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Abstract— An asynchronous binary DS-CDMA system using
random spreading sequences is considered in flat Hoyt fading
channels. A new closed-form expression is derived for the condi-
tional characteristic function of the multiple access interference.
The exact average BER is expressed as a single numerical
integration based on the characteristic function approach. The
numerical results obtained from our exact BER analysis are
verified by our simulation results and also compared to those
obtained by the standard Gaussian approximation.

I. INTRODUCTION

Code Division Multiple Access (CDMA) has been one of

the most successful radio access techniques since the 1990s

and Direct Sequence (DS) CDMA has been integrated into

the third generation mobile systems. The Bit Error Ratio

(BER) performance of various DS-CDMA systems has been

extensively studied.

For the sake of computational simplicity, the most widely

used approach of calculating the average BER of DS-CDMA

systems is assuming that the multiple access interference

(MAI) is Gaussian distributed or conditional Gaussian dis-

tributed based on the Central Limit Theorem (CLT). Various

Gaussian approximation techniques have been proposed, such

as the Standard Gaussian Approximation (SGA) [1]–[14], the

Improved Gaussian Approximation (IGA) [1], [5], [8], [9],

[11], [12], [14]–[16], the Simplified IGA (SIGA) [1], [5], [8],

[10], [12], [14], as well as the Improved Holtzman Gaussian

Approximation (IHGA) [10].

However, the accuracy of various Gaussian approximation

techniques has long been criticized [11], especially when the

number of users is low and short spreading sequences are used.

Hence several exact BER evaluation techniques have also been

developed without assuming a Gaussian MAI distribution,

such as the series expansion of [11], [12], [17]–[19], or the

employment of Moment Generating Functions (MGF) [20] and

Characteristic Functions (CF) [1], [2], [10], [14], [17]. These

techniques typically achieve more accurate BER evaluation at

the cost of a high computation complexity.
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In the existing literature, most results are reported for the

BERs of DS-CDMA systems communicating over Additive

White Gaussian Noise (AWGN) channels [4]–[9], [11], [12],

[14], [15], [17]–[19], [21]–[25], and a few studies also con-

sidered Rayleigh channels [1], [11] as well as Nakagami-m
channels [2], [3], [10], [16], [20].

As far as the authors are aware, there are no studies on
the exact BER analysis of asynchronous DS-CDMA systems
using random spreading sequences communicating over Hoyt
channels. The Hoyt distribution of Figure 1, also referred

to as the Nakagami-q distribution [26], [27], was originally

used for modeling radio channels subject to strong ionospheric

scintillation, such as satellite links [28], [29]. Recently, it has

been used more frequently as one of the important models for

the statistical description of fading mobile radio channels [28],

[30]. The Rayleigh distribution may be regarded as a special

case of the Hoyt distribution [28], [30]. The contribution of
this paper is that we provide an exact BER expression, which
requires only a single numerical integration with the aid of
hypergeometric functions of several variables [31], [32].

This paper is organized as follows. In Section II a general

asynchronous DS-CDMA system using BPSK modulation

communicating over Hoyt channels is presented. Then in

Section III its exact BER performance using random spreading

sequences is investigated based on the characteristic function

approach. Our numerical results are presented in Section IV

and finally our conclusions are provided in Section V.

II. SYSTEM MODEL

We consider a general asynchronous BPSK modulated DS-

CDMA system communicating over a Hoyt fading channel and

assume that there are K simultaneously transmitting users.

Binary random spreading sequences having L chips and a

rectangular chip waveform are employed.

A. Hoyt (Nakagami-q) Distribution

If a complex random variable h̃ = hejϕ is Hoyt distributed,

then the Probability Density Function (PDF) of its modulus h
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Fig. 1. The PDF of the Hoyt distribution. The Hoyt fading parameter is
q = 0, 0.25 and 1 and the average power is Ω = 2.

can be expressed as [26]–[28]:

f(h) =
(1 + q2)h

qΩ
exp

[
− (1 + q2)h2

4q2Ω

]
I0

[
(1 − q4)h2

4q2Ω

]
, h ≥ 0,

(1)

where Ω > 0 is the average power, 0 ≤ q ≤ 1 is the Hoyt

fading parameter and I0(x) is the zeroth-order modified Bessel

function of the first kind [33]. The characteristic function of

the modulus h can be shown to be:

Φh(ω) =
2q

1 + q2
H7

[
1, 1,

1
2
,

(1 − q2)2

4(1 + q2)2
,− q2Ω

(1 + q2)2
ω2

]
+ j

2q2
√

πΩ
(1 + q2)2

ωH7

[
3
2
, 1,

3
2
,

(1 − q2)2

4(1 + q2)2
,− q2Ω

(1 + q2)2
ω2

]
,

(2)

where H7(α, γ, δ, x, y) is Horn’s confluent hypergeometric

function of two variables [31]. Equation 2 provides a closed-

form expression for the characteristic function of the Hoyt

distribution, which is equivalent to the formula given by Table

II of [30], but here it is represented in its more compact form,

rather than as a sum of infinite series.

The phase of the Hoyt random variable is by no means

uniformly distributed [27]. For the sake of facilitating our

analysis, we also use an alternative expression of the Hoyt

random variable, which is h̃ = hx+jhy [27], where hx and hy

are independent zero-mean Gaussian random variables having

a variance of σ2
x and σ2

y , respectively. The relations of the

various parameters are given by:

Ω = σ2
x + σ2

y, (3)

q =
σy

σx
. (4)

The Hoyt distribution becomes the Rayleigh distribution,

when we have q = 1. Equations 1 and 2 reduce to the PDF

and CF of the Rayleigh distribution given by Table II of [30],

respectively.

B. Receiver

The received signal at the input of the coherent correlation

receiver is given by:

r(t) = �
{

K∑
k=0

h̃kak(t − τk)bk(t − τk)ej[ωc(t−τk)+θk]

}
+η(t),

(5)

where �{x̃} denotes the real part of the complex num-

ber x̃. Furthermore, the received complex equivalent sig-

nals {h̃k}K−1
k=0 are independent Hoyt distributed random vari-

ables having the parameters {Ωk, qk}K−1
k=0 , or equivalently

{σkx, σky}K−1
k=0 . The carrier’s angular frequency ωc is common

to all users, while the carrier phase shift {θk}K−1
k=0 and the

time delay {τk}K−1
k=0 are independently and uniformly distrib-

uted in [0, 2π) and [0, Ts), respectively, where Ts is the bit

duration. Finally, η(t) is the zero-mean stationary Additive

White Gaussian Noise (AWGN) having a double-sided power

spectral density of N0
2 . The rectangular pulse having a duration

of T is defined as:

pT (t) =
{

1, t ∈ [0, T ),
0, otherwise. (6)

Hence the kth user’s spreading signal ak(t) and data signal

bk(t) can be expressed as:

ak(t) =
∞∑

m=−∞
ak,mpTc

(t − mTc), (7)

bk(t) =
∞∑

m=−∞
bk,mpTs(t − mTs), (8)

where Tc is the chip duration satisfying Ts = LTc. Both

the spreading sequence {ak,m}L−1
m=0 and the data sequence

{bk,m}∞m=−∞ are mutually independent and symmetrically

Bernoulli distributed [34], implying that we have P{ak,m =
±1} = P{bk,m = ±1} = 1

2 .

Without loss of generality, we assume that the 0th user’s

signal is the desired one. If the chip synchronization is perfect,

the decision statistic at the output of the coherent correlation

receiver is given by:

Z = h0Lb0,0 +
K−1∑
k=1

�
{

Xkh̃kejΔk

}
+ η, (9)

where the noise component η is a zero-mean Gaussian random

variable having a variance of σ2
η = N0L

Tc
, while the phase shift

difference Δk = −ωc(τk − τ0) + (θk − θ0) between the kth

and 0th user is uniformly distributed in [0, 2π). The random

variable Xk may be further expressed as [1], [6]:

Xk =
L−2∑
m=0

Yk,m [(1 − νk) + a0,ma0,m+1νk]

+ Yk,L−1νk + Yk,L(1 − νk), (10)

where the (L + 1) random variables {Yk,m}L
m=0 are mutually

independent and symmetric Bernoulli distributed, conditioned

on the 0th user’s spreading sequence {a0,m}L−1
m=0. Furthermore,

the relative chip shifts {νk}K−1
k=1 between the kth and 0th user
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normalized by the chip duration are mutually independent and

uniformly distributed in [0, 1) [1], [6].

