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Abstract— In this paper, we proposed and investigated the optimal
successive interference cancellation (SIC) strategy designed for lattice-
reduction aided multiple-input multiple-output (MIMO) detectors. For
the sake of generating the optimal MIMO symbol estimate at each
SIC detection stage, we model the so-called effective symbols generated
with the aid of lattice-reduction as joint Gaussian distributed random
variables. However, after lattice-reduction, the effective symbols become
correlated and exhibit a non-zero mean. Hence, we derive the optimal
minimum-mean-squared-error (MMSE) SIC detector, which updates the
mean and variance of the effective symbols at each SIC detection stage.
As a result, the proposed detector achieves an approximately 3 dB Eb/N0

gain and performs close to the maximum likelihood detector.

I. INTRODUCTION

The computational complexity of the maximum likelihood (ML)

MIMO detector increases exponentially with the number of transmit

antennas [1]. The family of reduced-complexity detection algorithms

may be classified as linear and nonlinear detectors [2]. Although

linear detectors, such as the linear minimum-mean-squared-error

(MMSE) detector, typically exhibit a low complexity, their perfor-

mance is significantly worse than that of the ML detector. The non-

linear successive interference cancellation (SIC) algorithm detects

each symbol sequentially with the aid of classic redemodulation

and subtraction based canceling operations, and exhibits an attrac-

tive performance versus complexity trade-off [2]–[4]. However, its

performance is nonetheless inferior with respect to ML detection [4].

The family of lattice-reduction (LR) aided algorithms [5]–[7]

transforms the MIMO channel encountered into an effective channel

matrix, which is near-orthogonal. Therefore, suboptimal detectors

combined with LR become capable of attaining full diversity and

hence achieve a performance close to that of the ML detector.

Following the LR operation, the resultant symbols are no longer

mutually independent and hence they exhibit non-zero cross-

correlations, which are determined by the specific LR transformation

matrix used. Furthermore, since the resultant effective symbols are

correlated, their mean and covariance should be updated after the

symbol detection operation of each spatial detection layer. Although

numerous studies of LR-aided SIC detectors have been published

[5]–[7], no conclusive proposals have been made for handling their

non-zero means and the correlation of the symbol.

Hence, in this paper, we derive the optimal LR-aided SIC detector,

which is capable of adequately handling the non-zero mean as

well as correlation of the effective symbols. We assume that the

effective symbols are Gaussian distributed random variables with
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non-zero means as well as covariances, and perform the optimum

inter-antenna interference cancellation operation at each detection

stage, where the optimization is carried out in the MMSE sense. This

paper is organized as follows. Section II describes the signal model

and the LR-aided detection. In Section III, the optimal MMSE-SIC

algorithm invoked in the context of LR-aided detection is presented.

Section VI provides our simulation results, while Section V offers

our conclusions.

II. SYSTEM MODEL

A. Signal Model

We consider Nt transmit antennas and Nr receive antennas. The

channel is assumed to be frequency-flat fading and its time-domain

variation is deemed negligible over a transmission frame duration.

The overall channel can be represented by an (Nr × Nt)-dimensional

complex-valued matrix

H′ =

2
6664

h′
11 · · · h′

1Nt

h′
21 · · · h′

2Nt

...
. . .

...

h′
Nr1 · · · h′

NrNt

3
7775 , (1)

where h′
mn is the complex-valued non-dispersive fading coefficient

of the channel between the nth transmit and the mth receive antenna.

The signal encountered at the mth receive antenna is formulated as

y′
m =

PNt
n=1 h′

mnx′
n +v′

m, where x′
n is the symbol transmitted from

the nth antenna, and v′
m is the zero-mean complex Gaussian noise

having a variance of σ2
v per dimension. In this paper, we assume

that x′
n represents quadrature amplitude modulated (QAM) signals.

The overall received signals can be represented as y′ = H′x′ + v′,
where we have y′ = [y′

1 y′
2 · · · y′

Nr
]T , x′ = [x′

1 x′
2 · · · x′

Nt
]T and

v′ = [v′
1 v′

2 · · · v′
Nr

]T , while (·)T represents the matrix transpose.

