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Abstract. We present a family of Perceptron-like algorithms with mar-
gin in which both the “effective” learning rate, defined as the ratio of the
learning rate to the length of the weight vector, and the misclassification
condition are independent of the length of the weight vector but, instead,
are entirely controlled by rules involving (powers of) the number of mis-
takes. We examine the convergence of such algorithms in a finite number
of steps and show that under some rather mild assumptions there exists
a limit of the parameters involved in which convergence leads to classi-
fication with maximum margin. Very encouraging experimental results
obtained using algorithms which belong to this family are also presented.

1 Introduction

Maximising the margin of the solution hyperplane, which plays an important
role in the generalisation ability of a learning machine, is a central objective of
Support Vector Machines (SVMs) [14, 1]. Their efficient implementation, how-
ever, is somewhat hindered by the fact that they require solving a quadratic
programming problem.

The ambition to surpass the implementational difficulties associated with
SVMs while retaining all the benefits of the large margin solutions led to a revival
of the interest in alternative large margin classifiers which are able to operate
directly on the primal maximal margin problem instead of its dual. Such algo-
rithms include the standard Perceptron with margin [2, 7], the Maximal Margin
Perceptron [6] and the related algorithm of [5], the aggressive ROMMA [8] and
ALMA [4] algorithms. Among these algorithms the standard Perceptron with
margin and ALMA may be considered as variants of the classical Perceptron
algorithm [10]. Our purpose here is to address the maximal margin classifica-
tion problem in the context of Perceptron-like algorithms which, however, differ
from the above variants in that the “effective” learning rate [13] and the mis-
classification condition do not depend on the length of the weight vector at all
but, instead, are entirely controlled by rules involving (powers of) the number
of mistakes. This novel (class of) algorithm(s) will be called Mistake-Controlled
Rule Algorithm(s) (MICRA). Under certain conditions MICRA converges in a



finite number of steps to an approximation of the optimal solution which keeps
improving as the parameters of the algorithm follow a specific limiting process.

An introductory discussion of Perceptron-like large margin classifiers leading
to the construction of MICRA can be found in Sect. 2. MICRA is described in
Sect. 3 together with an analysis regarding its convergence. Section 4 contains
some experiments whereas Sect. 5 our conclusions.

2 Perceptron-Like Large Margin Classifiers

In what follows we make the assumption that we are given a training set which,
even if not initially linearly separable can, by an appropriate feature mapping
into a space of a higher dimension [14, 1], be classified into two categories by
a linear classifier. This higher dimensional space in which the patterns are lin-
early separable will be the considered space. By adding one additional dimension
and placing all patterns in the same position at a distance ρ in that dimension
we construct an embedding of our data into the so-called augmented space [2].
The advantage of this embedding is that the linear hypothesis in the augmented
space becomes homogeneous. Thus, only hyperplanes passing through the ori-
gin in the augmented space need to be considered even for tasks requiring bias.
Throughout our discussion a reflection with respect to the origin in the aug-
mented space of the negatively labelled patterns is assumed in order to allow for
a uniform treatment of both categories of patterns. Also, we use the notation
R = max

k
‖yk‖, where yk is the kth augmented pattern. Obviously, R ≥ ρ.

The relation characterising optimally correct classification of the training
patterns yk by a weight vector u of unit norm in the augmented space is

u · yk ≥ γd ≡ max
u

′
:
∥

∥u
′
∥

∥=1

min
i

{u′ · yi} ∀k . (1)

The quantity γd will be referred to as the maximum directional margin. It co-
incides with the maximum margin in the augmented space with respect to hy-
perplanes passing through the origin if no reflection is assumed. Between γd and
the maximum geometric margin γ in the original space the inequality

