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Abstract— In this contribution, multiuser decorrelating based
frequency-domain channel estimation and long range channel prediction
techniques are proposed for a generalized Multicarrier DS-CDMA (MC
DS-CDMA) system communicating over a fast fading and frequency-
selective channel. In the MC DS-CDMA system considered, the channel
transfer function (CTF) is estimated in the frequency-domain with the aid
of pilot symbols by invoking the multiuser decorrelating based channel
estimation technique, in order to reduce the effects of both the Multiuser
Interference (MUI) and the background noise. Then, Kalman filter as-
sisted long-range channel prediction is carried out with the aid of both the
current and previous frequency-domain CTFs for the sake of predicting
the future CTFs. Furthermore, a sinc-interpolator is employed for the
sake of deriving the frequency-domain CTFs associated with the data
symbols. Our simulation results show that for a reasonable signal-to-noise
ratio (SNR) value the proposed frequency-domain multiuser decorrelating
based channel estimator is robust to the effects of both the MUI as well as
the noise.

I. INTRODUCTION

One of the most challenging problems in high data rate wireless sys-
tems is that of overcoming the effects of dispersion imposed by mul-
tipath propagation. Based on a combination of Direct Sequence Code
Division Multiple Access (DS-CDMA) and Orthogonal Frequency Di-
vision Multiplexing (OFDM), MC DS-CDMA [1], [2], [3], [4], [5],
has been proposed for a variety of high-rate wireless communication
applications. In this contribution, we discuss the generalized MC DS-
CDMA system investigated in [6], which incorporates the subclasses
of both multitone DS-CDMA [3] and orthogonal MC DS-CDMA [4]
as special cases. In the MC DS-CDMA system considered, the en-
tire frequency band is divided into a number of subcarriers. Signals
transmitted in each subcarrier experience flat fading, provided that the
bandwidth of each subcarrier is lower than the coherence bandwidth of
the channel. Moreover, a sufficient long cyclic prefix can be incorpo-
rated for the sake of compensating for both the asynchronous delay dif-
ferences of the different users as well as for the delay-spread-induced
inter-symbol interference (ISI) imposed by the dispersive channel [2].
In this case, each of the subcarriers can be estimated or predicted using
a variety of schemes designed for flat fading channels.

On the other hand, in future wireless systems, the carrier frequency
is likely to be high, which results in normalized high Doppler frequen-
cies. Thus, using the outdated channel transfer function (CTF) esti-
mated based on the past received data using Decision Directed Chan-
nel Estimation (DDCE) principles [2] may not be sufficiently accurate.
However, with the aid of long range CTF prediction, the future Chan-
nel Impulse Response (CIR) or CTF may be estimated sufficiently ac-
curately [7]. Various algorithms have been proposed in the literature
[7], [8], [9], [10], [11] for the sake of implementing long range CIR or
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CTF prediction. In [7], the CIR was predicted based on the Minimum
Mean Square Error (MMSE) estimation principles. The most impor-
tant characteristic of this algorithm is that the sampling rate is typically
significantly lower than the data rate. In [8] the ROOT-MUSIC algo-
rithm was invoked for non-dispersive channel envelope prediction. By
contrast, the ESPRIT algorithm was employed for the prediction of
fast-fading wideband channels in [9]. Furthermore, in [10], [11] both
the one-dimensional 1-D and 2-D Unitary-ESPRIT algorithms have
been employed for estimating the CTF. Once the CTF has been de-
termined, its future values can be extrapolated in both the time and
frequency domain using the techniques proposed in Chapters 15 and
16 of [2].

By contrast, the novelty of this paper is that we invoke the multiuser
decorrelating based channel estimation scheme in the context of gener-
alized MC DS-CDMA for the sake of estimating the frequency-domain
(FD) CTF while reducing the effects of both the Multiuser Interference
(MUI) and the background noise. Then, Kalman filter assisted long
range FDCTF prediction is carried out in order to predict the future
CTFs based on both the current and previous CTFs determined with
the aid of the dedicated MC DS-CDMA pilot symbols to be described
in Section III. Finally, we generate the frequency-domain CTFs asso-
ciated with the data symbols by employing a sinc interpolator.

