
Flexible Provisioning of Semantic Web Service Workflows using a QoS Ontology

Sebastian Stein and Terry R. Payne and Nicholas R. Jennings
University of Southampton

Southampton, SO17 1BJ, UK
{ss04r,trp,nrj}@ecs.soton.ac.uk

Abstract
Semantic Web services allow applications to automati-
cally discover and provision distributed services at run-
time. However, when such services are offered by au-
tonomous providers, as is common in large distributed
systems, their behaviour is inherently non-deterministic
and unreliable. To address this problem, we describe
an OWL-S extension that allows services to be anno-
tated with quantitative performance measures, and out-
line a flexible, decision-theoretic algorithm that uses
this knowledge to provision services as part of complex
workflows.

1 Introduction
Due to the proliferation and ubiquity of the Internet, mod-
ern computer systems are becoming increasingly distributed.
This growing connectivity allows organisations to share ex-
pensive computing resources, to automate and outsource
business processes, and to offer their services to a worldwide
audience. In this context, Semantic Web services are emerg-
ing as a key technology to describe and discover distributed
software components at run-time [McIlraith et al., 2001].

Current work in this area has so far concentrated largely on
logical formalisms that assume truthful service descriptions
and deterministic behaviour, and has therefore neglected the
fact that services in distributed systems are inherently un-
reliable and non-deterministic. However, such uncertainty
should be considered, due to the open and dynamic nature of
the Internet, where network failures, remote software bugs,
transmission delays and competition over limited resources
are an unavoidable feature of the environment, and where ser-
vices are offered by autonomous and self-interested agents.

To address this problem of service uncertainty, we focus on
the provisioning of Semantic Web services, which has so far
been largely overlooked by the current literature. In short, this
is the process of assigning particular service instances to the
constituent tasks of abstract workflows after candidate ser-
vices have been identified by a semantic matchmaker. Whilst
the matchmaking stage concentrates on matching functional
service adverts to abstract task templates, provisioning uses
advertised or observed quality-of-service measures to allocate
instances in an appropriate manner. Thus, it is possible dur-
ing provisioning to make predictions about the overall perfor-
mance of the workflow, to identify particularly failure-prone

Figure 1: Quality-of-Service Ontology

tasks and to mitigate the effects of such tasks by provisioning
services appropriately. In particular, by explicitly provision-
ing services, we are able to design a decision-theoretic algo-
rithm that aims to maximise the expected utility of a service-
consuming agent.

2 Quality-of-Service Ontology
Current Semantic Web service ontologies such as OWL-
S1 provide rich models for representing the functional
descriptions for services, but provide simple, high-level
classes for representing the non-functional information that
is vital for making decisions when services behave non-
deterministically. To address this, we present an extension
to OWL-S for expressing a subset of non-fuctional parame-
ters that support effective service provisioning, and illustrate
how these can affect the performance of instansiated work-
flows within uncertain environments.

Figure 1 illustrates our ontology extension along with ex-
ample instances2. This extension consists of several new
classes, each of which subclass ServiceParameter, and con-
sequently define subproperties of serviceParameter and sPa-
rameter. Three new classes have been defined to date, each
providing quantative (i.e. Datatype) properties:

FailureProbability: Defines the failure probability of a ser-
vice in the range [0..1], i.e., what is the likelihood that
the service might fail to deliver the desired service.

ExecutionDuration: Defines the execution duration of a ser-
vice. This is modelled using a probability density func-

1See http://www.daml.org/services/owl-s/
2The full ontology and further examples are available at http:

//www.ecs.soton.ac.uk/˜ss04r/provisioning/



tion, as service durations can vary randomly (e.g., due to
network delays or high workloads). In this ontology, a
gamma distribution is modelled through specifying three
Datatype properties:
<owl:DatatypeProperty rdf:ID="durationShape">

<owl:subPropertyOf rdf:resource=
"../Profile.owl#sParameter"/>

<rdfs:domain rdf:resource="#ExecutionDuration"/>
<rdfs:range rdf:resource=

"http://www.w3.org/2001/XMLSchema#double"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="durationScale">

...
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="meanDuration">

...
</owl:DatatypeProperty>

InvocationCost: Defines the cost of invoking a service. This
usually represents a financial remuneration for the ser-
vice, but could also quantify the effort and required
bandwidth of invoking the service.

