
Coalgebra Semantics for Hidden Algebra:
Parameterised Objects and Inheritance

Corina Cirstea*

Oxford University Computing Laboratory
Wolfson Building, Parks Road, Oxford OX1 3QD, UK

A b s t r a c t . The theory of hidden algebras combines standard algebraic
techniques with coalgebraic techniques to provide a semantic foundation
for the object paradigm. This paper focuses on the coalgebraic aspect of
hidden algebra, concerned with signatures of destructors at the syntac-
tic level and with finality and coffee constructions at the semantic level.
Our main result shows the existence of cofree constructions induced by
maps between coalgebraic hidden specifications. Their use in giving a se-
mantics to parameterised objects and inheritance is then illustrated. The
cofreeness result for hidden algebra is generalised to abstract coalgebra
and a universal construction for building object systems over existing
subsystems is obtained. Finally, existence of final/cofree constructions
for arbitrary hidden specifications is discussed.

1 I n t r o d u c t i o n

Algebraic techniques have been intensively studied over the last decades. Their
suitability for the specification of data types is due to the availability of effective
definition and proof techniques based on induction. Recent work on coalgebras
(the formal duals of algebras) [Rei95, Jac95, Jac96, Rut96, Jac97, JR97] sug-
gests their suitability for the specification of dynamical systems. The theory of
coalgebras provides a notion of observational indistinguishability as bisimula-
tion, a characterisation of abstract behaviours as elements of final coalgebras
and coinduction as a definition/proof principle for system behaviour.

Hidden algebra, introduced in [GD94] and further developed in [MG94,
GM97] combines algebraic and coalgebraic techniques in order to provide a se-
mantic foundation for the object paradigm. It is an extension of the theory of
many sorted algebras that uses both constructor and destructor operations and
a loose behavioural semantics over a fixed data universe for (the states of) ob-
jects. Its coalgebraic nature, emerging from the observational character of the
approach, has already been exploited in [MG94] where (coinductive) proof tech-
niques for behavioural satisfaction were developed. The present paper further
investigates the relationship between hidden algebra and coalgebra, focusing on
the semantic level and in particular on cofree constructions. Their suitability as
semantics for the specification techniques used in hidden algebra is emphasised.

* Research supported by an ORS Award and an Oxford Bursary.

175

The structure of the paper is as follows. Section 2 gives a brief account of
the theory of coalgebras as well as an outline of hidden algebra. Section 3 fo-
cuses on the coalgebraic aspect of hidden algebra: hidden algebras are mapped
to coalgebras (by forgetting the constructors) in such a way that behavioural
congruences correspond to bisimulation equivalences on the associated coalge-
bras. Consequently, coinduction can be used both as a definition principle for
object behaviour and as a proof principle for behavioural equivalence. Existence
of final algebras for coalgebralc hidden specifications is also obtained. The main
result of the paper concerns the existence of coffee hidden algebras induced by
maps between coalgebraic (destructor) hidden specifications. Such maps corre-
spond to reusing specifications either horizontally by importation or vertically
by refinement. In certain cases, the cofree construction corresponds to a reuse of
implementations along the underlying reuse of specifications. A generalisation
of a cofreeness result in [Rut96], concerning the existence of cofree object sys-
tems over given subsystems is sketched in the last part of Section 3. Section 4
illustrates the use of coffee constructions in giving semantics to the importat ion
of coalgebralc hidden modules, parameterised modules and inheritance. Cofree
constructions provide canonical ways to build implementations for more struc-
tured/specialised specifications from implementations of the specifications they
are built on. Section 5 generalises the final/cofree coextension semantics in Sec-
tion 3 by considering arbitrary hidden specifications. In this case, the semantics
is given by final/cofree families of hidden algebras. Section 6 summarises the
results presented and briefly outlines future work.

2 P r e l i m i n a r i e s

This section gives an account of the basic ideas and concepts in coalgebraic spec-
ifications, emphasising their duality to algebraic specifications. A brief introduc-
tion to hidden algebra (a combination of algebraic and coalgebraic techniques
intended as a specification framework for objects) is also given.

2.1 Algebra and Coalgebra

Algebra and its associated inductive techniques have been successfully used for
the specification of data types. The emphasis there is on how the values of a data
type are generated, using constructor operations going into the type. Data types
are presented as F-a lgebras , i.e. tuples (A, a) , with A an object and a : FA --+ A
a morphism in some category C, with F : C --+ C. Among F-algebras, i n i t i a l ones
L : FI --+ I (least fixed points of F) are most relevant - their elements denote
closed programs. Initial algebras come equipped with an i n d u c t i o n p r i n c i p l e
stating that no proper subalgebras exist for initial algebras. This principle con-
stitutes the main technique used in algebraic specifications for both definitions
and proofs: defining a function on the initial algebra by induction amounts to
defining its values on all the constructors; and proving that two functions on the

]76

initial algebra coincide amounts to showing that they agree on all the construc-
tors. Free cons t ruc t ions are also relevant for data types: they provide least
extensions of algebras of a data type to algebras of another and have been used
to give semantics to parameterised data types, see e.g. [EM85].

The theory of coalgebras [Rut96, JR97], having its roots in automata theory
and transition system theory [Rut95] and concerned with dynamical systems,
can be viewed as a dualisation of the theory of algebras. Object systems are
coalgebraically defined by specifying how their states can be observed, using
destructor operations going out of the object types. Object types appear as G-
coalgebras, i.e. tuples (C,~), with C an object and ~3 : C -4 GC a morphism
in some category C, with fi : C -4 C. Final fi-coalgebras ~ : Z -4 GZ (greatest
fixed points of fi) are in this case relevant - they incorporate all fi-behaviours.
The unique coalgebra homomorphism from a coalgebra to the final one maps
object states to their behaviour. A bis imulat ion between two coalgebras is a
relation on their carriers, carrying itself coalgebraic structure. Bisimulations re-
late states that exhibit the same behaviour. Final coalgebras come equipped with
a coinduct ion principle stating that no proper bisimulations exist between a
final coalgebra and itself; that is, two elements of a final coalgebra having the
same behaviour coincide. Coinduction can be used both in definitions, to de-
fine functions into the final coalgebra by giving coalgebraic structure to their
domains, and in proofs, to show equality of two elements of the final coalgebra
by exhibiting a bisimulation that relates them. Finally, cofree cons t ruc t ions
are relevant for object types as they provide least restrictive (co)extensions of
coalgebras of an object type to coalgebras of another.

