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Abstract

The overall goal of this work is to combine the complementary contributions of algebra and coalgebra
to specification, in order to provide a formal framework for the specification of state-based, dynamical
systems.

Algebraic specification methods benefit from the availability of inductive techniques for defining and
reasoning about structures that involve computation; coalgebraic specification methods complement
algebraic ones both in their objectives and in their means of achieving them, by employing coinduc-
tive techniques for defining and reasoning about structures that involve observation. State-based,
dynamical systems comprise a computational aspect, concerned with the construction of (new) sys-
tem states, and an observational aspect, concerned with the observation of (existing) system states,
with the two aspects overlapping on features concerned with the evolution of system states.

Existing formalisms for the specification of such systems typically exploit the overlap between compu-
tational and observational features to employ either algebraic or coalgebraic techniques for specifica-
tion and reasoning. However, such a choice limits the expressiveness of these formalisms w.r.t. either
observational or computational features. Furthermore, the accounts given by such approaches to the
concepts of indistinguishability by observations and respectively of reachability under computations
are somewhat artificial, due to the failure to distinguish between computational and observational
features.

The approach taken here is to clearly separate the two categories of features (by shifting the fea-
tures concerned with the evolution of system states to the computational component), and to use
algebra and respectively coalgebra in formalising them. In particular, such an approach yields a
coalgebraically-defined notion of indistinguishability by observations, and an algebraically-defined
notion of reachability under computations. The relationship between computing new states and
observing the resulting states is specified by suitably lifting the coalgebraic structure of the semantic
domains induced by the observational component to computations over these semantic domains.
Such an approach automatically results in a compatibility between computational and observational
features, with the observational indistinguishability of states being preserved by computations, and
with the reachability of states under computations being preserved by observations.

Correctness properties of system behaviour are formalised using equational sentences. This is a
standard technique in algebraic specification. A similar technique is used here for coalgebraic spec-
ification, with the resulting notion of sentence capturing system invariants quantified over state
spaces. Moreover, a sound and complete calculus for reasoning about the specified behaviours is
formulated in a concrete setting obtained by syntactically dualising the setting of many-sorted al-
gebra. Equational sentences are then used to formalise the equivalence of computations as well as
various system invariants, with the associated notions of satisfaction abstracting away observation-
ally indistinguishable and respectively unreachable states, and with the associated proof techniques
employing coinduction and respectively induction.

Suitably instantiating the resulting approach yields a formalism for the specification and verification
of objects.
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1 Introduction

The use of algebra in specification goes back to [Gog75, GTW78] and the use of many-sorted
algebra for the specification of data types (with multiple sorts being used to denote types, many-
sorted operations being used to specify type functionality, and many-sorted equations being used to
constrain this functionality). Since then many authors, including [Rei81, EKMP82, GM82, ONES9,
Hen90, BBI1, Gog91, BH95, Pad96, GM97] have contributed to the development of the field now
known as algebraic specification.

As early as [Rei81, GM82], algebraic approaches to specification identified the need to abstract away
certain implementation details in the specification of data types. This resulted in a distinction being
made between visible and hidden sorts, and in behavioural equivalence relations on algebras being
used to capture observational indistinguishability [Rei81, GM82]. In addition, notions of initial and
final realisation' of a given behaviour were used to provide denotations for data type specifications
[GM82].

Although the notion of behavioural equivalence was originally associated with final semantics, sub-
sequent developments in the area of behavioural specification have paid increasingly less attention
to the relevance of finality to the underlying semantics, being primarily concerned with the devel-
opment of inductive proof techniques for behavioural satisfaction [NO88, Hen90, BB91]. However,
despite the simplicity characterising induction principles, such techniques turned out to be sur-
prisingly complex, as they employed induction over the contexts used for observation, with the
number of contexts becoming increasingly unmanageable as larger specifications were considered
(see e.g. [Hen90]). Consequently, attention has gradually turned to definition/proof techniques
based on coinduction [MG94, BH95, BH96, GM97], with such techniques exploiting the maximality
of behavioural equivalence amongst the congruences on a given algebra. In addition, the need to
distinguish between system constructors and system observers, as well as to impose a certain com-
patibility between them (by requiring the behavioural equivalence relations induced by the observers
to define congruences w.r.t. the constructors) has become increasingly apparent in recent approaches
[Dia98, RG00, HB99].

New developments in the theory of coalgebras [Rut96] have suggested an alternative approach
to system specification, where the primary interest is shifted from computations to observations.
The use of coalgebraic methods in specification [Rei95, Rut96] stems from, and at the same time
generalises the use of transition systems as operational models for dynamical systems [RT94, Rut95].
In particular, coalgebras have been used to describe the behaviour of classes in object-oriented
programming [Jac96c, Jac96b, Jac96a, Jac97].

Rather than being concerned with the computations resulting in new states, coalgebraic approaches
focus on the observable behaviour of system states, with the notion of bisimulation being used

'The terminology is drawn from automata theory. Initial realisations incorporate reachable behaviours, whereas
final realisations incorporate observable behaviours.
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to formalise observational indistinguishability. Initial states are occasionally used in coalgebraic
specification formalisms to provide (basic) system constructors [Jac96c, Jac96a], this yielding a
notion of reachability akin to that of transition systems. (The integration of initial states in these
formalisms is facilitated by the fact that they employ a suitably-restricted algebraic syntax.)

Ongoing work in the areas of algebraic and coalgebraic specification concerns the integration of
additional computational and observational features into existing formalisms for system specification.
Examples include extensions [Dia98, RGO00] of the hidden algebra formalism [GM97, GMO0O], as
well as work on (2, E)-logic [HK99], building on earlier work on observational specification logics
[HB99]. However, this integration is hindered by the use of an algebraic syntax (which limits the
expressiveness w.r.t. observational features) on the one hand, and by the decision to simultaneously
specify computational and observational features (which results in compatibility restrictions having
to be imposed in order to allow for an increased expressiveness w.r.t. computational features) on
the other.

This thesis presents an alternative approach to integrating computational and observational features
in the specification of state-based, dynamical systems, approach which uses algebra and respectively
coalgebra to formalise such features, and which takes a layered view towards their integration.
Further motivation for such an approach, an outline of the main contributions, as well as a more
detailed account of the results presented are given in the following.