III. BER ANALYSIS

Let B and A denote the number of chip boundaries both

with and without chip-value transitions within the 0th user’s

spreading sequence, respectively, and define two sets A and

B as follows [1], [6]:

A= {−A,−(A − 2), ..., A − 2, A} ,
B = {−B,−(B − 2), ..., B − 2, B} .

(11)

Then we have A + B = L − 1 and the Co-Channel Interfer-

ence (CCI) Ik = �
{

Xkh̃kejΔk

}
imposed by the different

interferers is mutually independent, conditioned on B [1],

[6]. For the sake of simplicity, we will only consider the

characteristic function range spanning over ω ≥ 0 in our

later discussions in the context of Equation 18. Nevertheless,

the characteristic function range spanning over ω ≤ 0 can

be readily derived from the range spanning over ω ≥ 0
by exploiting the following property of the characteristic

function [34] Φ(−ω) = Φ∗(ω), where Φ∗(ω) denotes the

complex conjugate of Φ(ω).
Upon exploiting the alternative expression of the Hoyt ran-

dom variable h̃k in Section II-A, it can be readily shown that

Ik conditioned on Xk and Δk is a zero-mean Gaussian random

variable having a variance of σ2
kx cos2 Δk + σ2

ky sin2 Δk.

Hence we have the characteristic function of Ik conditioned

on Xk and Δk in the following form:

ΦIk|Xk,Δk
(ω) = exp

[
−1

2
(
σ2

kx cos2 Δk + σ2
ky sin2 Δk

)
X2

kω2

]
.

(12)

Applying the integral identity of Equation 3.339 in [33], we

arrive at the characteristic function of Ik conditioned on Xk

by averaging ΦIk|Xk,Δk
(ω) over Δk ∈ [0, 2π) in the form of:

ΦIk|Xk
(ω) = exp

[
−1

4
(
σ2

kx + σ2
ky

)
X2

kω2

]
× I0

[
1
4

(
σ2

kx − σ2
ky

)
X2

kω2

]
. (13)

Upon averaging ΦIk|Xk
(ω) over {Yk,m}L

m=0 and νk, we get

the characteristic function of Ik conditioned on B [1] in the

following form:

ΦIk|B(ω) = 2−(L+1)
∑

d1∈A

∑
d2∈B

(
A

d1+A
2

)(
B

d2+B
2

)
×

∑
Yk,L−1,Yk,L∈{±1}

ΦIk|λ0,λ1(ω), (14)

where the coefficients λ0 and λ1 are defined as:

λ0 = d1 + d2 + Yk,L (15)

λ1 =−2d2 + Yk,L−1 − Yk,L. (16)

When invoking the series expansions of Equations 1.211-1

and 8.477-1 of [33], the conditional characteristic function

ΦIk|λ0,λ1(ω) may be expressed in the form of Equation 17
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Fig. 2. BER versus the number of users K in an asynchronous DS-
CDMA system using random spreading sequences and BPSK modulation
communicating over Hoyt channels. The length of the random spreading
sequences is L = 15 and 63. The Hoyt fading parameter is q = 0, 0.25 and
1, which is common to all users. The average power of all users at the receiver
is equal and the background noise is ignored, i.e. we have γSNR = ∞.

seen at the top of the next page. When q = 1, i.e. when we

experience Rayleigh fading, Equation 17 reduces to the results

of [1].

Applying Parseval’s theorem [30] and exploiting the fact

that the CCI contribution {Ik} conditioned on B is mutually

independent [1], [6], we arrive at the 0th user’s BER condi-

tioned on B as follows:

Pe|B =
1
2
− 1

π

∫ ∞

0

1
ω

Φη(ω)�{Φh0(ωL)}
K−1∏
k=1

ΦIk
(ω)dω,

(18)

where Φη(ω) is the characteristic function of the noise

component η and �{Φh0(ω)} is the imaginary part of the

characteristic function of h0, which was given by Equation 2.

Finally, we arrive at the overall average BER by averaging

Pe|B over all spreading sequences in the form of:

Pe = 2−(L−1)
L−1∑
B=0

(
L − 1

B

)
Pe|B . (19)

IV. NUMERICAL RESULTS

In this section we will verify the accuracy of our exact BER

analysis provided in Section III and demonstrate the limited

accuracy of the SGA method by simulations.

