
examined to identify theapplication actors(Step 2.1), and from here theinteractions
between application actors are mapped out (Step 2.2), thus revealing the information
flow through the application. Once this is done, it is then possible to determine which
application actors have data representing the information items necessary to answer the
use cases as the application is run: these actors are calledknowledgeable actors(Step

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

4

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems

Contract Number: 511085

2.3). At this point, it may become clear that the decomposition of the application into
actors has not been at the right level of granularity, i.e. it is still not possible to identify
an actor that has access to an information item. In this case, the process of identifying
actors and interactions is repeated until an actor can be located that knows about the
information item in question. Finally,adaptationsare introduced into the application
in order to expose information items and add provenance functionality (Step 3.1). This
last step involves giving actors the capability to recordprocess documentationso that
it can be produced and stored in provenance stores to allow querying actors to perform
queries on the documentation in order to answer provenance use cases.

Step 1.1: Use
Cases

Application
Structure

Step 1.2:
Information Items Step 2.1: Actors Step 2.2:

Interactions

Step 2.3:
Knowledgeable

Actors

Step 3.1:
Adaptations

Phase 1

Phase 2

Phase 3

Ite
ra

tio
n

Figure 1: Overall structure of PrIMe

3 The Organ Transplant Management Example Appli-
cation

The example application used in this document is the Organ Transplant Management
(OTM) application used as one of the exemplar applications in the EU Provenance
project. In the application, organ donors and patients waiting for organs must be
matched up according to various criteria, such as blood, immunology tests and so
on. For this document, part of the workflow of the OTM application is extracted to
facilitate our explanation of PrIMe.

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

5

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems

Contract Number: 511085

3.1 Patient Organ Testing

The example used in this document involves conducting blood tests on patients. Here,
potential donor recipients undergo a series of tests to enable a decision to be made
about whether they are suitable candidates for organ transplants. The high level view
of this process contains three entities: thehospital, theelectronic healthcare records
system(EHCRS) and thetesting laboratory. The hospital is where the patient is being
taken care of, and where the doctor who initiates the testing process resides. The
EHCRS is the place where all the records for every patient are kept. Finally, the testing
laboratory is where the blood tests are performed. Figure2, shows these entities and
the communication links between them (shown by the arrows). In terms of workflow,
the hospital where the doctor resides must communicate first with the EHCRS to obtain
the patient’s records, after which the hospital can request a blood test to the testing
laboratory, passing along the necessary patient data obtained from the EHCRS.

Electronic HealthCare
Records System

Testing Laboratory

Hospital

Figure 2: The OTM example application

Figure3 shows the above workflow graphically.

Hospital EHCR Hospital Testing
Lab Hospital

Figure 3: The OTM workflow

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

6

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems

Contract Number: 511085

4 PrIMe Phase 1: Use Case Capture and Identifying
Use Case Answers

In Phase 1 of PrIMe, the kinds of provenance related questions to be answered about
the application must be identified. This process involves several steps, each of which
plays a specific role in obtaining use cases. Once the use cases are identified, a process
of analysis must then be undertaken in order to discover the pieces of information
within the application that constitute the answers to the use cases. In the next few
sections, descriptions of each of these steps is given in detail.

4.1 Step 1.1: Provenance Use Cases

The starting point for making an application provenance aware is to identify the set
of provenance use cases that are to be answered, and PrIMe distinguishes between the
two following types.

Core provenance use casesare use cases known when PrIMe is applied.

Future provenance use casesare use cases not known about until after the applica-
tion has been made provenance aware.

Core provenance use cases drive the process of making an application provenance
aware by helping to inform the developers of the granularity of the processes to be con-
sidered and the critical information to expose. Future provenance use cases, however,
are not known by the developer at the time the application is being made provenance
aware, but by ensuring that the application is designed to capture as much potentially
useful process documentation as possible, they can be anticipated and thus increase
the chances that the application is future-proof.

4.1.1 Eliciting Use Cases

It is not always obvious to users what provenance use cases they could expect the
provenance architecture to support. To overcome this, PrIMe advocates a simple re-
quirements elicitation process, similar to many software engineering approaches to
help designers collect the core provenance use cases. This process works as anintu-
ition pumpto help the user’s identify provenance use case question that will be helpful
for them to understand their application better.

The elicitation process comprises three simple steps.

1. Provide an explanation and definition of provenance in computational systems.

2. Give examples of general questions that can be answered by a provenance-aware
application.

3. Explain how to express provenance use cases.

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

7

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems

Contract Number: 511085

4.1.2 Defining provenance

According to the Oxford English Dictionary, provenance is defined as(i) the fact of
coming from some particular source or quarter; origin, derivation. (ii) the history or
pedigree of a work of art, manuscript, rare book, etc.; concr., a record of the ultimate
derivation and passage of an item through its various owners.

For computational systems, a definition of provenance that relates specifically to
data is required. PrIMe adopts the definition supplied in [?].

Definition 1 (Provenance of a piece of data)The provenance of a piece of data is the
process that led to that piece of data.2

By explicitly stating the definition of provenance, the user’s obtain the right under-
standing of what provenance means in the context of computational applications and
data.

4.1.3 Examples of provenance use case questions

In order to provide examples of the kinds of provenance use cases a provenance-aware
application can support, several generalised, non-application specific use case ques-
tions can be supplied. These questions attempt to expose information relating to pro-
cesses within an application, and try to identify various aspects of process such as the
data used within a process and the adherence of a process to regulatory rules or plans,
as well as questions relating to data and its use and transformation.

• What are the details of the process that produced a given piece of data?

• Two processes, thought to be performing the same steps on the same inputs, have
been run and produced different data. Was this because of a change in the inputs,
the steps making up the process or the configuration of the process?

• Did the process that produced this data use the correct types of information at
each stage?

• Did the process that produced this data follow the original plan?

• Did the process that produced this data meet regulatory rules?

• What data was used as input to a process.

• What was data was used at point X in a process.

• What operations were performed on a given piece of data.

In the context of the OTM example application, more concrete example use case
questions can be given. Below are just a few instances.

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

8

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems

Contract Number: 511085

• Retrieve data linked to all actions / events associated with a patient (recipient or
donor)

• What decisions were made for a particular case?

• What is the medical analysis tree for a given organ?

• Determine if any deviation took place from the standard workflow for a given
organ (i.e. in Figure3, a deviation might be if the EHCR sends a patient’s records
directly to the testing lab instead of back to the hospital, deviating from the
workflow and potentially breaking regulatory rules).

In many instances, use case question will be focused on a few important objects
within the application. For example, in the OTM application, provenance use case
questions relate primarily to four key objects.

• Organ Donors.

• Recipients of organs.

• Organs.

• Decisions.

4.1.4 Expressing Provenance Use Cases

In order to collect the information made explicit in the use case elicitation process,
PrIMe provides a simple form in which use cases can be expressed and recorded.
The format aims to be explicit, and mirrors the information content of UML use case
diagrams [HW98], and is the basis for refining information in the future. The form
should capture the following information.

• Statements describing something that already happens in the application.

• Statements describing a specific provenance-related use case question.

• A list of the application components involved in carrying out the activity identi-
fied above.

