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A b s t r a c t .  The theory of hidden algebras combines standard algebraic 
techniques with coalgebraic techniques to provide a semantic foundation 
for the object paradigm. This paper focuses on the coalgebraic aspect of 
hidden algebra, concerned with signatures of destructors at the syntac- 
tic level and with finality and coffee constructions at the  semantic level. 
Our main result shows the existence of cofree constructions induced by 
maps between coalgebraic hidden specifications. Their use in giving a se- 
mantics to parameterised objects and inheritance is then illustrated. The 
cofreeness result for hidden algebra is generalised to abstract coalgebra 
and a universal construction for building object systems over existing 
subsystems is obtained. Finally, existence of final/cofree constructions 
for arbitrary hidden specifications is discussed. 

1 I n t r o d u c t i o n  

Algebraic techniques have been intensively studied over the last decades. Their  
suitability for the specification of data  types is due to the availability of effective 
definition and proof techniques based on induction. Recent work on coalgebras 
(the formal duals of algebras) [Rei95, Jac95, Jac96, Rut96, Jac97, JR97] sug- 
gests their suitability for the specification of dynamical systems. The theory of 
coalgebras provides a notion of observational indistinguishability as bisimula- 
tion, a characterisation of abstract behaviours as elements of final coalgebras 
and coinduction as a definition/proof principle for system behaviour. 

Hidden algebra, introduced in [GD94] and further developed in [MG94, 
GM97] combines algebraic and coalgebraic techniques in order to provide a se- 
mantic foundation for the object paradigm. It is an extension of the theory of 
many sorted algebras that  uses both constructor and destructor operations and 
a loose behavioural semantics over a fixed data  universe for (the states of) ob- 
jects. Its coalgebraic nature, emerging from the observational character of the 
approach, has already been exploited in [MG94] where (coinductive) proof tech- 
niques for behavioural satisfaction were developed. The present paper further 
investigates the relationship between hidden algebra and coalgebra, focusing on 
the semantic level and in particular on cofree constructions. Their suitability as 
semantics for the specification techniques used in hidden algebra is emphasised. 
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The structure of the paper is as follows. Section 2 gives a brief account of 
the theory of coalgebras as well as an outline of hidden algebra. Section 3 fo- 
cuses on the coalgebraic aspect of hidden algebra: hidden algebras are mapped 
to coalgebras (by forgetting the constructors) in such a way that  behavioural 
congruences correspond to bisimulation equivalences on the associated coalge- 
bras. Consequently, coinduction can be used both as a definition principle for 
object behaviour and as a proof principle for behavioural equivalence. Existence 
of final algebras for coalgebralc hidden specifications is also obtained. The main 
result of the paper concerns the existence of coffee hidden algebras induced by 
maps between coalgebraic (destructor) hidden specifications. Such maps corre- 
spond to reusing specifications either horizontally by importation or vertically 
by refinement. In certain cases, the cofree construction corresponds to a reuse of 
implementations along the underlying reuse of specifications. A generalisation 
of a cofreeness result in [Rut96], concerning the existence of cofree object sys- 
tems over given subsystems is sketched in the last part  of Section 3. Section 4 
illustrates the use of coffee constructions in giving semantics to the importat ion 
of coalgebralc hidden modules, parameterised modules and inheritance. Cofree 
constructions provide canonical ways to build implementations for more struc- 
tured/specialised specifications from implementations of the specifications they 
are built on. Section 5 generalises the final/cofree coextension semantics in Sec- 
tion 3 by considering arbitrary hidden specifications. In this case, the semantics 
is given by final/cofree families of hidden algebras. Section 6 summarises the 
results presented and briefly outlines future work. 

2 P r e l i m i n a r i e s  

This section gives an account of the basic ideas and concepts in coalgebraic spec- 
ifications, emphasising their duality to algebraic specifications. A brief introduc- 
tion to hidden algebra (a combination of algebraic and coalgebraic techniques 
intended as a specification framework for objects) is also given. 

2.1 Algebra and Coalgebra 

Algebra and its associated inductive techniques have been successfully used for 
the specification of data types. The emphasis there is on how the values of a data  
type are generated, using constructor operations going into the type. Data  types 
are presented as F-a lgebras ,  i.e. tuples (A, a) ,  with A an object and a : FA --+ A 
a morphism in some category C, with F : C --+ C. Among F-algebras, i n i t i a l  ones 
L : FI  --+ I (least fixed points of F) are most relevant - their elements denote 
closed programs. Initial algebras come equipped with an i n d u c t i o n  p r i n c i p l e  
stating that  no proper subalgebras exist for initial algebras. This principle con- 
stitutes the main technique used in algebraic specifications for both definitions 
and proofs: defining a function on the initial algebra by induction amounts to 
defining its values on all the constructors; and proving that  two functions on the 
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initial algebra coincide amounts to showing that they agree on all the construc- 
tors. Free cons t ruc t ions  are also relevant for data types: they provide least 
extensions of algebras of a data type to algebras of another and have been used 
to give semantics to parameterised data types, see e.g. [EM85]. 

The theory of coalgebras [Rut96, JR97], having its roots in automata theory 
and transition system theory [Rut95] and concerned with dynamical systems, 
can be viewed as a dualisation of the theory of algebras. Object systems are 
coalgebraically defined by specifying how their states can be observed, using 
destructor operations going out of the object types. Object types appear as G- 
coalgebras, i.e. tuples (C,~), with C an object and ~3 : C -4 GC a morphism 
in some category C, with fi : C -4 C. Final  fi-coalgebras ~ : Z  -4 GZ (greatest 
fixed points of fi) are in this case relevant - they incorporate all fi-behaviours. 
The unique coalgebra homomorphism from a coalgebra to the final one maps 
object states to their behaviour. A bis imulat ion between two coalgebras is a 
relation on their carriers, carrying itself coalgebraic structure. Bisimulations re- 
late states that exhibit the same behaviour. Final coalgebras come equipped with 
a coinduct ion  principle stating that no proper bisimulations exist between a 
final coalgebra and itself; that is, two elements of a final coalgebra having the 
same behaviour coincide. Coinduction can be used both in definitions, to de- 
fine functions into the final coalgebra by giving coalgebraic structure to their 
domains, and in proofs, to show equality of two elements of the final coalgebra 
by exhibiting a bisimulation that relates them. Finally, cofree cons t ruc t ions  
are relevant for object types as they provide least restrictive (co)extensions of 
coalgebras of an object type to coalgebras of another. 