Motivation State-based, dynamical systems comprise a computational aspect, concerned with the
construction of new system states and with the reachability of states under computations, and an
observational aspect, concerned with the observation of existing system states and with the indis-
tinguishability of states by observations. These two aspects overlap, in that features concerned with
the evolution of system states (i.e. with the system dynamics [AMT74b]) can be regarded both as
a means to compute new states and as a means to observe existing states. There exist, however,
system features whose nature is either purely computational or purely observational, with the con-
struction of initial states and respectively the extraction of visible information from system states
being instances of such features. Moreover, the notions of reachable and respectively observable
system are dual to each other: while reachability of a system amounts to the mapping taking po-
tential inputs to the states reachable from them being surjective, observability of a system amounts
to the mapping taking system states to their observable behaviour being injective [AM74a].

Nevertheless, existing (co)algebraic approaches to the specification of state-based, dynamical sys-
tems tend to be primarily concerned either with the computations yielding (new) system states
[GM97, HB99], or with the observations that can be made about (existing) system states [Rei95,
Rut96, Jac96c, Jac96a, Cor98]. Depending on whether the emphasis is on computations or on ob-
servations, the underlying formalisms typically employ algebraic techniques with a semantics based
on initial models, or coalgebraic techniques with a semantics based on final models. Some of these
formalisms also accommodate purely observational and respectively purely computational features:
observers yielding visible results together with observational equivalence relations are typically used
in algebraic approaches [GM97, HB99], whereas initial states are occasionally used in coalgebraic
approaches [Jac96c, Jac96a, Jac97]. In addition, some of these formalisms identify the need for
a certain compatibility between the two categories of features [Dia98, RG00, HK99]. However, a



Introduction 3

recurring problem in this work is the failure to fully and naturally capture either the observational or
the computational aspect of systems. On the one hand, the choice to employ the same (usually al-
gebraic) syntax in capturing both computational and observational features limits the expressiveness
of the resulting formalisms w.r.t. at least one category of features (usually the observational ones).
On the other hand, the decision to simultaneously specify computational and observational features
in such approaches results in further constraints having to be imposed in order to guarantee that
these features are compatible with each other. Such constraints involve either restrictions on the
algebras used to model the specified systems [Dia98, HB99], or restrictions on the specifications used
to describe system behaviour [RG00] (both aimed to ensure that observational equivalence relations
are preserved by the system constructors). Furthermore, the resulting notions of indistinguishability
by observations are often unnecessarily complex, as no distinction, either syntactic or semantic, is
made between computational and observational features (and consequently observational equiva-
lence relations take into account more features than it is actually needed).

The aim of this work is to fully exploit the expressive power of algebra and coalgebra when spec-
ifying purely computational and respectively purely observational structures, and to combine their
complementary contributions when specifying structures that have both computational and obser-
vational features, in a manner which guarantees a certain compatibility between the two categories
of features. This is achieved by clearly distinguishing between computational and observational fea-
tures and using algebra and respectively coalgebra for their formalisation, and by taking a layered
approach to their integration.

System features concerned with the evolution of systems are here regarded as part of the computa-
tional component only. This decision is justified partly by the ideas underlying the object-oriented
paradigm, whereby a system's reaction to a request is fully determined by its current state, and partly
by the layered nature of the approach, which requires all the computational features (including the
features concerned with the evolution of systems) to be fully defined in terms of their effect on
observational features (and hence also on the features concerned with the system structure)?. The
resulting notion of reachability therefore takes into account both the construction and the evolution
of system states, whereas the resulting notion of observational indistinguishability depends only on
the structure of system states. (A different classification into observational and computational fea-
tures, which regarded the evolution of system states as part of the observational component only,
would have yielded an insufficiently rich notion of reachability, as well as an unnecessarily complex
notion of observational indistinguishability.)

A consequence of the initial separation between observational and computational features is that
the resulting framework employs an algebraically-defined notion of reachability under computations
and a coalgebraically-defined notion of indistinguishability by observations (which are more natural
and at the same time less complex than those employed by unilateral approaches). Thus, this
framework benefits from the availability of inductive and coinductive techniques for proving properties
up to reachability and respectively up to observability. Also, taking a layered approach to the
integration of computational and observational features automatically ensures that observational
indistinguishability is preserved by computations, whereas reachability is preserved by observations.

2As a result, observations also involving future states can be expressed in terms of observations only involving
structural properties of states.
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Equational sentences are used here to formalise correctness properties of system behaviour. The
decision to focus on equational approaches is motivated by the intention to specify in a concise man-
ner system properties quantified over state spaces, as well as by the existence of several equational
specification formalisms for state-based, dynamical systems.

The use of equations in capturing the equivalence of computations is a standard technique in
algebraic specification. This technique is supported by the existence of a sound and complete
calculus of equational deduction, as well as of a characterisability result regarding the expressiveness
of equational sentences w.r.t. suitably-closed classes of models (see e.g. [MT92]). Less is currently
known about the suitability of equational approaches to coalgebraic specification. Moreover, all the
existing equational coalgebraic specification formalisms [Rei95, HR95, Jac96c, Jac96a, Cor98] use
suitably-restricted algebraic equations (as opposed to coalgebraically-defined equations) to constrain
the specified behaviours. This not only restricts the expressiveness of such formalisms w.r.t. the
structures specifiable within them (which are essentially algebraic structures), but at the same time
prevents the use of standard algebraic techniques in correctness proofs (as the equations used for
specification are required to contain precisely one variable denoting a system state).

An alternative, coalgebraic notion of equation is introduced here in an abstract setting. On the one
hand, this notion generalises the kinds of algebraic equations typically used in system specification,
by capturing system invariants that refer to the equality or similarity of observations on the system
states. On the other hand, the definition of this notion also applies to situations where observations
may have structured result types. In particular, an instance of this notion is used here to specify
and reason about observational structures allowing for a choice in the result type of observers.

