
ws-prov-overview

Authors:
Steve Munroe, U. Southampton

Paul Groth, U. Southampton
Sheng Jiang, U. Southampton
Simon Miles, U. Southampton
Victor Tan, U. Southampton

John Ibbotson, IBM
Luc Moreau, U. Southampton

November 23, 2006

Overview of the Provenance
Specification Effort

Abstract

This document provides an overview of a model of provenance along with a
description of a family of specification documents that support the model. Im-
portant aspects of the model are specified within these documents in a detailed
and clear manner that provides an unambiguous reference for developers.

1

Contents

1 Introduction 3

2 Overview of the Provenance Model 4
2.1 Context: Service Oriented Architectures 4
2.2 Representation of Provenance . 6
2.3 Provenance Lifecycle . 10

3 The Family of Specification Documents 11
3.1 Support Documents . 11
3.2 Core Specifications . 11
3.3 Generic Profiles . 12
3.4 Technology Bindings . 13

4 Conclusion 13

2

1 Introduction

The importance of understanding the process by which a result was generated is
fundamental to many real life applications (science, engineering, medicine, supply
management, etc). Without such information, users cannot reproduce, analyse
or validate processes or experiments. Provenance is therefore important to enable
users, scientists and engineers to trace how a particular result has been arrived
at.

Two common sense definitions consider provenance to be the derivation from
a particular source to a specific state of an item. They are taken from the Oxford
English Dictionary, and the Merriam-Webster Online Dictionary respectively and
are presented below.

Definition 1 (OED Provenance Definition) (i) the fact of coming from some
particular source or quarter; origin, derivation. (ii) the history or pedigree of a
work of art, manuscript, rare book, etc.; concr., a record of the ultimate derivation
and passage of an item through its various owners. 2

Definition 2 (MWO Provenance Definition) (i) the origin, source; (ii) the
history of ownership of a valued object or work of art or literature. 2

Both definitions are compatible since they regard provenance as the deriva-
tion from a particular source to a specific state of an item. The nature of the
derivation, or history, may take different forms, or may emphasise different prop-
erties according to interest. For instance, for a piece of art, provenance usually
identifies its chain of ownership. Alternatively, the actual state of a painting may
be understood better by studying the different restorations it underwent.

From Definitions 1 and 2, we can also distinguish two different understandings
of provenance: first, as a concept , it denotes the source or derivation of an object;
second, more concretely , it is used to refer to a record of such a derivation. We
have identified a process in a service oriented architecture (soa) as the execution
of a workflow, which we broadly see as a specification of a given service composi-
tion. Hence, by having a description of the process that resulted in a data item,
we can explain how such a data item has been obtained. Inspired by previous
work [GLM04a, GLM04b, GLM04b, MGBM05, SM03], we propose the following
definition of provenance, which makes explicit the notion of process.

Definition 3 (Provenance of a piece of data) The provenance of a piece of
data is the process that led to that piece of data. 2

In relation to the two common sense definitions of provenance, we note that
Definition 3 is concerned with provenance as a concept. Ultimately, our aim
is to specify a computer-based representation of provenance that allows us to
perform useful analysis and reasoning to support a wide variety of applications.

3

Consequently, the provenance of a piece of data is to be represented in a computer
system by some suitable documentation of the process that led to the data.

While specific applications determine the actual form that such documenta-
tion should take, we can identify several of its general properties. Documentation
can be complete or partial (for instance, when the computation has not yet termi-
nated); it can be accurate or inaccurate; it can present conflicting or consensual
views of the actors involved; it can be descriptive or conceptual; and it can ab-
stract more or less from reality.

In this document, we introduce a framework for computational provenance;
a set of nine technical specifications that define the normative description of
the provenance framework in terms of a soa model and related XML defini-
tions. These technical specifications, summarised in Figure 1, define the means
by which:

• a computational representation of process documentation can be realised;

• process documentation can be recorded;

• process documentation can be queried;

• the recording and querying of process documentation can be made secure;

• process documentation can be recorded in distributed systems.

The family of documents comprise a set of 2 support documents, four docu-
ments that introduce and specify the core framework, four generic profiles that
extend the basic framework and one example of a technology specific binding.

2 Overview of the Provenance Model

In this section we present a intuitive, non-technical view of provenance and the
provenance model. In it we provide some context to the model before describing
definitions of the different kinds of process documentation that go to form the
basis of the model.