The rest of this paper is organized as follows. In Section II the
philosophy of the uplink generalized Multicarrier DS-CDMA system
and the wideband wireless channel are briefly described. In Section
III the multiuser decorrelating based channel estimation scheme is in-
vestigated, while the long range channel predictor assisted by both a
Kalman filter and a sinc-interpolator are considered in Section IV. The
attainable performance is studied in Section V. Finally, Section VI of-
fers our conclusions.

II. SYSTEM MODELS
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Fig. 1. Transmitter schematic of MC DS-CDMA using both time-domain and
frequency-domain spreading

The transmitter of the generalized MC DS-CDMA system is por-
trayed in Fig.1. At the transmitter side, the binary data stream bk(t) is
spread using an N -chip time domain DS spreading waveform ck(t).
The DS spread signals are simultaneously modulated using Binary
Phase Shift Keying (BPSK) and then spread using a frequency do-
main orthogonal spreading sequence c′

k = [c′k,1, c
′
k,2, . . . , c

′
k,V ] of

length V , where we have c′
k · c′H

k = 1. In our investigations we
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assume that OFDM using V subcarriers was invoked [2], where V
consecutive chips of the MC DS-CDMA spreading sequences were
mapped to V different subcarriers during an OFDM symbol and hence
the OFDM symbol duration was Tc = Tb/N . The spread OFDM
chip-vector of V subcarriers can be expressed as sk = c′

kbkck(t) =
[s1, s2, ..., sV ]. The Inverse Fast Fourier Transform (IFFT) is then in-
voked for modulating the V subcarriers by using the spread OFDM
chip-vector sk [2]. The output signal of the IFFT-based demodulator
is a block of V number of time domain samples in parallel form. After
parallel to serial (P/S) conversion these time domain signals are trans-
mitted through a multipath fading channel, which is assumed to have
L paths.

In our investigations, block-based data transmission is consid-
ered where there are M useful MC DS-CDMA symbols, namely
[bk,0j , bk,1j , · · · , bk,(M−1)j ], in jth block. Thus the kth user’s jth
transmitted signal block after IFFT and P/S conversion can be ex-
pressed as [s̃k,0j , s̃k,1j , · · · , s̃k,(M−1)j ], where the chip-vector s̃k,mj

represents the IFFT of the spread OFDM chip-vector sk,mj , which can
be expressed as

sk,mj = c
′
kbk,mjck(t). (1)

A cyclic prefix of length L is inserted in the chip-vector s̃k,mj prior to
transmission for the sake of compensating for both the asynchronous
delay differences of the different users as well as for the delay-spread-
induced ISI imposed by the dispersive channel [2]. Furthermore, a
guard interval of length τmax is inserted in each transmission block
for the sake of preventing the inter-symbol-block-interference among
different users, where τmax is the maximum delay of all users, which is
normalized to the OFDM symbol period Tc = Tb/N . Consequently, a
transmission block is comprised of {(V +L−1)NM +τmaxV } chips
and hence the duration of a transmission block TB may be expressed
as TB = {(V + L− 1)NM + τmaxV } · Tc′ , where Tc′ = Tb

NV
is the

chip-duration.
We assume that the CIR encountered is time-invariant during a

transmission block [12]. Therefore, the CIR corresponding to the jth
transmission block can be expressed as:

hkj(t) =

L−1X
�=0

hkj,� · δ(t − τk,�Tc′), (2)

where hkj,� is the complex channel gain experienced by the signal of
the kth user in the �th path, which obeys Rayleigh fading, while τk,�

is the kth user’s delay in the �th path. Let us assume that the first
user corresponding to k = 1 is the user-of-interest and his/her delay is
τk,0 = 0 for simplicity.

At the receiver, the TD samples of the received signal correspond-
ing to the cyclic prefix are first removed and V -point FFT is in-
voked for demodulating the remaining V samples and generating
the demodulated subcarrier signals in the FD [2]. Consequently,
the received signal can be expressed in vectorial form as rmj =
[rmj,0, rmj,2, . . . , rmj,V −1]

T ,

rmj =
KX

k=1

C
′
kHkjbk,mjck(t) + nmj = Gjbmj + nmj , (3)

where Hkj = [Hkj,0, Hkj,2, . . . , Hkj,V −1]
T denotes the FDCTF,

and C′
k = diag{c′

k}. The matrix Gj in Eq.(3) is an (V × K)-
dimensional matrix comprising both the channel’s complex-valued FD
fading factors and the FD spreading signatures of all the K users,

hence we have Gj = [g1j ,g2j , . . . ,gKj ], where gkj = C′
kHkj .