2.2 H idden Algebra

This section provides an outline of hidden algebra. For a detailed presentation
of the approach the reader is referred to [GM97].

Hidden algebra extends many sorted algebra to support the specification
of objects with hidden states, only accessible through specified interfaces. The
fundamental distinction between data values and object states is reflected in the
use of visible sorts/operations with standard semantics for data and of hidden
sorts/operations with loose behavioural semantics for objects.

A fixed data universe, given by an algebra D (the da t a algebra) of a many
sorted signature (V,~P) (the da t a s ignature) is assumed, with the additional
constraint that each element of D is named by a constant in ~P. For convenience,
we take Dv C__ ~P[],. for each v E V.

Defini t ion 1. A (hidden) s ignature over (V, ~P, D) is a pair (H, ~) with H a
set of h idden sorts and E a V U H-sorted signature satisfying: (i) E~,v = ~Pw,v
for w E V*, v E V and (ii) monadic i ty : for a E Zw,8, at most one sort appearing
in w (by convention, the first one) is hidden.

\ ~P-operations having exactly one hidden-sorted argument are called destruc-
tors, while those having only visible-sorted arguments are called constructors .

177

Definition 2. A (h i d d e n) s i g n a t u r e m a p ¢ : (H, 27) -4 (H' , Z ') is a many
sorted signature morphism ¢ : (V tJ H, 27) -4 (V tJ H', Z') such that ¢[(y,~)=
id(y,~) and ¢(H) C_ H' . A (hidden) signature m o r p h i s m is a hidden signature
map such that if a ' • 27h'~',s' with h' • ¢(H) , then a ' = ¢(a) for some a • Z .

Signature maps specify arbitrary (vertical) structure, while signature morphisms
specify horizontal structure (importation of hidden modules). Imported hidden
sorts are protected by signature morphisms, in that no new destructor operations
are added for them by the target signature.

Definition 3. A (h i d d e n) 27-algebra is a many sorted (V U H, Z)-algebra A
such that Argo= D. A (h i d d e n) Z - h o m o m o r p h i s m between 27-algebras A and
B is a many sorted 27-homomorphism f : A -+ B such that fv =- idD. for v • V.
27-algebras and 27-homomorphisms form a category HAIg(Z). Hidden signature
maps ¢ : 27 --~ 27t induce reduct functors U¢ : HAlg(Z ~) -4 HAlg(27).

Hidden algebra takes a behavioural approach to objects: their states can only
be observed through experiments; indistinguishability of states by experiments
is captured by behavioural equivalence.

D e f i n i t i o n 4. Given a signature (H, Z), a 27-context for sort s • V U H is an
element of Tm[z]v with z an s-sorted variable and v • V. Given a 27-algebra
A, b e h a v i o u r a l e q u i v a l e n c e on A (denoted HA) is defined by: a ~A,s a ~ iff
CA[a] = CAIn I] for all contexts c for s, with s • V U H and a, a ~ • As.

Satisfaction of equations is also behavioural - one only requires the two sides of
an equation to look the same under any observation rather than coincide.

De f in i t i on 5. A (h i d d e n) spec i f i ca t ion is a triple (H, 27, E) with (H, 27) a
hidden signature and E a set of Z-equations. A Z-algebra A b e h a v i o u r a l l y
sat isf ies a (conditional) ~U-equation e of form (VX) l = r i f ll - r l , . . . , In = rn
(written A ~ e) if and only if for any assignment 0 : X --4 A, 8(l) NA ~(r)
whenever 8(l/) ~'~A ~(ri), i = 1 , . . . ,n. Given sets E and E ~ of ~U-equations, we
write E ~ E E ~ if A ~ E implies A ~ E ~ for any Z-algebra A.

[MG94] gives a characterisation of behavioural equivalence as greatest behavioural
congruence (congruence which coincides with equality on visible sorts) and uses
it to obtain a coinductive-like proof technique for behavioural equivalence.

We restrict our attention to specifications whose equations have visible-sorted
conditions only. To each such specification (27, E) one can associate another
specification (Z, E) (by letting E = {c[e]~_e • E, c • Ts[z] appropriate for e}),
such that A ~ E iff A ~ E iff A ~ E E.

D e f i n i t i o n 6. Let (Z, E) and (Z' , E ') be hidden specifications. A hidden sig-
nature map ¢ : Z -4 Z ' defines a spec i f i ca t i on m a p ¢ : (Z, E) -4 (27', E') if
and only if E ' Ms' ¢(E). A specification map whose underlying signature map
is a signature morphism is called a spec i f i ca t i on m o r p h i s m .

178

Given a specification map ¢ : (~ ,E) --+ (Z ' ,E ') , the functor U¢ induced by
¢ : Z ~ Z' maps hidden (Z ~, E~)-algebras to hidden (Z, E)-algebras.

T h e o r e m 7. The category Spec of hidden specifications and specification maps
is finitely cocomplete. Pushouts in Spec preserve specification morphisms.