Contributions A first contribution of this thesis stands in investigating the existence of a coal-
gebraic, equational specification formalism whose expressiveness equals that of many-sorted algebra
both w.r.t. the structures specifiable within it, and from the point of view of characterising classes
of models by equational sentences. This investigation is carried out in two steps. First, a syntactic
dual of many-sorted algebra, involving notions of cosignature, covariable and coterm is considered,
and notions of coequation and coequational satisfaction are introduced in this setting. A sound
and complete deduction calculus for coequations is also formulated. The resulting formalism does
not, however, equal the expressiveness of many-sorted algebra w.r.t. the structures specifiable within
it. This is also reflected in the fact that the notion of observational indistinguishability employed
by this formalism is not sufficiently expressive. Consequently, a second step considers an enriched
version of this formalism, which assumes the availability of a fixed data universe for specification
and reasoning. The new formalism benefits from the existence of a sound and complete deduction
calculus (obtained by suitably extending the deduction calculus previously formulated), as well as of
an expressiveness similar to that of many-sorted algebra w.r.t. the structures specifiable within it.
Coequations are still not sufficiently expressive to yield a characterisability result similar to that of
many-sorted algebra. Nevertheless, they succeed in capturing, in a concise manner, system properties
quantified over state spaces.

A second contribution of the thesis stands in developing an abstract coalgebraic framework for the
specification of observational structures, framework which unifies some of the existing equational
specification formalisms for state-based, dynamical systems, and of which the previously-described
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formalism is also an instance. A framework for the specification of computational structures, of
which the many-sorted algebraic approach to the specification of data types is an instance is also
derived, essentially by dualising the coalgebraic framework.

Another contribution of the thesis stands in integrating the algebraic and coalgebraic frameworks
thus obtained into a framework for the specification of systems having both an observational and
a computational component. This integration is based on the work in [Tur96] on well-behaved
operational semantics, and uses liftings of the coalgebraic structure of state spaces to computations
over these state spaces to interpret computations on the state spaces induced by the observational
component. The resulting interpretations are well-behaved, in that observational indistinguishability
is preserved by computations, whereas reachability is preserved by observations. Abstract equations
and coequations are then used to formalise the equivalence of computations and respectively invari-
ants on the structure of systems. To account for an interest in observable behaviours and ground
computations only, the associated notions of satisfaction abstract away observationally indistin-
guishable and respectively unreachable behaviours. The use of such abstractions also results in the
availability of coinductive and respectively inductive techniques for correctness proofs. Specifically,
proving the satisfaction of an equation up to observability can be reduced to exhibiting a bisimulation
which relates the lhs and rhs of that equation, whereas proving the satisfaction of a coequation up
to reachability can be reduced to exhibiting a submodel which satisfies that coequation.

A final contribution of the thesis stands in developing a specification formalism for objects, as an in-
stance of the previously-described abstract framework. This formalism uses variants of many-sorted
algebra and of its syntactic dual to specify object functionality and respectively object structure,
and a notion of constraint to specify the changes in structure associated to a particular choice of
functionality. In addition, many-sorted equations are used to capture the equivalence of object-
oriented programs, while their syntactic duals are used to capture invariants on the object structure.
Correctness proofs for such properties employ coinductive and respectively inductive techniques.
Specifically, proving that two programs are observationally equivalent amounts to exhibiting a bisim-
ulation which relates the states yielded by those programs, whereas proving that a state invariant
holds in reachable states amounts to exhibiting a subspace of the state space which contains the
reachable states and whose states satisfy the given invariant. The clear separation between struc-
ture and functionality, together with the use of algebra and respectively coalgebra in capturing them
increase the expressiveness of the resulting formalism compared to unilateral, either algebraic or
coalgebraic, specification formalisms for objects. In particular, a more comprehensive treatment of
inheritance, which accounts both for its classification aspect and for its reusability aspect is provided
by such an approach.

Synopsis Some familiarity with standard algebraic and coalgebraic specification techniques, as well
as with the language of categories is required for reading this thesis. Chapter 2 provides an outline
of all the relevant concepts, and at the same time establishes some notational conventions to be
used in forthcoming chapters.

Chapter 3 introduces an abstract framework for the specification of structures involving both ob-
servational and computational features, based on a clear separation between the two categories of
features.
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In Section 3.1, attention is restricted to observational structures. Abstract notions of cosignature,
observer and coequation are used to specify particular kinds of observational structures and to further
constrain these structures. Coalgebras are used as models for the resulting specifications, with finality
playing an important rdle in assigning suitable denotations to these specifications. Coequations are
shown to induce subcoalgebras of given coalgebras on the one hand and covarieties on the other,
while the resulting specification logic is shown to be an institution. Moreover, similar results are
shown to hold for a notion of satisfaction of coequations up to observability. Other results in this
section refer to the existence of suitable denotations for abstract cosignature morphisms, as well as
of canonical ways of combining abstract coalgebraic specifications and respectively implementations.
The expressiveness of coequations from the point of view of characterising covarieties is also briefly
discussed.

In Section 3.2, an algebraic framework for the specification of structures involving computation is
obtained essentially by dualising the previously-obtained coalgebraic framework.

In Section 3.3, the two frameworks are integrated in order to account for systems having both
an observational and a computational component. Following [Tur96], liftings of the coalgebraic
structure of semantic domains to computations over these semantic domains are used to interpret
computations on the semantic domains induced by the observational component. (A dual approach,
involving liftings of the algebraic structure of syntactic domains to observable behaviours over these
syntactic domains is also described.) Abstract equations and coequations are used to formalise
correctness properties of the behaviours specified using such liftings, with the associated notions of
satisfaction being up to observability and respectively up to reachability. Both notions of satisfaction
are shown to yield institutions. Suitable denotations for the resulting specifications are shown to be
provided by the quotients of the unique homomorphisms from the initial to the final models. Two
compositionality results, allowing specifications and respectively implementations to be combined in
a canonical way are also formulated.

Chapter 4 develops a coalgebraic, equational formalism for the specification of structures allowing
for a choice in the result type of observers. This formalism is, to a large extent, a syntactic
dual of many-sorted algebra — notions of covariable, coterm and coequation, dual to those of
variable, term and equation are used for specification, while coalgebras are used as models for
the resulting specifications. A deduction calculus for coequations is formulated, and its soundness
and completeness w.r.t. their satisfaction by coalgebras is proved. The approach is then extended
to account for the availability of a fixed data universe w.r.t. which observational structures are
specified. Such an extension is necessary in order to capture, via cosignatures, arbitrary polynomial
endofunctors. By enriching the deduction calculus previously formulated with a rule which accounts
for the data universe being fixed, the soundness and completeness results also generalise to the
new setting. The resulting formalism is shown to be at least as expressive as many-sorted algebra
w.r.t. the structures specifiable within it (which correspond to coalgebras of extended polynomial
endofunctors), but less expressive as far as characterising classes of models by equational sentences
is concerned.