• A list of the information item(s) necessary to answer the identified use case
question.

Below is a more specific example use case in the OTM application.
Donor A’s organs are screened for potential donation. What is the provenance of

the donor’s organ diagnosis?
In this example, a description of application functionality is given in the first sen-

tence, and the question to answer is given in the second sentence. In order to extract the

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

9

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems

Contract Number: 511085

Electronic HealthCare
Records System

Testing Laboratory

Hospital

Donor A’s organs are screened for potential donation.

Donor A’s location

Donor A’s
records

Donor A’s
organ

diagnosis
test

Figure 4: The components in the OTM application involved in the testing of blood

Table 1: Expressing provenance use cases

Application description
Donor A’s organs are screened for potential do-
nation.

Use case question
What is the provenance of the donor’s organ di-
agnosis?

Involved components Hospital, EHCRS, Testing laboratory.
Relevant information items ?

right kind of information to answer the question, the main entities within the applica-
tion must be examined and the identity of those involved in carrying out the described
functionality must be established. Looking at Figure4, it is possible to see that the
three main components in the application involved in the process of determining a
patient’s organ diagnosis are the hospital, the EHCRS and the testing laboratory.

Going through this process for each use case enables the information to be captured
in the manner shown in Table1. Note that, as yet, the information items have not been
identified. How this is achieved is discussed in the next section.

4.2 Step 1.2: Information items

When considering how to answer a use case it is necessary to identify whatinformation
itemsare relevant, and there may be many such information items, e.g., a given result,

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

10

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems

Contract Number: 511085

or a sequence of decisions. Therefore, for each use case the information items required
for its satisfaction must be identified.

It is also important at this point to consider future use cases, and what forms of
information might be useful to capture in order to answer them. Of course, this cannot
be an exact activity, but by identifying potentially useful information items, the task of
answering use cases that come to light in the future can be facilitated.

Answering a use case may involve identifying a part of, or a wholeprocesswithin
an execution, understanding therelationshipsbetween the different data items of the
application, knowing particularstatesof components during execution (which may
represent particular data items), or some combination of these. It is, therefore, neces-
sary for a process of analysis to take place, in which the use case is examined and the
appropriate information items necessary to answer it are identified. Examples of the
different kinds of information items that can be used to answer provenance use cases
are described below.

Data Items Data items represent specific pieces of information such as a result of a
computation, the outcome of a decision or the state of a given component, and
such items are found in the interactions between different components, and also
in the states of the various components.

ProcessesInteractions between components and the relationships between data rep-
resents an application’s processes. Consequently, in order to identify a process,
either in part or in whole, it is necessary to identify interactions and data rela-
tionships.

Relationships When seeking the provenance of some entity, it is often necessary to
identify the relationships between it and other entities. For example, a data item
found in an interaction may be related to other data items in other interactions
and these relationships must be identified and named.

Examining the OTM example, the information items involved in answering the use
case question are the patient record (or the patient identifier, drawn from the records),
the test results and the diagnosis decision. These can now be listed as shown in Table
2.

Once this process has been completed for every use case question, Phase 2 of
PrIMe can begin in order to decompose the application into actors. This phase estab-
lishes which actors in the application have access to the identified information items,
and thus are the entities responsible for recording process documentation.

5 PrIMe Phase 2: Actor Based Decomposition

When analysing a system in order to apply PrIMe, it is necessary to follow PrIMe’s ap-
proach to modelling computation systems, in which applications can be mapped onto

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

11

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems

Contract Number: 511085

Table 2: Expressing provenance use cases

Application description
Donor A’s organs are screened for potential do-
nation

Use case question
What is the provenance of the donor’s organ di-
agnosis?

Involved components Hospital, EHCRS, Testing laboratory

Relevant information items

Patient ID (data item), test results (data
item), diagnosis decision (data item), links
between the patient ID, test results and di-
agnosis decision (relationships)

a model ofactorsand interactions. This approach is similar in nature to object ori-
ented approaches to modelling systems (e.g. [Ram91]) and identifying classes, except
that in PrIMe, considerations of provenance use cases are required. As can be seen
below, use cases determine the level of granularity, or the depth of the decomposition
of a system required when making an application provenance-aware. However, other
considerations must be taken into account too; a fine-grained decomposition has the
advantage that a clearer picture can be formed of which actors have access to pieces of
information leading to more detailed process documentation being obtained. This then
leads to more accurate traceability and a concomitant increase in an ability to check
and modify the system. The advantage of a more coarse-grained decomposition is that
less actors need to be modelled in total and, in particular, less actors are modelled
that are irrelevant to satisfying provenance use cases. Ultimately a balance must be
found, though PrIMe encourages a bias towards finer-grained decompositions, since
the robustness of designs produced by PrIMe relies on adequate traceability (which is
one of the criteria given above for judging the methodology to be effective), and the
availability of process documentation. An important concern is to include any appli-
cation actors referred to in provenance use cases, because information about them is
primarily known or knowable by them.

In order to identify the correct level of granularity, PrIMe proposes aniterative
approach, in which the following three steps are carried out until the right level of
decomposition has been achieved.

• First: identify obvious actors (Step 2.1).

• Second: map out the interactions between actors (Step 2.2).

• Third: identify actors that have access to information items (Step 2.3).

These three steps may need to be repeated if it is discovered that no actor is identi-
fied at this level of granularity that has access to a use case related information item.

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

12

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems

Contract Number: 511085

5.1 Step 2.1: Identifying Actors

An actor is an entity within an application that performs actions, such as Web Services,
software components, machines, people and so on, and which interacts with other
actors. The identification of suitable actors in an application is a key part of making
the application provenance aware, and many issues must be considered. For example,
at what level of granularity should the analysis of application actors be conducted?
In Web Service based applications, should the granularity be at the service level, i.e.
should each service be an actor, or is there functionality within a service for which
documentation is required, which would entail the need to decompose the service into
a set of actors. In order to aid the identification of actors within an application, PrIMe
providesactor identification heuristics.

5.1.1 Actor Identification Heuristics

Actor identification heuristics aid the designer by providing rules of thumb in identi-
fying which components of an application should be classified as actors. If the appli-
cation is considered as being comprised of components that send information to each
other in order to perform an execution, then the first step is to apply the following two
simple rules.

1. Identify the components that are the receivers of information. These could,
for example, be a component/service in a workflow, a script command, the
GUI/desktop application into which a user enters information. Each of these
components is an application actor.

2. Identify the components that send the information in each interaction. These
could be, for example, a workflow engine, a script executor, a user or a sensor
(such as a blood pressure monitor for example). Each of these entities is also an
application actor.

While the above rules clearly identify the actors in an application, simply applying
them wholesale can lead to a too fine grained decomposition of the application. Indeed,
following these rules slavishly leads to the classification of every operation as an actor,
and is clearly overkill. What is important when applying the rules is to take into
account the provenance use cases that need to be answered, and the information items
required to achieve this. By basing the process of identifying actors on the need to
identify the relevant information items, appropriate levels of decomposition can be
achieved. When considering whether or not a component is an actor, it is important to
determine if the component has access to information items, in which case it can be
said that the component is aknowledgeable actor. When no further decomposition is
required or possible, the actors identified are termedprimitive actors, in the sense that
there are no details available about their internal processes. If further decomposition is
possible to carry out, then such internal processes can, in turn, be mapped onto actors

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

13

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems

Contract Number: 511085

(or subactors of the higher level actor) and the interactions between these subactors
can also be mapped.