2.1 Context: Service Oriented Architectures

Given that our work predominantly focuses on Grid and Web Services, we sum-
marise some relevant terminology in this section. We take the broad view that
open, large-scale systems are typically designed using a service-oriented approach
[MH05], usually referred to as service-oriented architectural style [Bur00]. As far
as services are concerned, we do not intend to restrict ourselves to a specific tech-
nology; instead, we take services to be components that take inputs and produce
outputs. Specifically, the following are all considered as “services” because they

4

Figure 1: The family of specification documents

all take some inputs and produce some outputs: Web Service, CORBA or RMI
objects, command line program.

Such services are brought together to solve a given problem typically via
a workflow that specifies their composition. With such a broad definition, we
see that WS-BPEL, WSFL, VDL, Dagman’s DAGs or Gaudi are all workflow
frameworks capable of expressing the composition of services. Likewise, a script
calling several command line commands is also regarded as a workflow.

In this abstract view, invocations of services take place using messages that
are constructed in accordance with service interface specifications. Such mes-
sages take the form of soap messages for Web services. In the case of command
line executables, we do not have explicit messages; instead, they take some ex-
plicit arguments potentially representing both inputs and outputs. We also see a
memory shared by two threads as a way of implementing such message-passing
mechanism; the message itself is the information stored in the shared memory.

5

In a service-oriented architecture (soa), clients typically invoke services, which
may themselves act as clients for other services; hence, we use the term actor to
denote either a client or a service in a soa. An actor that sends a message is
referred to as a sender , whereas an actor that receives a message is known as a
receiver . One message exchanged between a sender and a receiver is termed an
interaction. Hence, a given interaction comprises two views: the sending of the
message and its receiving. The running of an application programmed in a soa
style requires the execution of the workflow, which characterises composition of
the services that belong to the application. Hence, the execution of a workflow is
referred to as a process . Our definition of process, like the Unix notion of process,
refers to an instance of a running program (workflow here). It has a beginning,
and, if it is finite, it has an end.

At this stage of the specification, we do not make the distinction between
resource and service [SRB06] since they are defined in the context of the specific
Web Services technology. Our broad view of message allows us to include in a
message the necessary reference to resources, as required by WSRF.

2.2 Representation of Provenance

In this section, we introduce the key elements that form the representation of
provenance in a soa.

In the previous section, we stated that provenance of a data item is to be
represented in a computer system by some suitable documentation of the process
that led to it. To this end, we distinguish a specific piece of information doc-
umenting some step of a process from the whole documentation of the process.
The former shall be referred to as a p-assertion, which we define as follows.

Definition 4 (p-assertion) A p-assertion is an assertion that is made by an
actor and pertains to a process. 2

From this definition, we derive the notion of process documentation.

Definition 5 (Process Documentation) The documentation of a process con-
sists of a set of p-assertions made by the actors involved in the process. 2

Should the actors involved in the process be the only one to document it? The
answer is yes. Indeed, if actors are not involved in the process, then no message
has been sent to them. Hence, they cannot be aware of the process, and therefore
could not possibly provide any documentation relevant to this specific execution.

We note that a given p-assertion may belong to the provenance representation
of multiple pieces of data. When a p-assertion is created (and later recorded), it
documents a step of a process in progress, which ultimately will lead to a piece
of data. At the time of the p-assertion creation, we may not know the piece of
data that will be produced; however, the p-assertion being recorded constitutes

6

an element of the provenance representation of the data. For instance, when
some quality wood is being transported in the Amazon forest, one may not know
that it will be used for creating the frame for a future famous painting, still to
be painted and framed.

Among all the p-assertions, we now introduce two kinds of p-assertions that
allow us to capture an explicit description of the flow of data in a process: inter-
action p-assertions and relationship p-assertions .

Computer science has a long tradition of focusing on communications and
interactions as a central concept used in the study and modelling of complex sys-
tems, e.g., programming language semantics, process algebra and more recently
in biological systems models. In the context of soas, interactions consist of the
messages exchanged between actors. By capturing all the interactions that take
place between actors involved in the computation of some data, one can replay
an execution, analyse it, verify its validity or compare it with another execution.
Describing such interactions is thus core to the documentation of process.