Chapter 5 describes a formalism for the specification and verification of objects, obtained by suit-
ably instantiating the specification framework introduced in Chapter 3. Specifically, many-sorted
signatures and cosignatures are used to specify the data manipulated by objects, while signatures
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of constructors and cosignatures of observers (defined as many-sorted signatures and respectively
cosignatures whose sorts and operation symbols have been classified into visible and hidden ones,
depending on whether they refer to data types or to object types) are used to specify object types.
The liftings required by the abstract framework are then defined using suitably-restricted sets of
constraints. Many-sorted equations and coequations are used to formalise correctness properties
of the specified behaviours, with correctness proofs benefiting from the existence of a sound de-
duction calculus for constraints. An object specification of (bounded) stacks is used to illustrate
the approach, as well as to compare it with existing approaches. A generic example involving the
specification of inheritance relationships between classes is also given.

Chapter 6 summarises the results presented and briefly outlines possible directions for future research.



2 Preliminaries

This chapter contains some prerequisites for the material in the forthcoming chapters, including
basic notions of category theory (Section 2.1) and general logics (Section 2.2), and an outline of
the algebraic (Section 2.3) and coalgebraic (Section 2.4) approaches to specification.

2.1 Category Theory

This section only recalls the category-theoretic concepts and results that are directly relevant to
the present work. For a comprehensive introduction to category theory, the reader is referred to
[Bor94a, Bor94b].

The theory of categories provides an abstract setting for the study of universal properties. The
categorical formulation of such properties involves notions of object (used to denote an abstract
entity) and arrow (used to denote a particular relation between two such entities).

Definition 2.1.1. A category C consists of:

1. a class' |C| of objects
2. for every pair A, B of objects, a set C(A, B) of arrows from A to B

3. for every triple A, B, C of objects, a composition law

o:C(B,C) x C(A,B) = C(4,C)
4. for every object A, an identity arrow 14 € C(A, A)

subject to the following constraints:

1. ho(gof)=(hog)o f forany f € C(A,B), g € C(B,C) and h € C(C, D)

2. foly=f=1pof forany f € C(A,B).
An arrow f € C(A, B) is said to have domain A and codomain B. One writes f : A — B or
A%B for such an arrow.

The class of arrows of a category C is denoted || C||.

Definition 2.1.2. A category C is small if and only if |C| is a set; otherwise it is a large category.

A category C is finite if and only if |C| and || C|| are finite sets.

!See [Bor94a, pp. 3-4] or [AHS90, Chapter 2] for a discussion on the distinction between sets and classes.
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Definition 2.1.3. A subcategory B of a category A consists of:

1. a subclass |B| of |A|
2. for every A,B € |B

, a subset B(A, B) of A(A, B)
such that:

1. feB(A,B) and g € B(B,C) imply go f € B(A,C)
2. 14 € B(A, A) for any A € |B].

A subcategory B of a category A is full if and only if B(A, B) = A(A, B) for any A, B € |B|.

Example 2.1.4. The canonical example of a category is Set, the category of sets and functions. This
category is not small.

A slightly more structured category is Set”, the category of S-indexed sets and S-indexed functions,
with S a set. lIts objects are S-indexed sets (i.e. families (As)scs with A5 € |Set| for s € 5),
its arrows are S-indexed functions (i.e. families (fs)scs with fs € Set(As, Bs) for s € S), while
composition is defined component-wise. An S-indexed subset of an S-indexed set A is an S-indexed
set B with B, C A, for s € S. Given S-indexed sets A and B, an S-indexed relation between A and
B is an S-indexed set R with R; C A; X Bs for s € S. An S-indexed relation R is an equivalence
relation if and only if each R, with s € S, is an equivalence relation.

Finally, given V' C S together with a V-indexed set D, the category Set?) has S-indexed sets A
such that A, = D, for v € V as objects, and S-indexed functions f such that f, =1p,6 forv eV
as arrows.

Example 2.1.5. Given a category C, its dual (or opposite) category C°P has |C°P| = |C| and
C°P(A,B) = C(B, A) for A, B € |C|.

Example 2.1.6. Given a category C and a C-object C, the slice category C/C has pairs (D, d) with
D a C-object and d: D — C a C-arrow as objects, and C-arrows f : D — D’ satisfying d' o f = d
as arrows from (D, d) to (D',d'). Similarly, the category whose objects are given by pairs (D, d)
with D a C-object and d : C'— D a C-arrow, and whose arrows from (D, d) to (D', d') are given
by C-arrows f : D — D' satisfying d’ = f o d is denoted C\C'.

Definition 2.1.7. In a category C, an arrow f : A — C is said to factor through an arrow
g : B — C (respectively g : A — B) if and only if there exists an arrow h : A — B (h: B — C)
such that f =goh (f =hog).

Definition 2.1.8. An arrow f : A — B in a category C is a monomorphism (respectively epimor-
phism) if and only if for any pair of arrows g,h : C' — A (g,h: B — C) withC € |C|, fog= foh
(9o f =ho f)impliesg= h. The arrow f : A — B is an isomorphism if and only if there exists
an arrow g : B — A such that fog=1g andgo f =14. If f: A— B and g: B — A are such
that go f = 14, then f is called a right inverse (or section) for g, g is called a left inverse (or
retraction) for f, and A is called a retract of B.
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Monomorphisms are denoted f : A — B, while epimorphisms are denoted f : A — B. For a
category C, the class of C-monomorphisms is denoted Mono(C), while the class of C-epimorphisms
is denoted Epi(C).

Proposition 2.1.9. /fgof isa monomorphism (respectively epimorphism), then f (g) is a monomor-
phism (epimorphism).

Example 2.1.10. In Set (respectively Set® or Set?)), monomorphisms coincide with (families of)
injective functions, while epimorphisms coincide with (families of) surjective functions. Set-, Set”-
or Set%—arrows which are both monomorphisms and epimorphisms are isomorphisms. In Set, Set®
and Set%, all monomorphisms with non-empty domains have a retract, while all epimorphisms have
a section.