We note in passing that the constraint on hidden signature morphisms is used
in [GD94] to obtain an institution of hidden algebras. Moreover, specification
morphisms ¢ : (~, E) ~ (Z', E') satisfy E' ~m, ¢(E), i.e. they axe the theory
morphisms of this institution. A different institution may be obtained by consid-
ering hidden signature maps and a slightly different notion of sentence, given by
a E-equation together with a subsignature of ~ for the contexts under which the
equation is expected to hold. This is the institution that underlies our treatment
of parameterisation in Section 4.1.

3 C o a l g e b r a a n d H i d d e n A l g e b r a

This section focuses on the coalgebraic nature of hidden algebra. First we illus-
trate how viewing hidden algebras as coalgebras provides both a characterisation
of abstract behaviours by means of final coalgebras and a coalgebraic definition of
behavioural equivalence as greatest bisimulation. Next, we prove the existence of
cofree constructions induced by maps between coalgebraic hidden specifications.
Such constructions provide canonical ways to (co)extend algebras along specifi-
cation maps by restricting the behaviour as little as possible. Finally, we present
a generalisation of a result in [Rut96] concerned with coffee object systems over
given subsystems.

3.1 Basic Results

A closer look at the definition of behavioural equivalence reveals that only de-
structor operations are relevant. Hence, in investigating the coalgebraic aspect
of hidden algebra we can restrict our attention to signatures of destructors.

Definition 8. A hidden signature Z is a coa lgebra ic /des t ruc tor signature
if all Z \ ~-operations are destructors.

Proposition 9. Let A be the destructor subsignature of Z. Then Z-behavioural
equivalence is the greatest behavioural A-congruence.

Proof. By monadicity together with the data algebra being fixed.

Proposition 10. For a coalgebraic signature A, HAIg(A) _~ G,~-Coalg, where

Gz~ : Set H --+ Set H, Ga(X)h = H X D~, h e H (with Xv = Dv if v E V)
5EAh~,~

179

Proof. b-algebras A correspond to G~-coalgebras a : C --~ G a C with Ch = Ah
for h E H and O~ h mapping a E Ah and (f C Ahw,8 to 5A(a,-) : Dw --~ As. Also,
A-homomorphisms f : A --+ A' correspond to G~-homomorphisms g : C --~ C ~
with gh = fh for h E H. Moreover, the above is a one-to-one correspondence.

C o r o l l a r y 11. There exists a final b-algebra Fz~, having hidden carriers:

FA,h = H [na[zh]v ~ Dv], h • H
vEV

(with La [Zh] consisting of "local" b-contexts for sort h, i.e. contexts containing
only one occurrence of the hidden variable) and b-operations:

• ~F~ ((sv)~ev, d) = s~, (5(zh, d))]or 5 • Ahw,~,
• 5F~((s~)vev,d) = (s~)~ey with S~v(C) = s~(c[5(zh,d)]) for ~ • Ah~,h,

Moreover, behavioural equivalence on a b-algebra coincides with bisimilarity on
its associated coalgebra.

The elements of Fa correspond to abstract behaviours functions mapping exper-
iments to data values); the unique homomorphism from an arbitrary b-algebra
to Fa maps hidden states to their behaviour; two hidden states are behaviourally
equivalent if and only if they are mapped to the same element of F~.

We note that signature maps ¢ : (H, A) ~ (H', A ~) induce natural transfor-

mations ~ : U o Gz~, ==~ GA o U (where U : Set H' -+ Set H is the reindexing functor
induced by ¢ : H -~ g ') given by: (TIX)h((f~,)~,e~,(h)~,~,) = (f¢(~))~Ezlh~.~ for

fs, • X D~ , h • H. This observation will be used in Section 3.3.
In algebraic specifications, equations induce relations on the carriers of al-

gebras and quotients of algebras by least congruences containing such relations
are of interest. Dually, in coalgebra one is interested in greatest invariants (sub-
coalgebras) contained in given predicates on the carriers of coalgebras [Jac97].
Such predicates can be specified in hidden algebra using state equations, i.e.
equations in one hidden variable - the induced predicates consist of those states
for which the equations are behaviourally satisfied.

D e f i n i t i o n 12. A hidden specification (H, A , E) is c o a l g e b ra i c if (H, A) is
coalgebraic and all the equations in E are state equations.

3.2 C o f r e e C o e x t e n s i o n s

In algebraic specifications, free constructions provide least extensions of algebras
along morphisms between data type specifications. Dually, in coalgebraic spec-
ifications coffee constructions are of interest - they provide least restrictions of
coalgebras along maps between coalgebraic hidden specifications.

Given categories C and D and a functor U : D ~ C, a co f ree c o n s t r u c t i o n
w.r.t. U on a C-object C consists of a D-object C* and a C-morphism ec : UC*
C which is couniversal: given any D-object D and C-morphism f : UD --+ C,

180

there exists a unique D-morphism] : D ~ C* such that ec o U] = f . If C*
and cc exist for each C-object C, the mapping C ~ C* extends to a functor
F : C ~ D in such a way that the C-morphisms ec define a natural transformation
c : U o F --+ Id C. Moreover, F is a right adjoint to U with counit e.

This section proves the existence of cofree hidden algebras w.r.t, forgetful
functors induced by coalgebraic specification maps. [Rut96] formulates a simi-
lar result in an abstract setting where C and D are categories of coalgebras of
endofunctors on Set and U is induced by a natural transformation between such
endofunctors. Here we extend this result to the case when the underlying cat-
egories of C and D are distinct. This extension appears as a generalisation of
the cofreeness result for hidden algebra and provides a canonical way of building
structured systems over existing subsystems.

The cofree construction for hidden algebra dualises, to a certain extent, the
free construction [TWW82] for many sorted algebra. When cofreely coextending
a (A,E)-algebra A along a specification map ¢ : (A,E) -+ (A ' ,E ') , instead
of using the elements of A to generate the elements of a A~-algebra, one views
them as information that can be extracted from elements of a A~-algebra (finMity
replaces initiality). Also, quotienting by least congruences is replaced by taking
greatest invariants. The construction amounts to:

1. first, building the final algebra F~ of an enriched signature A~4 containing
destructor operations that give A-states as result

2. next, taking the greatest A~4-invariant of F~ for which the above destructors
agree with the A-structure of A

3. finally, taking the greatest A~-invariant induced by the equations E ~.