1 ≤ γ

γd
≤ R

ρ
(2)

holds. In the limit ρ → ∞, R/ρ → 1 and from (2) γd → γ [12].
We concentrate on algorithms that update the augmented weight vector at by

adding a suitable positive amount in the direction of the misclassified (according
to an appropriate condition) training pattern yk. The general form of such an
update rule is

at+1 = (at + ηtftyk) N−1
t+1 , (3)

where ηt is the learning rate which could depend explicitly on the number t of
updates that took place so far and ft an implicit function of the current step
(update) t, possibly involving the current weight vector at and/or the current
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misclassified pattern yk, which we require to be bounded by positive constants.
We also allow for the possibility of normalising the newly produced weight vector
at+1 to a desirable length through a factor Nt+1. For the Perceptron ηt = η is
constant, ft = 1 and Nt+1 = 1. Each time the misclassification condition is
satisfied by a training pattern, that is a mistake occurs, the algorithm proceeds
to the update of at. We adopt the convention of initialising t from 1.

A sufficiently general form of the misclassification condition is

ut · yk ≤ C(t) ,

where ut is the weight vector at normalised to unity and C(t) > 0 if we re-
quire that the algorithm achieves a positive margin. If a1 = 0 we treat the first
pattern in the sequence as misclassified. In the case that C(t) is bounded from
above by a strictly decreasing function of t which tends to zero the minimum
directional margin required by such a condition becomes lower than any fixed
value provided t is large enough. Algorithms with such a condition have the
advantage of achieving some fraction of the unknown existing margin provided
they converge. Examples of such algorithms are the well-known standard Percep-
tron algorithm with margin [2, 7] with C(t) = b/‖at‖ and the ALMA2 algorithm
[4] with C(t) = b/(‖at‖

√
t). Here b is a positive constant. For the Perceptron

the suppression of C(t) with t increasing is due to the growth of ‖at‖ which is
bounded from below by a positive linear function of t whereas for ALMA2 C(t)
is partly suppressed due to the growth of ‖at‖ up to a fixed upper bound and
partly due to the growth of

√
t.

Another important quantity characterising algorithms with the perceptron-
like update rule (3) is the “effective” learning rate [13]

ηeff t ≡
ηtR

‖at‖
which controls the impact that an update has on the current weight vector. More
specifically, ηeff t determines the update of the direction ut

ut+1 =
ut + ηeff tftyk/R

‖ut + ηeff tftyk/R‖ . (4)

In the most well-known cases ηeff t is bounded from above by a strictly decreasing
function of t which tends to zero. Examples are the standard Perceptron with
margin in which ηt = η remains constant and ALMA2 in which ηt decreases as
1/
√

t. In both cases the growth of ‖at‖ with t contributes to the suppression of
ηeff t. Moreover, both these algorithms have a t-independent ratio ηeff t/C(t).

From the above discussion it becomes obvious that a Perceptron-like algo-
rithm with the additive update (3) is uniquely determined by the functions C(t),
ηeff t and ft. In particular, it does not depend on ‖at‖ as long as the above func-
tions are ‖at‖-independent. Our purpose here is to examine the sufficiently large
subclass of such algorithms with ft = 1 and C(t), ηeff t inversely proportional
to powers of the number of mistakes t and determine sufficient conditions under
which algorithms in the above subclass converge asymptotically to the optimal
solution hyperplane.
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3 The Mistake-Controlled Rule Algorithm MICRA
ǫ,ζ

We consider algorithms with effective learning rate

ηeff t =
η

tζ
(5)

and misclassification condition

ut · yk ≤ β

tǫ
. (6)

Both (5) and (6) do not involve ‖at‖. Here η, ζ, β and ǫ are positive constants.
The case ζ = 0, corresponding to a constant effective learning rate, is treated in
[13]. We assume that the initial value u1 of ut is the unit vector in the direction
of the first training pattern. Then,

ut · u > 0 . (7)

This is true given that, on account of (4), ut is a linear combination with positive
coefficients of the training patterns yk all of which have positive inner products
with the optimal direction u because of (1). Additionally, we set ft = 1. Since
ηeff t of (5) and the misclassification condition of (6) do not depend on ‖at‖ and
given that the update (4) of ut with ft = 1 depends on ‖at‖ only through ηeff t

the algorithm is ‖at‖-independent.
The above (family of) algorithm(s) parametrised in terms of the exponents

ǫ and ζ will be called the Mistake-Controlled Rule Algorithm MICRAǫ,ζ and is
summarised in Fig. 1.