Definition 2.1.11. Let C denote an arbitrary category, and let A, B denote C-objects. A span on
A,B is a pair (f,g) of C-arrows, with f : C — A and g : C — B for some C-object C. Also,
a relation on A, B is a tuple (R,71,72) with R a C-object and r1 : R — A, ro : R — B some
C-arrows, such that whenever f,g : D — R are C-arrows satisfying ryo f =r;ogqg fori = 1,2, it
follows that f = g. (In this case, (ri,r2) is called a monomorphic span.) For C € |C|, the relation
given by (C,1¢,1¢) is called the equality relation on C. Given relations (R,r1,r2) and (R',r],rh)
on A, B, a morphism from (R,r1,72) to (R',r},r}) is a C-arrow r : R — R' such thatr; =7,or
fori=1,2.

Remark 2.1.12. For A, B € |C|, the category Rel(A, B) of relations on A, B is a preorder; that is,

there exists at most one morphism between any two relations on A, B. One writes (R,ry,7r2) <

(R',r,7h) if there exists a morphism between (R, 71,72) and (R, 7}, 7}).

Definition 2.1.13. Let C denote an arbitrary category, and let £ and M denote classes of C-arrows.
A C-object C is M-injective if and only if for any M-arrow m : A — B and C-arrow f : A — C,
there exists a C-arrow g : B — C' satisfying gom = f.

A—sB

I

lg
x\v
C

Also, C' is E-projective if and only if for any £-arrow e : A — B and C-arrow f : C' — B, there
exists a C-arrow g : C' — A satisfyingeog = f.

C

l\\fJ
g1
<+

A—e>B

The category C has enough M-injectives (respectively enough E-projectives) if and only if every
C-object is the domain of an M-arrow into an M-injective object (the codomain of an E-arrow
from an E-projective object).
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If £ and M are taken to be Epi(C) and respectively Mono(C), then the prefixes £- and M- can be
omitted.

Example 2.1.14. In Set, any object apart from the empty set is injective, while any object is projec-
tive.

Definition 2.1.15. Let C, £ and M be as in Definition 2.1.13. (£, M) is a factorisation system
for C if and only if the following hold:

— & and M are closed under isomorphisms

— C has (£, M)-factorisations, i.e. every C-arrow f has a factorisation of form f = moe with
eec& andme M

— C has the unique diagonalisation property, i.e. whenever the C arrows e € £, m € M, f
and g satisfy mo f = goe, there exists a unique C-arrow d satisfying doe = f and mod = g.

In this case, C is called an (£, M)-category.

Example 2.1.16. (Epi(Set), Mono(Set)) is a factorisation system for Set.

Arrows between categories are called functors and are required to preserve the categorical structure.
Definition 2.1.17. Let C and D denote categories. A functor F from C to D consists of:

1. a mapping F : |C| — |D|
2. for every pair A, B of C-objects, a function F : C(A, B) — D(F(A),F(B))

subject to the following constraints:

1. F(go f) =F(g) oF(f) for any f € C(A,B) and g € C(B,C)
2. F(1¢) = lgc) for any C € |C|.

A functor F is faithful (respectively full) if and only if the function F : C(A, B) — D(F(A),F(B))
is injective (surjective) for any A, B € |C|. An endofunctor on a category C is a functor F : C — C.

One writes F : C — D for a functor F from C to D. Also, given F : C — D together with A € |C|
and f €||C||, F(A) and F(f) are alternatively denoted FA and respectively Ff.

For a category C, the identity functor ldc : C — C takes C-objects and arrows to themselves.

Functor composition is defined by: GoF : C — E, (Go F)(A) = G(FA) for A € |C|, and
(GoF)(f) = G(Ff) for f €||C||, where F: C— D and G: D — E. GoF is alternatively denoted
GF.
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Small categories and functors between them constitute a category, denoted Cat.

The functors between two arbitrary categories do not, in general, constitute a set. Consequently,
arbitrary categories and functors between them do not constitute a category. The structures obtained
by dropping the requirements that the objects constitute a class and respectively that the arrows
between two objects constitute a set in the definition of categories are called quasi-categories (see
e.g. [AHS90]). (In the case of quasi-categories, the objects and respectively the arrows between two
objects form so-called conglomerates, which formalise collections of classes.)

Example 2.1.18. Classes and functions between them constitute a quasi-category, denoted SET.
Example 2.1.19. Categories and functors between them constitute a quasi-category, denoted CAT.

Any category is also a quasi-category. The notion of functor generalises to quasi-categories, with
the generalised notion still being called a functor.

Definition 2.1.20. Two categories C and D are isomorphic if and only if there exist functors
F:C—DandG:D — C such that GF = Id¢c and FG = Idp.

Definition 2.1.21. A functor F : C — C’ preserves a property P of arrows if whenever a C-arrow
f has property P, so does F f. F reflects the property P if whenever Ff has property P, so does f.
F creates the property P if, for any C'-arrow f’ with property P, there exists precisely one C-arrow
f such that Ff = f', and moreover, f has property P. Finally, F lifts the property P if, for any
C'-arrow f' with property P, there exists a C-arrow f with property P such that Ff = f'.

It follows immediately that if a functor creates a certain property, then it also lifts that property.

Arrows between functors are captured by natural transformations.

Definition 2.1.22. Let F, G : C — D denote arbitrary functors. A natural transformation « from
F to G (denoted o : F = G, or F===G ) is given by a class of D-arrows a4 : FA — GA for
A € |C|, such that ap o Ff = Gf o ay for any C-arrow f : A — B.

FA—25GA

F fJ/ J{Gf

FBWGB

A natural transformation o : F = G is a natural monomorphism (respectively a natural epimor-
phism or a natural isomorphism ) if and only if a4 is a monomorphism (respectively an epimorphism
or an isomorphism) for any A € |C|.

Given functors F,G,H : C — D together with natural transformations o : F = G and §: G = H,
letting (Boa)a = Baoay for A € |C| yields a natural transformation f o « : F = H. Moreover,
o is associative and has the natural transformations 1g : F = F given by (1g)4 = 14 for A € |C
with F : C — D, as identities.




Preliminaries 13

Example 2.1.23. If C denotes a small category and D denotes an arbitrary category, the functors
from C to D and the natural transformations between them constitute a category [C, D], called the
category of functors from C to D. Moreover, if D is small then so is [C, D].

Remark 2.1.24. If C and D denote arbitrary categories, the functors from C to D and the natural
transformations between them only constitute a quasi-category. (In this case, the natural transfor-
mations between two functors F, G : C — D do not, in general, constitute a set.) This quasi-category
is also denoted [C, D].