2.2 H idden  Algebra  

This section provides an outline of hidden algebra. For a detailed presentation 
of the approach the reader is referred to [GM97]. 

Hidden algebra extends many sorted algebra to support the specification 
of objects with hidden states, only accessible through specified interfaces. The 
fundamental distinction between data values and object states is reflected in the 
use of visible sorts/operations with standard semantics for data and of hidden 
sorts/operations with loose behavioural semantics for objects. 

A fixed data universe, given by an algebra D (the da t a  algebra) of a many 
sorted signature (V,~P) (the da t a  s ignature)  is assumed, with the additional 
constraint that each element of D is named by a constant in ~P. For convenience, 
we take Dv C__ ~P[],. for each v E V. 

Defini t ion 1. A (hidden) s ignature  over (V, ~P, D) is a pair (H, ~) with H a 
set of h idden  sorts  and E a V U H-sorted signature satisfying: (i) E~,v = ~Pw,v 
for w E V*, v E V and (ii) monadic i ty :  for a E Zw,8, at most one sort appearing 
in w (by convention, the first one) is hidden. 

\ ~P-operations having exactly one hidden-sorted argument are called destruc-  
tors,  while those having only visible-sorted arguments are called constructors .  
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Definition 2. A ( h i d d e n )  s i g n a t u r e  m a p  ¢ : (H, 27) -4 (H' ,  Z ' )  is a many 
sorted signature morphism ¢ : (V tJ H, 27) -4 (V tJ H', Z')  such that  ¢[(y,~)= 
id(y,~) and ¢(H)  C_ H' .  A (hidden) signature m o r p h i s m  is a hidden signature 
map such that  if a '  • 27h'~',s' with h' • ¢(H) ,  then a '  = ¢(a) for some a • Z .  

Signature maps specify arbitrary (vertical) structure, while signature morphisms 
specify horizontal structure (importation of hidden modules). Imported hidden 
sorts are protected by signature morphisms, in that  no new destructor operations 
are added for them by the target signature. 

Definition 3. A ( h i d d e n )  27-algebra is a many sorted (V U H, Z)-algebra A 
such that  Argo= D. A ( h i d d e n )  Z - h o m o m o r p h i s m  between 27-algebras A and 
B is a many sorted 27-homomorphism f : A -+ B such that  fv =- idD. for v • V. 
27-algebras and 27-homomorphisms form a category HAIg(Z). Hidden signature 
maps ¢ : 27 --~ 27t induce reduct functors U¢ : HAlg(Z ~) -4 HAlg(27). 

Hidden algebra takes a behavioural approach to objects: their states can only 
be observed through experiments; indistinguishability of states by experiments 
is captured by behavioural equivalence. 

D e f i n i t i o n  4. Given a signature (H, Z),  a 27-context  for sort s • V U H is an 
element of Tm[z]v with z an s-sorted variable and v • V. Given a 27-algebra 
A, b e h a v i o u r a l  e q u i v a l e n c e  on  A (denoted HA) is defined by: a ~A,s a ~ iff 
CA[a] = CAIn I] for all contexts c for s, with s • V U H and a, a ~ • As. 

Satisfaction of equations is also behavioural - one only requires the two sides of 
an equation to look the same under any observation rather than coincide. 

De f in i t i on  5. A ( h i d d e n )  spec i f i ca t ion  is a triple (H, 27, E) with (H, 27) a 
hidden signature and E a set of Z-equations. A Z-algebra A b e h a v i o u r a l l y  
sat isf ies  a (conditional) ~U-equation e of form (VX) l = r i f  ll - r l , . . . ,  In = rn 
(written A ~ e) if and only if for any assignment 0 : X --4 A, 8(l) NA ~(r) 
whenever 8(l/) ~'~A ~(ri), i = 1 , . . .  ,n. Given sets E and E ~ of ~U-equations, we 
write E ~ E  E ~ if A ~ E implies A ~ E ~ for any Z-algebra A. 

[MG94] gives a characterisation of behavioural equivalence as greatest behavioural 
congruence (congruence which coincides with equality on visible sorts) and uses 
it to obtain a coinductive-like proof technique for behavioural equivalence. 

We restrict our attention to specifications whose equations have visible-sorted 
conditions only. To each such specification (27, E)  one can associate another 
specification (Z, E)  (by letting E = {c[e]~_e • E, c • Ts[z] appropriate for e}), 
such that  A ~ E iff A ~ E iff A ~ E  E. 

D e f i n i t i o n  6. Let (Z, E)  and (Z' ,  E ' )  be hidden specifications. A hidden sig- 
nature map ¢ : Z -4 Z '  defines a spec i f i ca t i on  m a p  ¢ : (Z,  E)  -4 (27', E') if 
and only if E '  Ms'  ¢(E).  A specification map whose underlying signature map 
is a signature morphism is called a spec i f i ca t i on  m o r p h i s m .  
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Given a specification map ¢ : (~ ,E)  --+ (Z ' ,E ' ) ,  the functor U¢ induced by 
¢ : Z ~ Z'  maps hidden (Z ~, E~)-algebras to hidden (Z, E)-algebras. 

