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Abstract. Hidden algebra is a behavioural algebraic specification for-
malism for objects. It captures their constructional aspect, concerned
with the initialisation and evolution of their states, as well as their obser-
vational aspect, concerned with the observable b ehaviour of such states.
When attention is restricted to the observational aspect, final/cofree con-
structions provide suitable denotations for the specification techniques
involved. However, when the constructional aspect is integrated with
the observatio nal one, the presence of nondeterminism in specifications
prevents the existence of final/cofree algebras. It is shown here that fi-
nal/cofree families of algebras exist in this case, with each algebra in such
a family resolving the nondetermi nism in a particular way. Existence of
final/cofree families yields a canonical way of constructing algebras of
structured specifications from algebras of the component specifications.
Finally, a layered approach to specifying complex objects in hidden al
gebra is presented, with the semantics still involving final/cofree families.

1 Introduction

The use of algebra in the semantics of computation goes back to the 1970s
and the use of initial algebras as denotational semantics for data types [9]. The
constructional nature of data types makes algebra particularly suitable for their
specification — the emphasis is on generating the elements of data types by means
of constructor operations, with minimal structures such as initial or free algebras
providing suitable denotations for data type specifications. Recently, the theory
of coalgebras (the formal duals of algebras) has been used for the specification
of state-based systems in general [5], and of objects in particular [4]; here, the
emphasis is on observing system states by means of destructor operations, and
maximal structures such as final or cofree coalgebras, incorporating possible
behaviours, are used as denotations.

Objects are characterised by a state together with an interface which provides
(limited) access to this state. Specifically, the object interface can be used to ini-
tialise its state in a particular way, to perform certain changes on its current
state, or to observe certain properties of this state. One can identify a construc-
tional aspect of objects, concerned with the initialisation and evolution of their
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states, and an observational aspect of objects, concerned with the observations
that can be made about such states.

Hidden algebra [1] combines concepts from algebra and coalgebra in order to
capture the two aspects of objects and the relationship between them. One can
argue that hidden algebra lies at the intersection of algebra and coalgebra, as its
syntax is (a restricted version of) the syntax of many-sorted algebra, while its
semantics is behavioural (coalgebraic). Consequently, the behaviours specifiable
in hidden algebra are, in a sense, both algebraic and coalgebraic.

The coalgebraic nature of hidden algebra, already observed in [1], has been
further investigated in [8], where the relevance of final/cofree constructions to
coalgebraic hidden specifications and their reuse along specification maps has
been emphasised. Final hidden algebras have been shown to provide a char-
acterisation of the abstract behaviours associated to such specifications, while
cofree hidden algebras have been used as formal denotations for their reuse.

When arbitrary hidden specifications are considered, the nondeterminism
arising from underspecifying the behaviour of the constructor operations pre-
vents the existence of final/cofree hidden algebras. It has been suggested in [g]
that in this case, final/cofree families of hidden algebras should be taken as
denotations, since such constructions can be used to characterise the ways of re-
solving the nondeterminism involved. Final/cofree families generalise final /cofree
objects in a category, while still retaining their universal properties. The present
paper gives a detailed account of the existence of such families in hidden algebra,
illustrating their suitability as semantic constructions for hidden specifications.
Existence of final/cofree families also yields a canonical way of constructing alge-
bras of structured specifications from algebras of the component specifications.

Due to restrictions on its syntax, triggered by the coalgebraic nature of the
approach, hidden algebra only provides limited support for the specification of
complex objects (objects having other objects as components). In particular,
neither can previously specified objects be used to specify the construction of
new objects, nor can such objects be passed as arguments to the destructor
operations of other objects. This paper also integrates complex objects in the
hidden algebra formalism.

The paper is structured as follows. After recalling some category-theoretic
concepts that will be used later in the paper, Section 2 introduces the hidden al-
gebra formalism and briefly summarises the results in [8] regarding the existence
of final/cofree constructions in coalgebraic hidden algebra (a restricted version of
hidden algebra used to specify coalgebraic behaviours). Section 3 focuses on the
existence of final/cofree families of hidden algebras and on their suitability as de-
notations for hidden specifications and their reuse. Section 4 uses a generalisation
of the category-theoretic notion of limit to define a canonical way of combining
algebras of component specifications into algebras of structured specifications.
Section 5 presents a layered approach to the specification of complex objects
in hidden algebra, with final/cofree families still providing appropriate denota-
tions for the specification techniques involved. Finally, Section 6 summarises the
results presented and briefly outlines future work.
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2 Preliminaries

The first part of this section introduces some categorical concepts that will be
used later in the paper, while the second part gives an outline of the hidden
algebraic approach to object specification and of some existing results regarding
the existence of final/cofree constructions in coalgebraic hidden algebra.

2.1 Some Category-Theoretic Notions

A final object in a category C is an object F' of C such that any other object of
C has a unique arrow into F'. The notion of final family of objects generalises
the notion of final object by requiring the existence of a unique arrow from any
other object of C into an object in the final family.

Definition 1. Given a category C, a family (F};);cs of C-objects is a final fam-
ily of C-objects if and only if, for any C-object C, there exist unique j € J and
C-arrow f: C — Fj in C.

Remark 1. A final family of C-objects determines a partition of C into subcate-
gories with final objects (given by objects in the family). For j € J, C; is given
by the full subcategory of C whose objects have an arrow into Fj.