2 ensures that the A-reduct of the coffee coextension has a A-homomorphism
into A, 1 ensures that the cofree coextension is final among all W-algebras
having this property, while 3 ensures behavioural satisfaction of E ~.

T h e o r e m 13 Cofreeness . Let ¢ : (A, E) --~ (A ~, E ~) be a coalgebraic specifi-
cation map. The reduct functor U¢ : HAIg(A',E') --~ HAIg(A,E) has a right
adjoint C¢ : HAIg(A, E) --+ HAIg(A', E') .

Proof. We first define the action of C¢ on objects. Let A ~A E. In order
to temporarily view the A-states as data, a visible sort h is added to ~ for
each h E H, resulting in a data signature ~e ; also, operations Sh : h --+
a n d 8 h : ¢(h) ---+ h are added to A and A ~ respectively, resulting in signa-
tures A e and A ~e with inclusions ~A : (~ e , A , DA) ¢-+ (~ e , A e , D A) and
L~4 : (k ~e, A I, DA) '--+ (~e , A,e, DA) (where DA denotes the extension of D
to a ~e-algebra interpreting each h as Ah). Then ¢ : (~, A, D) --+ (q~, A', D) ex-
tends to CA : (~e, Ae, DA) -+ (~e, A,e, DA) by letting e a r n = ¢, CA(Sh) = Sh
for each h E H.

Now let FA and F~ be the final (~e, Ae , DA)- and (~ , A 'e, DA)-algebras.
A can also be made into a (~e, Ae,DA)_algebra by defining (Sh)A as idAh.
By finality, there exist unique (~e, Ae , DA)-homomorphisms g : UcAF~ --~ FA
and l : A --~ FA. Moreover, l faithfully embeds A into FA: lh(al) = lh(a2)

181

(Sh)FA(lh(al)) = (Sh)FA(lh(a2)) ~ (Sh)A(al) = (Sh)A(a2) ::~ al = a2. Define
CcA to be the greatest (g,e, Are, DA)-invariant of F~ such that gIU,AC,A fac-

tots through l and such that U,:CcA ~ , E'.

C,A UCA CcA

F~l UcAF:4 ~ FA I+-~A

The action of C¢ on a (A, E)-homomorphism f : A --+ B is defined as follows.
First, f is used to make A and FA into (# e , A e , D s) - a l g e b r a s and F~ into a
(#e , Are, Ds)-algebra. Finality of FB and F~ gives unique (#e, Ae, DB)- and
(#e , Are, Ds)-homomorphisms !: FA -+ FB and !1 : F~ --+ F~. It then follows

It by maximality of CcB tha t . rC,A factors through the inclusion of CcB into F~

(since g ' Io, B !,(C,A) factors through It and O~ !'(CcA) ~ , E'). Hence, Ccf can

be defined as !trC, A.

CcA c ~ F~ UcBF~ g ~ FA ~ I A

C , / I !' U , B ! ' = ! = /
+ g, l~

It is straightforward to check that C¢ is a functor.

L e m m a 14 Adjunct ion . C¢ is right adjoint to U¢.

Proof. For A ~ E, the A-component 5A of the counit e : U¢ o C¢ ~ Id is the
unique factorisation of g[OcaC, A through 1 (recall that 1 is faithful). Hence, eA
is a A-homomorphism.

It remains to prove couniversality of CA. Given B ~ , E', the unique exten-
sion of a A-homomorphism f : UvB ~ A to a A~-homomorphism] : B --+ CcA
is obtained by first using f to make B into a (~pe, A,e, DA)-algebra (with unique
(~e, Ate, DA)-homomorphism f ' : B ~ F~) and then observing that uniqueness
of (~pe, Ae, DA)-homomorphisms into FA gives (UcA f) ; g = f; l, which implies
that gru~Alm(/,) factors through l; also, U~,AIm(f') ~z~, E t, since B ~z~, E' .

Hence, by maximality of CcA, I m (f t) is a (!pe, Are, DA)-invariant of CcA and
] : B ~ CcA can be defined as f ' . Then f = (U¢]);eA follows by unique-
ness of (!pe, Ae,DA)_homomorphism s into FA. Also, uniqueness of] follows
from uniqueness of (k~ e, A re, DA)-homomorphisms into a subalgebra of the fi-
nal (k ~e, A re, DA)-algebra.

Theorem 13 now follows from Lemma 14.

Remark. [Jac96] presents a cofreeness result for categories of behaviour coal-
gebras. Objects of such a category G-BCoalg are coalgebras of an endofunc-
tor G : Set --+ Set, while morphisms between them are given by functions

]82

that only commute with the coalgebra structure up to bisimulation. Because
of this weaker notion of morphism, an isomorphism class in G-BCoafg is given
by an isomorphism class in Set together with a function into the carrier of
the final G-coalgebra. The cofree construction is also set-theoretic: given func-
tors G,H : Set -~ Set together with a natural transformation ~ : H ~ G
(inducing a forgetful functor [J, : H-BCoalg -~ G-BCoalg), the right adjoint
Rv : G-BCoalg -+ H-BCoaig to U, is, up to isomorphism, determined by a pull-
back in Set: if B E G-BCoaJg with b : B -+ F G as unique G-homomorphism
into the final G-coalgebra, then R ,B is determined, up to isomorphism, by the
pullback in Set of b along the unique G-homomorphism ! : (J~F H --> FG, while
the counit is obtained by pulling back ! along b. The inclusion of categories
G-Coalg ~-~ G-BCoaig preserves final objects, hence the two coffee constructions
are isomorphic in G-BCoalg. The advantage of the construction in [Jac96] over the
standard construction stands in reducing the number of bisimilar states (while
still implementing the same behaviour). Moreover, the construction in [Jac96]
supports the reuse of implementations (the G-structure of B is used in defining
the G-structure of its cofree coextension). With our construction, this only hap-
pens for A-algebras that are extensional (behavioural equivalence is equality),
case in which the two constructions coincide.