T h e o r e m  7. The category Spec of hidden specifications and specification maps 
is finitely cocomplete. Pushouts in Spec preserve specification morphisms. 

We note in passing that the constraint on hidden signature morphisms is used 
in [GD94] to obtain an institution of hidden algebras. Moreover, specification 
morphisms ¢ : (~, E) ~ (Z', E') satisfy E' ~m, ¢(E), i.e. they axe the theory 
morphisms of this institution. A different institution may be obtained by consid- 
ering hidden signature maps and a slightly different notion of sentence, given by 
a E-equation together with a subsignature of ~ for the contexts under which the 
equation is expected to hold. This is the institution that underlies our treatment 
of parameterisation in Section 4.1. 

3 C o a l g e b r a  a n d  H i d d e n  A l g e b r a  

This section focuses on the coalgebraic nature of hidden algebra. First we illus- 
trate how viewing hidden algebras as coalgebras provides both a characterisation 
of abstract behaviours by means of final coalgebras and a coalgebraic definition of 
behavioural equivalence as greatest bisimulation. Next, we prove the existence of 
cofree constructions induced by maps between coalgebraic hidden specifications. 
Such constructions provide canonical ways to (co)extend algebras along specifi- 
cation maps by restricting the behaviour as little as possible. Finally, we present 
a generalisation of a result in [Rut96] concerned with coffee object systems over 
given subsystems. 

3.1 Basic Results 

A closer look at the definition of behavioural equivalence reveals that only de- 
structor operations are relevant. Hence, in investigating the coalgebraic aspect 
of hidden algebra we can restrict our attention to signatures of destructors. 

Definition 8. A hidden signature Z is a coa lgebra ic /des t ruc tor  signature 
if all Z \ ~-operations are destructors. 

Proposition 9. Let A be the destructor subsignature of Z.  Then Z-behavioural 
equivalence is the greatest behavioural A-congruence. 

Proof. By monadicity together with the data algebra being fixed. 

Proposition 10. For a coalgebraic signature A, HAIg(A) _~ G,~-Coalg, where 

Gz~ : Set H --+ Set H, Ga(X)h = H X D~, h e H (with Xv = Dv if v E V) 
5EAh~,~ 
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Proof. b-algebras A correspond to G~-coalgebras a : C --~ G a C  with Ch = Ah 
for h E H and O~ h mapping a E Ah and (f C Ahw,8 to 5A(a,-) : Dw --~ As. Also, 
A-homomorphisms f : A --+ A' correspond to G~-homomorphisms g : C --~ C ~ 
with gh = fh for h E H.  Moreover, the above is a one-to-one correspondence. 

C o r o l l a r y  11. There exists a final b-algebra Fz~, having hidden carriers: 

FA,h = H [na[zh]v ~ Dv], h • H 
vEV  

(with La  [Zh] consisting of "local" b-contexts for sort h, i.e. contexts containing 
only one occurrence of the hidden variable) and b-operations: 

• ~F~ ((sv)~ev, d) = s~, (5(zh, d)) ]or 5 • Ahw,~, 
• 5F~((s~)vev,d) = (s~)~ey with S~v(C) = s~(c[5(zh,d)]) for ~ • Ah~,h, 

Moreover, behavioural equivalence on a b-algebra coincides with bisimilarity on 
its associated coalgebra. 

The elements of Fa  correspond to abstract behaviours functions mapping exper- 
iments to data values); the unique homomorphism from an arbitrary b-algebra  
to Fa  maps hidden states to their behaviour; two hidden states are behaviourally 
equivalent if and only if they are mapped to the same element of F~.  

We note that  signature maps ¢ : (H, A) ~ (H',  A ~) induce natural  transfor- 

mations ~ : U o Gz~, ==~ GA o U (where U : Set H' -+ Set H is the reindexing functor 
induced by ¢ :  H -~ g ' )  given by: (TIX)h((f~,)~,e~,(h)~,~,) = (f¢(~))~Ezlh~.~ for 

fs, • X D~ , h • H. This observation will be used in Section 3.3. 
In algebraic specifications, equations induce relations on the carriers of al- 

gebras and quotients of algebras by least congruences containing such relations 
are of interest. Dually, in coalgebra one is interested in greatest invariants (sub- 
coalgebras) contained in given predicates on the carriers of coalgebras [Jac97]. 
Such predicates can be specified in hidden algebra using state equations, i.e. 
equations in one hidden variable - the induced predicates consist of those states 
for which the equations are behaviourally satisfied. 

D e f i n i t i o n  12. A hidden specification (H, A , E )  is c o a l g e b ra i c  if (H, A) is 
coalgebraic and all the equations in E are state equations. 

3.2 C o f r e e  C o e x t e n s i o n s  

In algebraic specifications, free constructions provide least extensions of algebras 
along morphisms between data type specifications. Dually, in coalgebraic spec- 
ifications coffee constructions are of interest - they provide least restrictions of 
coalgebras along maps between coalgebraic hidden specifications. 

Given categories C and D and a functor U : D ~ C, a co f ree  c o n s t r u c t i o n  
w.r.t. U on a C-object C consists of a D-object C* and a C-morphism ec : UC* 
C which is couniversal: given any D-object D and C-morphism f : UD --+ C, 
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there exists a unique D-morphism ] : D ~ C* such that  ec o U]  = f .  If C* 
and cc exist for each C-object C, the mapping C ~ C* extends to a functor 
F : C ~ D in such a way that  the C-morphisms ec define a natural transformation 
c : U o F --+ Id C. Moreover, F is a right adjoint to U with counit e. 

This section proves the existence of cofree hidden algebras w.r.t, forgetful 
functors induced by coalgebraic specification maps. [Rut96] formulates a simi- 
lar result in an abstract setting where C and D are categories of coalgebras of 
endofunctors on Set and U is induced by a natural transformation between such 
endofunctors. Here we extend this result to the case when the underlying cat- 
egories of C and D are distinct. This extension appears as a generalisation of 
the cofreeness result for hidden algebra and provides a canonical way of building 
structured systems over existing subsystems. 