[3] presents a generalisation of the category-theoretic notion of limit, called a
multi-limit, which enjoys a universal property similar to that of a limit.

Definition 2. Given a diagram d : D — C in a category C, a multi-limit for
d consists of a family (L', (I}, : L' — d(D))pep|)ier of cones for d, having the
property that given any other cone (C,(cp)pep|) for d, there exist unique i € I
and C-arrow ¢ : C — L* such that I, o c = cp for each D-object D.

Then, final families of objects appear as multi-limits of empty diagrams.

A couniversal arrow from a functor U : D — C to a C-object C is a C-arrow
of form ec : UC — C for some D-object C, having the property that given any
D-ob ject D and C-arrow f : UD — C, there exists a unique factorisation of f
through ec of form f = Uf;ec with f: D — C. (C is called a cofree D-object
over C w. r.t. U.) The notion of couniversal family of arrows [3] generalises that
of couniversal arrow as follows.

Definition 3. Given a functor U : D — C and a C-object C, a family of C-
arrows (ec,; : UC; — C)jes with C; a D-object for each j € J is a couniversal
family of arrows fr om U to C if and only if, for any D-object D and C-
arrow f : UD — C, there exist unique j € J and D-arrow f:D— C_’j such that
Ufiec,; = f. The family (C;)jcs is called a cofree family of D-objects over
C w.r.t. U. If, for any C-object C, there exists a couniversal family of arrows
from U to C, then U is said to have a right multi-adjoint.
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Remark 2. The concepts of multi-limit and couniversal family of arrows can
be subsumed under the ordinary concepts of limit and couniversal arrow by
considering categories of families. Given a category C, one can define a category
Fam(C) wh ose objects are indexed families (C;);c; of C-objects, and whose
arrows from (C;)ier to (Dj);es are given by a reindexing function h : I — J
together with an I-indexed family (f; : Ci — Dp())icr of C-arrows. C has a
canonical embedding into Fam(C) which regards C-objects/arrows as families of
C-objects/arrows indexed by a one-element set. Then, multi-limits of C-diagrams
correspond to limits in Fam(C) of the translations of these diagrams along the
embedding of C into Fam(C), while couniversal families of arrows from U : D — C
to C-objects corresponds to couniversal arrows from Fam(U) : Fam(D) — Fam(C)
to the translations of these objects along the embedding of C into Fam(C) (where
Fam(U) takes (D;)ier to (U(Ds))ier, and (h, (fi)ier) : (Di)ier — (D})jes to
(h, (U(F)icr)):

2.2 Hidden Algebra

This section recalls the underlying definitions of the hidden algebra formalism,
as well as some earlier results regarding the existence of semantic constructions
based on finality in coalgebraic hidden algebra.

The fundamental distinction between data values and object states is re-
flected in the syntax of hidden algebra in the use of visible sorts/operation sym-
bols for the data, and of hidden sorts/operation symbols for the objects. A data
universe, given by an algebra D (the data algebra) of a many-sorted signature
(V,¥) (the data signature) is fixed beforehand, with the additional constraint
that each element of D is named by some constant in ¥. For convenience, we
assume D, C ¥, for each v € V.

The operations available for creating and accessing the states of objects are
specified using hidden signatures, while translations from one signature to an-
other are captured by hidden signature maps.

Definition 4. A (hidden) signature over (V,¥) is a pair (H,X) with H a
set of hidden sorts, and X' a V' U H -sorted signature satisfying: (i) Xy » = Y
forw e V* and v € V, and (i) for o € Xy, s, at most one sort appearing in w
(by convention, the first one) is hidden. X'\ ¥-operation symbols having exactly
one hidden-sorted argument are called destructor symbols, while those having
only wvisible-sorted arguments are called constructor symbols. A (hidden)
signature map ¢ : (H,X) — (H',Y') is a many-sorted signature morphism
¢:(VUH,X) = (VUH',X') such that ¢[v,uy= 1(v,w) and ¢(H) C H'.

An algebra of a hidden signature agrees with the data algebra on the interpre-
tation of the visible sorts/operation symbols and, in addition, provides interpre-
tations for the hidden sorts/operation symbols.

Definition 5. A (hidden) Y-algebra is a many-sorted (V U H, X)-algebra A
such that Alg= D. A (hidden) Y-homomorphism between X-algebras A and
B is a many-sorted X-homomorphism f : A — B such that f, = 1p, forv e V.
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Y-algebras and X-homomorphisms form a category, denoted Alg(X). Hidden
signature maps ¢ : X' — X’ then induce reduct functors U, : Alg(Z') — Alg(X).
For a X'-algebra A’ (X’-homomorphism f’), we write A'[x (respectively f'[x)
for Uy(A’) (respectively Uy (f")) whenever ¢ is clear from the context.

Definition 6. Given a hidden signature map ¢ : (H,X) — (H',X') and a X-
algebra A, a X' -algebra A’ is a coextension of A along ¢ if and only if there
exists a X-homomorphism f : Ugz(A") — A.

Hidden algebra takes a behavioural approach to specifying objects — their
states are only specified up to observability. State observations are formalised
by contezts, while indistinguishability of states by observations is captured by
behavioural equivalence.

