The Unified Framework for Sensor Networks:
A Systems Approach

Geoff V. Merrett, Alex S. Weddell, Nick R. Harris, Neil M. White, and Bashir M. Al-Hashimi

School of Electronics and Computer Science, University of Southampton, UK
{gm04r, asw05r, nrh, nmw, bmah}@ecs.soton.ac.uk

Abstract — Since its introduction in the mid-1970s, the OSI
Basic Reference Model (OSI-BRM) has been widely used as a
foundation for communication models and standards. While
many of these have modified the OSI-BRM for specific
communication requirements (protocols such as ZigBee and
Fieldbus — used in sensor networks), little structure or
standardisation has been developed for other aspects of the
hardware/software interface — for example sensing, energy
management, actuation or locationing. Such processing is often
implemented in the application layer of the communications
stack, resulting in an unstructured, top-heavy and confusing
stack. Alternatively, processing is performed off-chip or in
separate unstructured software. In this paper, we propose the
Unified Framework for the structured design and
implementation of multiple interfaces on a sensor node. The
framework creates unified stacks by connecting individual
stacks (containing distinct functionality) via a shared application
layer. We present the application of the framework to create a
unified stack, structuring both communications and sensing. The
process of extending a unified stack for implementing energy
management, locationing and actuation is also discussed. The
proposed framework establishes a structured platform for the
formal design, specification and implementation of sensor and
wireless sensor networks.

|. INTRODUCTION

Communication protocol models have been utilised for
decades, aiming to formalise, structure and provide
interoperability between the tasks of the networking system.
The OSI Basic Reference Model (OSI-BRM) [1] was
introduced in the mid-1970s, proposing a basic layered
architecture for communication protocols — as shown in
figure 1. The primary functions of each layer of the OSI-
BRM are outlined below:

e Physical Layer: performs channel coding, Dbit-level
communication over the physical/wireless medium, and
directly controls the communication hardware.

e Data link Layer: consists of two sublayers: logical link
control (for example frame and error control) and medium
access control (controlling multiple accesses to a shared
communications medium).

o Network Layer: provides network related protocols such
as packet routing.

e Transport Layer: provides high-level end-to-end
reliability, such as flow control, connection management
and error recovery.

e Session Layer: manages sessions between networked
devices (this layer is rarely implemented, with functionality
absorbed by the application layer).

e Presentation Layer: manages the syntax and semantics of
communicated data (this layer is rarely implemented, with
functionality absorbed by the application layer).

o Application Layer: contains a range of commonly used

high-level protocols. In smaller devices, the entire
application may reside within the application layer.
User
Application
. Application
Presentation (e.g. HTTR, FTP) o
o Application
Session Application
(FMS and FAS)
Transport
Transport (e.g. TCP, UDP)
Network Internetworking Network
(e.g.IP)
Data Link Link H1 Data Link [sohzilﬁg_d)
(e.g. 802.3, Breal
N N I
Physical 802.11) H1 Physical [sozﬁ ;f"’d}
OSl Basic Internet Reference Foundation .
ZigBee

Reference Model Model Fieldbus H1
Figure 1 — The OSI-BRM [1], IRM [2], Foundation Fieldbus H1 [3]

and ZigBee [4] communication stacks.

Many widely used communication stacks and models (for
example the Internet Reference Model (IRM) [2] shown in
figure 1) have added, removed and merged layers from the
OSI-BRM to tailor the model to their requirements.
However, the OSI-BRM remains an important building block
for modern communication protocols.

Fieldbus H1 [3] was designed as a network architecture for
process control applications, such as sensor networks. It can
be seen from figure 1 that the majority of the higher layers
have been removed, as the functionality provided by these
layers (for example packet routing, flow control and
connection management) is not required by the network.
Fieldbus adds a User layer to the top of the protocol stack,
which allows additional functionality to be provided, such as
a user interface.

The ZigBee specification [4] defines a low-cost, low-power
wireless communication standard that is particularly suited to
wireless sensor networks. The ZigBee protocol stack (shown

in figure 1) uses the IEEE 802.15.4 [5] Physical and Medium
Access Control (MAC) layers. The transport layer is omitted,
with the relevant functionality being absorbed by
neighbouring layers.

The OSI-BRM was designed to represent only the
communications functionality of a networked node. However,
ZigBee (based on the OSI-BRM) uses the communications
stack to contain software for the entire device, placed in the
large and subdivided application layer. Some Fieldbus
networks also place the program in the application layer, or
alternatively use off-stack software that does not promote
reuse or interoperability. This was found to be true in all of
the models and stacks investigated.