Therefore, the documentation of a process includes a set of interaction p-
assertions , each describing an interaction between actors involved in the process.

Definition 6 (Interaction p-assertion) An interaction p-assertion is an as-
sertion of the contents of a message by an actor that has sent or received that
message; the message must include information that allows it to be identified
uniquely. 2

We do not prescribe the nature of the assertion of the message contents; instead,
such decisions are left to the specific application. For instance, an interaction
p-assertion could simply contain a copy of the message exchanged between two
actors. Alternatively, if some data contained in the message is regarded as confi-
dential by the actor or too large to be manipulated, the assertion may consist of
the message in which the data concerned has been replaced by some other data
or a pointer.

In a grid application based on command line executables, an interaction p-
assertion can include the executable fully qualified name, its inputs and its out-
puts, whereas in a Web Services based approach, interactions documentation can
include input and output soap messages, and a reference to the service, port
and operation being invoked. In the latter case, we note that an interaction
p-assertion potentially includes not only the soap message body, but also its
envelope, containing valuable information such as security, addressing, resource
or coordination contexts.

A crucial element of an interaction p-assertion is information to identify a
message uniquely. Such information allows us to establish a flow of data between
actors. Indeed, let us consider two interaction p-assertions: actor A making an
assertion αA that it sent actor B a message with identity i, and actor B making
an assertion αB that it received from A a message with the same identity i. Such

7

a pair of interaction p-assertions αA, αB is said to be matching ; it identifies a flow
of data from actor A to B.

Actors may directly return outputs for the inputs they receive; alternatively,
they may invoke other actors in order to obtain intermediate results that help
them return their outputs. In both circumstances, the relationship between the
outputs and the inputs of the actor is not explicit in the messages themselves,
and can only be understood by an analysis of the actor’s business logic, which is
private to the actor.

We do not expect the source code of the actor to be made available, because
it may not be feasible, or the code may not be at a suitable level of abstraction.
Instead, in order to permit some understanding of the flow of data, an actor may
decide to “volunteer” some information that is only available to it. An actor
may provide relationship p-assertions that identify the relationship between its
outputs (whether as returned result or invocation message to other actors) and
its inputs (or intermediary results received from invoked actors).

Definition 7 (Relationship p-assertion) A relationship p-assertion is an as-
sertion by an actor that the sending of a message would not be occurring or a
data item it is sending would not be as it is (the effect), if it had not received
other messages or data items had not been as they are (the causes), and that this
relationship is due to its own action, expressible as the function applied to the
causes to produce the effect. 2

While matching interaction p-assertions denote a flow of data between actors,
relationships explain how data flows inside actors. Relationship p-assertions are
directional since they explain how some data was computed from other data.

Figure 2 illustrates two actors. The first is a primitive actor, i.e., one that
receives a message and produces a result, but does not invoke subsequent actors,
or alternatively, an actor that does not make assertions of the invocations it
makes of subsequent actors (say, for privacy reasons). In order to contribute
some information about its internal flow of information, it can indicate that its
output data (in the output message) is a function of the input data (contained
in the input message). The second actor of Figure 2 is not primitive, and makes
assertions of the contents of the messages it sends to and receives from another
actor that it invokes. Like the first actor, it may indicate that its output is a
function of its input; alternatively, it may explain how the data contained in the
secondary invocation message and its result relate to the input and output.

Figure 2 displays the ideal case of purely functional actors, which do not
maintain a persistent state across invocations. The same approach generalises
to stateful actors: the data in an output message can be a function of the data
received during a previous interaction and kept in a persistent store.

On the right-hand side of Figure 2, we see a symbolic representation of the
p-assertions generated by the actors. Each p-assertion has a type and a content,
and is asserted in the context of an interaction identified by a key.