Amongst the objects of a category, of particular interest are initial and final ones.

Definition 2.1.25. Let C denote an arbitrary category. A C-object C' is initial (respectively final )
if and only if for any C-object D, there exists a unique C-arrow ¢: C — D (c: D — C).

The only arrow from an initial or final object to itself is therefore the identity.

Initial and final objects are instances of more general categorical concepts, called colimits and
respectively limits.

Definition 2.1.26. Let D denote an arbitrary category. A diagram of shape D in a category C is
a functord : D — C.

Example 2.1.27. Diagrams of shape - ——> - —>--- (respectively -<——:<——--.) are called
w-chains (w°P-chains).

Definition 2.1.28. Let d : D — C denote a diagram of shape D, with D small. A cone ond is a
tuple (L, (Ip) pejp|), with L € |C| and (Ip : L — dD) €||C|| for D € |D|, such that ddolp = Ipr
for each (d: D — D') €||D||. A limit ford in C is a cone (L, (Ip) pejp|) on d, having the property
that for any cone (C, (cp) pejp|) on d, there exists a unique C-arrow ¢ : C' — L such thatipoc = cp
for each D € |D|.

Final objects are obtained as limits of diagrams of form d : ® — C, with ® a category with no
objects. Other kinds of limits include: (finite) products (obtained by taking D to be a (finite)
category with no arrows other than the identities), pullbacks (obtained by taking D to be of shape
-—>-<——-), and equalisers (obtained by taking D to be of shape - ——=- ). The pullback
of a pair of equal arrows is called a kernel pair.

Notions of cocone and colimit can be defined by reversing the direction of arrows in the definitions
of cones and respectively limits. Instantiating the general definition of colimit yields notions of initial
object, (finite) coproduct (obtained by taking D to be a (finite) category with no arrows other than
the identities), pushout (obtained by taking D to be of shape -<——-——- ), and coequaliser
(obtained by taking D to be of shape - ——=- ). The pushout of a pair of equal arrows is called a
cokernel pair.

Finally, a coequaliser of a kernel pair of a C-arrow f is called a quotient of f, while an equaliser of
a cokernel pair of f is called an image of f.
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Given a family (C;);er of C-objects, their product (respectively coproduct) is denoted ([] Cj, (7; :
i€l

[1Ci = Cj)jer) ((II Ci, (¢j : C; — 11 Ci)jer) )- The product arrows 7 (coproduct arrows ¢;) are

i€l i€l i€l

called product projections (coproduct injections). And given a family (f; : C; — D;);er of C-arrows,

the unique C-arrow induced by the cone (] Cj, (fi o mi)icr) on (D;)ier (respectively by the cocone
(LI Di, (¢ 0 fi)ier) on (Ci)ier) is denotleedl [1fi (LI fi)- ¥I={1,....,n}, []C; (respectively
ﬁICi) and J] f; (respectively [] f;) are altelrerfativezlf/ldenoted Ci x...xCy (é‘ell—i— ...+ Cy) and
lfellx L. X fnze(lfl +...+fn) whliIEeI the unique C-arrow induced by a cone (C, (¢; : C — Ci)icqi,...n})
on (Ci)ieq1,...ny (respectively by a cocone (D, (d; : D; — D)icqi1,...n}) o0 (Di)igq1,....n}) is denoted

(s sen) ([da, ... dn)).

Definition 2.1.29. Let D denote a small category. A category C has D-limits, or is D-complete
if and only if any diagram of shape D in C has a limit in C. A category C has (finite) limits, or is
(finitely) complete if and only if any diagram of shape D in C, with D a small (respectively finite)
category has a limit in C.

Standard results state that finite completeness and cocompleteness of categories follow from the
existence of certain kinds of limits and respectively colimits.

Proposition 2.1.30. For a category C, the following are equivalent:

1. C is finitely complete
2. C has a final object and pullbacks

3. C has binary products and equalisers.

Example 2.1.31. The categories Set, Set® and Set% are complete and cocomplete, with limits and
colimits in Set® and Set% being computed component-wise. In Set, an initial object is given by the
empty set, while a final object is given by any one-element set; also, products are given by cartesian
products, while coproducts are given by disjoint unions.

Example 2.1.32. The category Cat is both complete and cocomplete. Limits and colimits of diagrams
in Cat are constructed using the limits and respectively colimits in Set of the diagrams obtained by
post-composing the original diagrams with the functors Obj : Cat — Set (taking a small category
to its set of objects) and Arr : Cat — Set (taking a small category to its set of arrows).

Remark 2.1.33. Replacing categories with quasi-categories (as target categories) in the definition of
limits and colimits yields notions of small limit and small colimit in a quasi-category, as well as of
small completeness and small cocompleteness of quasi-categories. Then, the quasi-category CAT
is both small complete and small cocomplete, with small limits and small colimits in CAT being
computed similarly to limits and colimits in Cat (see e.g. [Sch72]).

Instantiating2 Definition 2.1.21 yields notions of limit preservation, limit reflection, limit creation
and limit lifting by a functor.

2See also Example 2.1.50.
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Definition 2.1.34. Let D denote a small category. A functor F : C — E preserves D-limits, or
is D-continuous if and only if for any d : D — C, if (L, (Ip)pepy) is a limit for d in C, then
(FL, (Fip)peip|) is a limit for Fd in E. F reflects D-limits if and only if for any d : D — C, if
(FL, (Flp) pe (o) is a limit for Fd in E, then (L, (Ip) pe|p|) is a limit for d in C. F creates D-limits
if and only if for any d : D — C, if (K, (kp)pejp|) s a limit for Fd in E, then there exists precisely
one cone (L, (Ip) pep|) on d in C such that FL = K and Flp = kp for any D € |D|, and moreover,
(L, (Ip)pepy) is a limit for d in C. Finally, F lifts D-limits if and only if for anyd : D — C, if
(K, (kp)pe|p|) is a limit for Fd in E, then there exists a limit (L, (Ip)pep|) for d in C such that
FL =K and Flp = kp for any D € |D|.

Consequently, if a functor creates certain limits, then it also lifts those limits.

Proposition 2.1.35 ([AHS90]). Let D denote a small category, and let F : C — E denote an
arbitrary functor. If E has D-limits and F lifts them, then C has D-limits and F preserves them.