The TinyOS operating system [6] (used in many wireless
sensor nodes, such as the Crossbow motes [7]) has a layered
software stack, where data from the sensors (and any other
hardware) is directly processed in the application layer [8].
Therefore, any processing of sensory data must also take
place within the application layer. In energy harvesting nodes
such as Heliomote and Prometheus [9, 10] the application
must monitor voltage levels and incorporate cursory
temperature compensation. In these nodes, such energy
management operations occur in the application layer. While
communication gets formally specified in the majority of
implementations, other interfaces (such as sensing and energy
management) are left unstructured.

In this paper, we introduce the Unified Framework to
formally specify multiple interfaces on a sensor node. The
framework creates a unified stack by connecting individual
stacks (containing distinct functionality) through a shared
application layer. This establishes a structured platform for
the formal design, specification and implementation of
modern sensor and wireless sensor nodes.

Il. THE UNIFIED FRAMEWORK

In the previous section it has been shown that, while the
communications interface is formally structured, other
interfaces (such as sensor processing) are generally
unspecified and often integrated into an unstructured and
overflowing application layer. This is not ideal for sensor
processing, which is arguably as important as
communications to the functionality of a sensor node.

We propose the Unified Framework, which specifies and
structures multiple interfaces on a sensor node. The
framework provides a basic template stack, based upon the
OSI-BRM, from which different interface stacks can be
derived. A number of these stacks with distinct functionality
are combined via a shared application layer, forming a unified
stack. The Unified Framework’s basic template stack is
shown in figure 2. Stacks developed following the framework
are derived from this template. The layer boundaries are
placed to accommodate a wide range of hardware interfaces,
and to allow different protocols to be interchanged without
redefining surrounding layers. The functions of the layers are:
o Interface Layer: directly interfaces with the relevant

hardware, and hides the complexity of the circuitry from

the higher layers. For communications, this layer represents
the physical layer of the OSI-BRM.

o Medium Layer: provides low-level processing, and hides
the complexity of interfacing with the medium (for
example, the wireless channel or the sensed phenomenon)
from the higher layers. For communications, this layer
represents the data link layer of the OSI-BRM.

o Management Layer: provides high-level functionality,
and hides the complexity of groups of objects (for example
a network of nodes, or number of different energy sources)
from the higher layers. For communications, this represents
both the network and transport layers of the OSI-BRM.

o Shared Application Layer: contains cooperative
functionality that passes data between individual stacks.
For communications, this layer represents the application
layer in the OSI-BRM.

e Program Area: contains the end-user’s application. The
Unified Framework recommends against the use of the
program area wherever possible, and instead suggests that
functionality is transferred to a relevant stack. Naturally,
there are some implementations where this may not be
feasible, and so the program area is incorporated into the
framework for these situations.

I
: Program Area :
| |
| |
== ! -=-
: Shared Application Layer :
e (e | 8
]
: Management Layer : s %
| I | @
| - MLME-SAP :
: Medium Layer 1
| |
| |
| |
I |
\ /
~___ _ _ | HARDSAP []
e 5 &
[1| =
| | (B
\) ®m
S _______ -~ I

Figure 2 — The Unified Framework’s basic template stack.

Communication between neighbouring layers takes place
through the service access points (SAPs). At each layer
boundary, there are two SAPs — the data SAP (xD-SAP), used
for transferring data between layers, and the layer
management entity SAP (XLME-SAP), used for layer
management functions such as getting and setting layer
parameters. The physical layer interfaces with hardware
through the HARD-SAP; the services and connections of
which are specific to individual implementations.

Communications and sensing are fundamental parts of any
sensor node. Figure 3 shows an example of a unified stack
(created following the Unified Framework) designed to
implement both the communication and sensing interfaces.

The communication stack is similar to that of ZigBee [4].
The physical layer interacts directly with the communication
hardware, and hides the complexities of the communication
circuitry from the MAC layer. The MAC layer provides
features including channel access (redundant in non-broadcast
networks), frame management, low-level error detection and
security, and hides the complexities of the communication

medium from the network layer. The network layer controls
message routing and subnet formation and maintenance, thus
providing the shared application layer with a view of the
network as a single entity.

Program Area

!

Shared Application

S 2 S

| |

| I

| I

| I

| I

| I

| I

| I

| I

| I

| RS

: [Network] [Sensor Evaluation] : LS
S

| I |)

| A ¥)

: Medium Access :

Sensor Processing

I Control 1

| I

i A ¥ 1

| I

: [Physical] [Physu:al Sensmg] :

4 A A y

}\.____ _______ P RS, Pr—

£ *F y o

: Communication Sensor : g

| Circuitry Hardware) (2

[' 17 £

< N J

R N Eamm————

Commum’c'arfon Stack Senso'r Stack
Figure 3 — A unified stack incorporating both
communication and sensing interfaces.