8

f

M1

M2

f

M1

M2

f

M1

M2

M3

M4
f2

f1

d1

d2

d3

d4

d1

d2

interaction key p-assertion type p-assertion content
1 interaction M1
2 interaction M2
2 relationship d2=f(d1)

interaction key p-assertion type p-assertion content
1 interaction M1
2 interaction M2
3 interaction M3
4 interaction M4
2 relationship d2=f(d1)
3 relationship d3=f1(d1)
2 relationship d2=f2(d4,d1)

Figure 2: Data flow assertions by opaque and transparent actors

Hence, interaction p-assertions denote data flows between actors, whereas re-
lationship p-assertions denote data flows within actors. Such data flows are core
elements to reconstitute functional data dependencies in execution. In the most
general case, such data flows constitute a directed acyclic graph (DAG). From a
specific data item, the data flow DAG indicates where and how the data item is
used; vice versa, following relationships in reverse helps us identify how a data
item was produced. The data flow DAG is thus a core element of provenance
representation, but it is not the only one; other p-assertions can provide further
information about internal states of actors during execution, as we now explain.

Interaction and relationship p-assertions capture the flow of data in a process.
In some circumstances, however, actors’ internal states may also be necessary to
understand the functionality, performance or accuracy of actors, and therefore the
nature of the result they compute. Hence, we introduce the notion of an actor
state p-assertion as the documentation provided by an actor about its internal
state in the context of a specific interaction.

Definition 8 (Actor State p-assertion) An actor state p-assertion is an as-
sertion, by an actor, of data received from an (unspecified) internal component of
the actor just before, during or just after a message is sent or received. It can,
therefore, be viewed as documenting part of the state of the actor at an instant,
and may be the cause, but not effect, of other events in a process. 2

Actor state p-assertions can be extremely varied: they may include the function
the actor performs, the workflow that is being executed, the amount of disk and
CPU a service used in a computation, the floating point precision of the results
it produced, or application-specific state descriptions.

9

In summary, p-assertions can be of three disjoint kinds: interaction p-assertions,
relationship p-assertions and actor state p-assertions. We note that p-assertions
are independent of the actual service technology used to implement applications.

2.3 Provenance Lifecycle

In the previous section, we characterised the syntactic nature of p-assertions,
in the form of a broad classification in three different categories, according to
whether they document interactions, relationships or actor states. We now focus
on a dynamic characterisation of p-assertions and, in particular, when they are
created, recorded, queried and managed, with respect to process execution. These
different phases identify a provenance lifecycle, which we now describe. (We note
that such a lifecycle is to be understood in the context of application execution
and should be distinguished from a methodology that identifies design steps in
order to conceive an application that is provenance aware.)

Before discussing the provenance lifecyle, it is necessary to introduce an ar-
chitectural element. Since we aim to provide a long-term facility for storing the
provenance representation of data items, we delegate to a specific element, which
we refer to as a provenance store, the role of making persistent, managing and
providing controlled access to such provenance representation. The choice of an
explicit architectural element to embody this role in no way implies any form of
physical deployment; instead, it helps us identify the kind of functionality that
is necessary in order to offer support for provenance.

The provenance lifecycle is composed of four different phases. As execution
proceeds, actors create p-assertions that are aimed at representing their involve-
ment in a computation. After their creation, p-assertions are stored in a prove-
nance store, with the intent they can be used to reconstitute the provenance of
some data. The provenance store therefore acts as storage of p-assertions. After
a data item has been computed, users (or applications) may need to obtain the
provenance of this data item: they can do so by querying the provenance store.
At the most basic level, the result of the query is the set of p-assertions pertain-
ing to the process that produced the data. More advanced query facilities may
return a representation derived from p-assertions that is of interest to the user.
Finally, as time progresses, the provenance store and its contents may need to be
managed to handle distribution, change management, curation etc. In summary,
the provenance lifecyle is composed of four different phases: (i) creating, (ii)
recording, (iii) querying and (iv) managing. A provenance system should
provide support for all these phases.

10

3 The Family of Specification Documents

In this section we describe each of the specification documents and supporting
documents listed in Figure 1. The content is split into four groupings. First,
we discuss two supporting documents: the overview and the glossary. The core
specifications come next, which define the key aspects of the provenance model.
After this we have a set of generic profiles that describe non-core aspects of the
model. Finally, we provide an example of one specific technology binding – a
tieing in of an aspect of the model to an implementation technology.

3.1 Support Documents

WS-Prov-Overview This document.

WS-Prov-Glo: The Provenance Glossary The WS-Prov-Glo document
[TGJ+06] provides a glossary that defines a set of terms used in the draft
provenance specification documents. The terms described are intended to
be implementation and technology independent, with the intent that they
can be analysed and applied to as many contexts as possible.