Theorem 1. The MICRAǫ,ζ algorithm of Fig. 1 converges in a finite number

of steps provided 0 < ζ ≤ 1. Moreover, if η is given a dependence on β through

the relation η = η0

(

β
R

)

−δ

the directional margin γ′

d that the algorithm achieves

tends in the limit β
R

→ ∞ to the maximum directional margin γd provided

0 < ǫδ + ζ < 1.

Require: A linearly separable aug-
mented training set with reflection
assumed S = (y1, . . . , ym)
Define:

For k = 1, . . . , m
R = max

k
‖yk‖ , ȳk = yk/R

Fix: η, β1 (= β/R)
Initialisation:

t = 1, u1 = ȳ1/ ‖ȳ1‖, ηeff1 = η

repeat until no update
made within the for loop

for k = 1 to m do

if ut · ȳk ≤ βt then

ut+1 =
ut+ηeff tȳk

‖ut+ηeff tȳk‖

t = t + 1

βt = β1/tǫ, ηeff t = η/tζ

Fig. 1. The mistake-controlled rule algorithm MICRAǫ,ζ .
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Proof. Taking the inner product of (4) with the optimal direction u, expanding

‖ut + ηeffyk/R‖−1
and using the inequality (1 + x)−

1
2 ≥ 1 − x

2 we have

ut+1 · u = (ut · u + ηeff tyk · u/R)
(

1 + 2ηeff tyk · ut/R + η2
eff t‖yk‖2

/R2
)

−
1
2

≥ (ut · u + ηeff tyk · u/R)
(

1 − ηeff tyk · ut/R − η2
eff t‖yk‖2

/2R2
)

.

Thus, we obtain for D ≡ ut+1 · u − ut · u
R

ηeff t

D ≥ yk · u − (ut · u)(yk · ut) −
ηeff t

2R

(

‖yk‖2
ut · u + 2(yk · u)(yk · ut)

)

−η2
eff t

2R2
‖yk‖2

yk · u .

By employing (1), (6) and (7) we get a lower bound on D

D ≥ ηeff t

(

γd

R
− ηeff t

2
− η2

eff t

2

)

− ηeff t (1 + ηeff t)
β

R
t−ǫ . (8)

From the misclassification condition it is obvious that convergence of the algo-
rithm is impossible unless β/tǫ < γd i.e.

t > t0 ≡
(

β

γd

)
1
ǫ

.

A repeated application of (8) (t− [t0]) times, where [t0] denotes the integer part
of t0, yields

ut+1 ·u−u[t0]+1 ·u ≥ η
γd

R

t
∑

m=[t0]+1

m−ζ − η2

2

t
∑

m=[t0]+1

m−2ζ − η3

2

t
∑

m=[t0]+1

m−3ζ

−η
β

R

t
∑

m=[t0]+1

m−(ζ+ǫ) − η2 β

R

t
∑

m=[t0]+1

m−(2ζ+ǫ) .

By employing the inequalities

t1−θ − (t0 + 1)1−θ

1 − θ
=

∫ t

t0+1

m−θdm ≤
t
∑

m=[t0]+1

m−θ

and
t
∑

m=[t0]+1

m−θ ≤
∫ t

t0

m−θdm + t−θ
0 =

t1−θ − t1−θ
0

1 − θ
+ t−θ

0

for θ > 0 and taking into account (7) we finally obtain

1 ≥ η
γd

R

(

t1−ζ − t1−ζ
0

1 − ζ

)

− η2

2

(

t1−2ζ − t1−2ζ
0

1 − 2ζ

)

− η3

2

(

t1−3ζ − t1−3ζ
0

1 − 3ζ

)
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−η
β

R

(

t1−(ζ+ǫ) − t
1−(ζ+ǫ)
0

1 − (ζ + ǫ)

)

− η2 β

R

(

t1−(2ζ+ǫ) − t
1−(2ζ+ǫ)
0

1 − (2ζ + ǫ)

)

− ω . (9)

Here

ω ≡ γd

R
ηt−ζ

0

(

2 + ηt−ζ
0

)

+
1

2
η2t−2ζ

0

(

1 + ηt−ζ
0

)

> 0 .