The cofree construction for hidden algebra dualises, to a certain extent, the 
free construction [TWW82] for many sorted algebra. When cofreely coextending 
a (A,E)-algebra A along a specification map ¢ : (A,E)  -+ (A ' ,E ' ) ,  instead 
of using the elements of A to generate the elements of a A~-algebra, one views 
them as information that  can be extracted from elements of a A~-algebra (finMity 
replaces initiality). Also, quotienting by least congruences is replaced by taking 
greatest invariants. The construction amounts to: 

1. first, building the final algebra F~ of an enriched signature A~4 containing 
destructor operations that  give A-states as result 

2. next, taking the greatest A~4-invariant of F~ for which the above destructors 
agree with the A-structure of A 

3. finally, taking the greatest A~-invariant induced by the equations E ~. 

2 ensures that  the A-reduct of the coffee coextension has a A-homomorphism 
into A, 1 ensures that  the cofree coextension is final among all W-algebras 
having this property, while 3 ensures behavioural satisfaction of E ~. 

T h e o r e m  13 Cofreeness .  Let ¢ : (A, E) --~ (A ~, E ~) be a coalgebraic specifi- 
cation map. The reduct functor U¢ : HAIg(A',E') --~ HAIg(A,E) has a right 
adjoint C¢ : HAIg(A, E) --+ HAIg(A', E') .  

Proof. We first define the action of C¢ on objects. Let A ~A E. In order 
to temporarily view the A-states as data, a visible sort h is added to ~ for 
each h E H,  resulting in a data signature ~e ;  also, operations Sh : h --+ 
a n d  8 h : ¢(h) ---+ h are added to A and A ~ respectively, resulting in signa- 
tures A e and A ~e with inclusions ~A : ( ~ e , A ,  DA) ¢-+ ( ~ e , A e , D A )  and 
L~4 : (k ~e, A I, DA) '--+ (~e ,  A,e,  DA) (where DA denotes the extension of D 
to a ~e-algebra interpreting each h as Ah). Then ¢ : (~, A, D) --+ (q~, A', D) ex- 
tends to CA : (~e,  Ae,  DA) -+ (~e,  A,e, DA) by letting e a r n =  ¢, CA(Sh) = Sh 
for each h E H. 

Now let FA and F~ be the final (~e,  Ae ,  DA)- and ( ~ ,  A 'e,  DA)-algebras. 
A can also be made into a (~e,  Ae,DA)_algebra by defining (Sh)A as idAh. 
By finality, there exist unique (~e,  Ae ,  DA)-homomorphisms g : UcAF~ --~ FA 
and l : A --~ FA. Moreover, l faithfully embeds A into FA: lh(al) = lh(a2) 
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(Sh)FA(lh(al)) = (Sh)FA(lh(a2)) ~ (Sh)A(al) = (Sh)A(a2) ::~ al = a2. Define 
CcA to be the greatest (g,e, Are, DA)-invariant of F~ such that gIU,AC,A fac- 

tots through l and such that U,:CcA ~ ,  E'. 

C,A UCA CcA 

F~l UcAF:4 ~ FA I+-~A 

The action of C¢ on a (A, E)-homomorphism f : A --+ B is defined as follows. 
First, f is used to make A and FA into ( # e , A e , D s ) - a l g e b r a s  and F~ into a 
(#e ,  Are, Ds)-algebra. Finality of FB and F~ gives unique (#e,  Ae,  DB)- and 
(#e ,  Are, Ds)-homomorphisms !: FA -+ FB and !1 : F~ --+ F~. It then follows 

It by maximality of CcB tha t .  rC,A factors through the inclusion of CcB into F~ 

(since g ' Io,  B !,(C,A) factors through It and O~ !'(CcA) ~ ,  E'). Hence, Ccf  can 

be defined as !trC, A. 

CcA c ~ F~ UcBF~ g ~ FA ~ I A 

C , / I  !' U , B ! '  = ! = / 
+ g, l~ 

It is straightforward to check that C¢ is a functor. 

L e m m a  14 Adjunct ion .  C¢ is right adjoint to U¢. 

Proof. For A ~ E, the A-component 5A of the counit e : U¢ o C¢ ~ Id is the 
unique factorisation of g[OcaC, A through 1 (recall that 1 is faithful). Hence, eA 
is a A-homomorphism. 

It remains to prove couniversality of CA. Given B ~ ,  E', the unique exten- 
sion of a A-homomorphism f : UvB ~ A to a A~-homomorphism ] : B --+ CcA 
is obtained by first using f to make B into a (~pe, A,e,  DA)-algebra (with unique 
(~e,  Ate, DA)-homomorphism f '  : B ~ F~) and then observing that uniqueness 
of (~pe, Ae,  DA)-homomorphisms into FA gives (UcA f ) ;  g = f; l, which implies 
that gru~Alm(/, ) factors through l; also, U~,AIm(f' ) ~z~, E t, since B ~z~, E' .  

Hence, by maximality of CcA, I m ( f  t) is a (!pe, Are, DA)-invariant of CcA and 
] : B ~ CcA can be defined as f ' .  Then f = (U¢]);eA follows by unique- 
ness of (!pe, Ae,DA)_homomorphism s into FA. Also, uniqueness of ] follows 
from uniqueness of (k~ e,  A re, DA)-homomorphisms into a subalgebra of the fi- 
nal (k ~e, A re, DA)-algebra. 

Theorem 13 now follows from Lemma 14. 