3.3 A G e n e r a l i s a t i o n

In [Rut96], categories of coalgebras of arbi trary endofunctors T, S : Set ~ Set
and forgetful functors IJ~ : S-Coalg ~ T-Coalg induced by natural transforma-
tions ~7 : S ~ T are considered (U~ maps an S-coalgebra V : C --+ SC to the
T-coalgebra ~c o 7 : C -~ TC) and existence of cofree coalgebras w.r.t. U, is
proved, under the assumption that for any set C, the endofunctor S × C on Set
(mapping a set X to the set SX × C) has a final coalgebra.

In the case of one-sorted specifications with no equations, our result can
be viewed as an instance of the result in [Rut96] - according to a remark in
Section 3.1, the signature map underlying ¢ induces a natural transformation
between the endofunctors associated to A ~ and A. But our result also applies to
specification maps whose underlying signature maps are not surjective on hidden
sorts, suggesting a generalisation of the result in [Rut96] to the case when the
categories underlying S and T are distinct. This generalisation involves a functor
tJ between these categories and a natural transformation ~ : tJ o S =~ T o tJ.
Existence of a cofree functor w.r.t. [J~ is proved under similar assumptions.

T h e o r e m 15. Let C and D be categories with binary products and U : D --~ C
be a functor that preserves binary products and has a right adjoint right inverse
R. Let T : C --~ C, S : D -+ D be endofunctors and q7 : U o S =~ T o D be a
natural transformation (inducing a forgetful functor U~ : S-Coalg --~ T-Coalg).
I f the functors S x RC and T x C have final coalgebras for any C-object C, then
U, has a right adjoint C,.

Proof. U, maps an S-coalgebra 7 : D -+ SD to the T-coalgebra UT; ~D : UD -+
TUD (a T-subsystem UT; YD is extracted from the S-system 7). A canonical way

183

to build S-systems over T-subsystems is given by the functor C~, defined on a
T-coalgebra ~y : C -4 T C as follows.

1. Let 6 : F -4 T F x C be the final T x C-coalgebra.
2. Let ! : <% id) -4 6 be the unique T x C-hom omorph i sm of (% id) into 6.
3. Let 6 ~ : F ' -+ S F ' x RC be the final S x RC-coalgebra. Then (7/F,, id> o U6' is a

T x C-coalgebra with !' : (7/F,, id> o U6' -4 6 as unique T x C - h o m o m o r p h i s m
into 6.

4. Let y ' : C ' -4 SC ' x RC be the greatest S x RC-invariant of 6' such t h a t
V[Uo, factors th rough ! in (T x C)-Coalg and let ec : UC' --> C be the unique
factorisat ion (as ! is monic). Define C ~ / a s ~rl o 7 ' .

The const ruct ion is i l lustrated in the d iagram below.

3 '1 7rl ? ,sc, R ;s I,
6' zrl

F' > SF ' x RC • " > S F '

U ~ '

\ l '
C

U~'
C :.c!, >,TUC, o-, i,~ x c > USC' x

[<~,i~> ~ , Ua'> USF' x C ~ TUF' x C

l
6

> T F x C

(-y#d> I
; T C x C

11-1
TUC'

T,~c

7rl :' TC
Then, Cv is r ight adjoint to U~ with counit e: any T -homomorph i sm f : U,T --+ O'
with T : D -4 SD an S-coalgebra induces a S × RC-s t ruc ture on D such t h a t
f becomes a T x C-homomorphism. Uniqueness of T x C-homomorph i sms into
F together with maximal i ty of "y' are then used to define an S -homomorph i sm
f : W -4 C~7 such tha t U ~ f ; e c = f , in the same way as this was done in
Theorem 13.

Remark. By letting C -- Set H , D = Set H' , R : Set H --~ Set H' with (RA)h, =
YI Ah, T = G~, S = Gz~, and ~? : U o S ~ T o U as in Section 3.1, we ob ta in

h'=¢(h)
Theorem 13 for the case when E = E ' -- 0.

4 Semantics by Cofree Constructions

In this section, cofree functors are used to give semantics to parameter i sa t ion
and inheri tance in coalgebraic hidden algebra.

184

4.1 Parameterisation

Cofree functors C¢ induced by specification morphisms ¢ : P -~ T provide
an appropriate semantics for the importation of coalgebraic hidden modules:
supplied with a P-algebra A, the cofree construction provides the most general
T-algebra that exhibits the P-behaviour of A. A theory of parameterised modules
with cofree constructions as semantics can be developed for coalgebraic hidden
algebra in the same style as this was done for data types [EM85] using free
constructions. Moreover, a semantic characterisation of correctness of parameter
passing in terms of persistence of the cofree functors can be given.

Definition 16. A coalgebraic parameterised specification is a specification
morphism ¢ : P ¢-~ T with both P and T coalgebraic. A parameter passing
m o r p h i s m for ¢ is a specification map ¢ : P -+ P~ with P~ coalgebraic. The
instantiation of P with ¢ in T is given by the pushout (parameter passing
diagram) ¢~ : Pt --+ T ~, ¢~ : T --~ T ~ of ¢ : P --+ T, ¢ : P ~ P~ in Spec.