Definition 7. Given a hidden signature (H, X)), a X-context for sorts € VUH
is an element of Tx({z})v, with z an s-sorted variable and v € V. Given a X-
algebra A, behavioural equivalence on A (denoted ~4) is given by: a ~4 5
if and only if ca(a) = ca(a) for all contexts ¢ for s, s € VUH and a,d’ € As.

One uses (many-sorted) equations to specify correctness properties of object
behaviour. However, one only requires the two sides of an equation to be indis-
tinguishable by observations, rather than to coincide.

Definition 8. A (hidden) specification is a triple (H, X, E) with (H,X) a
hidden signature and E a set of (many-sorted) X-equations. A Y-algebra A
behaviourally satisfies a X-equation e of form (VX) l=r ifly =r1,...,l, =
rn (written A [Ex e) if and only if, for any assignment 6 : X — A of values in
A to the variables in X, 0(1) ~4 0(r) whenever 0(l;) ~4 0(r;) fori=1,...,n.
Given a set E of X-equations and a X-equation e, one writes E Ex e if A Es E
implies A Ex e for any Y-algebra A.

The following properties of behavioural satisfaction will be used later.
Proposition 1. Let A, B be X-algebras and f : A — B be a X-homomorphism.

1. B Ex e implies A =5 e for each X-equation e.
2. A Ex e implies B Ex e for each X-equation e in visible-sorted variables.

We let Alg(X, E) denote the full subcategory of Alg(X) having Y-algebras that
behaviourally satisfy E as objects.

Proposition 2. The category Alg(X, E) has pullbacks.

Proof (sketch). Pullbacks in Alg(X, E) are constructed as pullbacks in the cat-
egory of many-sorted Y-algebras and X-homomorphisms.

We restrict our attention to specifications whose equations have visible-sorted
conditions, if any. Given an equation e of form (VV) l=r ifl; =r1,...,l, =71,
such that ly,7q,...,1,,r, are visible- sorted, the visible consequences of e are of
form: (VV) c[l] = c[r] if 4 = r1,...,1, = 7 (c|e] for short), with ¢ € Tx({z})
appropriate for [,r. Then, A Ex eif and on ly if A |E=x cle] for any ¢ € T ({z}).

Hidden algebra provides support for the reuse of specifications through the
notion of hidden specification map.
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Definition 9. A hidden signature map ¢ : X — X' defines a (hidden) speci-
fication map ¢ : (X, E) — (X', E') if and only if E' Ex+ ¢(c[e]) for each e € E
and each X-context c for e.

Given a specification map ¢ : (X, E) — (X', E’), the reduct functor Uy :
Alg(X") — Alg(X) induced by the signature map ¢ : ¥ — X’ takes hidden
(X', E')-algebras to hidden (X, E)-algebras.

The following result allows a finite number of specifications related via spec-
ification maps to be combined in a canonical way.

Theorem 1. The category Spec of hidden specifications and specification maps
is finitely cocomplete.

The rest of this section briefly recalls some existing results regarding the exis-
tence of semantic constructions based on finality in coalgebraic hidden algebra.

Definition 10. A hidden signature (H,XY) is a destructor signature if and
only if D\ consists of destructor symbols only. A hidden specification (H, X, E)
is a destructor specification if and only if (H, X)) is a destruct or signature,
and each equation in E contains exactly one hidden-sorted variable.

Any destructor specification admits a final algebra. This appears as a conse-
quence of the existence of a one-to-one correspondence between hidden algebras
of destructor signatures and coalgebras of endofunctors induced by such signa-
tures on one hand, and of the equations in destructor specifications defining
predicates on the carriers of algebras of the underlying signatures on the other.
The elements of the final algebra of a destructor specification describe all possible
behaviours under the specified d estructors that satisfy the constraints imposed
by the equations.

The main result in [8] shows the existence of cofree constructions w.r.t. reduct
functors induced by destructor specification maps. Given destructor specifica-
tions (A, E), (A’, E’) and a hidden specification map ¢ : (A, E) — (A’, E’), the
reduct functor Uy : Alg(X', E') — Alg(X, E) is shown to have a right adjoint
Cs. The counit of the adjunction yields, for each (A, E)-algebra A, a couniversal
arrow €4 : Uy(Cy(A)) — A from Uy to A. That is, C4(A) coextends A along
¢ and furthermore, the universal property of e4 makes Cy(A) final (most gen-
eral) among the (A’, E')-coextensions of A along ¢. C4(A) is called a cofree
coextension of A along ¢.

3 Semantics with Final/Cofree Families

Due to the possibility of underspecifying constructor operations, existence of
final/cofree hidden algebras does not generalise to arbitrary hidden specifica-
tions/specification maps. However, as already suggested in [8], final/cofree famil
ies of hidden algebras can be used to characterise all possible ways of resolving
the nondeterminism arising from underspecification. Here we prove the existence
of such constructions in hidden algebra and emphasise their suitability as deno-
tations for hi dden specifications/specification maps.
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Theorem 2. Let (X, E) denote a hidden specification. If each equation in E
contains at most one hidden-sorted variable, then there exists a final family of

hidden (X, E)-algebras.

Proof. We define a relation ~ on hidden (X, E)-algebras and use it to partition
Alg(X, E) into subcategories. Next, we show that each of these subcategories has
a final object. It then follows that Alg(X, E) has a final family of objects.