Corollary 2.1.36. Let D denote a small category, and let F : C — E denote an arbitrary functor. If
E has D-limits and F creates them, then C has D-limits and F preserves them.

Example 2.1.37. The class of extended polynomial functors from Set® to Set is the least class

containing:
1. the constant functor A with A € |Set]
2. the projection functor Iy with s € §
3. the product functor Fy x ... x F,,, with Fy,... F, already in the class
4. the coproduct functor Fy + ...+ Fy, with Fy,... F, already in the class
5. the exponent functor F#, with A € |Set| and F already in the class.

The class of polynomial functors from Set® to Set is the least class containing 1-4 above.

The class of (extended) polynomial endofunctors on Set® consists of endofunctors F : Set® — Set”
such that F, is an (extended) polynomial functor for each s € S.

Extended polynomial (endo)functors preserve pullbacks, equalisers and limits of w°P-chains. Also,
polynomial (endo)functors preserve coequalisers of kernel pairs and colimits of w-chains, but do not,
in general, preserve pushouts or arbitrary coequalisers. Finally, polynomial (endo)functors preserve
monomorphisms as well as epimorphisms.

Example 2.1.38. If ¢ : § — S is an arbitrary function, then the functor Uy : Set¥ — Set® taking
A € |Set™']| to (A;g(s))ses € |Set”| preserves limits and colimits. And if, in addition, ¢ is injective,
then Uy lifts limits and colimits. (Both statements follow from limits and colimits in Set® and Set™’
being computed component-wise.)

Similarly, if V.C Sand V C &, if ¢ : S — S is such that ¢[y=1vy : V — S, and if D is a

V-indexed set, then the functor Uy : Set}, — Set, taking A’ € |Set?| to (A:;S(s))ses € |Set?)|
preserves limits and colimits. And if, in addition, ¢ is injective, then Uy lifts limits and colimits.
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The construction of pullbacks in Cat can be used to obtain the following result.

Proposition 2.1.39. Let C, C; and Cy denote small categories, let U; : C; — C with ¢ = 1,2
denote arbitrary functors, and let U} : C' — C; with i = 1,2 denote the pullback of Uy and Uy in
Cat. If each of C, Cy, Cy is D-complete (D-cocomplete) for some small category D, and if Uy and
Uy lift D-limits (D-colimits), then C' is D-complete (D-cocomplete), while U} and U, lift D-limits
(D-colimits).

Proof (sketch). For a diagram d : D — C’ in C’, the existence of D-limits (D-colimits) in C; together
with the preservation of D-limits (D-colimits) by U; (see Proposition 2.1.35) and the lifting of D-
limits (D-colimits) by Uy ensure that there exist limits (colimits) for U{d in C; and for ULd in C
whose images under U; and respectively U coincide. These limits (colimits) uniquely determine a
limit (colimit) for d in C'. O

Remark 2.1.40. Proposition 2.1.39 generalises to arbitrary categories C, C; and Cs, with the pullback
being taken in the quasi-category CAT.

The following result concerns the existence of limits in categories of functors.

Proposition 2.1.41. Let C and D denote small categories, and let E denote a D-complete (respec-
tively D-cocomplete) category. Then, any D-shaped diagramd : D — [C, E] has a limit (colimit), and
this limit (colimit) is computed pointwise. Furthermore, if each of dD with D € |D| is |-continuous
(1-cocontinuous), for some small category |, then so is the limit (colimit) of d. Finally, if each of
dD with D € |D

preserves monomorphisms (epimorphisms), then so does the limit (colimit) of d.

Remark 2.1.42. Proposition 2.1.41 generalises to the case when C is an arbitrary category. (In this
case, [C, E] is a quasi-category.)

The next result summarises some properties of monomorphisms, pullbacks, equalisers and kernel
pairs which will be used in the following chapters.

Proposition 2.1.43. The following hold:

1. Any equaliser is a monomorphism.
2. The pullback of a monomorphism along an arbitrary arrow, if it exists, is itself a monomor-
phism.

3. An arrow f : C — D in a category C is a monomorphism if and only if the following is a
pullback in C:

i¥]

cC—C
lcl f
CT>D

4. If a functor preserves kernel pairs, then it also preserves monomorphisms.
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5. The kernel pair of an arrow defines a relation on the domain of that arrow.
6. If a kernel pair has a coequaliser, it is the kernel pair of its coequaliser.
7. If a coequaliser has a kernel pair, it is the coequaliser of its kernel pair.

8. If a category has binary products and pullbacks, then it also has equalisers.

(Dual results hold for epimorphisms, pushouts, coequalisers and cokernel pairs.)

A concept which will prove particularly useful in the following is that of a regular epimorphism
(respectively regular monomorphism), given by an epimorphism (monomorphism) which is also a
coequaliser (equaliser).

Example 2.1.44. In Set, all epimorphisms and monomorphisms are regular — every epimorphism is
the coequaliser of its kernel pair, while every monomorphism is the equaliser of its characteristic
mapping and of a constant mapping (see e.g. [Bor94a, p. 143]).

Definition 2.1.45. A category C is called regular if and only if the following hold:

1. every arrow has a kernel pair
2. every kernel pair has a coequaliser

3. the pullback of a regular epimorphism along an arbitrary arrow exists and is a regular epimor-
phism.

Proposition 2.1.46. In a regular category, every arrow f has a factorisation of form f = moe with
m a monomorphism and e a regular epimorphism, and moreover, this factorisation is unique up to
isomorphism. (Such a factorisation is called a regular-epi-mono factorisation.)

Proof (sketch). The C-arrows e and m defining the regular-epi-mono factorisation of f : A — C are
given by the quotient e : A — B of f and respectively by the unique C-arrow m : B — C satisfying
f = m o e resulting from e being a coequaliser. O

Example 2.1.47. Set is regular (as all epimorphisms are stable under pullbacks), and so are Set®
and Set?, with S an index set and D a V-sorted set for some V C S.

Remark 2.1.48. The notion of regular category used here, taken from [Bor94b], does not appear to
be the standard one. An alternative definition of regular categories can for instance be found in
[AHS90, FS90], where it is required that the category in question is finitely complete and admits
regular-epi-mono factorisations, and that regular epimorphisms are stable under pullbacks. One can,
however, show that these conditions imply those in Definition 2.1.45, and moreover, provided that
the category in question in finitely complete, the converse also holds. All the regular categories
considered in the following are finitely complete.