Remark. [Jac96] presents a cofreeness result for categories of behaviour coal- 
gebras. Objects of such a category G-BCoalg are coalgebras of an endofunc- 
tor G : Set --+ Set, while morphisms between them are given by functions 
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that  only commute with the coalgebra structure up to bisimulation. Because 
of this weaker notion of morphism, an isomorphism class in G-BCoafg is given 
by an isomorphism class in Set together with a function into the carrier of 
the final G-coalgebra. The cofree construction is also set-theoretic: given func- 
tors G,H : Set -~ Set together with a natural transformation ~ : H ~ G 
(inducing a forgetful functor [J, : H-BCoalg -~ G-BCoalg), the right adjoint 
Rv : G-BCoalg -+ H-BCoaig to U, is, up to isomorphism, determined by a pull- 
back in Set: if B E G-BCoaJg with b : B -+ F G as unique G-homomorphism 
into the final G-coalgebra, then R ,B  is determined, up to isomorphism, by the 
pullback in Set of b along the unique G-homomorphism ! : (J~F H --> FG, while 
the counit is obtained by pulling back ! along b. The inclusion of categories 
G-Coalg ~-~ G-BCoaig preserves final objects, hence the two coffee constructions 
are isomorphic in G-BCoalg. The advantage of the construction in [Jac96] over the 
standard construction stands in reducing the number of bisimilar states (while 
still implementing the same behaviour). Moreover, the construction in [Jac96] 
supports the reuse of implementations (the G-structure of B is used in defining 
the G-structure of its cofree coextension). With our construction, this only hap- 
pens for A-algebras that  are extensional (behavioural equivalence is equality), 
case in which the two constructions coincide. 

3.3  A G e n e r a l i s a t i o n  

In [Rut96], categories of coalgebras of arbi trary endofunctors T, S : Set ~ Set 
and forgetful functors IJ~ : S-Coalg ~ T-Coalg induced by natural  transforma- 
tions ~7 : S ~ T are considered (U~ maps an S-coalgebra V : C --+ SC to the 
T-coalgebra ~c o 7 : C -~ TC) and existence of cofree coalgebras w.r.t. U, is 
proved, under the assumption that  for any set C, the endofunctor S × C on Set 
(mapping a set X to the set SX × C) has a final coalgebra. 

In the case of one-sorted specifications with no equations, our result can 
be viewed as an instance of the result in [Rut96] - according to a remark in 
Section 3.1, the signature map underlying ¢ induces a natural transformation 
between the endofunctors associated to A ~ and A. But our result also applies to 
specification maps whose underlying signature maps are not surjective on hidden 
sorts, suggesting a generalisation of the result in [Rut96] to the case when the 
categories underlying S and T are distinct. This generalisation involves a functor 
tJ between these categories and a natural transformation ~ : tJ o S =~ T o tJ. 
Existence of a cofree functor w.r.t. [J~ is proved under similar assumptions. 

T h e o r e m  15. Let C and D be categories with binary products and U : D --~ C 
be a functor that preserves binary products and has a right adjoint right inverse 
R. Let T : C --~ C, S : D -+ D be endofunctors and q7 : U o S =~ T o  D be a 
natural transformation (inducing a forgetful functor U~ : S-Coalg --~ T-Coalg). 
I f  the functors S x RC and T x C have final coalgebras for any C-object C, then 
U, has a right adjoint C,. 

Proof. U, maps an S-coalgebra 7 : D -+ SD to the T-coalgebra UT; ~D : UD -+ 
TUD (a T-subsystem UT; YD is extracted from the S-system 7). A canonical way 
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to  build S-systems over T-subsystems is given by the functor  C~, defined on a 
T-coalgebra ~y : C -4 T C  as follows. 

1. Let  6 : F -4 T F  x C be the final T x C-coalgebra.  
2. Let  ! : <% id) -4 6 be the unique T x C-hom omorph i sm  of (% id) into 6. 
3. Let  6 ~ : F '  -+ S F '  x RC be the final S x RC-coalgebra.  Then  (7/F,, id> o U6' is a 

T x C-coalgebra  with !' : (7/F,, id> o U6' -4 6 as unique T x C - h o m o m o r p h i s m  
into 6. 

4. Let  y '  : C '  -4 SC '  x RC be the greatest  S x RC-invariant  of 6' such t h a t  
V[Uo, factors th rough  ! in (T x C)-Coalg and let ec  : UC'  --> C be the unique 
factorisat ion (as ! is monic). Define C ~ / a s  ~rl o 7 ' .  

The  const ruct ion is i l lustrated in the d iagram below. 

3 '1 7rl ? ,sc, R  .... ;s I, 
6' zrl 

F'  > SF '  x RC • " > S F '  

U ~ '  

\ l '  
C 

U~' 
C :.c!, >,TUC, o-, i,~ x c > USC' x 

[ <~,i~> ~ , Ua'> USF' x C ~ TUF' x C 

l 
6 

> T F x C  

(-y#d> I 
; T C x C  

11-1 
TUC' 

T,~c 

7rl :' TC 
Then,  Cv is r ight  adjoint to U~ with counit  e: any T -homomorph i sm f : U,T --+ O' 
with T : D -4 SD an S-coalgebra induces a S × RC-s t ruc ture  on D such t h a t  
f becomes a T x C-homomorphism.  Uniqueness of  T x C-homomorph i sms  into 
F together  with maximal i ty  of "y' are then used to define an S -homomorph i sm 
f : W -4 C~7 such tha t  U ~ f ; e c  = f ,  in the same way as this was done in 
Theorem 13. 

Remark.  By letting C -- Set H , D = Set H' , R : Set H --~ Set H' with (RA)h,  = 
YI Ah, T = G~, S = Gz~, and ~? : U o S ~ T o U as in Section 3.1, we ob ta in  

h'=¢(h) 
Theorem 13 for the case when E = E '  -- 0. 

