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Abstract – Since its introduction in the mid-1970s, the OSI 
Basic Reference Model (OSI-BRM) has been widely used as a 
foundation for communication models and standards. While 
many of these have modified the OSI-BRM for specific 
communication requirements (protocols such as ZigBee and 
Fieldbus – used in sensor networks), little structure or 
standardisation has been developed for other aspects of the 
hardware/software interface – for example sensing, energy 
management, actuation or locationing. Such processing is often 
implemented in the application layer of the communications 
stack, resulting in an unstructured, top-heavy and confusing 
stack. Alternatively, processing is performed off-chip or in 
separate unstructured software. In this paper, we propose the 
Unified Framework for the structured design and 
implementation of multiple interfaces on a sensor node. The 
framework creates unified stacks by connecting individual 
stacks (containing distinct functionality) via a shared application 
layer. We present the application of the framework to create a 
unified stack, structuring both communications and sensing. The 
process of extending a unified stack for implementing energy 
management, locationing and actuation is also discussed. The 
proposed framework establishes a structured platform for the 
formal design, specification and implementation of sensor and 
wireless sensor networks. 

I. INTRODUCTION 

Communication protocol models have been utilised for 
decades, aiming to formalise, structure and provide 
interoperability between the tasks of the networking system. 
The OSI Basic Reference Model (OSI-BRM) [1] was 
introduced in the mid-1970s, proposing a basic layered 
architecture for communication protocols – as shown in 
figure 1. The primary functions of each layer of the OSI-
BRM are outlined below: 
• Physical Layer: performs channel coding, bit-level 

communication over the physical/wireless medium, and 
directly controls the communication hardware. 

• Data link Layer: consists of two sublayers: logical link 
control (for example frame and error control) and medium 
access control (controlling multiple accesses to a shared 
communications medium). 

• Network Layer: provides network related protocols such 
as packet routing. 

• Transport Layer: provides high-level end-to-end 
reliability, such as flow control, connection management 
and error recovery. 

• Session Layer: manages sessions between networked 
devices (this layer is rarely implemented, with functionality 
absorbed by the application layer). 

• Presentation Layer: manages the syntax and semantics of 
communicated data (this layer is rarely implemented, with 
functionality absorbed by the application layer). 

• Application Layer: contains a range of commonly used 
high-level protocols. In smaller devices, the entire 
application may reside within the application layer. 

 

Figure 1 – The OSI-BRM [1], IRM [2], Foundation Fieldbus H1 [3]  
and ZigBee [4] communication stacks. 

Many widely used communication stacks and models (for 
example the Internet Reference Model (IRM) [2] shown in 
figure 1) have added, removed and merged layers from the 
OSI-BRM to tailor the model to their requirements.  
However, the OSI-BRM remains an important building block 
for modern communication protocols. 

Fieldbus H1 [3] was designed as a network architecture for 
process control applications, such as sensor networks.  It can 
be seen from figure 1 that the majority of the higher layers 
have been removed, as the functionality provided by these 
layers (for example packet routing, flow control and 
connection management) is not required by the network.  
Fieldbus adds a User layer to the top of the protocol stack, 
which allows additional functionality to be provided, such as 
a user interface. 

The ZigBee specification [4] defines a low-cost, low-power 
wireless communication standard that is particularly suited to 
wireless sensor networks. The ZigBee protocol stack (shown 



in figure 1) uses the IEEE 802.15.4 [5] Physical and Medium 
Access Control (MAC) layers. The transport layer is omitted, 
with the relevant functionality being absorbed by 
neighbouring layers. 

The OSI-BRM was designed to represent only the 
communications functionality of a networked node. However, 
ZigBee (based on the OSI-BRM) uses the communications 
stack to contain software for the entire device, placed in the 
large and subdivided application layer. Some Fieldbus 
networks also place the program in the application layer, or 
alternatively use off-stack software that does not promote 
reuse or interoperability.  This was found to be true in all of 
the models and stacks investigated. 

The TinyOS operating system [6] (used in many wireless 
sensor nodes, such as the Crossbow motes [7]) has a layered 
software stack, where data from the sensors (and any other 
hardware) is directly processed in the application layer [8].  
Therefore, any processing of sensory data must also take 
place within the application layer. In energy harvesting nodes 
such as Heliomote and Prometheus [9, 10] the application 
must monitor voltage levels and incorporate cursory 
temperature compensation. In these nodes, such energy 
management operations occur in the application layer. While 
communication gets formally specified in the majority of 
implementations, other interfaces (such as sensing and energy 
management) are left unstructured. 

In this paper, we introduce the Unified Framework to 
formally specify multiple interfaces on a sensor node. The 
framework creates a unified stack by connecting individual 
stacks (containing distinct functionality) through a shared 
application layer. This establishes a structured platform for 
the formal design, specification and implementation of 
modern sensor and wireless sensor nodes. 