Let us define the new variable τ ≥ 0 through the relation

t = t0 (1 + τ) =

(

β

γd

)
1
ǫ

(1 + τ) . (10)

In terms of τ (9) becomes

(

ηt1−ζ
0

)

−1 (γd

R

)

−1

(1+ω) ≥ (1 + τ)
1−ζ − 1

1 − ζ
− (1 + τ)

1−(ζ+ǫ) − 1

1 − (ζ + ǫ)

− R

2γd
ηt−ζ

0

(1 + τ)
1−2ζ − 1

1 − 2ζ
− R

2γd
η2t−2ζ

0

(1 + τ)
1−3ζ − 1

1 − 3ζ

−ηt−ζ
0

(1 + τ)
1−(2ζ+ǫ) − 1

1 − (2ζ + ǫ)
. (11)

Let g(τ) be the r.h.s. of the above inequality. Since 0 < ζ ≤ 1, g(τ) (with τ ≥ 0)
is unbounded from above. Moreover, its derivative g′(τ) satisfies the relation

(1 + τ)ζg′(τ) = 1 − (1 + τ)−ǫ − R

2γd
ηt−ζ

0 (1 + τ)−ζ − R

2γd
η2t−2ζ

0 (1 + τ)−2ζ

−ηt−ζ
0 (1+ τ)−(ζ+ǫ) .

The r.h.s. of the above equation is a monotonically increasing function of τ which
is negative at τ = 0 and tends to 1 as τ → ∞. Therefore g′(τ) has a single root at
τ = τmin which corresponds to a minimum of g(τ) with g(τmin) < 0. Moreover,
the l.h.s. of (11) is positive. Thus, given that g(0) = 0, there is a single value τb

of τ where (11) holds as an equality which provides an upper bound on τ

τ ≤ τb (12)

satisfying τb > τmin > 0. Combining (10) and (12) we obtain the bound on the
number of updates

t ≤ tb ≡
(

β

γd

)
1
ǫ

(1 + τb) (13)

proving that the algorithm converges in a finite number of steps. From (13) and
taking into account the misclassification condition (6) we obtain a lower bound
β/tǫb on the margin γ′

d achieved. Thus, the fraction f of γd that the algorithm
achieves satisfies

f ≡ γ′

d

γd
≥ fb ≡ β/γd

tǫb
= (1 + τb)

−ǫ
. (14)
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Let us assume that β
R

→ ∞ in which case from η = η0

(

β
R

)

−δ

and given that

0 < ǫδ+ζ < 1 we have ηt1−ζ
0 ∼

(

β
R

)

1−ζ−ǫδ
ǫ → ∞ whereas ηt−ζ

0 ∼
(

β
R

)

−
ζ+ǫδ

ǫ → 0.

Consequently the l.h.s. of (11) vanishes in the limit β
R

→ ∞ whereas its r.h.s.
(i.e. g(τ)) becomes a strictly increasing function for τ > 0 (i.e. τmin → 0) since
(1 + τ)ζg′(τ) = 1 − (1 + τ)−ǫ > 0. Obviously, (11) holds as an equality only for
τ = 0. Therefore,

τb → τmin → 0 as
β

R
→ ∞ . (15)

Combining (14) with (15) and taking into account that f ≤ 1 by definition we
conclude that

f → 1 as
β

R
→ ∞ .