Figures 2 and 3 illustrate the average BER performance

versus the number of users, when the effects of background

noise are ignored. Figure 2 compares the results obtained from

our exact BER analysis to our simulation results and shows

that they match very well both for different spreading sequence

lengths and for various Hoyt fading parameters. On the other

hand, Figure 3 compares the results obtained using the SGA

to our simulation results and demonstrates that the SGA over-

estimates the average BER, especially in the scenarios where
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ΦIk|λ0,λ1(ω) =

⎧⎪⎪⎨⎪⎪⎩
x

λ1
F

1:0;0
1:0;1

([
( 1
2 ) : 1, 2

]
:− ; − ;[

( 3
2 ) : 1, 2

]
:− ; [(1) : 1] ; −

1
4
(σ2

kx + σ2
ky)ω2x2,

1
64

(σ2
kx − σ2

ky)2ω4x4

)∣∣∣∣λ0+λ1

λ0

, λ1 �= 0,

exp
[
−1

4
(
σ2

kx + σ2
ky

)
λ2

0ω
2

]
I0

[
1
4

(
σ2

kx − σ2
ky

)
λ2

0ω
2

]
, λ1 = 0,

(17)

where F
A:B(1);...;B(n)

C:D(1);...;D(n)

( [
(a) : θ(1), ..., θ(n)

]
:
[
(b(1)) : φ(1)

]
; ...;

[
(b(n)) : φ(n)

]
;[

(c) : ψ(1), ..., ψ(n)
]
:
[
(d(1)) : δ(1)

]
; ...;

[
(d(n)) : δ(n)

]
;
x1, ..., xn

)
is the generalized Lauricella func-

tion of n variables defined as Equations 21 - 23 of [32] and f(x)|x2
x1

= f(x2) − f(x1).
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Fig. 3. BER versus the number of users K in an asynchronous DS-
CDMA system using random spreading sequences and BPSK modulation
communicating over Hoyt channels. The length of the random spreading
sequences is L = 15 and 63. The Hoyt fading parameter is q = 0, 0.25 and
1. The average power of all users at the receiver is equal and the background
noise is ignored, i.e. we have γSNR = ∞.

either there is a limited number of interferers, or when the

Hoyt fading parameter q is small or when short spreading

sequences are used.

Figures 4 and 5 illustrate the average BER performance

versus the per-bit SNR, when the number of users is K = 4.

Figure 4 compares the results obtained from our exact BER

analysis to our simulation results and shows that they match

well both for different spreading sequence lengths and for

various Hoyt fading parameters. On the other hand, Figure 5

compares the results obtained by the SGA to our simulation

results and demonstrates that the SGA still fails to accurately

evaluate the average BER performance, particularly when the

SNR is high, the Hoyt fading parameter q is low and when

short spreading sequences are used.

V. CONCLUSION

An exact expression has been derived for calculating the

average BER of an asynchronous DS-CDMA system using

random spreading sequences and BPSK modulation for com-

municating over Hoyt fading channels. It is based on the

characteristic function and requires only a single numerical
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Fig. 4. BER versus per-bit SNR in an asynchronous DS-CDMA system using
random spreading sequences and BPSK modulation communicating over Hoyt
channels. The length of the random spreading sequences is L = 7 and 31.
The Hoyt fading parameter is q = 0, 0.25 and 1. The average power of all
users at the receiver is equal. The number of users is K = 4.
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Fig. 5. BER versus per-bit SNR in an asynchronous DS-CDMA system using
random spreading sequences and BPSK modulation communicating over Hoyt
channels. The length of the random spreading sequences is L = 7 and 31.
The Hoyt fading parameter is q = 0, 0.25 and 1. The average power of all
users at the receiver is equal. The number of users is K = 4.
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integration. Furthermore, a new closed-form expression was

provided for the conditional characteristic function of the

interfering signal with the aid of the generalized Lauricella

function in n variables [32]. Since the Rayleigh distribution

is a special case of the Hoyt distribution, the results obtained

by [1] may also be regarded as a special case of our results.

Our simulation results verified the accuracy of our exact BER

analysis for various combinations of the spreading sequence

length and the Hoyt fading parameter. By contrast, the SGA

over-estimates the average BER, especially when either there

is a low number of interferers, or the SNR is high, the Hoyt

fading parameter happens to be low or and short spreading

sequences are used.