II. THE UNIFIED FRAMEWORK 

In the previous section it has been shown that, while the 
communications interface is formally structured, other 
interfaces (such as sensor processing) are generally 
unspecified and often integrated into an unstructured and 
overflowing application layer. This is not ideal for sensor 
processing, which is arguably as important as 
communications to the functionality of a sensor node. 

We propose the Unified Framework, which specifies and 
structures multiple interfaces on a sensor node.  The 
framework provides a basic template stack, based upon the 
OSI-BRM, from which different interface stacks can be 
derived. A number of these stacks with distinct functionality 
are combined via a shared application layer, forming a unified 
stack. The Unified Framework’s basic template stack is 
shown in figure 2. Stacks developed following the framework 
are derived from this template. The layer boundaries are 
placed to accommodate a wide range of hardware interfaces, 
and to allow different protocols to be interchanged without 
redefining surrounding layers. The functions of the layers are: 
• Interface Layer: directly interfaces with the relevant 

hardware, and hides the complexity of the circuitry from 
the higher layers. For communications, this layer represents 
the physical layer of the OSI-BRM. 

• Medium Layer: provides low-level processing, and hides 
the complexity of interfacing with the medium (for 
example, the wireless channel or the sensed phenomenon) 
from the higher layers. For communications, this layer 
represents the data link layer of the OSI-BRM. 

• Management Layer: provides high-level functionality, 
and hides the complexity of groups of objects (for example 
a network of nodes, or number of different energy sources) 
from the higher layers. For communications, this represents 
both the network and transport layers of the OSI-BRM. 

• Shared Application Layer: contains cooperative 
functionality that passes data between individual stacks. 
For communications, this layer represents the application 
layer in the OSI-BRM. 

• Program Area: contains the end-user’s application.  The 
Unified Framework recommends against the use of the 
program area wherever possible, and instead suggests that 
functionality is transferred to a relevant stack. Naturally, 
there are some implementations where this may not be 
feasible, and so the program area is incorporated into the 
framework for these situations. 

 

Figure 2 – The Unified Framework’s basic template stack. 

Communication between neighbouring layers takes place 
through the service access points (SAPs).  At each layer 
boundary, there are two SAPs – the data SAP (xD-SAP), used 
for transferring data between layers, and the layer 
management entity SAP (xLME-SAP), used for layer 
management functions such as getting and setting layer 
parameters.  The physical layer interfaces with hardware 
through the HARD-SAP; the services and connections of 
which are specific to individual implementations. 

Communications and sensing are fundamental parts of any 
sensor node.  Figure 3 shows an example of a unified stack 
(created following the Unified Framework) designed to 
implement both the communication and sensing interfaces. 

The communication stack is similar to that of ZigBee [4].  
The physical layer interacts directly with the communication 
hardware, and hides the complexities of the communication 
circuitry from the MAC layer. The MAC layer provides 
features including channel access (redundant in non-broadcast 
networks), frame management, low-level error detection and 
security, and hides the complexities of the communication 



medium from the network layer. The network layer controls 
message routing and subnet formation and maintenance, thus 
providing the shared application layer with a view of the 
network as a single entity. 

 

Figure 3 – A unified stack incorporating both 
communication and sensing interfaces. 

The sensor stack implements the intelligent sensing 
functionality of a node: interfacing with the physical sensing 
circuitry, processing sensory data, and assessing its reliability.  
The desired output data from an intelligent sensing system 
includes an estimate of the measurand and its uncertainty 
level. Estimates of error and uncertainty are useful in a multi-
sensor fusion context [11], so that greater attention can be 
paid to accurate data. The software system must interface 
with the physical sensor, and any physical pre-processing and 
conversion stages. The sensor stack (shown in figure 3) is 
split into three layers: 
• Physical Sensing Layer: interfaces with the sensor 

hardware by energising sensors and obtaining readings. It 
provides raw sensor data to the layer above, but hides the 
complexities of interfacing with the sensor and conversion 
circuitry. For example, it switches a pressure sensing 
device on and obtains a reading from the ADC, providing 
raw sensor data to the processing layer.  

• Sensor Processing Layer: accepts the raw sensor data 
from the layer below, and performs preliminary processing. 
It provides the layer above with adjusted data, and can 
perform localised data fusion. In the context of a pressure 
measurement system, it linearises the data (through use of a 
look-up table) and provides temperature compensation by 
fusing pressure data with temperature information.  

• Sensor Evaluation Layer: interfaces with the physical 
sensing layer and refines data through comparison with the 
sensor model. It provides the shared application layer with 
an adjusted sensor reading, complete with error bars and 
indications of sensor faults. The stage takes into account 

the age of the sensor and any previous damaging events, in 
line with the sensor model and condition monitoring and 
fault detection logic, to estimate drift and uncertainty. 
This structured approach to sensor interfacing brings with it 

a number of advantages. As with the communication stack, 
complexities of lower levels are hidden from those above. 
Layers may be redefined to provide differing functionality 
without affecting the operation of neighbouring layers. In 
addition, layer operation may be reconfigured through the 
management SAPs. 