Furthermore, the vector bmj = [b1,mjc1(t), b2,mjc2(t),
. . . , bK,mjcK(t)]T is the data vector and nmj is the Additive white
Gaussian Noise (AWGN) vector associated with the covariance matrix
of σ2IV , where IV denotes the (V × V )-dimensional identity matrix.
Finally, the (V × MN)-dimensional matrix Rj corresponding to the
jth received signal block may be expressed as

Rj = GjBj + Nj , (4)

where we have Bj = [b0j ,b1j , · · · ,b(M−1)j ] and Nj is contributed
by nmj of Eq.(3).

Since we assume that a cyclic prefix of length L was inserted, no
OFDM ISI is incurred. Hence the FDCTF Hkj in Eq.(3) can be ex-
pressed as the V -point DFT of the CIR hkj = [hkj,0, . . . , hkj,L−1]

T .
More explicitly, we have Hkj = FL · hkj , where FL is an (V × L)-
dimensional matrix, which is given by the first L columns of the DFT
matrix F formulated as:

F =

0
BBB@

1 1 . . . 1

1 e−j2π/V . . . e−j2π(V −1)/V

...
...

. . .
...

1 e−j2π(V −1)/V . . . e−j2π(V −1)(V −1)/V

1
CCCA . (5)

III. CHANNEL ESTIMATION

Pilot-aided channel estimation in OFDM/MC DS-CDMA systems
may be carried out either by including appropriately spaced pilot
subcarriers in all symbols as in [2], or by transmitting dedicated
OFDM/MC DS-CDMA symbols containing no data-bearing subcar-
riers, followed by a number of dedicated data symbols having no pilot
subcarriers [13]. In this contribution the latter technique is used. In
order to mitigate the effects of both the MUI and the background noise
imposed on the FDCTF prediction, channel estimation is typically car-
ried out prior to channel prediction [7]. In [14] multiuser decorrelating
technique was first proposed for signal detection in multiple user sce-
nario. By contrast, we invoked multiuser decorrelating technique [14]
in our FDCTF estimation scheme for the sake of suppressing the ef-
fects of MUI. When the pilot symbol block is received, we multiply
both sides of Eq.(4) with the matrix BH

j (BjB
H
j )−1 generated from

the pilot symbols, and attain an estimate of the matrix Gj encapsulat-
ing both the FDCTF Hkj and the FD spreading signatures C′

k of all
the K users as follows:

G̃j = Gj + NjB
H
j (BjB

H
j )−1 = Gj + Ñj , (6)

where j denotes the index of the received symbol blocks and Ñj is
a (V × K)-dimensional noise matrix. Consequently, the first column
of the matrix G̃j , which corresponds to the desired user, is given by
g̃1j = g1j + n̂1j , where the (V × 1)-dimensional noise vector is
the first column of the noise matrix Ñj . Upon multiplying the vector
g̃1j with the matrix C′H

1 , we obtain the estimate of the desired user’s
FDCTF H1j , which can be expressed as

H̃1j = H1j + C
′H
1 n̂1j = H1j + ñ1j , (7)

where the vector ñ1j is a noise process having zero mean and a co-
variance of V · σ2. For notational convenience, the superscript and
subscript denoting the reference user of k = 1 will be omitted in the
rest of the paper.
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According to [15], the autocorrelation function of Hj,v can be ex-
pressed as

r[Δj;Δv] = E[Hj,vH∗
j′,v′ ] = rt[Δj]rf [Δv], (8)

where Δj = j − j′, Δv = v − v′, and rt[Δj] is the time-domain
symbol-spaced autocorrelation function, which can be expressed as
[15]

rt[Δj] = J0(2πfdmΔjTB), (9)

with J0(·) representing the zero-order Bessel function of the first kind
and fdm denoting the maximum Doppler frequency. By contrast, the
frequency-domain symbol-spaced autocorrelation function rf [Δv] in
Eq.(8) is given by [16]

rf [Δv] =

L−1X
�=0

σ2
� e−j2πΔvf0τ� , (10)

where we have f0 = 1/(MTb), while τ� denotes the delay of the �th
multipath component and σ2