The sensor stack implements the intelligent sensing
functionality of a node: interfacing with the physical sensing
circuitry, processing sensory data, and assessing its reliability.
The desired output data from an intelligent sensing system
includes an estimate of the measurand and its uncertainty
level. Estimates of error and uncertainty are useful in a multi-
sensor fusion context [11], so that greater attention can be
paid to accurate data. The software system must interface
with the physical sensor, and any physical pre-processing and
conversion stages. The sensor stack (shown in figure 3) is
split into three layers:

e Physical Sensing Layer: interfaces with the sensor
hardware by energising sensors and obtaining readings. It
provides raw sensor data to the layer above, but hides the
complexities of interfacing with the sensor and conversion
circuitry. For example, it switches a pressure sensing
device on and obtains a reading from the ADC, providing
raw sensor data to the processing layer.

e Sensor Processing Layer: accepts the raw sensor data
from the layer below, and performs preliminary processing.
It provides the layer above with adjusted data, and can
perform localised data fusion. In the context of a pressure
measurement system, it linearises the data (through use of a
look-up table) and provides temperature compensation by
fusing pressure data with temperature information.

e Sensor Evaluation Layer: interfaces with the physical
sensing layer and refines data through comparison with the
sensor model. It provides the shared application layer with
an adjusted sensor reading, complete with error bars and
indications of sensor faults. The stage takes into account

the age of the sensor and any previous damaging events, in

line with the sensor model and condition monitoring and

fault detection logic, to estimate drift and uncertainty.

This structured approach to sensor interfacing brings with it
a number of advantages. As with the communication stack,
complexities of lower levels are hidden from those above.
Layers may be redefined to provide differing functionality
without affecting the operation of neighbouring layers. In
addition, layer operation may be reconfigured through the
management SAPSs.

The shared application layer handles collaboration between
the individual stacks — passing high-level data between them,
under self-guidance or guidance from the program area. For
example, a packet may be received via the communication
stack requesting a measurement. The shared application layer
would then request this data from the sensor stack and pass
the result back to the communication stack for transmission.
This layer also provides the interface with the program area
(if implemented), offering common protocols and access to
the individual stacks.

I11. USING THE FRAMEWORK TO EXTEND A UNIFIED STACK

The nodes in a wireless sensor network are typically
resource-constrained, relying on batteries or energy
harvesting to supply their energy. Where multiple energy
sources are used, the management of the energy subsystem
can become a complex process, with the flow of charge
between sources requiring intricate control.

By partitioning the energy management process into
distinct tasks, the implementation can be migrated from the
program area to a separate stack, removing a source of
complexity and reducing the volume of unstructured
functionality. A unified stack — such as that discussed in the
previous section — can be extended (following the Unified
Framework) to include an energy management stack (as
shown in figure 4). Here, the energy management process is
divided into three layers:

e Physical Energy Layer: obtains information about
voltages of energy stores (indicating the amount of energy
remaining), monitors the yields from energy harvesting,
and controls physical switching in order to direct the flow
of energy.

e Energy Analysis Layer: takes data from the physical
energy layer and for each source provides information such
as the rate of energy usage, energy generation, and stored
energy (through use of source models).

e Energy Control Layer: takes a high-level view of the
energy subsystem — making decisions about energy
sources, switching, and the general flow of energy. It
indicates to the shared application layer the residual
energy, and the sustainability of present usage.

To illustrate the operation of the energy stack, a node
utilising vibration harvesting, a capacitor and a rechargeable
battery is considered. The vibration harvesting device acts to
supply energy, the capacitor acts as a primary buffer, and the
rechargeable battery as a secondary buffer. The physical
energy layer hides the complexities of interfacing with the
physical hardware. It controls switching, allowing charging

and energy transfer operations to take place in line with
directions from higher layers. It monitors the voltages of
energy sources and the amount of energy being harvested,
passing values to the energy analysis layer. The energy
analysis layer takes this physical data and uses source models
to derive the amount of energy stored and its rate of
generation (for example, taking account of temperature
effects and temporal deterioration to derive the real amount of
energy stored in the battery). It accepts commands from the
layer above regarding energy distribution, and translates these
into switching commands for the physical layer to execute.
The energy control layer takes the refined information about
energy sources and calculates whether the rate of energy
usage exceeds the rate of generation. Such information is sent
to the next higher layer. The layer makes decisions regarding
energy transfer and distribution, which are sent to lower
layers. Rechargeable batteries are generally limited to 300-
500 recharge cycles, so energy transfer operations must be
minimised to prolong the lifetime of the platform [9].