Given (X, E)-algebras A and B, we let A ~ B if and only if there exist a
(X, E)-algebra C' and Y-homomorphisms f : C — A and g : C — B. Since
Alg(X, E) has pullbacks (see Proposition 2), it follows that A ~ B holds if and
only if A and B are connected in Alg(X, E), i.e. there exists a zigzag morphism
from A to B in Alg(X, E) (see [2], page 58). Hence, ~ determines a partition C
of Alg(X, E) into subcategories.

We now show that each category C in C has a final object. We let A denote
the destructor subsignature of X' and let F4 denote a final A-algebra. We define
a many-sorted subset Fc of Fa as follows: Fc, = D, for v € V, and Fc ), =
{f€Fan|f=fa(a)for some A € |C| and a € A} for h € H (where, for a X-
algebra A, fa : Alao— Fa denotes the unique A-homomorphism of its A-reduct
into Fa). Then, F¢ defines a A-subalgebra of Fa: given f € Fc , with f = fa(a)
for some A € |C| and a € Ay, and given 6 € Apy p with b, B € H and w € V*,
we have: 6p, (f,d) = fa(da(a,d)), and hence 65, (f,d) € Fc s for each d € D,,.
Moreover, Fc can be given the structure of a X-algebra by arbitrarily choosing
A € |C| and then letting vg.(d) = fa(va(d)) for each v € X, with w € V*
and h € H, and each d € D,,. The definition of ~ together with uniqueness of a
A-homomorphism into a final A-algebra ensure that the definition of vyr. does
not depend on the choice of A. Then, Fc =5 F follows from each e € E contain-
ing at most one hidden-sorted variable: in this case, any assignment of values in
F¢ to the variables in e is obtained by post-composing a similar assignment into
some A € |C| with f4; behavioural satisfaction of e in (a state f of) Fc then
follows from its behavioural satisfaction in (a state a of) A, with A € |C|.

Hence, Fc € |C|; furthermore, Fc is final in C: given A in |C|, AJa has a
unique A-homomorphism f4 into Fa which, by the definition of F¢, defines a
Y-homomorphism f4 : A — F¢. Uniqueness of such a X-homomorphism follows
from uniqueness of a A-homomorphism into Fa.

It then follows that (Fc)cec is a final family of hidden (X, E)-algebras: given
any (X, E)-algebra A, say A € |C| for some C € C, there exists a unique X-
homomorphism fa : A — F¢; also, for C' # C, there exists no X-homomorphism
of A into F¢/, as C and C’ are disjoint.

);
).

The existence of a final family of (X, E)-algebras results in the existence of a
final object in the category Fam(Alg(X, E)) (see Remark 2), given by (Fc)cec-
The next result states an important property of final families.

Theorem 3. Let (X, E) denote a hidden specification, (F;)icr denote a final
family of hidden (X, E)-algebras, and e denote an arbitrary X-equation. Then,
e is behaviourally satisfied by all (X, E)-algebras if and only if e is behaviourally
satisfied by each F;, withi € I.
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Proof. The only if direction follows by each F; being a (X, E)-algebra. For the if
direction, given an arbitrary (X, E)-algebra A, existence of a X-homomorphism
from A to one of the Fs together with Proposition 1 and F; Ex e yield A =5 e.

The above result justifies the use of final families as denotations for hidden
specifications satisfying the hypothesis of Theorem 2.

The proof of Theorem 2 also gives some information about how the algebras
in the final family look like: for a hidden specification (X, E), the A-reduct of
each algebra in the final family is a A-subalgebra of the final A-algebra (with
A denoting the destructor subsignature of X'). However, in most cases, the fi-
nal family has a more concrete representation than the one above. Such cases
correspond to split specifications.

Definition 11. Given a hidden signature X with destructor subsignature A, a
hidden specification (X, E) is called split if and only if E = EAU Ex,, with Ea
consisting of A-equations in one hidden-sorted var iable and Eyx consisting of
X -equations in no hidden-sorted variables.

The intuition behind the above definition is that E constrains the behaviour
of hidden states (by means of equations that use A-symbols only), while Ex
constrains the interpretation of the constructor symbols in the state space defined
by E A, without imposing further constraints to this state space.

Proposition 3. Let (X, E) denote a split hidden specification (with E = Ex U
Ex), let Fa g, denote a final (A, Ea)-algebra and let F = {F € Alg(X) | Fla=
Fap,, FlEs Es}. Then, F defines a final family of hidden (X, E)-algebras.

Proof. We must show that an arbitrary (X, E)-algebra A has exactly one Y-
homomorphism into an F' € F. Any such homomorphism must extend the unique
A-homomorphism f4 : A[a— Fa g, resulting from Afao[Ea Ea on one hand,
and must preserve the X'\ A-structure on the other. Hence, the only F' € F
that A can have a X-homomorphism into has its X'\ A-structure induced by
the X \ A-structure of A: given v € (X' \ A)y,p with w € V* and h € H,
vr(d) = fa(ya(d)) for each d € D,,. Since all the equations in Ex are quantified
over data only and since A Ex Ey, it follows by Proposition 1 that F =5 Ex.
This concludes the proof.

Therefore, the carriers of all algebras in the final family of a split hidden speci-
fication coincide with the carrier of the final algebra of its destructor subspeci-
fication.

