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The exact average bit error ratio (BER) of the rectangular quadrature

amplitude modulation (QAM) constellation is studied in the context of

asynchronous co-channel interference (CCI) and Nakagami-m fading.

A new formula is derived for the characteristic function of the CCI,

which requires no knowledge of the CCI distribution.

Introduction: Conventionally, the rectangular QAM (R-QAM) BER

has been estimated by using various approximations or bounds. Most

exact QAM BER results are obtained without taking into account the

co-channel interference (CCI) [1, 2]. When CCI is considered, exact

BER analyses procedures are performed only for BPSK [3–5] and

QPSK [4, 5] systems. Hence, the contribution of this Letter is that we

derive an exact BER expression for R-QAM systems corrupted by

both asynchronous CCI and Nakagami-m fading, while dispensing

with the Gaussian distributed CCI assumption.

System model: We consider a general R-QAM system subjected to K

asynchronous co-channel interferers. The received signal r(t) may be

written as:

rðtÞ ¼
PK
k¼0

hkfd
I
kbI

k ðt � tk Þ cos½ocðt � tk Þ þ yk þ fk �

þ d
Q
k b

Q
k ðt � tk Þ sin½ocðt � tk Þ þ yk þ fk �g þ ZðtÞ ð1Þ

where oc and y are the common carrier frequency and the carrier phase

shift. As illustrated in [1], 2dk
I and 2dk

Q are the minimum distances

between signal constellation points along the in-phase and quadrature-

phase axes, respectively. The in-phase and quadrature-phase data

signals are given by bk
I(t)¼

P
n¼�1
1 bk,n

I pT(t� nT) and bQ(t)¼P
n¼�1
1 bk,n

Q pT(t� nT), respectively, where bk,n
I and bk,n

Q are in-phase

and quadrature-phase data symbols, respectively. The symbol duration

is denoted as T and pT(t) is the rectangular pulse having a duration of T.

The kth user’s constellation size is Mk¼Mk
I
�Mk

Q and log2 Mk
I as well

as log2 Mk
Q bits are Gray encoded and mapped onto the kth user’s in-

phase and quadrature-phase components [1], respectively. Hence, the

in-phase and quadrature data symbols, bk,n
I and bk,n

Q , are equiprobably

selected from the set of Ak
I
¼ {�1,� 3, . . . , � (Mk

I
� 1)} and Ak

Q
¼

{� 1,� 3, . . . , � (Mk
Q
� 1)}, respectively. The fading amplitude hk

obeys the Nakagami-m distribution having parameters {mk, Ok}, the

fading phase fk and the time delay tk arch is uniformly distributed over

[0, 2p) and [0, T), respectively. The additive white Gaussian noise

(AWGN) is denoted by Z(t). We assume that the 0th user is the desired

one. In the case of coherent demodulation as well as perfect channel

estimation, the in-phase and quadrature-phase decision statistics, ZI and

ZQ, are given by:
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where the phase shift difference Dk¼ �oc(tk� t0)þ (yk� y0)þ (fk�

f0) is uniformly distributed over [0, 2p). The noise components ZI and

ZQ can be shown to be zero-mean Gaussian distributed random

variables, while the random variables Xk
I and Xk

Q in (3) are defined as:
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where nk¼ tk=T is the time delay normalised by the symbol duration.

BER analysis: Upon exploiting equation 57 of [6], we have the

characteristic function (CF) of the in-phase CCI Ik
I
¼ hk(Xk

I cos Dkþ

Xk
Q sin Dk) conditioned on Xk

I and Xk
Q in the following form:

F
I I
k
jX I

k
;X Q

k

ðoÞ ¼ 1F1 mk; 1;�
Ok

4mk

ðX I
k Þ

2
þ ðX

Q
k Þ

2
h i

o2

� �
ð6Þ

where 1F1(a; b; x) is the confluent hypergeometric function [7].

Averaging FIk
IjXk

I, Xk
Q(o) over the kth interferer’s data symbols and the

time delay, we obtain the CF of Ik
I, FIk

I(o) as follows:
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where the coefficients l0, l1 and l2 are defined as:
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The conditional CF, FIk
Ijl0,l1,l2

(o), may be shown to be given by:
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where

FA:Bð1Þ;...;BðnÞ

C:Dð1Þ;...;DðnÞ

½ðaÞ : yð1Þ; . . . ; yðnÞ� : ½ðbð1ÞÞ : fð1Þ�; . . . ; ½ðbðnÞÞ : fðnÞ�;

½ðcÞ : cð1Þ; . . . ;cðnÞ� : ½ðdð1ÞÞ : dð1Þ�; . . . ; ½ðdðnÞÞ : dðnÞ�;
x1; . . . ; xn

 !

is the generalised Lauricella function of n variables [7] and f (x)jx1

x2¼

f (x2)� f (x1). On defining the total in-phase interference plus noise term

as xI
¼
P

k¼1
K Ik

I
þ ZI, its cumulative distribution function (CDF) FxI(x)

can be shown to be:
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Extending the AWGN result of [1] to the scenarios in the presence of

CCI and noise, the conditional error probability Pbjh0
I (u) of the uth bit of

the in-phase component can be expressed as follows:
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On averaging Pbjh0

I (u) over h0 and applying Parseval’s theorem [8], we

obtain the error probability Pb
I(u) of the uth bit of the in-phase

component in the form of:
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where ={Fh0
(o)} is the imaginary part of the CF of the desired user’s

fading amplitude, h0, which is given by Table II of [8]. Following the

same approach, we may derive the error probability Pb
Q(u) of the uth bit

of the quadrature-phase component in the same form by replacing all

symbols having the superscript I by their counterparts with the super-

script Q in (14).

Finally, the average BER of M-ary general R-QAM can be obtained

by averaging the error probabilities over the in-phase and quadrature-

phase components [1]. When there is no interference, i.e. we have

K¼ 0, and (14) reduces to the single-user results of [2]. As expected,
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when only BPSK or QPSK are considered, (14) reduces to the results of

[5].
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Fig. 1 BER against per-bit SIR in R-QAM system subjected to asynchro-
nous CCI and Nakagami-m fading

Average power of each interferer is common and they experience the same fading
distribution as the desired signal, i.e. mk¼ 10. All users have same constellation
size, i.e. Mk¼M. Minimum distances between signal points of in-phase
and quadrature-phase components are the same, i.e. dk

I
¼ dk

Q. Number of
interferers K¼ 6. Background noise ignored
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Fig. 2 BER against number of interferers K in R-QAM system subjected to
asynchronous CCI and Nakagami-m fading

Average power of each interferer is common and they experience the same fading
distribution as the desired signal, i.e. mk¼ 10. All users have same constellation
size, i.e. Mk¼M. Minimum distances between signal points of in-phase and
quadrature-phase components are the same, i.e. dk

I
¼ dk

Q. Per-bit SIR, 10 dB.
Background noise ignored

Results: We define the per-bit signal-to-interference ratio (SIR) as:

SIR ¼
1

log2 M0
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Since the evaluation of the effects of CCI on the QAM BER is the main

objective of our analysis, we assume that the effects of noise are

negligible. Fig. 1 shows average BER performance against per-bit

SIR expressed in dB. Fig. 2 shows average BER performance against

the number of interferers. As seen in both Figures, the results calculated

by our exact BER analysis and the simulation results match for various

constellation sizes. On the other hand, the GA overestimates the average

BER, especially when the constellation size is small and the per-bit SIR

value is high or the number of interferers is small.
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