Shared Application

it Y it Y 4 ¥

Network) [Sensor Evaluation
4 y A Y
Me:

dium Access .]
[Control Sensor Processing Energy Analysis]

4 ¥ A 2 4 ¥

Software

Hardware

Circuitry Hardware

'
]

[}

| Communication Sensor 1

I Energy Sources :

9)

s ! ag "
Communication Stack Sensor Stack Energy Stack

Figure 4 — A unified stack incorporating communications, sensing
and energy management interfaces.

Additional extensions to the framework could include
actuation and locationing stacks. Each application of location-
aware computing treats location tasks differently [12].
However, recent convergence in location technology trends
permits the formation of a generalised location stack. An
actuation stack would permit actuation commands to be
expressed via the shared application layer as a high-level
command, which could be translated by the stack into low-
level control of operations. It can be seen that these
extensions could be incorporated into a unified stack.

Further extensions to the concept of the unified stack
include the creation of software/software interface stacks,
where data present in the shared application layer can be
processed in the same fashion as data obtained from
hardware. An example of this could be in performing data
fusion using packets received from other nodes in the
network. Functionality can be migrated from the program
area into a distinct, structured stack. However, this is outside
the scope of this paper.

1V. CONCLUSIONS

In this paper, we have proposed the Unified Framework — a
means for specifying and structuring the multiple interfaces
on a sensor node. The framework provides a basic template
stack from which different interface stacks can be derived. A
number of these stacks with distinct functionality are
connected via a shared application layer to form a unified
stack. We have presented a unified stack for communication
and sensing interfaces, and then shown how it can be
extended following the Unified Framework to implement
additional functionality such as energy management. The
flexibility of the framework permits the structuring of other
interfaces, for example actuation and locationing. The
framework establishes a structured platform for the formal
design, specification and implementation of the nodes in
sensor and wireless sensor networks.

REFERENCES

[1] ITU-T X.200, "Information technology - Open Systems
Interconnection - Basic Reference Model: The Basic Model",
1994

[2] D. Meyer and G. Zobrist, "TCP/IP versus OSI," IEEE
Potentials, vol. 9, pp. 16-19, 1990.

[3] S. Kolla, D. Border, and E. Mayer, "Fieldbus networks for
control system implementations,” Proc. Electrical Insulation
Conf. & Electrical Manufacturing & Coil Winding Technology
Conf., pp. 493-498, Sep. 2003

[4] ZigBee Alliance Document
Specification”, 2004

[5] 802.15.4™-2003, "IEEE Standard for Information Technology
- Part 15.4: Wireless Medium Access Control (MAC) and
Physical Layer (PHY) Specifications for Low-Rate Wireless
Personal Area Networks (LR-WPANSs)", 2003

[6] P. Levis, N. Lee, M. Welsh, and D. Culler, "TOSSIM: Accurate
and scalable simulation of entire TinyOS applications," Proc.
1st Int'l Conf. Embedded Networked Sensor Systems
(SenSys'03), Los Angeles, CA, pp. 126-137, Nov. 2003

[7] Crosshow Technology Inc. (San Jose, CA), www.xbow.com;
last accessed Jun. 2005.

[8] D. Patnode, J. Dunne, A. Malinowski, and D. Schertz,
"WISENET - TinyOS based wireless network of sensors,”
Proc. IECON'03. 29th Annual Conference of the IEEE
Industrial Electronics Society, 2-6 Nov. 2003, Roanoke, VA,
USA, vol. Vol.3, pp. 2363-2368, Nov. 2003

[9] X.Jiang, J. Polastre, and D. Culler, "Perpetual Environmentally
Powered Sensor Networks," Proc. 4th Int'l Conf. Information
Processing in Sensor Networks/Special Track on Platform
Tools and Design Methods for Network Embedded Sensors
(IPSN/SPOTS), Los Angeles, CA, Apr. 2005

[10] A. Kansal, D. Potter, and M.B. Srivastava, "Performance aware
tasking for environmentally powered sensor networks," Proc.
SIGMETRICS'04/Performance: Joint Int'l Conf. Measurement
and Modeling of Computer Systems, New York, NY, vol. 32,
pp. 223-234, Jun. 2004

[11] P.J. Boltryk, C.J. Harris, and N.M. White, "Intelligent sensors-a
generic software approach,” Journal of Physics: Conference
Series, vol. 15, pp. 155-60, 2005.

[12] J. Hightower, B. Brumitt, and G. Borriello, "The location stack:
a layered model for location in ubiquitous computing,” Proc.
Proceedings Fourth IEEE Workshop on Mobile Computing
Systems and Applications, 20-21 June 2002, Callicoon, NY,
USA, pp. 22-8 BN - 07695 1647 5, Jun. 2002

053474r06v1.0, "ZigBee