� is its average power. In contrast to the
autocorrelation function of Hj,v in Eq.(8), the autocorrelation function
of its estimate H̃j,v in Eq.(7) is given by

E[H̃(j,v)H̃
∗
(j′,v′)] = rt[Δj]rf [Δv] + V σ2δ(Δj)δ(Δv). (11)

Furthermore, the cross-correlation between H̃j,v and Hj,v can be ex-
pressed as

E[H̃j,vH∗
j′,v′ ] = rt[Δj]rf [Δv]. (12)

Based on Eq.(7) the estimated FDCTF can be formulated as

Ĥj = D
H
j H̃j , (13)

where Ĥj denotes the estimate of Hj and the (V × V )-dimensional
matrix Dj = [dj,0,dj,1, · · · ,dj,V −1] represents the FD coefficient
matrix of the estimation filter designed for estimating Hj , where
dj,v = [dj,v0, dj,v1, · · · , dj,v(V −1)]

T is a (V × 1)-dimensional vec-
tor. The MMSE based coefficient matrix Dj may be obtained by using
classic Wiener filtering, which is formulated as [17]

Dj = R
−1

H̃H̃
R

H̃H
, (14)

where R
H̃H̃

= E[H̃jH̃
H
j ] is the (V ×V )-dimensional autocorrelation

matrix of H̃j , while R
H̃H

= E[H̃jH
H
j ] is the (V × V )-dimensional

cross-correlation matrix.
The minimum MSE (MMSE) Jfo(j,v) of the FDCTF estimator after

FD filtering can be expressed as [17]

Jfo(j,v) = rf [0] − r
H
f,vR

−1

H̃H̃
rf,v, (15)

where rf,v = E[H̃jH
∗
j,v] is the vth column of the cross-correlation

matrix R
H̃H

.
After FDCTF estimation filtering of the past FDCTFS in the MMSE

sense, Ĥj,v can be expressed as

Ĥj,v = Hj,v + ζj,v, (16)

where ζj,v is a zero-mean process having a variance of Jfo(j,v), which
represents the estimation error between Ĥj,v and Hj,v . Based on the
property that ζj,v is independent of both Ĥj,v and ζj′,v , provided that
we have j �= j′ [15], the autocorrelation function of Ĥj,v at a given
frequency may be expressed as:

E[Ĥj,vĤ∗
j′,v] = rt[Δj]rf [0] + Jfo(j,v)δ(Δj). (17)

FFT FFT

J

FDCTF
estimation

FDCTF prediction by Kalman filter

Estimated FDCTF

Predicted FDCTF

FDCTF
estimation

Estimated FDCTF

pilot datadata data pilot data data pilot data

J

Fig. 2. Illustration of long range prediction for narrowband systems.

IV. CHANNEL PREDICTION AND INTERPOLATION

In this contribution we assume that a dedicated pilot OFDM/MC
DS-CDMA symbol block having the same number of symbols as the
data symbol block is inserted before every J − 1 transmission blocks
and the J consecutive transmission blocks are treated as a pilot-aided
transmission frame in this investigation. As portrayed in Fig.2, the
FDCTF associated with the next OFDM/MC DS-CDMA pilot symbol
block is predicted with the aid of all the pilot blocks available from
the past by invoking long-range prediction. As described in Section I,
the FDCTF Hj,v experiences narrowband fading at a given subcarrier,
provided that the bandwidth of each subcarrier is lower than the coher-
ence bandwidth of the channel. Thus, a set of V Kalman filters can be
used for predicting the future FDCTFs at each of the V subcarriers.

For a given FD subcarrier v, v = 1, 2, . . . , V , the FDCTF can be
described by an AR model [18], which is given by

Hj,v =
PX

p=1

apHj−p,v + wj,v, (18)

where {ap} represents the AR coefficients derived in [18] and wj,v is
the AWGN.

According to [17], the Kalman filtering process used for predicting
the FDCTF from all the past values on a subcarrier basis is formulated
as

H̆j,v = Fj−1,vH̆j−1,v + wj,v, (19)

where we have H̆j,v = [Hj,v, Hj−1,v, · · · , Hj−P+1,v]T and wj,v =
[w(j,v), 0, · · · , 0]T is the (P × 1)-dimensional process noise vector.
In Eq.(19), Fj−1,v is the (P × P )-dimensional transition matrix from
time j − 1 to j [17], which is given by

Fj−1,v =

2
6664

a1 · · · aP−1 aP

1 · · · 0 0
...