For later notational convenience, we introduce an equiva-

lent real-valued expression y = Hx + v, where we have

x = [Re(x′)T Im(x′)T ]T , y = [Re(y′)T Im(y′)T ]T , v =
[Re(v′)T Im(v′)T ]T and

H =

»
Re(H′) −Im(H′)
Im(H′) Re(H′)

–
. (2)

We set the dimension of H to (M×N), where M = 2Nr , N = 2Nt.

B. LR-aided Detection

In the LR-aided detection algorithm [6], we first perform a received

signal scaling and shifting operation in order to map the received

symbols to the appropriate QAM decision regions as follows: x̃ =
x/d + 1N/2, where d is the minimum distance between QAM

constellation points and 1K denotes a (K × 1)-dimensional vector
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having unity elements. For example, when the elements of x assume

values of {−3/
√

5,−1/
√

5, 1/
√

5, 3/
√

5} in the 16-QAM phasor

contellation, d becomes 2/
√

5 and the elements of x̃ belong to the

decision interval 1 of the phasor points of {−1, 0, 1, 2}.

Given the integer-valued transmitted symbol x̃, the received signal

of y = Hx + v is rewritten as ỹ = H̃x̃ + v, where we have

ỹ = y + dH1N/2 and H̃ = dH.

Following the scaling and shifting operations of x̃ = x/d+1N/2,

according to the LR principles, we transform the channel matrix H̃
with the aid of T and T−1 having integer elements yielding the

effective received signal model

ỹ = H̃TT−1x̃ + v = Gs + v, (3)

where we introduced the effective symbols of

s = T−1x̃ (4)

and G = H̃T. Since T−1 and x̃ are composed of integer elements,

the effective symbol vector s also has integer elements. After detect-

ing the effective symbols of s = T−1x̃, we can further transform

them to x using x̃ = Ts and x̃ = x/d + 1N/2. According to (3)

in LR-aided detection, the channel matrix H̃ = dH is rotated using

the matrix T and this operation is designed to render the effective

channel matrix G = H̃T ‘as orthogonal as possible’. This operation

guarantees that despite using sub-optimal detectors, we are capable

of approaching the ML detector’s performance.

For example, when we have

H̃ =

2
664

0.8 0.04 −0.02 −2.3
−2.3 −0.1 0.7 4.2
0.02 2.3 0.8 0.04
−0.7 −4.2 −2.3 −0.1

3
775 , (5)

we can set T and T−1 to

T =

2
664

1 0 2 −2
−1 1 0 0
2 −2 −1 0
0 0 1 −1

3
775 ,T−1 =

2
664

1 0 0 −2
1 1 0 −2
0 −2 −1 0
0 −2 −1 −1

3
775 . (6)

As an indicator of orthogonality of a matrix, we use the condition

number, which is defined as the ratio of the maximum singular

value and the minimum singular value of a matrix. As the condition

number get closer to 1, the matrix becomes orthogonal. The condition

numbers of H̃ and G = H̃T are 11.8 and 1.7, respectively. By

multiplying T to H̃, the condition number is considerably reduced,

which implies that G causes much smaller errors than H̃ in the

suboptimal detectors.

Several algorithms have been proposed for generating the matrix

T [8]–[10]. The Lenstra, Lenstra and Lovasz (LLL) algorithm [8]

constitutes a popular approach, which has a complexity that increases

at a polynomial order as a function of the number Nt of transmit

antennas. Hence, we invoke the the LLL lattice-reduction algorithm

in the context of MIMO detection.