Finally, it is worth noting that given a hidden specification (X, E), the fi-
nal family of (X, E)-algebras may be empty — this happens precisely when the
specification (X, E) is inconsistent, i.e. there are no (X, E)-algebras.

In coalgebraic hidden algebra, cofree algebras provided suitable denotations
for hidden specification maps. When specifications comprising both algebraic
and coalgebraic structure are considered, the semantics involves cofree families.
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Theorem 4. Let ¢ : (H,X,E) — (H', X', E’) denote a hidden specification
map. If each equation in E’ contains at most one hidden-sorted variable, then
the reduct functor Uy : Alg(H', X', E') — Alg(H, X, E) has a righ t multi-adjoint.

Proof. Welet A and A’ denote the destructor subsignatures of X and X’ respec-
tively, and ¢ : A — A’ denote the restriction of the signature map ¢ : X — X
to destructor subsignatures. We fix a (X, E)-algebra A and construct a cofree
family of (X', E')-algebras over A. We let A denote the cofree coextension of
Ala along ¢, with €4 : Afa— Al A as the associated couniversal arrow.

The proof now follows the same line as the proof of Theorem 2. We consider
a category Alg(X’, E’, A) whose objects correspond to (X', E')-coextensions of
A along ¢, and use a relation ~ on its objects to partitio n it into subcategories
with final objects. These final objects then yield a final family for Alg(X’, E’, A),
which at the same time defines a cofree family of (X', E’)-algebras over A.

Alg(X' E’, A) is the category whose objects are pairs (A’, f) with A’ a
(X', E')-algebra and f : A'|x— A a X-homomorphism, and whose arrows from
(A1, f1) to (A3, fo) are X'-homomorphisms g : A} — Aj such that fi = faogla
(where f1 : Ajfa— Aand fo : AjJar— A denote the unique A’-homomorphisms
satisfying €4 o fila= fila, respectively €4 o fola= fala). Given (A}, f1) and
(A%, f2) in Alg(X', E', A), (AL, f1) ~ (AL, fo) if and only if there exist (A4, f)
together with g1 - <A/7f> - <A/17f1>7 g2 - <A/7f> - <A/27f2> in Alg(El7El7A)'
One can easily show that Alg(X', E’, A) has pullbacks, and therefore (A4}, f1) ~
(A%, f2) holds if and only if (A, f1) and (A}, f5) are connected in Alg(X’, E', A).
Hence, ~ determines a partition C of Alg(X’, E’, A) into subcategories. Further-
more, each subcategory C in C has a final object (Ac,eac). Its carriers are
given by: Acy = {a € Ay | a = f(a') for some (A’, f) € |C| and a’ € A} for
h € H, with f : A'[o— A denoting the unique A’-homomorphism satisfying
€a0 fla= fla. The A'-structure of Ac coincides with the A’-structure of A,
while its X7 \ A’-structure is induced by the X'\ A’-structure of (any of) the
(X', E')-algebras in C. Also, Ac behaviourally satisfies E’, since each algebra in
C does and since each equation in E’ contains at most one hidden-sorted vari-
able. Finally, the A-homomorphism €4 : A[o— A defines a X-homomorphism
€ac: Acls— A. (The way X'\ A’-operation symbols are interpreted in Ac is
used to prove this.) Hence, (Ac,ea.c) € |C|.

It then follows easily that (Ac, €4 c)cec defines a final Alg(X’, E, A)-family,
while (e4,c : Acls— A)cec defines a couniversal family of arrows from Uy to A.

Right multi-adjoints to the reduct functors induced by specification maps satis-
fying the hypothesis of Theorem 4 provide suitable denotations for specification
steps given by such specification maps. Given an algebra A of the source specifica-
tion, the right multi-adjoint yields a family of algebras of the target specification
which coextend A; furthermore, each algebra in this family is most general, in
that no algebra of the target specification which coextends A strictly extends it.

We conclude this section by noting that initial/free families of hidden algebras
also exist (no restriction on the specifications involved is needed in this case).
Although initial families do not satisfy properties similar to the ones stated in
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Theorem 3, they are relevant for characterising behaviours which are reachable
through ground X-terms. A consequence of the existence of both initial and final
families of hidden specifications is the existence of a partition of the category
of hidden algebras of such specifications into subcategories, with each subcate-
gory corresponding to a particular behaviour for the constructor operations, and
having an initial as well as a final representative.

4 Semantics with Multi-limits

Algebraic approaches to the specification of data types use colimit constructions
to define canonical ways of combining specifications, and free extensions of alge-
bras to define the semantics of combined specifications purely at the model level
[10], [L1]. In hidden algebra, colimits are used in a similar way at the specifica-
tion level. However, at the model level the interest is in coeztending (restricting)
collections of behaviours, rather than in extending collections of values, and con-
sequently dual constructions should be considered. Multi-limits are an obvious
candidate for such constructions, as they define final solutions to categorically
formulated constraints. Here we prove the existence of multi-limits in a general
category of hidden algebras. This then yields a canonical construction for alge-
bras of combined specifications from algebras of the component specifications.

It is shown in [3] that the standard results regarding the existence of limits
(see e.g. [2]) generalise to multi-limits. In particular, existence of finite multi-
limits in a category is a consequence of the existence of a final f amily of ob-
jects and of multi-pullbacks. We have already seen that final families of (X, E)-
algebras exist, provided that the equations in E contain at most one hidden-
sorted variable. Also, multi-pullbacks exist in Alg(X, E), since st andard pull-
backs exist (see Proposition 2). Hence, we immediately obtain the following
result.