The semantics of parameter passing diagrams is given by pairs (C¢, C¢,) of cofree
functors induced by the specification morphisms ¢ and Ct (see Theorem 7). As in
the case of parameterised data types, correctness of parameter passing is defined
by requiring (i) the protection of the actual parameter in the result specifica-
tion and (ii) that the semantics of Ct extends the semantics of ¢. However, the
actual conditions we use are stronger than (the duals of) the ones in [EM85],
because there, any P-algebra could be viewed as an initial P~-algebra for some
P~, whereas in our case, due to the data signature being fixed, not any P-algebra
is isomorphic to a final P~-algebra.

Definition 17. Given a parameter passing diagram as above, parameter passing
is correct w.r . t . ¢ if and only if (i) U¢, o C¢, ~]d, and (ii) C¢ o U¢ ~_ U¢, o C¢,.
Parameter passing is correct if and only if it is correct w.r.t, any ¢.

Standard compositionality results use amalgamations to define the semantics
of combined specifications purely on the semantic level [EM85]. Existence of
amalgamations in hidden algebra amounts to pushouts in Spec being transformed
by the functor HAIg : Spec -+ Cat °p into pullbacks in Cat °p.

L e m m a 18. Hidden algebra has amalgamations.

Proof. By pushouts in Spec being pushouts of the underlying many sorted speci-
fications, together with many sorted amalgamations preserving hidden algebras.

Definition 19. A parameterised specification ¢ is pers is tent if and only if C¢
is persistent (U¢ o C¢ ~-]d).

Lemma 20. Given a parameter passing diagram as above, if ¢ is persistent then
¢~ is persistent.

185

Proof. A consequence of a m a l g a m a t i o n s be ing pu l lbacks is t h a t the func to r
Id ®U¢ (C¢ o U¢) : HA]g(P ') --+ HAIg(T') (with @ deno t ing a m a l g a m a t i o n) is

r ight ad jo in t to U¢, wi th iden t i ty as counit . The conclusion then follows by any
two r ight ad jo in t s be ing na tu r a l l y isomorphic .

T h e o r e m 21. Parameter passing is correct for ¢ if and only if ¢ is persistent.

Proof. If ¢ is pers i s ten t then, by L e m m a 20, ¢ ' is pers i s ten t , hence (i) of Defini-
t ion 17 holds. (ii) follows from C¢, being i somorph ic to Id @U¢ (C¢ o U¢), which

gives U¢, o C¢, -- C¢ o U¢. The converse follows by t a k i n g ¢ the ident i ty .

Example I Channels. Channels consis t ing of a sender and a receiver can be spec-
ified by pa rame te r i s i ng the receiver by the sender . A sender is s imply a s t r e a m
t h a t uses i ts send m e t h o d to send values va l s . An a l t e r n a t i n g sender is a sender
t h a t a l t e rna t e s the values i t sends. A receiver receives values from a sender s e n

using its r ec m e t h o d and s tores t hem in v a l r . The pushou t semant ics of ins tan-
t i a t i ng REC wi th AS~.N is a specif icat ion deno ted RF.C [ASEN] which consis ts of REC
toge the r wi th the equa t ion for a l t e rna t ing s t reams .

obj SEN i s p r NAT .
s o r t Sen .
op va l s : Sen -> Nat .
op send : Sen -> Sen .

endo
obj ASEN i s us ing SEN .

var S : Sen .
e q v a l s (s e n d (s e n d (S)) = va l s (S)

endo

t h REC[X : : SEN] i s
s o r t Rec .
op v a l r : Rec -> Nat .
op sen : Rec -> Sen .
op rec : Rec -> Rec .
var R : Rec .
e q sen (rec (R)) = send(sen(R)) .
e q v a l r (r e c (R)) = v a l s (s e n (R))

e n d t h

Now consider a SEN-algebra A imp lemen t ing a l t e rna t i ng s t reams: Sen A ---- N × N,
va l sA(n l , n2) ---- n l , sendA(nl ,n2) ---- (n2 ,n l) . In cons t ruc t ing its cofree coex-
tens ion A* along SEN ~-+ REC we follow the th ree s teps ou t l ined in Sect ion 3.2.
F i r s t , we bui ld the final REC U {s : Sen --+ SenA}-algebra A1, hav ing car r ie rs

SenA1 ---- {f I f : {send}* ~ N x SenA} , ReCA1 ---- {(g,h) [g : {rec}* --+ ~, h :
{rec}*sen{send}* -* N × SenA}. A sender s t a t e f assigns a sender value and a
SenA-state to each expe r imen t consis t ing of a finite number of sends. Similar ly ,
a receiver s t a t e (g, h) assigns a receiver value to each e xpe r ime n t cons is t ing of
a finite n u m b e r of recs , as well as a sender value and a SenA-state to each ex-
pe r imen t consis t ing of a finite number of recs followed by s e n and then by a
f inite number of sends. Second, the g rea tes t suba lge b ra of A1 for which exam-
ining the SenA-state commutes wi th the SEN-operations is t aken , resu l t ing in a
REC-algebra A2 having carr iers SenA2 = SenA1 (the second c o m p o n e n t of f on
the e m p t y sequence of sends uniquely de te rmines f) and RecA2 = {(g,h) [g :
{rec}* --+ N, h : {rec}* --+ SenA}. Final ly , impos ing the REC-equations resul t s in
a t~EC-algebra A* having carr iers: SenA. = SenA, RecA. = M × Sen A (the values of
g and h on the e m p t y sequence of recs uniquely de t e rmine g and h) and oper -

a t ions: va lsA. = valsA, send A. ---- sendA, va l rA. (n, n l , n2) ---- n, senA. (n, n l , n2) ----
(nl , n2) , r ec A. (n, n l , n2) = (nl , n2, n l) . A* uses the i m p l e m e n t a t i o n p rov ided by A
for i ts sender par t .

186

4.2 Inheritance

Class inheritance (with non-monotonic overriding) can be specified in hidden
algebra using (partial) specification maps. Here we use a specification of bank
accounts to emphasise the suitability of cofree constructions as a semantics for
inheritance.