Let us consider two basis vectors {b1, b2} in a lattice. To

minimize the correlation between two vectors, we perform the

orthogonalization :

b2 = b2 − μ2,1b1, (7)

where μj,k is defined as μj,k = |bT
j bk|/‖bk‖2. When μ2,1 is not

an integer, (7) can change the lattice. Therefore, we modify (7) to

b2 = b2 − �μ2,1�b1, (8)

where �·� denotes the operation rounding a number to the nearest

integer. For the further reduction of the correlation, we check the

TABLE I

THE LLL ALGORITHM

Input: BI = [b1, b2, · · · , bN ], 1/4 < δ < 1

n = 2

while n ≤ N

for l = n − 1, n − 2, · · · , 1

bn = bn − �μn,l�bl % size-reduction

end

Calculate b∗
n = bn − Pn−1

k=1 μn,kb
∗
k % projection

if δ‖b∗
n−1‖2 > ‖b∗

n + μn,n−1b
∗
n−1‖2

Swap bn−1 and bn.

n = max{n − 1, 2}
else

n = n + 1

end

end

BO = [b1, b2, · · · , bN ]

T is defined as BIT = BO .

condition

‖b2‖2 < ‖b1‖2. (9)

If ‖b2‖ < ‖b1‖, we swap b1 and b2 and perform (8) again. For

the multidimensional case of {b1, b2, · · · , bN}, we project two

adjacent basis bn and bn+1 orthogonally to the space spanned by

the previous basis {b1, b2, · · · , bn−1}, and apply (8) and (9).

Furthermore, in the LLL algorithm, to reduce the computational

complexity, the condition (9) is changed to

‖b2‖2 < δ‖b1‖2, (10)

where 1/4 < δ < 1. The overall LLL algorithm can be summarized

as Table I.

Following the lattice reduction, we arrive at a near-orthogonal

channel matrix G = H̃T. However, since G is not perfectly orthog-

onal, the SIC detector is capable of achieving further performance

improvements in the symbol detection. Hence, in this paper, we focus

our attention on the MMSE-SIC detector using lattice-reduction,

which successively detects and cancels out the ‘cross-talk’ or inter-

antenna interference of the elements of s and finally converts s to

x.

III. MMSE-SIC DETECTION

In order to perform MMSE-SIC detection, we exploit the knowl-

edge of the mean and covariance of the effective symbols. Following

the scaling operation of x̃ = x/d + 1N/2, s has a non-zero

mean, which is given by m = E(T−1x̃) = E(T−1x/d) +
E(T−11N/2) = T−11N/2. Furthermore, the covariance of s
becomes R = E({T−1x̃ − T−11N/2}{T−1x̃ − T−11N/2}T ) =
ExE(T−1T−T )/d2, where Ex is the mean power of the elements

in x and (·)−T denotes the transpose of the inverse of a matrix.

Without loss of generality, we assume that the elements of s are

detected in the order of {s1, s2, · · · , sN}, where sk is the kth

element of s. In the first SIC detection, we obtain the MMSE detector

weight in the form of [11]

w1 = {[(GT G + σ2
vR

−1)−1GT ]1}T , (11)

where [·]k represents the kth row of a matrix. Using the MMSE

weight-vector (11), we arrive at the estimate of the first effective

symbol in the form of ŝ1 = �wT
1 (ỹ − Gm) + [m]1�.
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The above operations invoked for obtaining ŝ1 can be expressed

using the extended channel matrix and extended received signal

vector as follows:

Ḡ = [GT σvC
T ]T , (12)

ȳ = [{ỹ − Gm}T 0T
N ]T , (13)

where we have C = (R−1)1/2, while 0K denotes an all-zero

vector of dimension K × 1. Here, (·)1/2 represents the square root

of a positive-definite matrix. Using (12) and (13), we arrive at an

equivalent expression for ŝ1: ŝ1 =
˚
[Ḡ†]1ȳ + [m]1

˝
, where (·)†

denotes the Moore-Penrose pseudo-inverse [12]1.