Theorem 5. Let (X, E) denote a hidden specification such that each equation
in E contains at most one hidden-sorted variable. Then, the category Alg(X, E)
has finite multi-limits. Furthermore, if (X, E) is a destructor specification, then
f inite multi-limits coincide with finite limits.

Theorem 5 will be used to prove a similar result for a general category Alg, whose
objects are hidden algebras and whose arrows correspond to coextension relations
between their source and target. One can also consider a subcategory CoAlg of
Alg whose objects are hidden algebras of destructor specifications. CoAlg will be
shown to have finite limits, while Alg will be shown to have finite multi-limits.

Theorem 6. Let Alg denote the category having:

— objects: pairs (P, A), with P a hidden specification whose equations contain
at most one hidden-sorted variable, and A a P-algebra

— arrows from (P',A’) to (P, A): pairs (¢, f), with ¢ : P — P’ a hidden
specification map, and f: A'lp— A a P-homomorphism.
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Also, let CoAlg denote the full subcategory of Alg whose objects are such that
their first component is a destructor specification. Then, CoAlg has finite limits,
while Alg has finite multi-limits.

Proof (sketch). Existence of finite limits in CoAlg follows from a general result in
[6] regarding the existence of limits in the structure category of a fibration. This
result states that if both the base category of a fibration and each of its fibres
have a certain kind of limits, and if the reindexing functors between the fibres
preserve that kind of limits, then the structure category also has those limits;
furthermore, the limit of a diagram in the structure category is computed by
first computing the limit of the underlying diagram in the base category, then
lifting the initial diagram to the fibre over this limit, and finally computing the
limit of the resulting diagram in this fibre. All the hypotheses of the result in [(]
are satisfied by the fibration CoSp : CoAlg — Spec®® mapping (P, A) to P and
(¢, f) : (P',A"Y — (P, A) to ¢ : P — P’. First, the fact that CoSp is a fibration is
an immediate consequence of the existence of cofree constructions along destruc-
tor specification maps — cartesian liftings are given by the couniversal arrows.
Then, the first two hypotheses are guaranteed by Theorem 1 and respectively
Proposition 2 together with the existence of final algebras of destructor specifi-
cations, while preservation of finite limits by the reindexing functors (the right
adjoints to the reduct functors induced by the underlying specification maps)
follows from the limit-preservation property of right adjoints.

The functor Sp : Alg — Spec® defined similarly to CoSp is not a fibration,
since cofree constructions do not exist for arbitrary specification maps. However,
one can use a similar strategy to construct multi-limits of diagrams in Alg: given
such a diagram D, its multi-limit is obtained by first constructing the limit P
of Sp o D in Spec®, then cofreely coextending each algebra in D to a family of
P-algebras, and finally computing some multi-limits in Alg(P). The couniversal
property of the multi-limit then follows from the couniversal properties of limits
in Spec®®, cofree families, and respectively multi-limits in Alg(P).

Limits in CoAlg / multi-limits in Alg provide canonical ways of constructing alge-
bras of structured specifications from algebras of the component specifications.

We conclude this section by illustrating the pullback construction in Coalg.
Given destructor specification maps ¢; : Py — P; with ¢ = 1,2, P;-algebras A;
with ¢ =0, 1,2 and Py-homomorphisms f; : A;[p,— Ao with ¢ = 1,2 (defining a
V-shaped diagram d in Coalg), a pullback for d is obtained by:

1. constructing the pushout (P, (¢} : P; — P);=1,2) of ¢1, ¢ in Spec

2. cofreely coextending Ay along ¢} o ¢1 = ¢h o ¢2 to Aj and A; along ¢} to
Al i=1,2 (with ¢ : Ai]p,— A; as couniversal arrows, i = 0,1, 2)

3. taking the pullback of f1, f5 in Alg(P), with f/ : A; — Aj denoting the
unique P/-homomorphism satisfying f; o €;[p,=€o o filp,, i = 1,2.

Then, (91, f1), (¢5, f3) define a pullback for (¢1, f1), (b2, f2).
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5 Complex Objects in Hidden Algebra

The coalgebraic nature of hidden algebra comes as a consequence of all the op-
erations specified by hidden signatures taking at most one argument of hidden
sort. This means that only data values can be passed as arguments to either con-
structors or destruct ors, becoming particularly restrictive for specifying objects
that have other objects as components. This section outlines a way to overcome
this problem, with final/cofree families still providing appropriate denotations
for the specification techniques involved.

There are at least two alternatives for solving the problem described above.
One of them is to simply drop the restriction regarding the presence of at most
one argument of hidden sort in operations. Such an approach is taken in [7],
where be havioural equivalence is defined only in terms of operations taking
one argument of hidden sort, while its preservation by the remaining operations
becomes a requirement on algebras. (The satisfaction of this requirement by
algebras can either appear as a consequence of the satisfaction of the equations
in the specification, or be imposed as a restriction on algebras.)