4 Semantics by Cofree Constructions 

In  this section, cofree functors are used to  give semantics to  parameter i sa t ion  
and inheri tance in coalgebraic hidden algebra. 
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4.1 Parameterisation 

Cofree functors C¢ induced by specification morphisms ¢ : P -~ T provide 
an appropriate semantics for the importation of coalgebraic hidden modules: 
supplied with a P-algebra A, the cofree construction provides the most general 
T-algebra that exhibits the P-behaviour of A. A theory of parameterised modules 
with cofree constructions as semantics can be developed for coalgebraic hidden 
algebra in the same style as this was done for data types [EM85] using free 
constructions. Moreover, a semantic characterisation of correctness of parameter 
passing in terms of persistence of the cofree functors can be given. 

Definition 16. A coalgebraic parameterised specification is a specification 
morphism ¢ : P ¢-~ T with both P and T coalgebraic. A parameter passing 
m o r p h i s m  for ¢ is a specification map ¢ : P -+ P~ with P~ coalgebraic. The 
instantiation of P with ¢ in T is given by the pushout (parameter  passing 
diagram) ¢~ : Pt --+ T ~, ¢~ : T --~ T ~ of ¢ : P --+ T, ¢ : P ~ P~ in Spec. 

The semantics of parameter passing diagrams is given by pairs (C¢, C¢,) of cofree 
functors induced by the specification morphisms ¢ and Ct (see Theorem 7). As in 
the case of parameterised data types, correctness of parameter passing is defined 
by requiring (i) the protection of the actual parameter in the result specifica- 
tion and (ii) that the semantics of Ct extends the semantics of ¢. However, the 
actual conditions we use are stronger than (the duals of) the ones in [EM85], 
because there, any P-algebra could be viewed as an initial P~-algebra for some 
P~, whereas in our case, due to the data signature being fixed, not any P-algebra 
is isomorphic to a final P~-algebra. 

Definition 17. Given a parameter passing diagram as above, parameter passing 
is correct  w.r . t .  ¢ if and only if (i) U¢, o C¢, ~ ]d, and (ii) C¢ o U¢ ~_ U¢, o C¢,. 
Parameter passing is correct  if and only if it is correct w.r.t, any ¢. 

Standard compositionality results use amalgamations to define the semantics 
of combined specifications purely on the semantic level [EM85]. Existence of 
amalgamations in hidden algebra amounts to pushouts in Spec being transformed 
by the functor HAIg : Spec -+ Cat °p into pullbacks in Cat °p. 

L e m m a  18. Hidden algebra has amalgamations. 

Proof. By pushouts in Spec being pushouts of the underlying many sorted speci- 
fications, together with many sorted amalgamations preserving hidden algebras. 

Definition 19. A parameterised specification ¢ is pers is tent  if and only if C¢ 
is persistent (U¢ o C¢ ~- ]d). 

Lemma 20. Given a parameter passing diagram as above, if ¢ is persistent then 
¢~ is persistent. 
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Proof. A consequence of  a m a l g a m a t i o n s  be ing  pu l lbacks  is t h a t  the  func to r  
Id ®U¢ (C¢ o U¢) : HA]g(P ' )  --+ HAIg(T')  (with @ deno t ing  a m a l g a m a t i o n )  is 

r ight  ad jo in t  to  U¢, wi th  iden t i ty  as counit .  The  conclusion then  follows by  any  
two r ight  ad jo in t s  be ing  na tu r a l l y  isomorphic .  

T h e o r e m  21.  Parameter passing is correct for ¢ if and only if ¢ is persistent. 

Proof. If  ¢ is pers i s ten t  then,  by L e m m a  20, ¢ '  is pers i s ten t ,  hence (i) of Defini-  
t ion  17 holds.  (ii) follows from C¢, being i somorph ic  to  Id @U¢ (C¢ o U¢), which 

gives U¢, o C¢, -- C¢ o U¢. The  converse follows by  t a k i n g  ¢ the  ident i ty .  

Example I Channels. Channels  consis t ing of a sender  and  a receiver  can be  spec-  
ified by pa rame te r i s i ng  the  receiver  by the  sender .  A sender  is s imply  a s t r e a m  
t h a t  uses i ts send m e t h o d  to send values va l s .  An  a l t e r n a t i n g  sender  is a sender  
t h a t  a l t e rna t e s  the  values i t  sends. A receiver  receives values from a sender  s e n  

using its r ec  m e t h o d  and  s tores  t hem in v a l r .  The  pushou t  semant ics  of  ins tan-  
t i a t i ng  REC wi th  AS~.N is a specif icat ion deno ted  RF.C [ASEN] which consis ts  of  REC 
toge the r  wi th  the  equa t ion  for a l t e rna t ing  s t reams .  

obj SEN i s  p r  NAT . 
s o r t  Sen . 
op va l s  : Sen -> Nat . 
op send : Sen -> Sen . 

endo 
obj ASEN i s  us ing  SEN . 

var  S : Sen . 
e q  v a l s ( s e n d ( s e n d ( S ) )  = va l s (S )  

endo 

t h  REC[X : :  SEN] i s  
s o r t  Rec . 
op v a l r  : Rec -> Nat . 
op sen : Rec -> Sen . 
op rec  : Rec -> Rec . 
var  R : Rec . 
e q  sen ( rec (R) )  = send(sen(R))  . 
e q  v a l r ( r e c ( R ) ) = v a l s ( s e n ( R ) )  

e n d t h  

Now consider  a SEN-algebra A imp lemen t ing  a l t e rna t i ng  s t reams:  Sen A ---- N × N, 
va l sA(n l , n2 )  ---- n l ,  sendA(nl ,n2)  ---- (n2 ,n l ) .  In cons t ruc t ing  its cofree coex-  
tens ion  A* along SEN ~-+ REC we follow the  th ree  s teps  ou t l ined  in Sect ion  3.2. 
F i r s t ,  we bui ld  the  final REC U {s : Sen --+ SenA}-algebra A1, hav ing  car r ie rs  