Upon detecting ŝ1,the corresponding modulated signal is sub-

tracted from ỹ and the resultant received vector processed at the

second detection stage becomes ỹ2 = ỹ − ŝ1g1, where gk denotes

the kth column of G. In a similar manner, the received signal vector

processed at the nth detection stage after canceling the effects of

the (n − 1) detected symbols becomes ỹn = ỹ − Pn−1
k=1 ŝkgk. The

symbols of the different antenna elements are assumed to be mutually

independent during the consecutive SIC detection steps. However,

after the LR operation, the effective symbols defined in (4) become

correlated and therefore the specific value of the detected symbols

affects both the mean and variance of the symbols to be detected.

More specifically, the effective symbol sk of (4) is constituted

by the linear combination of the independent elements of x̃, which

implies that {s1, s2, · · · , sN} can be modeled by N joint Gaussian

distributed random variables having a mean of m and a covariance

of R provided that N is sufficiently large and hence the central limit

theorem holds.

In order to regularly update the mean and covariance of the

effective symbols at each detection stage, we use the following

proposition [13].

Proposition 1: Consider an (N × 1)-dimensional vector t, which

is composed of joint Gaussian random variables having a mean of

m and covariance of R, where t is partitioned into t1 and t2 as

follows: t = [tT
1 tT

2 ]T . The corresponding mean and variance, m
and R, become

m = [mT
1 mT

2 ]T , (14)

R =

»
Π11 Π12

Π21 Π22

–−1

. (15)

When we have t1 = t̂1, the distribution of t2 conditioned on t1 = t̂1

becomes

mt2|t1=t̂1
= −Π−1

22 Π21(t̂1 − m1) + m2, (16)

Rt2|t1=t̂1
= Π−1

22 . (17)

Proof: The proof is straightforward and for reasons of space

economy it is omitted.

Let the already detected symbols and the symbols yet to be detected

at the nth SIC detection stage be denoted by sn,d = [s1 s2 · · · sn−1]
T

and sn,nd = [sn sn+1 · · · sN ]T , respectively. The corresponding

partitions of m and R are m = [mT
n,d mT

n,nd]
T ,

R =

»
Πn,11 Πn,12

Πn,21 Πn,22

–−1

. (18)

Assuming that no detection errors are encountered and that Propo-
sition 1 is satisfied, we can update the mean and covariance of the

symbols sn,nd that have not as yet been detected by the SIC receiver

1The Moore-Penrose pseudo-inverse of Ḡ is defined as Ḡ† =
(ḠT Ḡ)−1ḠT .

as follows:

mn = −Π−1
n,22Πn,21(ŝn,d − mn,d) + mn,nd, (19)

Rn = Π−1
n,22, (20)

where we have ŝn,d = [ŝ1 ŝ2 · · · ŝn−1]
T .

Using (11) as well as the updated mean and variance information

of (19) and (20), we get the detector weight to be used for the nth

symbol as follows

wn =
n

[(GT
n,ndGn,nd + σ2

vR
−1
n )−1GT

n,nd]1
oT

, (21)

and the decision statistics of the elements sn of the effective symbol

vector s as:

dn = wT
n (ỹn − Gnd,dmn) + [mn]1, (22)

where Gn,nd contains the last (N − n + 1) columns of G. The

estimate of sn is obtained by rounding dn according to

ŝn = �dn�. (23)

Some further remarks concerning the proposed LR-aided SIC

detector are provided below.

1) The covariance matrix of the detection error between the pre-

and post-detection output becomes Φn = (GT
n,ndGn,nd/σ2

v +
R−1

n )−1. As in conventional MMSE-SIC detectors, the specific

antenna’s signal having the lowest detection error variance is

detected first, where the detection order for the various MIMO

elements is determined by finding the minimum diagonal

element of Φn at each detection stage [14].

2) Updating the mean and covariance at each detection stage

according to (19) and (20) is based on the assumption that

the effective symbols are jointly Gaussian. If we have N < 8
, the central limit theorem no longer holds and therefore the

effective symbols s cannot be modeled as Gaussian random

variables. Nonetheless, the simulation results of Section IV

will demonstrate that updating the effective symbols’ mean

and covariance according to (19) and (20) under the Gaussian

assumption delivers a useful performance improvement even

for N = 4.