The shared application layer handles collaboration between 
the individual stacks – passing high-level data between them, 
under self-guidance or guidance from the program area. For 
example, a packet may be received via the communication 
stack requesting a measurement. The shared application layer 
would then request this data from the sensor stack and pass 
the result back to the communication stack for transmission. 
This layer also provides the interface with the program area 
(if implemented), offering common protocols and access to 
the individual stacks.  

III. USING THE FRAMEWORK TO EXTEND A UNIFIED STACK 

The nodes in a wireless sensor network are typically 
resource-constrained, relying on batteries or energy 
harvesting to supply their energy. Where multiple energy 
sources are used, the management of the energy subsystem 
can become a complex process, with the flow of charge 
between sources requiring intricate control. 

By partitioning the energy management process into 
distinct tasks, the implementation can be migrated from the 
program area to a separate stack, removing a source of 
complexity and reducing the volume of unstructured 
functionality. A unified stack – such as that discussed in the 
previous section – can be extended (following the Unified 
Framework) to include an energy management stack (as 
shown in figure 4). Here, the energy management process is 
divided into three layers: 
• Physical Energy Layer: obtains information about 

voltages of energy stores (indicating the amount of energy 
remaining), monitors the yields from energy harvesting, 
and controls physical switching in order to direct the flow 
of energy. 

• Energy Analysis Layer: takes data from the physical 
energy layer and for each source provides information such 
as the rate of energy usage, energy generation, and stored 
energy (through use of source models).  

• Energy Control Layer: takes a high-level view of the 
energy subsystem – making decisions about energy 
sources, switching, and the general flow of energy. It 
indicates to the shared application layer the residual 
energy, and the sustainability of present usage. 
To illustrate the operation of the energy stack, a node 

utilising vibration harvesting, a capacitor and a rechargeable 
battery is considered. The vibration harvesting device acts to 
supply energy, the capacitor acts as a primary buffer, and the 
rechargeable battery as a secondary buffer. The physical 
energy layer hides the complexities of interfacing with the 
physical hardware. It controls switching, allowing charging 



and energy transfer operations to take place in line with 
directions from higher layers. It monitors the voltages of 
energy sources and the amount of energy being harvested, 
passing values to the energy analysis layer. The energy 
analysis layer takes this physical data and uses source models 
to derive the amount of energy stored and its rate of 
generation (for example, taking account of temperature  
effects and temporal deterioration to derive the real amount of 
energy stored in the battery). It accepts commands from the 
layer above regarding energy distribution, and translates these 
into switching commands for the physical layer to execute. 
The energy control layer takes the refined information about 
energy sources and calculates whether the rate of energy 
usage exceeds the rate of generation. Such information is sent 
to the next higher layer. The layer makes decisions regarding 
energy transfer and distribution, which are sent to lower 
layers. Rechargeable batteries are generally limited to 300-
500 recharge cycles, so energy transfer operations must be 
minimised to prolong the lifetime of the platform [9]. 

 

Figure 4 – A unified stack incorporating communications, sensing 
and energy management interfaces. 

Additional extensions to the framework could include 
actuation and locationing stacks. Each application of location-
aware computing treats location tasks differently [12]. 
However, recent convergence in location technology trends 
permits the formation of a generalised location stack. An 
actuation stack would permit actuation commands to be 
expressed via the shared application layer as a high-level 
command, which could be translated by the stack into low-
level control of operations. It can be seen that these 
extensions could be incorporated into a unified stack. 

Further extensions to the concept of the unified stack 
include the creation of software/software interface stacks, 
where data present in the shared application layer can be 
processed in the same fashion as data obtained from 
hardware. An example of this could be in performing data 
fusion using packets received from other nodes in the 
network. Functionality can be migrated from the program 
area into a distinct, structured stack. However, this is outside 
the scope of this paper. 

IV. CONCLUSIONS 

In this paper, we have proposed the Unified Framework – a 
means for specifying and structuring the multiple interfaces 
on a sensor node.  The framework provides a basic template 
stack from which different interface stacks can be derived. A 
number of these stacks with distinct functionality are 
connected via a shared application layer to form a unified 
stack. We have presented a unified stack for communication 
and sensing interfaces, and then shown how it can be 
extended following the Unified Framework to implement 
additional functionality such as energy management. The 
flexibility of the framework permits the structuring of other 
interfaces, for example actuation and locationing. The 
framework establishes a structured platform for the formal 
design, specification and implementation of the nodes in 
sensor and wireless sensor networks. 
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