Remark 1. In the case that ζ + 2ǫ = 1 with 1
2 < ζ < 1 it is possible to obtain

explicitly an upper bound tb on the number of updates and a lower bound fb on
the fraction f of the margin that the algorithm achieves. First we observe that
since 1 − 2ζ, 1 − 3ζ and 1 − (2ζ + ǫ) are negative it is allowed to set the terms
(1 + τ)1−2ζ , (1 + τ)1−3ζ and (1 + τ)1−(2ζ+ǫ) to zero in the r.h.s. of (11). Then,
the resulting less restrictive inequality with ζ expressed in terms of ǫ becomes

A2

2
≥ 1

2
(1 + τ)2ǫ − (1 + τ)ǫ +

1

2
, (16)

where

A2

2
= ǫη−1

(

β

R

)

−2
γd

R
(1 + ω) +

ǫ

1 − 4ǫ

η

2

(

β

R

)2− 1
ǫ (γd

R

)
1
ǫ
−3

+
ǫ

1 − 3ǫ

η2

4

(

β

R

)4− 2
ǫ (γd

R

)
2
ǫ
−5

+
ǫ

1 − 3ǫ
η

(

β

R

)2− 1
ǫ (γd

R

)
1
ǫ
−2

.

Notice that ǫ < 1
4 if 1

2 < ζ < 1. By solving the quadratic equation derived from
(16) we obtain explicitly the bounds tb and fb. They are the ones of (13) and
(14), respectively with

τb = (1 + |A|)
1
ǫ − 1 .

In the present case 0 < ǫδ + ζ < 1 is equivalent to 2 − 1
ǫ

< δ < 2. Then, with

η = η0

(

β
R

)

−δ

as β
R

→ ∞ we get A → 0 leading to τb → 0. This demonstrates

explicitly the statement of Theorem 1. It is worth emphasising, however, that
|A| may be suppressed even for small β

R
if γd

R
is small.

Example: If ǫ = ζ = 1
2 and moreover δ = 0, i.e. η does not depend on β, ǫδ+ζ =

1
2 and the condition of Theorem 1 is satisfied. Therefore such an algorithm

attains asymptotically as β
R

→ ∞ the maximum directional margin. The above
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algorithm is a version of a well-known approximate maximal margin classifier,
namely ALMA2 [4]. In this version the weight vector instead of being confined
within a ball centered at the origin is normalised to a constant length which
remains fixed during the asymptotic procedure. Thus, ALMA2 can be thought
of as belonging to the MICRA family. Then, the analysis of [4] confirms our
conclusion regarding asymptotic convergence to the optimal solution hyperplane
in this special case. In the case, instead, that ǫ = ζ = 1

2 but δ = 1, i.e. η =

η0

(

β
R

)

−1

, ǫδ + ζ = 1 and the condition of Theorem 1 is violated. This case

would correspond to a version of ALMA2 with the parameter b entering the
misclassification condition set to b = β2 and the weight vector normalised to the
constant length β which, however, does not remain fixed during the asymptotic
procedure β

R
→ ∞. Since the condition of Theorem 1 is violated we are unable

to prove asymptotic convergence of such an algorithm to the maximal margin
solution. The same conclusion is reached if the proof technique of [4] is employed
which gives a lower bound

fb =

(

1 +
1

η0
+

3

2
η0

R2

β2

)−1

on the fraction of the maximum directional margin achieved by the algorithm.
As β

R
→ ∞ we get fb → η0

(1+η0)
< 1. We see that a “slight” modification of the

asymptotic procedure is able to affect the ability of a Perceptron-like algorithm
to attain the solution with maximum margin. We have reasons to believe that
the inability in some cases of the Perceptron algorithm with margin, in contrast
to ALMA2, to approach the maximal margin solution is due to such “slight”
differences between the two algorithms regarding the asymptotic procedure.

4 Experiments

In this section we present the results of experiments performed in order to verify
our theoretical analysis and evaluate the performance of MICRA in comparison
with other two well-known algorithms, namely the Perceptron with margin and
aggressive ROMMA1. The Perceptron is chosen as a fast and simple algorithm
close in spirit to MICRA. The choice of agg-ROMMA, instead, is justified by the
fact that it is claimed in [8] to be faster than SMO [9]. For MICRA we employ
a β-independent η (δ = 0) and ǫ, ζ values for which, in most cases, the analysis
of Remark 1 applies.