The other alternative is to retain (a version of) the restriction regarding the
arity of operations, by making it relative to the already defined object types.
Syntactically, this amounts to generalising the importation of the data signature
into a hidden signature to the importation of a number of hidden signatures into
another hidden signature, with similar restrictions on the kinds of importations
allowed. Semantically, this involves fixing implementations for existing specifi-
cations befor e importing them into more structured specifications, in the same
way in which a data algebra was fixed before importing the data signature into
a hidden signature. However, complex objects should only have limited access
to their component objects (whose implementation details should be abstracted
away). That is, the operations of complex objects should use, for hidden argu-
ments other than the object itself, abstractions (w.r.t behavioural equivalence)
of the corresponding hidden carriers, rather than th e carriers themselves.

Then, object specification becomes layered, with the first layer consisting of
a specification for the data, the next layer consisting of specifications for simple
objects, and the upper layers consisting of specifications of increasingly complex
objects, that use the specifications situated at previous layers. This approach has
the advantage of preserving the coalgebraic nature of the approach, including
the existence of semantic constructions based on finality.

We let Sign™ denote the category of many-sorted signatures and inclusion
signature morphisms. The operations provided by a layered object system are
specified using system signatures.

Definition 12. A system signature is a finite partial order diagram ¥ : 1 —
Sign™, with X(i) = (Si, Xy), such that if X(i) includes X(j1),...,X(jn), then:
(i) X; adds no operation symbols to |JX;, whose argument/result sorts are all
in |JS;j,, and (ii) the operation symbols of X; have at most one argument sort
not from |JS;,. X; \ U X, -operation symbols having an argument of a sort not
from |JS;, are called Y;-destructor symbols, while the remaining operation
symbols are called ¥;-constructor symbols.
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Ordinary hidden signatures (H,XY) over (V,¥) then correspond to system
signatures (V,¥) — (VU H, X).

An algebra of a system signature provides interpretations for the sorts and
operation symbols at each layer, by abstracting away the implementation details
of sorts from lower layers. Behavioural equivalence on such an algebra is defined
as indistinguishability by contexts that use operation symbols from the current
layer. The only difference w.r.t. the standard notion of behavioural equivalence
is that variables of imported sorts are now allowed in contexts, since reachability
of data values by constants of the data signature does not generalise to arbitrary
layers.

Definition 13. Given a system signature ¥, a ¥-algebra is an |-indexed family
(A;)iel, with A; a X;-algebra for each i € |, such that:

1. If X; does not include any other signature, then behavioural equivalence on
A; coincides with equality: ~a, s = =a, , for s € S;.
2. If X includes Xj,,...,%;,, and s € Sjk with k € {1,...,n}, then A; s =
AJ’mS/NA]»k,s' Behavioural equivalence on A; is defined as follows:
(a‘) fOT RS USjk7 ~NAi,s T TAise
(b) for s € S;\US;j, and a,a’ € A, a ~a,s a' if and only if ca,(T,a) =
ca,(T,ad") for each Xj-context ¢ € Tx,(X)({z})s,, with z an s -sorted
variable, X a |J S}, -sorted set of variables, and s; € Sj, for some | €
{1,...,n}, and each assignment of values T in A; to the variables in X.

Behavioural equivalence on A is given by (~a4,)ic1. Given X-algebras A =
(4;)iel and B = (B;)ic1, ¢ X-homomorphism from A to B is an l-indezed
mappi ng [ = (fi)iel with f; : A; — B; a X;-homomorphism for each i € |, such
that f; = 14, for each i € | which is not mazimal.

That is, for i € |, ~4, coincides with equality for sorts imported by X (z), and
with indistinguishability by contexts with variables and result of imported sorts,
for sorts that are specific to (7). Also, X-homomorphisms only relate ¥-algebras
that coincide on all layers which are not maximal.

It is worth noting that, by considering abstractions of the lower-layer behav-
iours at the upper-layers, there is no need for additional constraints to ensure
that behavioural equivalence is a congruence relation — the upper layers simply
can not distinguish between behaviourally equivalent states at lower layers.

We now let Spec™ denote the category of many-sorted specifications and
inclusion specification morphisms, and U : Spec™ — Sign™ denote the functor
taking specifications to their underlying signatures.

Definition 14. A system specification is a finite diagram P : | — Spec™,
such that U o P is a system signature. For i € |, we let P(i) = (X, E;).

A ¥ -algebra A behaviourally satisfies a system specification P if and only
if A; Ex, e; for each e; € E; and each i € |.

Ordinary hidden specifications (H, X, E) correspond to system specifications
(V,¥,Ep) — (VUH, X, EpUE), with Ep = {e | D =g ¢}.
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All the techniques for proving behavioural satisfaction (see [1]) apply to sys-
tem specifications, the only difference being in the use, in contexts, of variables of
imported sorts. Furthermore, behavioural satisfaction of an equation at a given
layer implies its (standard) satisfaction at the upper layers.

Horizontal specification steps involve extending the module structure, while
protecting the existing modules. They correspond to inclusions of diagrams in
Spec™ of the following kind:

f\) . JNJ
\M/ i \M/

and are formally captured by the notion of system specification morphism.

Definition 15. A system specification morphism from P : | — Spec™ to
P’ : I — Spec™ is an inclusion of partial orders (i.e. an inclusion ¢ : | — I
such that P’'(u(i)) = P(i) for each i € 1), with | and " additionally satisfying
(S, e(d)) = 1(-,4) (with (i) consisting of all l-arrows with codomain ).