. . .
...

...
0 · · · 1 0

3
7775 . (20)

Furthermore, according to Eq.(16) the Kalman measurement equation
[17] can be formulated as

Ĥj,v = Cj,vH̆j,v + ζj,v, (21)

where Cj,v = [1, 0, · · · , 0] is a (1 × P )-dimensional measurement
matrix. Consequently, the Kalman filter based FDCTF prediction can
be formulated as [17]

H̀[(j+1,v)|(j,v)] = Fj,vH̀[(j,v)|(j−1,v)] + G(j,v)αj,v, (22)

where H̀[(j+1,v)|(j,v)] represents the MMSE prediction of H̆j+1,v

based on all the j observations of past pilot symbol blocks for a spe-
cific subcarrier, while Gj,v and αj,v are the Kalman gain and the
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Fig. 3. The true CTF magnitude and the Kalman filter based predicted CTF
magnitude of the 16th subcarrier, when assuming that the spacing of pilot sym-
bol blocks was J = 30 transmission blocks, the maximum Doppler frequency
was fdm = 100Hz, the transmission block duration was TB = 0.00004s,
the number of multipath components was L = 5, the length of the transmis-
sion block was M = 10, the length of the cyclic prefix was L − 1 = 4,
the power intensity was σ2

� = 0.2 for each multipath component and we had
Eb/N0 = 25dB. Furthermore, the order of the Kalman filter was P = 20.

innovation process, respectively [17]. According to [18], we have
Fj,v = Fj−1,v in our investigations.

After long range FDCTF prediction, we attain the specific CTF cor-
responding to the data symbol block to be demodulated by interpolat-
ing the CTF over K number of consecutive pilot symbol blocks. In
[19], a sinc interpolator was proposed for conventional single-carrier
modulation, where the fading amplitude of the jth data symbol in the
nth transmitted frame was estimated from the K number of surround-
ing pilot symbols, including the pilot symbols of the (K− 1)/2 previ-
ous frames, the current frame and of the (K−1)/2 subsequent frames,
which were predicted in advance by using Kalman filtering assisted
FDCTF prediction. In this spirit, the estimate of the FDCTF Ĥj

n cor-
responding to the jth MC DS-CDMA data symbol block in the nth
MC DS-CDMA frame seen in Fig.2 may be expressed as [19]

Ĥj
n =

�K/2�X
k=−�(K−1)/2�

f j
kĤn+k, (23)

where j = 1, . . . , J−1 is the MC DS-CDMA data symbol block index
between two pilot symbol blocks portrayed in Fig.2 while f j

k denotes
the real-valued interpolation coefficient, which is computed from the
sinc function as

f j
k = sinc(

j

J
− k). (24)

V. SIMULATION RESULTS

In this section we quantify the achievable performance of the gen-
eralized MC DS-CDMA system communicating over a L = 5 paths
dispersive Rayleigh fading channel contaminated by AWGN employ-
ing 15-chip Gold codes as TD spreading sequences and 32-chip Walsh
codes as the FD spreading codes.

In Fig.3 the FD envelope of the true CTF Hj,v and its Kalman fil-
ter based FDCTF prediction H̀[(j,v)|(j−1,n)] are shown, when stip-
ulating the assumption that the maximum Doppler frequency was

0 20 40 60 80 100 120 140 160 180 200
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10
1

10
0

Time expressed in pilot symbol blocks

M
M

S
E

20dB J=20
30dB J=20
20dB J=30
30dB J=30

Fig. 4. The CTF MMSE versus the time expressed in terms of the num-
ber of the pilot symbol blocks for the Kalman filter based long-range FD-
CTF prediction of the 16th subcarrier, when assuming that the maximum
Doppler frequency was fdm = 100Hz, the transmission block duration was
TB = 0.00004s, the number of multipath components was L = 5, the
length of transmission block was M = 10, the length of the cyclic prefix was
L − 1 = 4, the power intensity was σ2

l = 0.2 for each multipath component
and the order of the Kalman filter was P = 20. In this simulation, we had both
Eb/N0 = 20dB and Eb/N0 = 30dB. Furthermore, the spacing J of the
pilot symbol block was assigned one of two different values: namely 20 and
30.