In the OTM example, the hospital, the EHCRS and the testing laboratory all com-
municate with each other, so an obvious place to begin is to do classify each of these
components into high level, primitive actors.

5.2 Step 2.2: Actor Interactions

The next step in PrIMe is to map out the interactions between the previously identi-
fied actors. Other methodologies, for example the GAIA methodology used in agent
oriented design [WJK00], also provide methods to identify interactions between ap-
plication components. In PrIMe, a similar approach is necessary. Specifically the
way that information flows between actors is modelled as message passing and PrIMe
requires a representation of such messages to be stated explicitly along with identifi-
cation of the content of such messages. To do this, it is necessary to identify to which
actors an actor is sending messages and from which it is receiving messages. This is
important since, by identifying messages and their contents, it is possible to produce a
complete model of data flow through the application, and thus discover which actors
have access to information items necessary for answering provenance use case ques-
tions. The approach in PrIMe is to identify the information flow through applications,
and to construct graphs of the different actors and the messages they send to each other.
In Figure5, one of these graphs (which are termed abstract data graphs) is shown. The
nodes represent individual actors and the arcs (shown as uni-directional arrows) rep-
resent messages being passed from one actor to another. Annotations over the arrows
show message and content identifiers. It is important to note that, at this level, it is
not important to identify whether the content c1 in message M2 has exactly the same
format as in message M1 or a transformation has been made; this will be identified in
later steps of the methodology. Also it is important to note that, if numbers are used
in message identifiers, these may or may not correspond to the order such messages
are produced, as in some scenarios there may be several messages being created in
parallel. The use of such graphs makes explicit which actors have access to which
information items, and thus enables developers to identify knowledgeable actors (see
Section5.3).

Initially the process is to map out theexistinginteractions between the actors of
a system — without regard to answering provenance use cases. Once the application
is mapped onto this actor/interaction-based model, the developer can then begin to
consider the previously identified use cases and try to identify which actors, given
this current model of the application as actors and interactions, have access to the
information items necessary to answer the use case questions.

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

14

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems

Contract Number: 511085

A1 A2

A4 A3

M1(c1)

M3(c2)

M4(c3)

M2(c1)

= Message

An = Actor

Figure 5: An abstract data graph

5.2.1 Interactions in the OTM Example

In this section the guidelines provided by PrIMe to the OTM example are used in order
to identify the actors in the application and the interactions between those actors.

Examining the OTM example, it can be seen that when a patient is to have organ
diagnosis performed, the hospital must send a query to the EHCRS to obtain the patient
ID. Then, the hospital sends this ID to the testing laboratory with the request to perform
the necessary tests. In this simple example, there are four messages being passed
between the three high level primitive actors, where each of these messages contain
certain data items: the query (q1) to the EHCR, the patient ID (pid), the request to
perform a blood test to the patient (with the same pid), and the test results from the
laboratory (r1). Figure6 shows the message exchanges (along with their contents)
between the identified actors in the system.

Having gone through this process, it is then possible to tabulate the interactions of
each actor along with all the information items it has access to. For example, in Figure
7 the hospital’s interactions are recorded in the sending and receiving tables, along
with the recipient or sender actors respectively and the information items contained in
the contents of the messages.

5.2.2 Constructing Abstract Data Graphs of Application Interactions

Using the information gained from this step, a data graph of the system is constructed
to clearly show the interactions between each actor (shown in Figure8). The actors
and the messages correspond to those identified in Figures6 and7.

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

15

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems

Contract Number: 511085

Electronic HealthCare
Records System

Testing Laboratory

Hospital

M1 (q1)

M2(pid)

M3 (pid)

M4 (r1)

Figure 6: Interactions between actors in the OTM example

5.3 Step 2.3: Knowledgeable Actors

At this stage in the application of PrIMe, provenance use cases and the information
items necessary to answer the use cases have both been identified, a decomposition of
the application into actors has been conducted and, lastly, their interactions have been
identified and captured. Next, it is necessary to examine the information items identi-
fied previously and attempt to associate them with actors identified in the application.
Any actor that has access to an information item is known as aknowledgeable actor
and the aim is to associate every information item with such an actor. If this can be
achieved, then the developer can move to Step 3.1 of PrIMe to introduce the necessary
provenance functionality (see Section6.3). However, there are two reasons where such
an association between actors and information items may not be possible. Either:

• a) an information item is located within an actor and has not been exposed in the
interactions between actors through message exchanges or,

• b) no more decomposition is possible and there are still no actors with which
an information item can be associated. This can occur when an information
item is required that can only be derived from existing information items in the
application. In other words, the information is implicit and must be made explicit
by combining existing information items.

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

16

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems

Contract Number: 511085

EHCR
Testing Lab

q1
pid

M1
M3

Receiver IDData itemMessage ID
EHCR

Testing Lab
q1
pid

M1
M3

Receiver IDData itemMessage ID

EHCR
Testing lab

pid
r1

M2
M4

Sender IDData itemMessage ID
EHCR

Testing lab
pid
r1

M2
M4

Sender IDData itemMessage ID

Sending

Receiving

Sending Actor: Hospital

Receiving Actor: Hospital

Figure 7: Messages sent and received by the hospital

In the case of a), it is necessary to iteratively apply steps 3, 4 and 5 of PrIMe until
a level of granularity is reached where actors are identified that have knowledge of the
information item in question. This is discussed in the next few sections. In the case of
b), a number of adaptations must be performed to change the application in structured
ways in order to be able to make the required information item explicit. Section6
discusses this in detail.

5.3.1 Step 2.3: Identifying Knowledgeable Actors

A knowledgeable actoris an actor that has access to an information item. Theprimary
knowledgeable actorfor an information item is the primitive actor who first becomes
aware of that information, for one of the following reasons.

• The actor creates the information item.

• The actor receives or observes the information item from outside the application.

In the first iteration of the methodology, the developer should identify the primary
knowledgeable actor for each information item. Thus, for each use case, the designer
must identify the relevant information items and, for each of these, the associated
knowledgeable actors. However, given the level of decomposition of an application in
actors in the first application of Phase 2 of PrIMe, this may not be possible, since the
correct level of granularity in terms of actor decomposition may not have been reached
and, thus, the looked for information items may not have yet been exposed. In such
instances, more decomposition must be performed, and the next section makes use of
the OTM example to make this point clear.