3) It is shown in Appendix I that the decision statistic of sn

formulated in (22) can also be expressed as

dn =

"»
Gn,nd

σvCn,nd

–†#
1

×
»

ỹn − Gn,ndmn,nd

−σvCn,d(ŝn,d − mn,d)

–
+ [m]n (24)

where Cn,d and Cn,nd contain the first (n − 1) columns and

the last (N−n+1) columns of C, respectively. It is worthwhile

noting that the philosophy of SIC detection scheme advocated

can be interpreted as applying SIC to the extended received

signal

ye = [ỹT 0T
N ]T (25)

and to the independent symbol s in conjunction with the

extended channel matrix

Ge = [GT σvC
T ]T . (26)

In [6], a similar result to that of (24) was provided, but the

effect of the non-zero mean of the effective symbols was not

considered in the final expression of the array weight. It follows

from the proof provided in Appendix I that the SIC algorithm

of [6] is equivalent to the optimal LR-aided SIC detector under

the joint Gaussian assumption.
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Fig. 1. BER versus SNR performance over a frequency-flat channel using
Nt = 2, Nr = 2, QPSK. The channel was assumed to be perfectly known
at the receiver.
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Fig. 2. BER versus SNR performance over a frequency-flat channel using
Nt = 2, Nr = 2, 16-QAM. The channel was assumed to be perfectly known
at the receiver.

IV. SIMULATION RESULTS

We have performed computer simulations to evaluate the per-

formance of the LR-aided SIC detection algorithm advocated. We

have assumed that all elements of the channel matrix H′ are

independent and identically distributed (i.i.d.) zero-mean complex

Gaussian random variables having a variance of 1/2 per dimension,

which are known at the receiver. The LLL algorithm was used for

lattice-reduction and it was applied to the extended channel matrix

[H̃T σvIN/σx̃]T , rather than H̃T , for the sake of improving the

performance [6]. Here, σx̃ denotes the standard deviation of the

elements of x̃ and IN represents the (N × N) identity matrix. Let

Eb/N0 be the ratio of the average transmit power per information

bit to the spectral density of the noise.

Figs. 1-4 characterize the achievable bit error rate (BER) perfor-

mance of various detectors. The LR-SIC-1 scheme represents the

LR-aided MMSE-SIC detector using no updating of the mean and

covariance. More explicitly, at each detection stage, the LR-SIC-

1 scheme uses the specific sub-matrices of the initial m and R

matrices corresponding to the symbols to be detected at a later SIC

detection stage as the mean and covariance without considering the

effect of the already detected symbols on them. By contrast, the

LR-SIC-2 arrangement represents the LR-aided MMSE-SIC detector

using the explicit updating operation derived in Section III under

the assumption that the effective symbols are biased and correlated

Gaussian random variables. Furthermore, the MMSE-SIC scheme

denotes the MMSE version of the SIC detector of [3]. Finally, the ML

detector finds the specific MIMO symbol vector having the minimum

Euclidean distance from the received signal.

More specifically, Fig. 1 illustrates the four detector’s BERs for

Nt = 2, Nr = 2 and QPSK signaling for transmission over a

frequency-flat channel. Observe in Fig. 1 that the performance of

LR-aided detector can be significantly improved by updating both

the bias and correlation of s according to (19) and (20). Hence, it

becomes capable of approaching performance of the ML detector in

conjunction with Nt = 2, Nr = 2 and QPSK signaling. As argued in

Section III, for a low number of transmit antennas the Gaussian model

of the effective symbols is somewhat inaccurate. Nonetheless, Fig. 1

demonstrates that we still attain an approximately 2 dB performance

improvement even for Nt = 2 for the LR-SIC-2 scheme.

To probe a little further, Fig. 2 shows the attainable BER perfor-

mance for Nt = 2, Nr = 2 and 16-QAM signaling. The LR-SIC-2

detector now exhibits a 0.9 dB Eb/N0 gain compared to the LR-

SIC-1 scheme at BER=10−3, but now it performs 0.7 dB worse than

the ML scheme.