Example 2 Bank Accounts. Bank accounts ACC are specified using a bal(ance)
a t t r ibute and methods for dep(ositing)/with(drawing) a given amount. More
specialised accounts - a history account tha t maintains a his(tory) of the trans-
actions made into the account and a savings account from which withdrawals
are only allowed if the account is not in saving s tate - are then derived from ACC.
The former specialisation corresponds to inheritance with monotonic overriding,
while the lat ter non-monotonically overrides the with method 2.

obj ACCSIG is pr INT.

sort Acc.

op bal :Acc -> Int.

ops dep, with :Acc Nat -> Acc.

endo

obj ACC is pr ACCSIG .

var N : Nat .

vat A :Acc .

eq bal(dep(A,N)) = bal(A) + N .

eq bal(with(A,N)) = bal(A) - N .

endo

obj HACC is pr LIST[INT]

ex ACC * (sort Acc to HAcc) .

OF his :HAcc -> List .

var N : Nat .

var H :HAcc .

• ** monotonic overriding

eq his(dep(H,N)) = N;his(H) .

eq his(with(H,N)) = (-N);his(H)

endo

obj SACC is

ex ACCSIG * (sort Acc to SAcc) .

op start, end : SAcc -> SAcc .

op say? : SAcc -> Bool .

var N : Nat .
vat S : SAcc .

• ** monotonic overriding

eq bal(dep(S,N)) = bal(S) + N .

eq sav?(dep(S,N)) = sav?(S)

• ** non-monotonic overriding

ceq bal(with(S,N)) = bal(S) - N

if savT(S) == false .

ceq bal(with(S,N)) = bal(S)

if sav?(S) == true .

eq savT(with(S,N)) = savT(S) .

eq bal(start(S)) = bal(S) .

eq sav?(start(S)) = true .

eq hal(end(S)) = bal($) .

eq sav?(end(S)) = false .

endo

The semantics of the inheritance relation between HACC and ACC is given by the
cofree functor induced by the specialisation of ACC to HACC. For the inheritance
relation between SACC and ACC, the semantics is given by the composition of the
forgetful functor induced by hiding the non-monotonically overridden operation
with with the cofree functor induced by the specialisation of ACC without the
with method to SACC.

2 In general, only defineZ operations should be non-monotonically overridden. Given
a coalgebraic specification (Z~, E), the operations in ~ ' C A are def ined if in any
(A, E)-algebra, behavioural A \ A'-equivalence is a A-congruence. A similar ap-
proach is taken in [Jac96], where in addition to a "core" part, a class specification
may contain "definable" functions which do not contribute to the meaning of the
specification and can therefore be arbitrarily overridden.

187

Now consider an ACC-algebra A given by: Acc A ---- Int, balA(I) = I, dePA(I , J) ----
I + J, withA(I , J) ----- I - J. Its coffee coextensions to a HAte-algebra HA and a
SAte-algebra SA are given below.

HACCHA = Acc A x IntList

balHA(I,L) = I
hiSHA(I , L) ---- L
depHA((I,L), J) = (I + J, J; L)
withHA((I,L), J) = (I -- J, (--J);L)

SACCSA =Acc A × {true, false}

balSA(I,B) = I
sav?sA(I ,B) = B
depst((I,B), J) ---- (I + J,B)
withsA((I , fa lse) , J) ---- (I -- J, false)
withsA((I , true), J) ---- (I, t rue)
s tar tsA(I , B) = (I, true)
endSA(I , B) = (I, fa lse)

The counit of the adjunction provides coercion operations that map states in
the subclass to states in the superclass. In both of the above cases, the coer-
cions are projections extracting the superclass attributes. Also in both cases,
the superclass implementation is reused by the subclass.

5 Combining Algebra with Coalgebra

We have illustrated the relevance of final/coffee constructions to coalgebraic
hidden specifications and maps between them. Not surprisingly, the existence of
final/coffee hidden algebras does not generalise to arbitrary hidden specifications
- there is no universal way of interpreting the constructors in either a final or a
coffee algebra. However, final/cofree families of hidden algebras exist.

The notion of final family o/objects generalises the notion of final object:
given a category C, a family (Fj)j6 J of C-objects is f inal if and only if, for any
C-object C, there exist unique j E J and C-morphism f : C --+ Fj. Similarly,
the notion of eouniversal family of morphisms [Die79] generalises the notion of
couniversal morphism: given a functor U : D --+ C and a C-object C, a family
of C-morphisms ec,j : UC~ --+ C with C~ an object of D for each j 6 J is
a c o u n i v e r s a l f ami ly o f m o r p h i s m s f r o m U to C if and only for any D-
object D and C-morphism f : UD --~ C, there exist unique j E J and D-
morphism / : D -+ C] such that U]; ec,j = f . If for every C there exists a
couniversal family of morphisms from U into C, then U¢ is said to have a right
m u l t i a d j o i n t .

Now let 57 denote a hidden signature with / : = F U A as splitting into
hidden subsignatures of constructors and destructors respectively and observe
that signature maps preserve such splittings. Also, let Fn denote the final hidden
A-algebra and I r denote the initial hidden F-algebra (given by the free many
sorted F-algebra over D). Finally, let Set VUH denote the category of V L3 H-
sorted sets with (Dv)vEy as V-components and V U H-sorted functions with
(idv)vey as V-components.

T h e o r e m 22. For any hidden signature Z there exists a final family of hidden
~-algebras.

188

Proof. Let I, F E SetYD Ug be the carriers of I r and Fa respectively and let
J = {J I J : I ~ F in SetVUH}. Each j E J uniquely induces a ~-structure Fj
on F such that Fi[~= Fa and such that j defines a F-homomorphism from I r
to Fj [r. Then (Fi)ieg is a final family of hidden Z-algebras.