SenA1 ---- {f I f : {send}* ~ N x SenA} , ReCA1 ---- {(g,h) [g  : {rec}* --+ ~,  h : 
{rec}*sen{send}* -* N × SenA}. A sender  s t a t e  f assigns a sender  value and  a 
SenA-state to  each expe r imen t  consis t ing of a finite number  of sends. Similar ly ,  
a receiver  s t a t e  (g, h) assigns a receiver  value to  each e xpe r ime n t  cons is t ing  of  
a finite n u m b e r  of recs ,  as well as a sender  value and  a SenA-state to  each ex- 
pe r imen t  consis t ing  of a finite number  of recs  followed by  s e n  and  then  by  a 
f inite number  of sends. Second,  the  g rea tes t  suba lge b ra  of  A1 for which exam-  
ining the  SenA-state commutes  wi th  the  SEN-operations is t aken ,  resu l t ing  in a 
REC-algebra A2 having  carr iers  SenA2 = SenA1 (the second c o m p o n e n t  of  f on 
the  e m p t y  sequence of sends uniquely  de te rmines  f)  and  RecA2 = {(g,h) [g  : 
{rec}* --+ N, h : {rec}* --+ SenA}. Final ly ,  impos ing  the  REC-equations resul t s  in 
a t~EC-algebra A* having  carr iers:  SenA. = SenA, RecA. = M × Sen A ( the  values  of 
g and  h on the  e m p t y  sequence of recs  uniquely  de t e rmine  g and  h) and  oper -  

a t ions:  va lsA.  = valsA, send A. ---- sendA, va l rA.  (n, n l ,  n2) ---- n, senA. (n, n l ,  n2) ---- 
(nl ,  n2) , r ec  A. (n, n l ,  n2) = (nl ,  n2, n l ) .  A* uses the  i m p l e m e n t a t i o n  p rov ided  by  A 
for i ts  sender  par t .  
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4.2 Inheritance 

Class inheritance (with non-monotonic overriding) can be specified in hidden 
algebra using (partial) specification maps. Here we use a specification of bank 
accounts to emphasise the suitability of cofree constructions as a semantics for 
inheritance. 

Example 2 Bank Accounts. Bank accounts ACC are specified using a bal(ance) 
a t t r ibute  and methods for dep(ositing)/with(drawing) a given amount.  More 
specialised accounts - a history account tha t  maintains a his( tory)  of the trans- 
actions made into the account and a savings account from which withdrawals 
are only allowed if the account is not in saving s tate  - are then derived from ACC. 
The  former specialisation corresponds to inheritance with monotonic overriding, 
while the lat ter  non-monotonically overrides the with method 2. 

obj ACCSIG is pr INT. 

sort Acc. 

op bal :Acc -> Int. 

ops dep, with :Acc Nat -> Acc. 

endo 

obj ACC is pr ACCSIG . 

var N : Nat . 

vat A :Acc . 

eq bal(dep(A,N)) = bal(A) + N . 

eq bal(with(A,N)) = bal(A) - N . 

endo 

obj HACC is pr LIST[INT] 

ex ACC * (sort Acc to HAcc) . 

OF his :HAcc -> List . 

var N : Nat . 

var H :HAcc . 

• ** monotonic overriding 

eq his(dep(H,N)) = N;his(H) . 

eq his(with(H,N)) = (-N);his(H) 

endo 

obj SACC is 

ex ACCSIG * (sort Acc to SAcc) . 

op start, end : SAcc -> SAcc . 

op say? : SAcc -> Bool . 

var N : Nat . 
vat S : SAcc . 

• ** monotonic overriding 

eq bal(dep(S,N)) = bal(S) + N . 

eq sav?(dep(S,N)) = sav?(S) 

• ** non-monotonic overriding 

ceq bal(with(S,N)) = bal(S) - N 

if savT(S) == false . 

ceq bal(with(S,N)) = bal(S) 

if sav?(S) == true . 

eq savT(with(S,N)) = savT(S) . 

eq bal(start(S)) = bal(S) . 

eq sav?(start(S)) = true . 

eq hal(end(S)) = bal($) . 

eq sav?(end(S)) = false . 

endo 

The semantics of the inheritance relation between HACC and ACC is given by the 
cofree functor induced by the specialisation of ACC to HACC. For the inheritance 
relation between SACC and ACC, the semantics is given by the composition of the 
forgetful functor induced by hiding the non-monotonically overridden operation 
with with the cofree functor induced by the specialisation of ACC without the 
with method to SACC. 

2 In general, only defineZ operations should be non-monotonically overridden. Given 
a coalgebraic specification (Z~, E), the operations in ~ '  C A are def ined if in any 
(A, E)-algebra, behavioural A \ A'-equivalence is a A-congruence. A similar ap- 
proach is taken in [Jac96], where in addition to a "core" part, a class specification 
may contain "definable" functions which do not contribute to the meaning of the 
specification and can therefore be arbitrarily overridden. 
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Now consider an ACC-algebra A given by: Acc A ---- Int, balA(I ) = I, dePA(I , J) ---- 
I + J, withA(I , J) ----- I - J. Its coffee coextensions to a HAte-algebra HA and a 
SAte-algebra SA are given below. 

HACCHA = Acc A x IntList 

balHA(I,L ) = I 
hiSHA(I , L) ---- L 
depHA((I,L), J) = (I + J, J; L) 
withHA((I,L), J) = (I -- J, (--J);L) 

SACCSA =Acc A × {true, false} 

balSA(I,B ) = I 
sav?sA(I ,B) = B 
depst((I,B), J) ---- (I + J,B) 
withsA((I , fa lse) ,  J) ---- (I -- J, false) 
withsA((I , true),  J) ---- (I, t rue) 
s tar tsA(I  , B) = (I, true) 
endSA(I , B) = (I, fa lse)  

The counit of the adjunction provides coercion operations that map states in 
the subclass to states in the superclass. In both of the above cases, the coer- 
cions are projections extracting the superclass attributes. Also in both cases, 
the superclass implementation is reused by the subclass. 