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

17

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems

Contract Number: 511085

EHCR H

TL

M1(q1)

M3(pid) M4(r1)

M2(pid)

EHCR = Electronic healthcare records
H = Hospital
TL = Testing laboratory

= Message

= Actor

Figure 8: The data graph of the OTM example

5.3.2 Knowledgeable Actors in the OTM Example

The structure of the OTM donor diagnosis example application has been modelled
through the application of PrIMe into three actors:

1. The hospital.

2. The EHCRS.

3. The testing laboratory.

Imagine, however, that another use case question asks:How many doctors have
been involved in a donor’s diagnosis case?. To answer this use case question, the
information item that contains the relevant information must be identified, i.e. a record
of all doctors involved in a given case. If the actor-based decomposition of the OTM
application that was performed earlier is examined (Figure6), it can be seen that this
question cannot be answered, because the information about how many doctors are
involved in a given diagnosis case is not available within the interactions between any
of the actors. Thus, the required information item (the number of doctors in a given
case) cannot be associated with any of the actors so far identified. What must be done
in this situation is to examine the hospital and perform a decomposition to a lower
level of granularity, thus exposing its subactors and revealing, through their state and
interactions, the information items needed to answer the use case question.

The first task is to identify the actor within the hospital that have access to the
information needed. After examining the hospital, it is discovered that doctors access
a user interface (UI) to issue diagnosis requests, and that this user interface sends the

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

18

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems

Contract Number: 511085

Electronic HealthCare
Records System

Testing Laboratory

Hospital

User Interface

Donor Data
Collector

Figure 9: Decomposition of the Hospital into a UI and the Donor Data Collector

request to a component in the hospital called thedonor data collector(DDC). It is the
DDC that then sends the request for a patient ID to the EHCRS and then passes this on,
along with the doctor’s diagnosis request to the testing laboratory. This more detailed
model of the hospital is represented in Figure9, which illustrates the decomposition
of the hospital into two new primitive actors (the UI and the DDC within the dashed
ellipse denoting the hospital). It is important to note here that we have not introduced
users as actors in the system, as in those cases where all interaction between the system
and the user is done through a user interface, such interfaces can be seen as acting on
behalf of the user, translating the user inputs into inputs for the system and translating
the system outputs into a format the user can comprehend.

Having performed another, deeper level of analysis, steps 4 and 5 of PrIMe must
be executed to map out the interactions between these new actors and identify which
are knowledgeable about the information item for the new use case. In Figure10,
these steps have been completed and an abstract data graph for the new, more detailed
model of the OTM application is produced. Actor H in figure8 has been substituted
with actors UI and DDC, representing the User Interface and the Donor Data Collector,
respectively. Two new interactions have been also introduced to show how the blood
request (q1) goes from the User Interface to the Donor Data Collector, and how the
test result (r1) is sent back to the User Interface.

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

19

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems

Contract Number: 511085

EHCR

UI

TL

M3(pid)

M6(r1) M1(q1)

M2(q1)

EHCR = Electronic healthcare records
UI = User interface
TL = Testing laboratory
DDC = Donor data collector

= Message

= Actor

DDC

M5(r1) M4(pid)

Figure 10: The modified OTM example

Once knowledgeable actors have been found for every information item required
to answer all the use cases, decomposition can stop and Phase 3 of PrIMe can begin.

6 PrIMe Phase 3: Adapting the Application

Within Phase 3 of PrIMe, there are two main approaches for adapting an application.
The first of these involves modifying the application in order to help make explicit
those information items that are currently implicit. This approach may or may not be
necessary, depending on whether the earlier phases of PrIMe have successfully identi-
fied a knowledgeable actor for each information item. The second form of adaptation,
unlike the first, is compulsory, since it involves giving the application the necessary
functionality to record process documentation. In this section, both forms of adapta-
tion are described, beginning with the former.

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

20

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems

Contract Number: 511085

6.1 Application Adaptations to Expose Information Items

Section5.3listed two reasons why it may not be possible to associate an actor with an
information item: either because more decomposition is required or the information
item has not been made explicit in the interactions between the actors of the appli-
cation. To overcome the latter problem, a number of modifications to the application
must be made in order to expose these information items. PrIMe identifies two possible
modifications that can be made:

• modifications to actors and,

• modifications to actor interactions.

The first type of adaptation involves modifying the set of already identified actors,
or adding actors to this set. The second involves altering the interactions between
application actors and, thus, altering the data flow through the application. The first of
these is described in the following sections.

6.1.1 Actor Modification

An actor that does not have access to a given information item is termed anon-
knowledgeable actor. Note, that an actor may be non-knowledgeable actor for one
information item and knowledgeable for another, meaning that these terms apply to
actors in connection to individual information items. A non-knowledgeable actor may
be modified so that it gains access to an information item that is local to it, i.e. that does
not need to be sent to it by another actor (since if this were so, then the sending actor
would be the knowledgeable actor). Such cases may include situations in which infor-
mation outside of the system is important for answering provenance use cases, such a
data sensor taking measurements of the external environment. Here, an actor may be
modified by adding sensing functionality to it so that it can read the information from
the data sensor, and subsequently become knowledgeable about it.

In terms of the OTM example, it is possible to add extra functionality to the UI
actor to obtain more information from the doctors using it, thus making the UI actor
a knowledgeable actor for this new piece of information. For instance, designing the
interface to introduce a medical diagnosis in a way that doctors can select the data
sources for their decisions (e.g. ticking the boxes of the tests that were considered for
the diagnosis, that is, the tests that such a diagnosis is based on). In such cases, it is
recommended that HCI design principles be adhered to in order that the information
capture minimises intrusiveness [GSC+06].

6.1.2 Actor Introduction

A new actor can be introduced to the application to help in the answering of provenance
use cases. For example, a new actor could be a new user interface by which users

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

21

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems

Contract Number: 511085

EHCR

UI

TL

M3(pid)

M6(r1) M1(q1)

M2(q1)

EHCR = Electronic healthcare records
UI = User interface
TL = Testing laboratory
DDC = Donor data collector
T= Timer

= Message

= Actor

DDC

M5(r1) M4(pid)

T
M7(t_1)

M8(t_2)

Figure 11: Actor introduction

record what occurs in a physical world process. Taking the OTM example shown in
Figure 10, in which a use case asks how long it takes for a query entered into the
user interface by a doctor to reach the EHCRS. It is clear that this question cannot be
answered with the actors currently in the application, since none of the actors currently
have access to this information (according to our decomposition). To overcome this,
another actor can be added that receives a message from the UI stating when the request
from the doctor for a diagnosis is received, and a message from the EHCRS that states
the time it receives the request. This is shown in Figure11, which makes an addition
to the graph by adding the node labelled ‘T’ representing the new Timer actor. This
actor receives messages from the UI and the EHCRS; it can now be given provenance
functionality to record these messages as process documentation for later querying
(see Section6.3for how provenance functionality can be added to actors).

Many applications require information to be introduced from external sources.
Such information may only be known by non-application actors such as machines
or humans and, in order to make this information accessible for documentation, these
external, orhidden actorsmust somehow be represented. In many instances, this can
be achieved for human actors by introducing a user interface actor into the applica-
tion, which can be used by the human to record the information that is available. In

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

22

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems

Contract Number: 511085

Figure 12: Interaction modification

such cases, it is necessary to conduct an analysis on the information the human actor
generates and has access to in order to summarise in an appropriate manner the deriva-
tion of such information (which may come from many disparate sources, such as other
humans, decision processes carried out by the human or physical observation).