3.2 Core Specifications

WS-Prov-DM: The Process Documentation Data Model The WS-Prov-
DM document [MGJ+06] presents a specification of the data model for
process documentation. The approach is top down in nature, and starts
by describing the p-structure — the logical organisation of process doc-
umentation, before drilling down into the models of the different forms
of p-assertions. The identification of p-assertions and data items is then
described, followed by a description of a model of context that allows in-
formation about related interactions to be passed between actors.

WS-Prov-Rec: The Provenance Recording Protocol Every provenance store
supplies a Web Service interface for recording process documentation. It has
a single operation, record, that takes Record document as input and returns
an acknowledgement as result. The WS-Prov-Rec document [GTM+06] de-
fines the schema for the record request and acknowledgement messages.

WS-Prov-Query: Provenance Queries In the WS-Prov-Query document
[MMG+06b], a protocol is specified by which a querying actor and prove-
nance store can communicate in performing a provenance query. This pro-
tocol primarily takes the form of an abstract WSDL interface defining mes-
sages to be accepted and produced by a provenance store. This document
defines the schema for a provenance query request, the behaviour expected
in processing that request and the resulting response.

11

WS-Prov-XQuery The process documentation data model defines schemas to
be used for documentation about the execution of a process, process doc-
umentation, and introduces a provenance store — a type of Web Service
with the capability for storing and giving access to process documentation.
In particular, process documentation has a defined schema, the p-structure,
which clients of a provenance store can navigate in queries to extract par-
ticular pieces of process documentation. In this document, a protocol is
specified by which a querying actor and provenance store can communicate
in performing a process documentation query. This primarily takes the
form of an abstract WSDL interface defining messages to be accepted and
produced by a provenance store.

3.3 Generic Profiles

WS-Prov-DM-Sec: Secure Provenance The data model for process docu-
mentation [MGJ+06] describes p-assertions as individual units for docu-
menting process. These p-assertions can be signed by asserting actors in
order to establish accountability for their creation. The WS-Prov-DM-Sec
document [TMG+06a] extends on the data model for the basic p-assertions
(relationship, actor-state and interaction) to include support for signatures.

WS-Prov-DM-Link: Distributed Provenance Process documentation can
often be distributed across different provenance stores. To enable the dis-
covery of related process documentation, a mechanism is required to link
disparate but related process documentation to enable the effective col-
lection of such documentation to answer provenance queries. The WS-
Prov-DM-Link document [MTG+06b] represents a WS-Addressing profile
on distributed process documentation that provides mechanisms to solve
this problem.

WS-Prov-DM-DS: Transforming Process Documentation The activity of
constructing an interaction p-assertion from a message can be considered as
a single atomic transformation, which needs to be qualified by the actor cre-
ating that p-assertion in order for actors that retrieve that p-assertion from
the provenance store to understand the exact nature of the transformation
applied. This is equally true for an actor state p-assertion. Documentation
styles are essentially descriptions of the types of transformations that can be
applied to a message or to the internal state of an actor. The WS-Prov-DM-
DS document [TMG+06b] presents a profile of several basic documentation
style transformations that are likely to be useful in application domains
that use process documentation. It is not intended to be exhaustive; other
profiles may be provided of alternative documentation style transformations
which may be generic or more specific in nature.

12

WS-Prov-PQuery-XPath The provenance query protocol [MMG+06a] has
been defined, and includes the request for, algorithms to execute and re-
sult from a provenance query, as executed by a provenance query engine.
Many parts of the request document are unspecified, being dependent on
the provenance query engine implementation. This document defines an
XPath-based profile by which provenance queries can be fully specified
against process documentation that is in, or can be mapped to, XML for-
mat.

3.4 Technology Bindings

WS-Prov-SOAP: Provenance and SOAP Technology In order for p-assertions
to be created, asserting actors need to identify which process they are
making an assertion about, which requires some shared context between
asserting actors. As it is application actors that make assertions, a fur-
ther obligation is placed on them to pass context information between each
other regarding the process being executed. This would often be achieved
by putting the context information in the header of an application message
(such as a SOAP message). The WS-Prov-SOAP document [MTG+06a]
describes a specification of the p-header in the context of SOAP [Mit03]
messages.