First we analyse the training data set of the sonar classification problem
as originally selected for the aspect-angle dependent experiment. It consists of
104 instances each with 60 attributes obtainable from the UCI repository. Here
the data are embedded in the augmented space at a distance ρ = 1 from the

1 The parameter δ ∈ (0, 1] in agg-ROMMA controls the accuracy to which the max-
imum margin is approximated. It should not be confused with the parameter δ in
Theorem 1.
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Table 1. Results for the sonar data set. The directional margin γ′

d achieved and the
number of updates (upds) are given for the Perceptron, agg-ROMMA and MICRA
(ǫ = 0.05, ζ = 0.9). For MICRA we choose η = 50.

Perceptron agg-ROMMA MICRA
b

ηR2 γ′

d upds δ γ′

d upds 100 β

R
γ′

d upds

0.7 0.00516 189,313 0.5 0.00506 210,228 0.240 0.00524 104,926

1.02 0.00585 251,534 0.4 0.00584 307,344 0.280 0.00590 140,634

1.76 0.00656 396,318 0.3 0.00656 466,874 0.320 0.00663 200,517

3.9 0.00727 820,261 0.2 0.00728 778,412 0.359 0.00729 327,469

30 0.00785 5,930,214 0.1 0.00785 1,546,595 0.404 0.00786 706,275

100 0.00791 19,599,882 0.05 0.00819 2,716,711 0.443 0.00819 1,932,166

500 0.00793 97,717,549 0.01 0.00837 14,079,715 0.495 0.00837 11,610,900

Table 2. The number of updates (upds) required to achieve γ′

d ≃ 0.00819 in the sonar
data set with MICRA and ALMA2. For MICRA various ǫ, ζ values are considered and
the η employed is given.

ǫ, ζ 0.005, 0.99 0.05, 0.9 0.1, 0.8 0.15, 0.7 0.2, 0.6 0.2, 0.5 0.5, 0.5
ALMA2

η 190 60 17 4.4 1.2 0.28 0.35

upds/106 1.53 1.86 2.32 2.89 3.57 3.74 7.54 53.4

origin in the additional dimension leading to R ≃ 3.8121 and γd ≃ 0.00841. The
results of our comparative study of the Perceptron, agg-ROMMA and MICRA
(ǫ = 0.05, ζ = 0.9) algorithms are presented in Table 1. We observe that MICRA
is certainly the fastest. Moreover, the data suggest that the Perceptron algorithm
is not able to approach the maximum margin arbitrarily close. We also present
in Table 2 the number of updates required to achieve a margin γ′

d ≃ 0.00819
using MICRA with several ǫ, ζ values and ALMA2. For ALMA2 the accuracy
parameter α was set to α = 0.1527 with the remaining parameters chosen to
correspond to the ones of the Theorem in [4] if the data are normalised such
that the longest pattern has unit length. From Table 2 it becomes clear that
small ǫ’s combined with relatively large ζ’s lead to faster convergence.

We additionally analyse a linearly separable data set, which we call WBC−11,
consisting of 672 patterns each with 9 attributes. It is constructed from the
Wisconsin Breast Cancer (WBC) data set obtainable from the UCI repository by
first omitting the 16 patterns with missing features and subsequently removing
from the data set containing the remaining 683 patterns the 11 patterns having
the positions 2, 4, 191, 217, 227, 245, 252, 286, 307, 420 and 475. The value ρ = 30
is chosen for the parameter ρ of the augmented space leading to R =

√
1716

and γd ≃ 0.0243. In Table 3 we present the results of a comparative study of
the Perceptron, agg-ROMMA and MICRA (ǫ = 0.1, ζ = 0.8) algorithms. The
superiority of the performance of MICRA on this data set is remarkable.

Finally, we turn to an analysis of the linearly inseparable full WBC data set
comprising 683 instances each with 9 attributes after ignoring the 16 instances
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Table 3. Results for the WBC−11 data set for the algorithms Perceptron, agg-ROMMA
and MICRA (ǫ = 0.1, ζ = 0.8). For MICRA the choice η = 2.3 is made.