6.2 Interaction Modifications

Interactions between actors constitute the data flow in an application, and so can be
used to reveal processes. Once actors have been defined, it is possible to trace their
interactions to reveal execution that can then be documented. In some cases, different
adaptations may be needed to reveal more fully the processes within an application
and here they are outlined.

6.2.1 Interaction Extension and Introduction

An interaction in an application can be modified to exchange more information be-
tween a knowledgeable actor and a non-knowledgeable actor, allowing the latter to use
this information to make an information item explicit and thus making the actor knowl-
edgeable. This is shown in Figure12 (left) where the existing interaction between the
actors involves the passing of information item ‘a’. After the interaction extension
has been introduced, the interaction now involves the passing of a new piece of infor-
mation, ‘b’ along with the old piece of information. This kind of adaptation changes
the flow of information through the application, thus moving information to different
actors and can aid in making implicit information items that have no representation as
yet in an application, explicit.

Similarly, new interaction between actors can be introduced into the application
in which a knowledgeable actor sends the information item to another actor, which
is then knowledgeable. Figure12 (right) illustrates this. Here there is initially no
interaction between the two actors, but by introducing a new interaction between these

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

23

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems

Contract Number: 511085

two actors the receiving actor can now become knowledgeable about information item
‘b’, and may be able to use this information item in order to make explicit a required
information item.

6.2.2 Demarcating Processes

One special form of interaction modification involves the use of messagetracers.
Many provenance use cases require that certain application processes be identified.
A problem here is that if the application makes several distinct runs of the same pro-
cess, and process documentation is recorded for each run, then how are the p-assertions
about each process to be distinguished. For example, there may be more than one in-
stance of a given process. If the actors involved in these different instances record
process documentation, then how is it possible to ensure that documentation referring
to one process does not become associated with the other process? One simple way
to ensure this cannot happen is to modify the messages sent by each actor recording
process documentation so that whenever they send messages to other actors about a
given process they may be involved in, they include a unique tracer in that message.
This tracer can then be propagated throughout all the subsequent messages related to
that process sent out by the various actors involved. This achieves an effective demar-
cation of that process from others, by virtue of the unique tracer contained in all the
processes’ messages.

Figure13 illustrates this graphically for the OTM example. The boxes represent
the actors involved, and the left side of the figure represents one run of the donor
diagnosis process, while the right side of the figure represents another run. The marker
tr n represents tracers added to the messages being passed between the actors involved
in the process, wheren is replaced by a number representing the identifier of the tracer.
The tracers added to the process in the left hand side run can be distinguished from the
messages from the right hand side run. At a later time, a querier can now retrieve all
p-assertions relating to one particular run of the process by indicating which tracer it
is interested in.

6.3 Adding Provenance Functionality to Applications

The final step of PrIMe is to enable provenance functionality to the actors identified
for the given provenance use cases. This enables these actors to record process doc-
umentation. Such documentation is composed of p-assertions, which come in three
forms:

• Interaction p-assertions: assertions about the interactions an actor has with other
actors.

• Actor state p-assertions: assertions about an actor’s state.

• Relationship p-assertions: assertions about relationships between interactions.

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

24

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems

Contract Number: 511085

TL

DDC

UI

M1(r1,tr_1)

M2(r1,tr_1)

TL

DDC

UI

M1(r1,tr_2)

M2(r1,tr_2)

Tracers

Run 1 Run 2

UI = User interface
TL = Testing laboratory
DDC = Donor data collector

= Message

= Actor

= Run 1 tracer

= Run 2 tracer

tr_1

tr_2

Figure 13: Demarcating process using tracers

Each actor only records p-assertions that directly relate to its own interactions and
state, i.e. an actor cannot make assertions about other actor’s interactions and states.
For example an actor cannot record a p-assertion about the interactions another actor
may be involved in. This rule ensures that actors cannot make speculative p-assertions
and only record what they directly know, which can help to ensure that recorded pro-
cess documentation is ofhigh quality [GMM06]. In order to provide such process
documentation recording functionality aprovenance wrapperis applied, which imple-
ments theProvenance client side library.

6.3.1 A Provenance Wrapper

When it is clear than an actor has access to an information item necessary for answer-
ing use cases, functionality must be provided for the actor to record documentation
about it. To do this, PrIMe recommends using aprovenance wrapper. The wrapper
must be given access to some of the information that the actor has access to, e.g. in-

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

25

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems

Contract Number: 511085

Actor

Provenance wrapper

Actor state information

Outgoing application
message

Incoming application
message

Process documentation
record message

Figure 14: The provenance wrapper

coming and outgoing messages, possibly some state of the actor (if the actor must
record actor state p-assertions) and also relationships between the incoming messages
of an actor and outgoing messages, which it can then document and send to a prove-
nance store.

Figure14 shows a provenance wrapper diagrammatically. Incoming and outgoing
messages are intercepted by the wrapper, which also has access to relevant aspects of
the actor’s state. The wrapper then documents these pieces of information and sends a
record message containing the documentation to a provenance store.

6.3.2 Embedding The Provenance Client Side Library

The Provenance client side library is a collection of functions that allows designers
to provide the functionality of a Provenance wrapper. It comprises a number of high
level client classes that provide the necessary recording and querying interfaces that
enable designers to implement the necessary provenance functionality. Other docu-
ments discuss this library in detail (i.e. [JGM+06]), and interested readers are directed
there.

In order to determine which actors require provenance functionality, two simple
heuristics should be observed.

• For any important piece of data there should be a knowledgeable actor capable
of recording it, and

• for any interaction message there should be at least one actor recording its view
of such an interaction

Once the necessary functionality has been provided to the actors in an application,
they can then record the necessary process documentation. In the OTM example, sev-
eral actors to record process documentation are identified. This is shown in Figure15,
where the shaded nodes represent those actors that record process documentation.

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

26

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems

Contract Number: 511085

EHCR

UI

TL

M3(pid)

M6(r1) M1(q1)

M2(q1)

EHCR = Electronic healthcare records
UI = User interface
TL = Testing laboratory
DDC = Donor data collector
T= Timer

= Message

= Actor

DDC

M5(r1) M4(pid)

T

M7(t_1)

M8(t_2)

= Record message

Figure 15: The actors identified for provenance functionality

Once actors have been identified and have had functionality to record process docu-
mentation added then one question remains about what to do with such documentation.
As mentioned briefly earlier, process documentation is stored in provenance stores.
These are repositories for process documentation that can later be queried in order to
answer provenance use case questions. Certain management functionality may also be
available for these stores such as indexing, deletion and so on. In the OTM example,
actors may record all their process documentation into one central repository or each
actor may be associated to a separate store. Such configuration considerations must be
decided by the application developers to suit requirements on distribution such as the
need to provide redundancy, or the need to distribute stores across different systems or
subsystems of an application. We address these issues in Section8.