Although some parameters (such as InvocationCost) can
be specified by the service provider itself, others (e.g. Fail-
ureProbability) may lack credibility unless provided by a
third party. A third property, sParameterSource, determines
the source (or provenance) of the service parameter values,
and thus may be used by a requester to determine whether the
source (and thus the parameters) can be trusted.

3 Flexible Provisioning
Given this ontology and associated performance information,
it is now possible to anticipate and deal with uncertain service
providers. In particular, we suggest two key techniques:
Parallel Provisioning: To increase the probability of suc-

cess, n services that match the same abstract description
can be provisioned in parallel for a single task. The task
will then succeed as long as at least one service com-
pletes successfully.

Serial Provisioning: Services can also be re-provisioned
when it becomes obvious that they have failed. As
failure may not be communicated explicitly by the
providers, this process involves provisioning an initial
set of services, and then waiting for some time w, after
which a new set of services is provisioned for the same
task (and so on).

Now, the appropriate choice of n and w for each task de-
pends on the performance characteristics of the available ser-
vices, as given by our QoS ontology. For example, if ser-
vices are cheap (low InvocationCost) and unreliable (high
FailureProbability), a high value for n might be chosen. If
services generally take a long time to complete (as given by
the ExecutionDuration), then a high w would reflect this.

Because finding the right level of parallelism and waiting
times is non-trivial to perform manually, and because it de-
pends on the consumer’s valuation of the workflow and asso-
ciated time-constraints, we automate this choice by employ-
ing decision theory. To this end, we attach a utility function to
each workflow, in order to represent the value of completing
the workflow after some time t. As provisioning services op-
timally (i.e., maximising the expected utility) is intractable,

we then use a hill-climbing algorithm that uses a heuristic es-
timation of the true expected utility and explores a small sub-
set of the decision space by iteratively modifying a candidate
solution [Stein et al., 2006].

4 Empirical Evaluation
We implemented a simulation of a service-oriented system
and used this to empirically evaluate the benefit of employ-
ing our QoS ontology when provisioning services. In our
experiments, we measured the average profit of a consumer
agent as the difference between the profit from completing
a workflow (given by the utility function) and the total cost
(incurred when invoking services). To evaluate the utility of
considering QoS parameters with our provisioning approach,
we compared it to a simple strategy which does not use the
QoS parameters defined within the ontology (Figure 1), and
thus provisions only single, arbitrary services for each con-
stituent task of its workflows.

Figure 2: Average Profit of Flexible Provisioning

Figure 2 shows the profit of our decision-theoretic ap-
proach (“flexible”) over the benchmark (“naı̈ve”) as the fail-
ure probability of services in the system increases3. In this
particular scenario, a workflow consisted of 10 sequential
tasks, each of which could be satisfied by 1,000 homogeneous
services with a cost of 10 units and a random duration dis-
tributed according to a gamma distribution with shape k = 2
and scale θ = 10. The consumer was awarded a utility pay-
off of 1,000 if the workflow was completed within 400 time
steps, after which a cumulative penalty of 10 was applied per
time step until a zero-payoff was reached.

The results show clearly that our approach of using a QoS
ontology to provision services outperforms the naı̈ve strat-
egy (when averaged over all failure probabilities, it obtains
a 350% improvement in average profit). We confirmed this
trend in a variety of other experimental settings, including
highly parallel workflows and heterogeneous service types.

References
[McIlraith et al., 2001] S. A. McIlraith, T. C. Son, and H. Zeng. Se-

mantic Web Services. IEEE Intelligent Systems, 16(2):46–53,
2001.

[Stein et al., 2006] Sebastian Stein, Nicholas R. Jennings, and
Terry R. Payne. Flexible provisioning of service workflows. In
Proceedings of 17th European Conference on Artificial Intelli-
gence (ECAI-06), pages 295–299. IOS Press, 2006.

3All results are averaged over 1,000 experimental runs.