4 Conclusion

In this document we have presented an overview of the provenance model, the
provenance lifecycle and the set of supporting specification documents that de-
scribe the model in detail. During the provenance lifecycle, the actors per-
form several roles: application actors execute processes; asserting actors create
p-assertions about these processes; and recording actors record p-assertions in
provenance stores, which allow querying actors to retrieve p-assertions. For these
functions we have provided detailed models in the family of specification doc-
uments, which also specify models for transforming documentation, distributed
provenance, security and a technology specific binding for SOAP messages. A
glossary of all the terms found in this document and the other specification doc-
uments is also available.

References

[Bur00] S. Burbeck. The tao of e-business services. Technical report, IBM
Software Group, 2000.

13

[GLM04a] P. Groth, M. Luck, and L. Moreau. Formalising a protocol
for recording provenance in grids. In Proc. of the UK OST e-
Science second All Hands Meeting 2004 (AHM’04), Nottingham,
UK, September 2004.

[GLM04b] Paul Groth, Michael Luck, and Luc Moreau. A protocol for record-
ing provenance in service-oriented grids. In Teruo Higashino, edi-
tor, Proceedings of the 8th International Conference on Principles of
Distributed Systems (OPODIS’04), volume Lecture Notes in Com-
puter Science, pages 124–139, Grenoble, France, December 2004.
Springer-Verlag.

[GTM+06] Paul Groth, Victor Tan, Steve Munroe, Sheng Jiang, Simon Miles,
and Luc Moreau. Process Documentation Recording Protocol. Tech-
nical report, University of Southampton, June 2006.

[MGBM05] Simon Miles, Paul Groth, Miguel Branco, and Luc Moreau. The
requirements of recording and using provenance in e-science exper-
iments. Technical report, University of Southampton, 2005.

[MGJ+06] Steve Munroe, Paul Groth, Sheng Jiang, Simon Miles, Victor Tan,
and Luc Moreau. Data model for Process Documentation. Technical
report, University of Southampton, June 2006.

[MH05] M.P.Singh. and M.N. Huhns. Service-Oriented Computing: Seman-
tics, Processes, Agents. Wiley, 2005.

[Mit03] N. Mitra. Soap version 1.2 part 0: Primer.
http://www.w3.org/TR/soap12-part0/, 2003.

[MMG+06a] Simon Miles, Luc Moreau, Paul Groth, Victor Tan, Steve Munroe,
and Sheng Jiang. Provenance Query Protocol. Technical report,
University of Southampton, June 2006.

[MMG+06b] Simon Miles, Steve Munroe, Paul Groth, Sheng Jiang, Victor Tan,
John Ibbotson, and Luc Moreau. Process Documentation Query
Protocol. Technical report, University of Southampton, June 2006.

[MTG+06a] Steve Munroe, Victor Tan, Paul Groth, Sheng Jiang, Simon Miles,
and Luc Moreau. A SOAP Binding For Process Documentation.
Technical report, University of Southampton, June 2006.

[MTG+06b] Steve Munroe, Victor Tan, Paul Groth, Sheng Jiang, Simon Miles,
and Luc Moreau. WSRF Data Model Profile for Distributed Prove-
nance. Technical report, University of Southampton, June 2006.

14

[SM03] M. Szomszor and L. Moreau. Recording and reasoning over data
provenance in web and grid services. In Int. Conf. on Ontologies,
Databases and Applications of Semantics, volume 2888 of LNCS,
2003.

[SRB06] David Snelling, Ian Robinson, and Tim Banks.
Web Services Resource Framework v1.2 OA-
SIS Standard, 1st April 2006. http://www.oasis-
open.org/committees/tc home.php?wg abbrev=wsrf, 2006.

[TGJ+06] Victor Tan, Paul Groth, Sheng Jiang, Simon Miles, Steve Munroe,
and Luc Moreau. WS Provenance Glossary. Technical report, Elec-
tronics and Computer Science, University of Southampton, 2006.

[TMG+06a] Victor Tan, Steve Munroe, Paul Groth, Sheng Jiang, Simon Miles,
and Luc Moreau. A Profile for Non-Repudiable Process Documen-
tation. Technical report, University of Southampton, June 2006.

[TMG+06b] Victor Tan, Steve Munroe, Paul Groth, Sheng Jiang, Simon Miles,
and Luc Moreau. Basic Transformation Profile for Documentation
Style. Technical report, University of Southampton, June 2006.

15