Examining Figure15, the kinds of process documentation being recorded can be
explored. The figure shows that the donor data collector (DDC) receives a message
(M1) from a doctor’s user interface (UI), which contains a query about a patients blood
(q1). Receiving this message, the DDC sends a message (M2) to the electronic health
care records center (EHCR), which contains the query (q1). Both the UI and the DDC
document their roles in this process. Thus, the UI sends aninteraction p-assertionto
a provenance store (not shown) stating that it has sent a message (M1) to the DDC

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

27

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems

Contract Number: 511085

containing a query about a patient’s blood (the identity of the patient may need to be
kept private and so this part of the information contained in the p-assertion may be
transformed in some manner to effect this; see Section8.1.2for a discussion on the
different ways this might be accomplished. The UI also records information about the
user that is currently logged into the interface as anactor state p-assertion, to be able
to identify who is the user creating the request.

Upon receiving message M1 from the UI, the DDC itself records an interaction p-
assertion stating it has received a message from the UI about the patient. The DDC may
then record arelationship p-assertionstating that the message it sends to the EHCR
requesting the patient’s identifier was itselfcausedby the receipt of the message from
the UI. Upon receiving the reply message from the EHCR (M3) containing the patient
identifier (pid), the DDC then sends a request (M4) to the testing laboratory (TL)
to perform an analysis of the blood of the patient identified by the patient identifier.
This in turn can be documented as a relationship p-assertion, such that the sending
of this message, although ultimately caused by the receipt of M1,dependedupon the
receipt of M3 containing the patient’s identifier. Once this is done, the TL may record
interaction p-assertions, relationship p-assertions and actor state p-assertions, which
state respectively that it had received a message from the DDC to perform a test, that
the message it sends back in response was caused by this message, and finally that
the number of such tests it has performed has increased by 1. A further relationship
p-assertion may state that this change in state was caused by the receipt of M4.

7 A Provenance-Aware Aerospace Simulation Applica-
tion

In order to demonstrate the generalised nature of PrIMe, this section presents another
application that differs significantly from the OTM example used so far throughout
the document to illustrate the use of PrIMe. The application used here as an example
is part of the SikMa project run at the German Aerospace Center in Germany. The
particular application that forms the focus of the example is an Aerospace Engineering
application (AEA), which investigates numerical simulation of various elastic proper-
ties of fighter aircraft [KS06].

The application is run as a workflow using the TENT environment to link up vari-
ous parts of the application. Various simulations can be carried out to test the plane’s
aerodynamics, flight mechanics and aero-elasticity under numerous different parame-
ter configurations.

Developers of the system realized that by making the application provenance-
aware, they could easily re-run previous simulations with different configuration pa-
rameters, understand more clearly why a particular simulation run produced the results
it did and answer several other interesting questions about the provenance of the data
that the application produces. To make the application provenance-aware the develop-

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

28

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems

Contract Number: 511085

ers went through a similar process described above for the OTM example, using PrIMe
to identify provenance use case questions, identifying actors and their interactions and
locating the required information items to answer the use case questions.

7.1 The AEA Application

As mentioned, the AEA runs in TENT — an application environment that manages
and runs simulation applications. TENT comprises a GUI front end, a container hold-
ing and controlling the workflow, several factory components and data and naming
servers. The core simulation components are three modules that perform simulations
on airplane flight manoeuvres under different environmental and initial setup condi-
tions. Each of the three modules perform different aspects of a simulation where these
are:

• Aerodynamics

• Aeroelasticity

• Flight mechanics

To complete a simulation, very large amounts of calculations must be performed
and the results of each of the specialist simulation components above feed into the cal-
culations of the others. Many different initial setup and environmental configurations
can be tested and the amount of data produced by one simulation is very large.

Making this system provenance-aware helps in the analysis of the results of the
application and can inform the configuration of further simulations.

7.2 Provenance Use Case Questions

When developing the provenance-awareness of the AEA application the steps of PrIMe
are followed. Initially, therefore, a set of potential provenance use-case questions were
identified, as shown below.

• Given some set of simulation results, what has been the simulation case?

• Given some control parameter, in what simulation has it been used?

• What monitoring data has been recorded in a simulation with parameter == X?

• What simulations have been run using a given numeric/model configuration?

• Given a numeric/model configuration, were has it been simulated?

• Given two or more simulations with the same input, what is the result and the
difference in provenance?

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

29

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems

Contract Number: 511085

Figure 16: Actor interaction in the AEA Application

7.3 Application Decomposition

It was clear from the developers of the AEA that each of the major components of the
application should be identified as actors, the full list is as follows:

• TENT GUI (the only actor accessed by the user).

• Action Component (process control actor for simulation).

• Coupling manager

• Simula (flight mechanics).

• TAU (computational fluid dynamics).

Given this decomposition, the next task is to map out the interactions between the
identified actors.

7.4 Interactions between the AEA Actors

Each run of a simulation in the AEA application follows a well define workflow, this
allowed the developers to easily map out the interactions between each of the applica-
tion actors as shown in Figure16.

7.5 Provenance Store Deployment

After an analysis, the developers of the AEA application determined that only one
provenance store was necessary for the application that all identified actors were to
record process documentation to.

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

30

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems

Contract Number: 511085

8 PrIMe Extensions

The PrIMe methodology focuses mainly on the issues surrounding the setting up of
applications in order to enable the recording of process documentation that can then
later be used to answer provenance queries. Other, less functional issues can also be
identified however. In particular, the introduction of provenance capabilities such as
the recording of process documentation and querying the same to answer provenance
queries poses several questions about security. Similarly, issues arise when prove-
nance capabilities such as the above are incorporated into distributed systems. In this
section, these issues are discussed, not as exhaustively as the issues surrounding the
recording of process documentation was discussed, since these issues are somewhat
less central but, at the same time, no less important in applications that must address
these concerns.

8.1 Security

Security is a central concern in most real world applications. Adapting applications
to make them provenance-aware brings a number of interesting issues that must be
dealt with if security concerns are to be met. In the general case, however, securing
a provenance-aware application can follow the same procedures used when securing
a database. In effect, the storage of process documentation in a provenance store and
their retrieval through queries can be secured using the same kind of access control
mechanisms that are used in many back-end database systems.

Aside from the above general considerations, a number of security issues also arise
that are unique to the storage and retrieval of process documentation. The first of these
concerns controlling the ability of an actor to answer provenance queries using process
documentation that it has gathered in answering other queries. The second relates to
the storage of restricted data within process documentation. The next section describes
the former of these issues and the one after describes the latter.

8.1.1 Reconstructing Process Documentation to Answer Restricted Provenance
Queries

A querier, obtaining process documentation for the purpose of answering a provenance
query on the behalf of a user, should only do this if the user has access rights to the
answer. However, if the querier returns the process documentation to the user for a
number of different queries, all of which the user has access to, there is the possibility
that the user can recombine process documentation gathered across different queries
to answer other queries that it does not have rights to access. This problem is difficult
to solve but two approaches can be adopted.

The first approach uses cryptographic protocols that allow access to information
within a collection of process documentation only if the querier has the right to access
information related to that specific collection. The protocol prevents the querier from

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

31

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems

Contract Number: 511085

accessing information within individual p-assertions making up the process documen-
tation in order to prevent the querier from accumulating information and combining it
in new, unexpected ways to get new types of information.

The second approach uses a front layer that accepts provenance queries and returns
results directly rather than in the form of process documentation. Then there can be no
worry about queriers accessing collections of process documentation that will allow
them to have information. The disadvantage to this approach is that it limits queries
over process documentation to a pre-defined, limited set.