Final families of hidden algebras yield suitable denotations for system speci-
fication morphisms: given a system specification morphism ¢ : P — P’ and a
P-algebra A, a final family of P’-algebras over A can be obtained b y combining
the final families of P’(i')-algebras over A, with i’ & «(I).

Vertical specification steps involve specialising some of the existing modules,
and are formally captured by the notion of system specification map.

Definition 16. Given system specifications P : | — Spec™ and P’ : | — Spec™
with P(i) = P'(i) for each i € | which is not mazimal in |, a system specifica-
tion map from P to P’ is given by a family of many-sorted signature morphisms
@i+ Xy — XL, with i mazimal in |, such that E! 'EEQ oi(cle;]) for each e; € E;,
each context c for e;, and each i mazximal in |.

That is, only modules which are maximal w.r.t. the partial order structure can
be specialised. The following depicts a system specification map:

3 ,
E—

J\) J\)
\M/ \M/

System specification maps ¢ : P — P’ induce reduct functors U, : Alg(P’) —
Alg(P), mapping (A.)icr to (A} [x,)ic1. Cofree f amilies of algebras w.r.t. the
maximal components of ¢ yield suitable denotations for system specification
maps: they induce right multi-adjoints to the reduct functors Uy.

One can alternate horizontal and vertical steps to specify arbitrarily complex
objects: while horizontal steps correspond to importing existing specifications
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along protecting inclusion morphisms, vertical steps protect the lower layers of
system specific ations and specialise the upper-most layers.

We conclude this section by commenting on the relationship between the
approach taken here and the one of [7]. In a sense, our approach is less general,
as it does not support algebraic operations of arbitrary form (each operation can
only ta ke one argument of a non-imported sort). However, the approach here is
more suitable for the specification of complex objects. It is often the case that the
destructors associated to such objects take other objects as arguments; in this
case, the notion o f behavioural equivalence should depend on such destructors.
While this is captured here (by layering the specification), in [7] it is prevented by
the requirement that any operation which takes more than one hidden argument
preserves behavio ural equivalence, rather than influences it.

6 Conclusions and Future Work

Hidden specifications comprising both algebraic and coalgebraic structure and
maps between such specifications have been considered, and final/cofree families
of hidden algebras have been shown to provide appropriate denotations for them.
A canonical way of combining algebras of component specifications into algebras
of structured specifications has also been derived. Finally, an extension of hidden
algebra that supports the specification of arbitrarily complex objects, with the
semantics still given by f inal/cofree families, has been presented.

The use of an algebraic syntax together with a coalgebraic semantics restricts
the form of constructors/destructors one can specify in hidden algebra. Other
ways of combining algebra and coalgebra for objects should also be investigated,
possibly by makin g the separation between their algebraic and coalgebraic as-
pects more explicit, in order to allow the specification of more general behaviours.
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for his continuous advice and encouragement.

References

1. J. Goguen and G. Malcolm. A hidden agenda. Technical Report CS97-538, UCSD,
1997. 64, 64, 76

2. F. Borceux. Handbook of Categorical Algebra, volume I. Cambridge University
Press, 1994. 69, 72

3. Y. Diers. Familles universelles de morphismes. Annales de la Société Scientifique
de Bruzelles, 93(3), 1979. 65, 65, 72

4. B. Jacobs. Objects and classes, coalgebraically. In B. Freitag, C. B. Jones,
C. Lengauer, and H.-J. Schek, editors, Object Orientation with Parallelism and
Persistence. Kluwer Academic Publishers, 1996. 63

5. J. Rutten. Universal coalgebra: a theory of systems. Technical Report CS-R9652,
CWI, 1996. 63



78

10.

11.

Corina Cirstea

C. Hermida. On fibred adjunctions and completeness for fibred categories. In
H. Ehrig and F. Orejas, editors, Recent Trends in Data Type Specification, volume
785 of LNCS. Springer, 1993. 73, 73

R. Diaconescu. Behavioural coherence in object-oriented algebraic specification.
Technical Report IS-RR-98-0017F, Japan Adv. Instit. for Sci. and Tech., 1998. 74,
7, T

C. Cirstea. Coalgebra semantics for hidden algebra: parameterised objects and
inheritance. In F. Parisi-Presicce, editor, Recent Trends in Algebraic Development
Techniques, volume 1376 of LNCS. Springer, 1998. 64, 64, 64, 68, 68

J. Goguen, J. Thatcher, and E. Wagner. An initial algebra approach to the specifi-
cation, correctness, and implementation of abstract data types. In R. Yeh, editor,
Current Trends in Programming Methodology, volume 4. Prentice-Hall, 1978. 63

H. Ehrig and B. Mahr. Fundamentals of algebraic specification 1: Equations and
initial semantics. In W. Brauer, G. Rozenberg, and A. Salomaa, editors, EATCS
Monographs on TCS, Volume 6. Springer, 1985. 72

H. Ehrig, M. Baldamus, and F. Orejas. New concepts for amalgamation and exten-
sion in the framework of specification logics. In M. Bidoit and C. Choppy, editors,
Recent Trends in Data Type Specification, volume 655 of LNCS. Springer, 1993.
72



	Introduction
	Preliminaries
	Some Category-Theoretic Notions
	Hidden Algebra

	Semantics with Final/Cofree Families
	Semantics with Multi-limits
	Complex Objects in Hidden Algebra
	Conclusions and Future Work