REFERENCES

[1] J. Cheng and N. Beaulieu, “Accurate DS-CDMA Bit-Error Probability
Calculation in Rayleigh Fading,” IEEE Transactions on Wireless Com-
munications, vol. 1, no. 1, pp. 3–15, January 2002.

[2] ——, “Precise Bit Error Rate Calculation for Asynchronous DS-CDMA
in Nakagami Fading,” in IEEE Global Telecommunications Conference,
vol. 2, San Francisco, CA, 27 September-1 December 2000, pp. 980–
984.

[3] T. Eng and L. B. Milstein, “Coherent DS-CDMA Performance in
Nakagami Multipath Fading,” IEEE Transactions on Communications,
vol. 43, no. 2/3/4, pp. 1134–1143, February/March/April 1995.

[4] E. Geraniotis and B. Ghaffari, “Performance of Binary and Quater-
nary Direct-Sequence Spread-Spectrum Multiple-Access Systems with
Random Signature Sequences,” IEEE Transactions on Communications,
vol. 39, no. 5, pp. 713–724, May 1991.

[5] J. M. Holtzman, “A Simple, Accurate Method to Calculate Spread-
Spectrum Multiple-Access Error Probabilities,” IEEE Transactions on
Communications, vol. 40, no. 3, pp. 461–464, March 1992.

[6] J. S. Lehnert and M. B. Pursley, “Error Probabilities for Binary Direct-
Sequence Spread-Spectrum Communications with Random Signature
Sequences,” IEEE Transactions on Communications, vol. 35, no. 1, pp.
87–98, January 1987.

[7] ——, “Multipath Diversity Reception of Spread-Spectrum Multiple-
Access Communications,” IEEE Transactions on Communications,
vol. 35, no. 11, pp. 1189–1198, November 1987.

[8] T. M. Lok and J. S. Lehnert, “Error Probabilities for Generalized Quad-
riphase DS/SSMA Communication Systems with Random Signature
Sequences,” IEEE Transactions on Communications, vol. 44, no. 7, pp.
876–885, July 1996.

[9] J. R. K. Morrow and J. S. Lehnert, “Bit-to-Bit Error Dependence in
Slotted DS/SSMA Packet Systems with Random Signature Sequences,”
IEEE Transactions on Communications, vol. 37, no. 10, pp. 1052–1061,
October 1989.

[10] K. Sivanesan and N. C. Beaulieu, “Performance Analysis of Bandlim-
ited DS-CDMA Systems in Nakagami Fading,” in IEEE International
Conference on Communications, vol. 1, Paris, France, 20-24 June 2004,
pp. 400–404.

[11] M. O. Sunay and P. J. McLane, “Calculating Error Probabilities for
DS-CDMA Systems: When Not to Use the Gaussian Approximation,”
in IEEE Global Telecommunications Conference, vol. 3, London, UK,
18-22 November 1996, pp. 1744–1749.

[12] ——, “Sensitivity of a DS CDMA System with Long PN Sequences to
Synchronization Errors,” in IEEE International Conference on Commu-
nications, vol. 2, Seattle, WA, USA, 18-22 June 1995, pp. 1029–1035.

[13] C. Unger and G. P. Fettweis, “Analysis of the RAKE Receiver Per-
formance in Low Spreading Gain DS/SS Systems,” in IEEE Global
Telecommunications Conference 2002, vol. 1, 17-21 November 2002,
pp. 830–834.

[14] Y. C. Yoon, “Quadriphase DS-CDMA with Pulse Shaping and the
Accuracy of the Gaussian Approximation for Matched Filter Receiver
Performance Analysis,” IEEE Transactions on Wireless Communica-
tions, vol. 1, no. 4, pp. 761–768, October 2002.

[15] A. Mirbagheri and Y. C. Yoon, “Performance Analysis of a Linear
MMSE Receiver for Bandlimited Random-CDMA Using Quadriphase
Spreading over Multipath Channels,” IEEE Transactions on Wireless
Communications, vol. 3, no. 4, pp. 1053–1066, July 2004.

[16] K. Sivanesan and N. C. Beaulieu, “Accurate BER Analysis of Bandlim-
ited DS-CDMA System with EGC and SC Diversity over Nakagami
Fading Channels,” in IEEE Wireless Communications and Networking
Conference, vol. 2, New Orleans, Louisiana, USA, 13-17 March 2005,
pp. 956–960.