The approach used must depend on considerations made by the security manager of
the application who must decide which is appropriate given application requirements.

8.1.2 Documentation Styles

When recording documentation about processes, certain pieces of application data will
become associated to it that will require access control. There may be, however, re-
strictions placed on the access to such data. Consequently action must be taken to en-
sure that information contained within process documentation is adequately protected
from a security standpoint. To effect this, developers can utilise a set of transforma-
tions that can be made to process documentation that can either restrict access to or
obfuscate the associated data contained within process documentation. These trans-
formations ordocumentation stylesare used to transform certain parts of individual
p-assertions to achieve a number of different aims. Those that are relevant for security
are as follows:

• Reference-Digest documentation styletransforms part of a p-assertion creating
a reference to the original data stored elsewhere along with a digest. Secure
access to the original data is controlled by the access mechanisms and access
policies of the data container in a way that only authorized users can access the
original data. A querying actor (with authorization to access the original data)
can compute and compare the digest in the p-assertion with that created with the
original data to ensure the data’s integrity.

• In the OTM example used above, patient identifiers are a restricted piece of
information, and so any process documentation that contains these identifiers
must be transformed to protect the privacy of patients. In such cases as this,
the anonymous documentation stylecan be used. This style replaces restricted
information with an anonymised identifier.

• Security signing documentation styleallows for parts of a p-assertion to be
signed by a recording actor in order that it can be associated to a specific ac-
tor and thus ensures accountability.

• Security encryption documentationstyle transforms a message by encrypting
some of its content. This enables the p-assertion to be accessible to only those
actors that have explicit rights to decrypt the encrypted data.

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

32

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems

Contract Number: 511085

8.2 Distributed Provenance-Aware Applications

So far, PrIMe describes a structured process for making applications provenance-
aware. This process focuses on identifying how to answer provenance use case ques-
tions and enabling applications to capture relevant process documentation so that these
questions can be answered. After capture, process documentation must be stored some-
where so that later queries can access this information; this is where the concept of a
provenance store becomes relevant. However, in many instances an application may
require several provenance stores, and this section presents guidelines for using a set
of recording patternsthat identify several different ways in which process documen-
tation can be collected. Furthermore, it explains how process documentation stored in
several different provenance stores can be linked together to aid queries.

In distributed scenarios it is important to ensure that solutions are scalable. Archi-
tectural scalability addresses how application components can be organised and used
to cater for increasingly large loads in terms of such measures as computation, band-
width and storage. The patterns presented in the next sections have been developed
taking into consideration scalability issues.

8.2.1 Recording Patterns

A pattern [CIS77, Ale79, GRRJ95] describes a solution to a common design problem;
the solution described must strike a balance between being concrete enough to be
applicable, and abstract enough so that it can be applied to a range of similar problem
situations. In the context of PrIMe, patterns provide solutions that developers can use
to integrate p-assertion recording into their applications.

8.2.2 SeparateStore Pattern

This first pattern deals with situations where a recording actor cannot store itself the
process documentation it generates. Reasons why this might occur are that the quan-
tity of process documentation recorded is too high and a separate dedicated storage
location is required, or that the process documentation must remain available after the
lifetime of the actor. In such cases, it is necessary to introduce a dedicated prove-
nance store that acts as a repository for process documentation. Figure17 shows the
SeparateStore pattern graphically.

Such a store should be available in a long-term manner in comparison to the ap-
plication actors that submit process documentation to it. This property allows process
documentation recorded by an application actor to be accessed after the application
actor has become unavailable.

8.2.3 ContextPassing Pattern

Actors record process documentation about the messages they send to and receive from
one another and each actor may store its process documentation in separate provenance

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

33

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems

Contract Number: 511085

Actor

Provenance
Store

Record
P-Assertions

Figure 17: SeparateStore Pattern Diagram

stores. Later, queriers may try to obtain process documentation about an interaction
that may be stored in separate stores. In such cases, a difficulty is in matching the
documentation stored in one store with documentation stored in others. To overcome
this developers can adopt the ContextPassingPattern. In this pattern, when an actor
sends a message to another actor, it includes information that provides acontextto
the interaction such as an interaction identifier (to identify a single interaction) or a
tracer (to identify interaction sequences, as seen in section6.2.2). These identifiers and
tracers can then be placed in all the process documentation generated by both actors
that relates to these interactions. By doing this, queries can find related information
across separate provenance stores.

Figure18 shows the ContextPassing pattern graphically. In the figure are two ac-
tors, one a client and one a service, each of which are recording to separate provenance
stores. When the client sends a message to the service, it also includes context infor-
mation. The client records process documentation stating that it sent a message to the
service and in the process documentation it includes the context information that it
send to the service within its message. Upon receipt of the message the service then
extracts the context information and puts this into the process documentation that it
records about this information into its own separate provenance store. Later, a querier
seeking the process documentation about this interaction must extract it from both
provenance stores, and to do this it searches for the information within the context
information such as the interaction identifier or the tracer.

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

34

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems

Contract Number: 511085

Client Service

Provenance
Store

Provenance
Store

Record
P-Assertions Record

P-Assertions

Context

Figure 18: ContextPassing Pattern Diagram

8.2.4 SharedStore Pattern

In many cases, the need for separate provenance stores may not be great and developers
should be able to allow actors to record to the same provenance store using the Shared-
Store pattern. This pattern alleviates the need to traverse separate stores to link up
process documentation, which may prove too time consuming for some applications.
More than one actor recording to the same provenance store is in fact a combination of
both the SeparateStore and ContextPassing patterns. Each actor records to one prove-
nance store as in the SeparateStore pattern and each also records context information
so that queriers can link up process documentation about the same interaction recorded
by both actors. This context information is still necessary even if both actors are using
the same provenance store since the documentation must still be associated.

Figure19 displays the SharedStore pattern. Each actor records to the same prove-
nance store including in their record messages the necessary context information.
SharedStore emphasises that actors can record their p-assertions in any store they
choose and provenance stores may hold p-assertions from multiple actors. It does
not prescribe how many stores there should be and which provenance stores should be
shared. It is left to the developer applying the pattern. SharedStore allows developers
to determine the distribution of provenance stores that fits their application.

8.2.5 Combining Patterns

By combining the above patterns in different ways, application developers can tai-
lor the recording of provenance to the needs of the application. Figure20 shows

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

35

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems

Contract Number: 511085

Client Service

Provenance
Store

Record
P-Assertions

Record
P-Assertions

Figure 19: SharedStore Pattern Diagram

an example in which each of the above patters are used and combined to produce a
provenance-aware application that can flexibly record process documentation into sev-
eral provenance stores. In the figure, three actors are shown: a client, a service and a
workflow enactment engine. Each of these actors records process documentation. The
client and the workflow enactment use the SeparateStore pattern (provenance stores
1 and 2) and the ContextPassing pattern to record into provenance stores. The work-
flow enactment engine and the service also record into a provenance store using the
SharedStore and ContextPassing patterns into provenance store 3. it is clear, from the
figure that many other different combinations are possible and the existence of the
patterns does not place any restrictions on how they might be combined, since this
is dependent upon application requirements and, thus, is left to the designer to make
deployment judgements.