fdm = 100Hz, the number of multipath components was L = 5,
the length of the pilot block was M = 10, the cyclic prefix was consti-
tuted by L−1 = 4 chips, the power intensity was σ2

� = 0.2 for each of
the L = 5 multipath components, while the order of the Kalman filter
was P = 20. Furthermore, we had Eb/N0 = 25dB and the transmis-
sion block duration was TB = 0.00004s, while the spacing of pilot
symbol blocks was J = 30. We can observe from Fig.3 that when the
SNR is sufficiently high, the Kalman filter based FDCTF predictor is
capable of closely tracking the wideband channel’s FDCTF. Further-
more, by employing multiuser decorrelating based channel estimation,
the system supporting K = 15 users achieved a near-single-user per-
formance, since the MUI has been suppressed.

In Fig.4 we evaluated the achievable FDCTF MMSE performance
versus the time expressed in terms of the number of the pilot symbol
blocks used by for the Kalman filter based FDCTF predictor. In these
investigations, we had Eb/N0 = 20dB and Eb/N0 = 30dB. All
other parameters were the same as those in Fig.3. In Fig.4 the FDCTF
MMSE associated with both J = 20 and J = 30 was recorded. Fig.4
demonstrates that the MMSE reaches a certain residual value, as the
number of pilot symbol blocks used for Kalman filtering based predic-
tion is increased. Moreover, for a fixed value of Eb/N0, as expected
the MMSE corresponding to J = 5 is lower than that corresponding
to J = 30.

In Fig.5 we evaluated the attainable FDCTF interpolation perfor-
mance associated with different values of K, when using J = 30.
The FDCTF of pilot symbols were obtained according to Fig.3. Fig.5
shows that when supporting K = 4 users, the system operating in
conjunction with K = 11 outperformed that using K = 7 at the ex-
pense of a higher computational complexity. The system supporting
K = 4 users achieved a similar performance to that serving a single
user, provided that they had the same value of K.

Finally, the attainable BER performance of the systems carrying out
FDCTF estimation, prediction and interpolation was comparatively in-
vestigated with that of the systems assuming perfect channel estima-
tion. Fig.6 shows that when employing multiuser decorrelating detec-
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Kalman filtering assisted long range prediction, when assuming that the maxi-
mum Doppler frequency was fdm = 100Hz, the transmission block duration
was TB = 0.00004s, the number of multipath components was L = 5 and
we had Eb/N0 = 25dB. Furthermore, the order of the Kalman filter was
P = 20.
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Fig. 6. BER versus Eb/N0 performance of the uplink of a generalized MC
DS-CDMA wireless system operating in conjunction with K = 11 and J =

30. All other parameters were the same as those in Fig.5. In this simulation,
the BER performance of the systems supporting different users were studied
comparatively.

tors, the systems invoking FDCTF estimation, prediction and interpo-
lation achieved a slightly worse BER performance than the systems
assuming perfect channel estimation, i.e., about 1 dB worse at a BER
of 10−4. Again, the system supporting K = 4 users achieved a similar
performance to that serving a single user. As expected, these systems
outperformed that supporting K = 15 or 30 users. Furthermore, Fig.6
suggested that the systems employing multiuser decorrelating detec-
tors significantly outperformed the system refraining from multiuser
decorrelating detection. These results confirmed that our multiuser
decorrelating based channel estimator is robust to the effects of both
the MUI and the background noise and hence improved the attainable
BER performance.

VI. CONCLUSIONS

In this contribution we have proposed a multiuser decorrelating
based FDCTF estimation scheme designed for generalized MC DS-
CDMA for the sake of estimating the FDCTFs associated with the pi-
lot MC DS-CDMA symbols, which is capable of mitigating the effects
of both the MUI and the background noise. Kalman filter assisted long
range channel prediction was then carried out for predicting the future
FDCTFs based on the current and previous pilot FDCTFs. Finally,
we generated the FDCTFs for the data symbols by employing a sinc
interpolator. Our simulation results demonstrated that Kalman filter
based FDCTF predictor is capable of closely tracking the subcarriers’
FD envelope at reasonable Eb/N0 values. Furthermore, the system
supporting multiple users is capable of attaining a similar performance
to the system serving a single user by invoking multiuser decorrelating
based channel estimation.
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