[17] E. A. Geraniotis and M. B. Pursley, “Error Probability for Direct-
Sequence Spread-Spectrum Multiple-Access Communications–Part II:
Approximations,” IEEE Transactions on Communications, vol. 30, no. 5,
pp. 985–995, May 1982.

[18] M. O. Sunay and P. J. McLane, “Comparison of Biphase Spreading
to Quadriphase Spreading in DS CDMA Systems that Employ Long
PN Sequences,” in Sixth IEEE International Symposium on Personal,
Indoor and Mobile Radio Communications, vol. 1, Toronto, Canada,
27-29 September 1995, pp. 237–242.

[19] ——, “Effects of Carrier Phase and Chip Timing Errors on the Capacity
of a Quadriphase Spread BPSK Modulated DS-CDMA System,” in
IEEE Global Telecommunications Conference, vol. 2, Singapore, 13-17
November 1995, pp. 1114–1120.

[20] Q. Shi and M. Latva-Aho, “Accurate Bit-Error Rate Evaluation for
Synchronous MC-CDMA over Nakagami-m-Fading Channels Using
Moment Generating Functions,” IEEE Transactions on Wireless Com-
munications, vol. 4, no. 2, pp. 422–433, March 2005.

[21] F. D. Garber and M. B. Pursley, “Performance of Offset Quadriphase
Spread-Spectrum Multiple-Access Communications,” IEEE Transac-
tions on Communications, vol. 29, no. 3, pp. 305–314, March 1981.

[22] R. T. Hsu and J. S. Lehnert, “A Characterization of Multiple-Access
Interference in Generalized Quadriphase Spread-Spectrum Communica-
tions,” IEEE Transactions on Communications, vol. 42, no. 2/3/4, pp.
2001–2010, FEBRUARY/MARCH/APRIL 1994.

[23] D. Laforgia, A. Luvison, and V. Zingarelli, “Bit Error Rate Evaluation
for Spread-Spectrum Multiple-Access Systems,” IEEE Transactions on
Communications, vol. 32, no. 6, pp. 660–669, June 1984.

[24] M. B. Pursley, D. V. Sarwate, and W. E. Stark, “Error Probability for
Direct-Sequence Spread-Spectrum Multiple-Access Communications–
Part I: Upper and Lower Bounds,” IEEE Transactions on Communi-
cations, vol. 30, no. 5, pp. 975–984, May 1982.

[25] M. B. Pursley, “Performance Evaluation for Phase-Coded Spread-
Spectrum Multiple-Access Communication–Part I: System Analysis,”
IEEE Transactions on Communications, vol. 25, no. 8, pp. 795–799,
August 1977.

[26] M. Nakagami, “The m-Distribution – A General Formula of Intensity
Distribution of Rapid Fading,” in Statistical Methods in Radio Wave
Propagation, W. C. Hoffman, Ed. London: Pergamon Press, 1960, pp.
3–36.

[27] R. S. Hoyt, “Probability Functions for the Modulus and Angle of the
Normal Complex Variate,” Bell System Technical Journal, vol. 26, pp.
318–359, April 1947.

[28] M. K. Simon and M.-S. Alouini, “A Unified Approach to the Per-
formance Analysis of Digital Communication over Generalized Fading
Channels,” IEEE Proceedings, vol. 86, no. 9, pp. 1860–1877, September
1998.

[29] B. Chytil, “The Distribution of Amplitude Scintillation and the Con-
version of Scintillation Indices,” Journal of Atmospheric and Terrestrial
Physics, vol. 29, pp. 1175–1777, September 1967.

[30] A. Annamalai, C. Tellambura, and V. K. Bhargava, “Equal-Gain Diver-
sity Receiver Performance in Wireless Channels,” IEEE Transactions on
Communications, vol. 48, no. 10, pp. 1732–1745, October 2000.

[31] A. Erdelyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Eds., Higher
Transcendental Functions. New York, Toronto and London: McGraw-
Hill Book Company, Inc., 1953, vol. 1.

[32] H. M. Srivastava and P. W. Karlsson, Multiple Gaussian Hypergeometric
Series. Ellis Horwood, Ltd., 1985.

[33] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and
Products, 6th ed., A. Jeffrey and D. Zwillinger, Eds. Academic Press,
2000.

[34] A. Papoulis, Probability, Random Variables, and Stochastic Processes,
3rd ed. McGraw-Hill, Inc., 1991.

341