9 Related Work

PrIMe is the first methodology to specifically target the development of provenance-
aware applications. As such, there is nothing else to compare it to directly. However,
there are many similarities that PrIMe shares with object-oriented (OO) (e.g. [Ram91]
and agent-oriented (AO) methodologies (e.g. [WJK00]. Like both OO and AO ap-
proaches, PrIMe is a top down decomposition approach in which the developer must
identify those actors (objects in OO, agents and roles in AO) required to record process
documentation to answer provenance queries. However, whereas OO approaches go

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

36

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems

Contract Number: 511085

Client
Initiator

Workflow
Enactment

Engine

Service 1

Provenance
Store 1

Provenance
Store 2

Provenance
Store 3

Context
1

Context
2

Context
3

Context
4

Figure 20: A system in which SeparateStore, ContextPassing and SharedStore have
been applied multiple times

on to identify the functionality of the objects they identify and AO approaches identify
the roles and tasks that each agent must execute, PrIMe does not need to go this far,
since it is assumed that the application has already been specified.

Similar to AO approaches such as GAIA [WJK00], PrIMe also maps out inter-
actions between identified actors, however, unlike AO approaches, the emphasis is on
where the messages are going and what their contents are so that it becomes possible to
locate information items within the application. PrIMe also borrows the concept of use
cases from the UML [HW98] modelling language, but specifies these to be specifically
provenance-based use cases.

By combining ideas from these related but distinct methodologies and modelling
languages, but focusing on the issues surrounding provenance, PrIMe represents a
structured way for application developers to modify their applications borrowing, where
appropriate, useful and widely used conventions drawn from these other methodologi-
cal approaches. Such an approach has the advantage that users of the methodology can
easily map what they already know from these other existing methodologies onto the
process of making applications provenance-aware. This ease of use facilitates the de-
velopment of provenance aware applications and increases the likelihood of adoption.

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

37

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems

Contract Number: 511085

10 Conclusion

This document describes the PrIMe methodology. It describes in detail the necessary
steps to take in making an application provenance-aware, where these steps are split
into three distinct phases comprising:

• Identification of provenance use cases and the kinds of information necessary
for them to be answered.

• Decomposition of applications into actors and the mapping of the data flow of
applications into message passing between the identified actors. This phase en-
ables those actors that have access to the previously identified information items
to be discovered.

• Adaptations to applications to enable the discovery or creation of actors that have
access to information items, and adaptations to provide the necessary prove-
nance functionality required to enable the recording of process documentation.

PrIMe also discusses several issues that relate to security and distribution of prove-
nance systems, providing guidance for securing access to retrieved process documen-
tation and ways to transform such documentation to meet specific security concerns.
In terms of distribution, PrIMe offers several recording patterns that allow applica-
tion developers to distribute the recording of process documentation across disparate
provenance stores.

The PrIMe methodology provides a step-by-step guide to making applications
provenance-aware, and is vital to the development of provenance-aware applications.
Application developers and users will only consider making their applications provenance-
aware if they can see a clear and easy way to modify their applications to provide this
functionality. Any development is a trade off between the effort and resources required
to effect the development and the gains to be made by doing so. The availability of
PrIMe for designers and users of applications helps to ensure that the effort required
to make applications provenance aware is minimised.

References

[Ale79] C. Alexander.The Timeless Way of Building. Oxford University Press,
1979.

[AVSK+06] S. Álvarez, J. V́azquez-Salceda, T. Kifor, L.Z. Varga, and S. Willmott.
Applying provenance in distributed organ transplant management. In
LNCS: Proceedings of the International Provenance and Annotation
Workshop (IPAW’06), Chicago, Illinois, May 2006. Springer-Verlag.

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

38

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems

Contract Number: 511085

[CIS77] C.Alexander, S. Ishikawa, and M. Silverstein.A Pattern Language. Ox-
ford University Press, 1977.

[GMM06] P. Groth, S. Miles, and S. Munroe. Principles of high quality documen-
tation for provenance: A philosophical discussion. InIn Proceedings
of Third International Provenance and Annotation Workshop, 2006. in
press.

[GRRJ95] E. Gamma, R.Helm, R.Johnson, and J.Vlissides.Design Patterns.
Addison-Wesley Professional, 1995.

[GSC+06] A. Gibson, R. Stevens, R. Cooke, S. Brostoff, and m. c. schraefel. myTea:
Connecting the web to digital science on the desktop. Edinburgh, 2006.
World Wide Web Conference. submitted.

[HW98] P. Harman and M. Watson.Understanding UML, The Developers Guide.
Morgan Kaufmann, 1998.

[JGM+06] S. Jiang, P. Groth, S. Miles, V. Tan, S. Munroe, S. Tsasakou, and
L. Moreau. Client side library design and implementation. Technical
report, Electronics and Computer Science, University of Southampton,
2006.

[KS06] G.K. Kloss and A. Schreiber. Provenance implementation in a scien-
tific simulation environment. InLNCS: Proceedings of the International
Provenance and Annotation Workshop (IPAW’06), Chicago, Illinois, May
2006. Springer-Verlag.

[Ram91] J. Rambaugh.Object oriented Modeling and Design. Prentice Hall, 1991.

[WJK00] M. Wooldridge, N. R. Jennings, and D. Kinny. The GAIA methodology
for agent-oriented analysis and design.Journal of Autonomous Agents
and Multi-Agent Systems, 3(3):285–312, 2000.

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

39

	Introduction
	Introducing PrIMe
	Initial Assumptions
	Structuring PrIMe

	The Organ Transplant Management Example Application
	Patient Organ Testing

	PrIMe Phase 1: Use Case Capture and Identifying Use Case Answers
	Step 1.1: Provenance Use Cases
	Eliciting Use Cases
	Defining provenance
	Examples of provenance use case questions
	Expressing Provenance Use Cases

	Step 1.2: Information items

	PrIMe Phase 2: Actor Based Decomposition
	Step 2.1: Identifying Actors
	Actor Identification Heuristics

	Step 2.2: Actor Interactions
	Interactions in the OTM Example
	Constructing Abstract Data Graphs of Application Interactions

	Step 2.3: Knowledgeable Actors
	Step 2.3: Identifying Knowledgeable Actors
	Knowledgeable Actors in the OTM Example

	PrIMe Phase 3: Adapting the Application
	Application Adaptations to Expose Information Items
	Actor Modification
	Actor Introduction

	Interaction Modifications
	Interaction Extension and Introduction
	Demarcating Processes

	Adding Provenance Functionality to Applications
	A Provenance Wrapper
	Embedding The Provenance Client Side Library

	A Provenance-Aware Aerospace Simulation Application
	The AEA Application
	Provenance Use Case Questions
	Application Decomposition
	Interactions between the AEA Actors
	Provenance Store Deployment

	PrIMe Extensions
	Security
	Reconstructing Process Documentation to Answer Restricted Provenance Queries
	Documentation Styles

	Distributed Provenance-Aware Applications
	Recording Patterns
	SeparateStore Pattern
	ContextPassing Pattern
	SharedStore Pattern
	Combining Patterns

	Related Work
	Conclusion