Perceptron agg-ROMMA MICRA
b

ηR2 γ′

d upds δ γ′

d upds 100 β

R
γ′

d upds

0.4 0.01650 1,401,984 0.5 0.01642 1,630,857 0.119 0.01658 55,319

0.65 0.01880 2,058,524 0.4 0.01848 2,382,480 0.144 0.01883 106,867

0.97 0.02033 2,894,811 0.3 0.02030 3,541,471 0.162 0.02035 154,077

1.8 0.02197 4,980,423 0.2 0.02195 5,784,868 0.185 0.02198 267,146

4.1 0.02321 10,761,773 0.1 0.02318 13,931,792 0.207 0.02324 467,370

8.5 0.02374 21,798,933 0.05 0.02373 31,156,487 0.222 0.02376 755,816

45 0.02415 113,406,210 0.01 0.02415 174,388,827 0.270 0.02415 4,533,156

Table 4. Results for the (extended) WBC data set (with ∆ = 1). The margin Γ∆ and
the number of updates (upds) are given for the Perceptron, agg-ROMMA and MICRA
(ǫ = 0.05, ζ = 0.9). For MICRA we choose η = 20.

Perceptron agg-ROMMA MICRA
b

ηR2 Γ∆ upds δ Γ∆ upds 100 β

R
Γ∆ upds

0.22 0.07182 20,359 0.5 0.07259 13,983 0.380 0.07377 7,811

0.34 0.08338 27,706 0.4 0.08436 20,822 0.450 0.08540 11,584

0.64 0.09474 46,593 0.3 0.09591 33,728 0.520 0.09648 18,793

1.48 0.10815 95,245 0.2 0.10836 62,751 0.610 0.10869 40,825

3.5 0.11905 206,469 0.1 0.11916 169,588 0.702 0.11957 105,965

8.1 0.12462 457,334 0.05 0.12468 409,956 0.754 0.12470 183,644

700 0.12837 38,336,601 0.01 0.12928 1,554,492 0.840 0.12949 734,630

with missing attributes. Following [3] we make the data set linearly separable by
extending the instance space by as many dimensions as the number of instances
and placing each instance at a distance ∆ = 1 from the origin in the correspond-
ing dimension. Then we attempt to obtain separating hyperplanes with as large
a margin Γ∆ as possible in the extended space relying on the observation that
the hard margin optimisation task in the extended space is equivalent to the
soft margin optimisation in the original space if the 2-norm of the slack vari-
ables is employed [11]. A more detailed analysis of this soft margin approach for
Perceptron-like large margin classifiers is provided in [13]. Moreover, in order
to incorporate some bias in the zero-threshold solution hyperplanes obtained we
embed the data in an augmented space at a distance ρ = 10 from the origin in
one additional dimension. This construction leads to R =

√
917 and to a maxi-

mum margin Γ∆opt ≃ 0.13033 with respect to zero-threshold hyperplanes in the
extended (and augmented) space. In Table 4 we give the results of our compar-
ative study of the Perceptron, agg-ROMMA and MICRA (ǫ = 0.05, ζ = 0.9)
algorithms. We observe that the Perceptron shows again some difficulty in ap-
proaching the maximum margin and that once again MICRA is the fastest.
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5 Conclusions

We presented MICRA, a family of Perceptron-like large margin classifiers com-
pletely independent of the length of the weight vector. Our theoretical approach
proved sufficiently powerful in establishing asymptotic convergence to the opti-
mal hyperplane for a whole class of such algorithms in which the misclassification
condition and the effective learning rate are entirely controlled by rules involving
arbitrary powers of the number of mistakes. Moreover, we provided experimen-
tal evidence in support of our theoretical analysis regarding convergence of our
algorithms to the maximal margin hyperplane. The preliminary experimental
results also suggest that algorithms belonging to the MICRA family with slow
relaxation of the misclassification condition and relatively fast suppression of the
effective learning rate with the number of mistakes are very powerful tools in the
hands of a skillful practitioner. Of course, this does not diminish at all the value
and usefulness of established fast and easy to use algorithms like agg-ROMMA
or SMO which only need the choice of a single parameter determining the accu-
racy to which the optimal solution is approximated. It is remarkable, however,
that simple extensions of the old Perceptron algorithm can be so competitive.
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