5 Combining Algebra with Coalgebra 

We have illustrated the relevance of final/coffee constructions to coalgebraic 
hidden specifications and maps between them. Not surprisingly, the existence of 
final/coffee hidden algebras does not generalise to arbitrary hidden specifications 
- there is no universal way of interpreting the constructors in either a final or a 
coffee algebra. However, final/cofree families of hidden algebras exist. 

The notion of final family o/objects generalises the notion of final object: 
given a category C, a family (Fj)j6 J of C-objects is f inal  if and only if, for any 
C-object C, there exist unique j E J and C-morphism f : C --+ Fj. Similarly, 
the notion of eouniversal family of morphisms [Die79] generalises the notion of 
couniversal morphism: given a functor U : D --+ C and a C-object C, a family 
of C-morphisms ec,j : UC~ --+ C with C~ an object of D for each j 6 J is 
a c o u n i v e r s a l  f ami ly  o f  m o r p h i s m s  f r o m  U to C if and only for any D- 
object D and C-morphism f : UD --~ C, there exist unique j E J and D- 
morphism / : D -+ C] such that U]; ec,j = f .  If for every C there exists a 
couniversal family of morphisms from U into C, then U¢ is said to have a right 
m u l t i a d j o i n t .  

Now let 57 denote a hidden signature with / :  = F U A as splitting into 
hidden subsignatures of constructors and destructors respectively and observe 
that  signature maps preserve such splittings. Also, let Fn  denote the final hidden 
A-algebra and I r  denote the initial hidden F-algebra (given by the free many 
sorted F-algebra over D). Finally, let Set VUH denote the category of V L3 H-  
sorted sets with (Dv)vEy as V-components and V U H-sorted functions with 
(idv)vey as V-components. 

T h e o r e m  22. For any hidden signature Z there exists a final family of hidden 
~-algebras. 
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Proof. Let I, F E SetYD Ug be the carriers of I r  and Fa respectively and let 
J = {J I J : I ~ F in SetVUH}. Each j E J uniquely induces a ~-structure Fj 
on F such that Fi[~= Fa and such that j defines a F-homomorphism from I r  
to Fj [r. Then (Fi)ieg is a final family of hidden Z-algebras. 

Therefore, the category of hidden X-algebras can be sliced into subcategories 
C j, j E J,  with each Cj having a final object Fj. This justifies using the family 
(Fj)jej  as final-like semantics for Z. 

T h e o r e m 2 3 .  Let ¢ : ~ --+ E' be a hidden signature map. The functor U¢ : 
HAIg(Z') -+ HAIg(Z) has a right multiadjoint. 

Proof. Let ¢n : A --+ A' denote the restriction of ¢ to destructor subsignatures. 
For a hidden Z-algebra A, let (Aft)* denote the cofree coextension of A[n along 
¢~ and let JA denote the family of Z'-algebras A~ such that A~ In, = (A in), 
and such that the function underlying eA[a : U¢~(A[a)* --+ A[~ defines a Z- 
homomorphism CA,j : UcA~ -~ A. Then, the family (eA,j)jEJA is a couniversal 
family of morphisms from U¢ to A. 

Theorems 22 and 23 can be extended from hidden signatures to split hidden 
specifications. A hidden specification (E, E) is called split  if and only if E = 
En U E s  with En consisting of state A-equations and E~ consisting of Z- 
equations with visible-sorted variables only. Final families of (Z, E)-algebras 
exist for any split specification (Z, E) - the sub-family J' C_ J consisting only of 
those Fjs which behaviourally satisfy E is considered. Also, if (Z, E) and (Z', E') 
are split hidden specifications and ¢ : (Z, E) --~ (Z', E') is a specification map 
such that ¢[(~,E~): (A, En) --+ (A', E~,) is also a specification map, then U¢ has 
a right multiadjoint - for each Z-algebra A, the sub-family J'A C JA consisting 
only of those Z'-algebras A~ which behaviourally satisfy E' is considered. 

6 C o n c l u s i o n s  a n d  F u t u r e  W o r k  

We have investigated the coalgebraic nature of hidden algebra, concentrating 
on semantical aspects such as finality and cofree constructions. We have proved 
the existence of cofree hidden algebras along maps between coalgebraic hidden 
specifications and emphasised their relevance in giving semantics to parameter- 
isation and inheritance. Also, we have sketched a possible generalisation of a 
cofreeness result from [Rut96]. Finally, the final/cofree semantics has been lifted 
from coalgebraic to arbitrary hidden algebra. 

With the current definition of hidden signatures, hidden constants (oper- 
ations from visible sorts to hidden sorts) are the only constructor operations 
allowed. In practice however, new objects can be created by putting together 
existing objects (e.g. by tupling), suggesting a generalisation of the theory of 
hidden algebras that allows arbitrary constructors. One expects to still be able to 
reason coalgebraically about behavioural equivalence, hence Proposition 9 must 
hold for generalised hidden signatures (preservation of A-behavioural equiva- 
lence by constructors can be achieved either by imposing it as a constraint on 
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algebras or by fully specifying the A-behaviour of the constructors). The ex- 
tension of the results in this paper  to generalised hidden algebra remains to be 
studied. 

The integration of the algebraic and coalgebraic aspects of hidden algebra 
also deserves further study, perhaps along the lines of [Mal96] where objects 
are viewed as algebra-coalgebra pairs, or [TP97] where a similar notion called 
bi-algebra is considered. 
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