In Fig. 3 and Fig. 4, the performance of the Nt = 4 and Nr = 4
scheme is shown for updating of QPSK and 16-AM constellations,

respectively. It is observed that the explicit updating of the bias and

covariance of s at each detection stage provides a 1-1.5 dB gain for

the LR-aided SIC detector using Nt = 4 and Nr = 4 antennas. For

Nt = 4, the Gaussian model of the effective symbols may be more

accurate than the case of Nt = 2 in Fig. 1 and Fig. 2. However, as

the number of transmit antennas increases, the SIC detector performs

worse with respect to the ML detector. This can be seen by comparing

the results of MMSE-SIC in Fig. 1 and Fig. 3. This effect also occurs

in the LR-SIC, and hence the SNR disadvantages of LR-SIC-2 in Fig.

3 and Fig. 4 are higher than those in Fig. 1 and Fig. 2 despite the

more accurate model of the effective symbol.

V. CONCLUSIONS

In this paper, the optimal lattice-reduction aided SIC detection

algorithm designed for MIMO systems has been derived. Explicitly

updating the bias and covariance of the effective symbols at each

SIC detection stage, where the effective symbols were generated

by lattice reduction, we arrive at the optimal MMSE-SIC detector

weight. At each detection stage, we update the means and covariances

of (19) and (20) using the knowledge of the detected effective

symbols s of (23) under the assumption that the effective symbols

are jointly Gaussian distributed. We have also shown that the SIC

algorithm advocated may be equivalently expressed with the aid of the

extended channel matrix and received signal vector of (25) and (26),

respectively. The simulation results demonstrated that the explicit

updating of the mean and variance of the effective symbols after

each detection stage attains an attractive performance improvement

in the context of LR-aided detection, which results in a near-ML

detection performance.
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APPENDIX I

Equation (22) can be rewritten as

dn =
ˆ
(GT

n,ndGn,nd + σ2
vR

−1
n )−1

· GT
n,nd(ỹn − Gn,ndmn) + mn

˜
1

(27)

=
h
(GT

n,ndGn,nd + σ2
vR

−1
n )−1(GT

n,ndỹn + σ2
vR

−1
n mn)

i
1
.

(28)

Substituting (19) into (28), we arrive at

dn =
ˆ
(GT

n,ndGn,nd + σ2
vR

−1
n )−1˘

GT
n,ndỹn

−σ2
vΠn,21(ŝn,d − mn,d) + σ2

vR
−1
n mn,nd

¯˜
1
, (29)

which can be rewritten as

dn=
ˆ
(GT

n,ndGn,nd + σ2
vR

−1
n )−1˘

GT
n,nd(ỹn − Gn,ndmn,nd)

− σ2
vΠn,21(ŝn,d − mn,d)

¯
+ mn,nd

˜
1
. (30)

Using Πn,21 = CT
n,ndCn,d, we obtain

GT
n,nd ( ỹn − Gn,ndmn,nd) − σ2

vΠn,21(ŝn,d − mn,d) =

[GT
n,nd σvC

T
n,nd]

»
ỹn − Gn,ndmn,nd

−σvCn,d(ŝn,d − mn,d)

–
. (31)

Furthermore, we have

GT
n,ndGn,nd + σ2

vR
−1
n = [GT

n,nd σvC
T
n,nd]

»
Gn,nd

σvCn,nd

–
.

(32)

Upon substituting (31) and (32) into (30), we obtain (24).
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Fig. 3. BER versus SNR performance over a frequency-flat channel using
Nt = 4, Nr = 4, QPSK. The channel was assumed to be perfectly known
at the receiver.

3 4 5 6 7 8 9 10 11 12 13
10

5

10
4

10
3

10
2

10
1

Eb/No (dB)

B
E

R

ML detector
MMSE SIC
LR SIC 1
LR SIC 2

Fig. 4. BER versus SNR performance over a frequency-flat channel using
Nt = 4, Nr = 4, 16-QAM. The channel was assumed to be perfectly known
at the receiver.
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