Therefore, the category of hidden X-algebras can be sliced into subcategories
C j, j E J, with each Cj having a final object Fj. This justifies using the family
(Fj)jej as final-like semantics for Z.

T h e o r e m 2 3 . Let ¢ : ~ --+ E' be a hidden signature map. The functor U¢ :
HAIg(Z') -+ HAIg(Z) has a right multiadjoint.

Proof. Let ¢n : A --+ A' denote the restriction of ¢ to destructor subsignatures.
For a hidden Z-algebra A, let (Aft)* denote the cofree coextension of A[n along
¢~ and let JA denote the family of Z'-algebras A~ such that A~ In, = (A in),
and such that the function underlying eA[a : U¢~(A[a)* --+ A[~ defines a Z-
homomorphism CA,j : UcA~ -~ A. Then, the family (eA,j)jEJA is a couniversal
family of morphisms from U¢ to A.

Theorems 22 and 23 can be extended from hidden signatures to split hidden
specifications. A hidden specification (E, E) is called split if and only if E =
En U E s with En consisting of state A-equations and E~ consisting of Z-
equations with visible-sorted variables only. Final families of (Z, E)-algebras
exist for any split specification (Z, E) - the sub-family J' C_ J consisting only of
those Fjs which behaviourally satisfy E is considered. Also, if (Z, E) and (Z', E')
are split hidden specifications and ¢ : (Z, E) --~ (Z', E') is a specification map
such that ¢[(~,E~): (A, En) --+ (A', E~,) is also a specification map, then U¢ has
a right multiadjoint - for each Z-algebra A, the sub-family J'A C JA consisting
only of those Z'-algebras A~ which behaviourally satisfy E' is considered.

6 C o n c l u s i o n s a n d F u t u r e W o r k

We have investigated the coalgebraic nature of hidden algebra, concentrating
on semantical aspects such as finality and cofree constructions. We have proved
the existence of cofree hidden algebras along maps between coalgebraic hidden
specifications and emphasised their relevance in giving semantics to parameter-
isation and inheritance. Also, we have sketched a possible generalisation of a
cofreeness result from [Rut96]. Finally, the final/cofree semantics has been lifted
from coalgebraic to arbitrary hidden algebra.

With the current definition of hidden signatures, hidden constants (oper-
ations from visible sorts to hidden sorts) are the only constructor operations
allowed. In practice however, new objects can be created by putting together
existing objects (e.g. by tupling), suggesting a generalisation of the theory of
hidden algebras that allows arbitrary constructors. One expects to still be able to
reason coalgebraically about behavioural equivalence, hence Proposition 9 must
hold for generalised hidden signatures (preservation of A-behavioural equiva-
lence by constructors can be achieved either by imposing it as a constraint on

189

algebras or by fully specifying the A-behaviour of the constructors). The ex-
tension of the results in this paper to generalised hidden algebra remains to be
studied.

The integration of the algebraic and coalgebraic aspects of hidden algebra
also deserves further study, perhaps along the lines of [Mal96] where objects
are viewed as algebra-coalgebra pairs, or [TP97] where a similar notion called
bi-algebra is considered.

A c k n o w l e d g e m e n t s I would like to thank my supervisor, Dr Grant Malcolm,
for his guidance and his comments on several drafts of this paper.

R e f e r e n c e s

[Die79]

[EM85]

[CD94]

[GM97]
[Jac95]

[Jac96]

[Jac97]

[JR97]

[Ma196]

[MG94]

[Rei95]

[Rut95]

[Rut96]

[TP97]

[TWW82]

Y. Diers. Families universelles de morphismes. Annales de la Socidtd Scien-
tifique de Bruxelles, 93(3):175 195, 1979.
H. Ehrig and B. Mahr. Fundamentals of algebraic specification 1: Equations
and initial semantics. In EATCS Monographs on TCS. Springer, 1985.
J. Goguen and R. Diaconescu. Towards an algebraic semantics for the object
paradigm. In H. Ehrig and F. Orejas, editors, Recent Trends in Data Type
Specification, number 785 in LNCS. Springer, 1994.
J. Goguen and G. Malcolm. A hidden agenda, to appear, 1997.
B. Jacobs. Mongruences and cofree coalgebras. In V.S. Alagar and
M. Nivat, editors, Algebraic Methods and Software Technology, number 936
in LNCS. Springer, 1995.
B. Jacobs. Inheritance and cofree constructions. In P. Cointe, editor, Euro-
pean Conference on Object-Oriented Programming, number 1098 in LNCS.
Springer, 1996.
B. Jacobs. Invariants, bisimulations and the correctness of coalgebraic re-
finements. Technical Report CSI-R9704, University of Nijmegen, 1997.
B. Jacobs and J. Rutten. A tutorial on (co)algebras and (co)induction. Bul-
letin of the EATCS, 62:222-259, 1997.
G. Malcolm. Behavioural equivalence, bisimilarity and minimal realisation.
In M. Haveraaen, O. Owe, and O.-J. Dahl, editors, Recent Trends in Data
Type Specifications, number 1130 in LNCS. Springer, 1996.
G. Malcolm and J. Goguen. Proving correctness of refinement and imple-
mentation. Technical Monograph PRG-114, Oxford University, 1994.
H. Reichel. An approach to object semantics based on terminal coalgebras.
Mathematical Structures in Computer Science, 5, 1995.
J. Rutten. A calculus of transition systems (towards universal coalgebra).
Technical Report CS-R9503, CWI, 1995.
J. Rutten. Universal coalgebra: a theory of systems. Technical Report CS-
R9652, CWI, 1996.
D. Turi and G. Plotkin. Towards a mathematical operational semantics. In
Proceedings LICS, 1997.
J. Thatcher, E. Wagner, and J. Wright. Data type specification: Parame-

terization and the power of specification techniques. ACM Transactions on
Programming Languages and Systems, 4(4), 1982.