General universal properties are expressed using the notion of (co)universal arrow.
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Definition 2.1.49. Let U : D — C denote a functor, and let C' € |C|. A couniversal arrow from
U to C is a C-arrow e : UC” — C, with C” a D-object, such that for any D-object D and C-arrow
f:UD — C, there exists a unique D-arrow f’ : D — C” satisfying f = ec o Uf’.

D

!

C<—Uuc’ ok

C#D

The D-object C” is said to be cofree over C w.r.t. U.

Given U and C' as before, a universal arrow from C to U is a C-arrow n¢ : C — UC#, with C#
a D-object, such that for any D-object D and C-arrow f : C'— UD, there exists a unique D-arrow
f#:C# — D satisfying f = Uf# onc.

¢ uc# c#
\ J{Uf# J/f#
UD D

The D-object C# is said to be free over C' w.r.t. U.

Example 2.1.50. Let D denote a small category, and let A : C — [D, C] denote the diagonal functor,
defined by:

- A(C)(D) = C for D € |D| and A(C)(d) = 1¢ for d €]|D
— A(¢)p =cfor D € |D| and ¢ €]|C||.

, for C € |C|

Then, a limit for a diagram d : D — C is the same as a couniversal arrow from A to d, while a
colimit for d is the same as a universal arrow from d to A.

Remark 2.1.51. Let U : D — C denote an arbitrary functor. If, for any C-object C, there exists a
couniversal arrow ec : UC” — C from U to C, then the correspondence C' — C” extends uniquely
to a functor R: C — D, called a right adjoint to U. The action of R on arrows is given by:

(c:C=C)e|C| = ((coec) :C”—C”)e||D|

Moreover, the couniversal arrows ec : UC” — C, C € |C| define a natural transformation e : UR =
Idc, called the counit of the adjunction. If, in addition, € is the identity natural transformation 14,
then R is called a right adjoint, right inverse to U.

Similarly, any family of universal arrows n¢ : C — UC#, C € |C| yields a functor L : C — D, called
a left adjoint to U, mapping C € |C| to C# € |D| and (c: C — C') €||C|| to (ncr o) €||D ],
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in such a way that the universal arrows ¢ : C — UC#, C € |C| define a natural transformation
n : ldc = UL, called the unit of the adjunction. If n is the identity natural transformation 1,4., then
L is called a left adjoint, right inverse to U.

Example 2.1.52. If ¢ : S — S’ is an arbitrary function, then the functor Uy : Set®" — Set® taking
A € |Set”| to (A:;s(s))ses € |Set®| has both a right adjoint R : Set® — Set® and a left adjoint
L : Set® — Set™. (R takes A € [Set®| to ( [] As)scs € |Set™|, while L takes A € |Set®| to
b(s)=s'

( II As)ses € |SetS'|.) And if, in addition, ¢ is injective, then R and L are also right inverses
¢(s)=s'

to U¢.

Similarly, if V.C Sand V C S, if ¢ : S — S issuch that ¢Jy=1y : V — S, and if D is a
V-indexed set, then the functor Uy : Set?) — Set? taking A’ € |SetD | to (A;g(s))ses € |Set?)| has
both a right adjoint and a left adjoint. And if, in addition, ¢ is injective, then these adjoints are
also right inverses to Uyg.

Proposition 2.1.53. LetL: C — D and R: D — C be functors. If L is a left adjoint to R then R
is a right adjoint to L, and conversely.

One writes L #4 R whenever L is a left adjoint to R.
Proposition 2.1.54. Right adjoints preserve limits, while left adjoints preserve colimits.
Then, 3 of Proposition 2.1.43 yields the following.

Corollary 2.1.55. Right adjoints preserve monomorphisms, while left adjoints preserve epimor-
phisms.

2.2 General Logics

Formal specification and verification techniques employ a large variety of logics. Common features
of these logics include notions of sentence, inference of sentences from collections of sentences,
model, and satisfaction of sentences by models. The notions of entailment system [Mes89] and
institution [GB92] capture the essence of the syntactical and respectively semantical aspects of a
specification logic, while abstracting away the syntactic and semantic details specific to particular
logics.

We begin with the notion of institution. Its main ingredients are: a collection of signatures (provid-
ing a syntax for constructing sentences) and signature morphisms (providing translations between
syntaxes), together with, for each signature 3, a collection of 3-models, a collection of X-sentences,
and a satisfaction relation between Y-models and X-sentences. These are subject to a constraint
formalising the statement that truth is invariant under changes of notation [GB92].

Definition 2.2.1 ([GB92]). A logical system is a tuple (Sign, Mod, Sen, |=), where:

1. Sign is a (quasi-)category whose objects are called signatures
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2. Mod : Sign — CAT®P is a functor giving, for each signature ¥, a category Mod(X) whose
objects are called ¥-models and whose arrows are called >-homomorphisms

3. Sen : Sign — SET is a functor giving, for each signature, a class of sentences over that
signature

4. = is a signature-indexed family of relations (F=x)xe|sign| with, for ¥ € |Sign|, the relation
Ey C |Mod(X)| x Sen(X) being called ¥-satisfaction.

An institution is a logical system (Sign, Mod, Sen, |=) additionally satisfying:
M' =5y Sen(¢)(e) if and only if Mod(¢)(M') Ex e

for any (¢ : £ — X') €||Sign||, M’ € [Mod(X')| and e € Sen(X).
The defining condition of institutions is called the satisfaction condition.

Remark 2.2.2. The definition of institutions in [GB92] did not involve defining logical systems be-
forehand. However, in order to also account for logics in which the satisfaction condition does
not necessarily hold, here the original definition has been split accordingly. Also, the definition of
institutions in [GB92] involved functors Mod : Sig — Cat°? and Sen : Sig — Set, as opposed to
functors Mod : Sig — CAT®P and Sen : Sig — SET. The generalisation considered here is necessary

in order to give an institutional account of logics with abstract notions of signature and sentence
(see Sections 3.1.3, 3.2.3 and 3.3.3).

In a logical system (Sign, Mod, Sen, |=) one writes Uy for Mod(¢), and ¢ for Sen(¢), with (¢ : X —
¥') €| Sign ||. The functors U, are called reduct functors. Also, one writes M’y (respectively
f"Ix) as a shorthand for UyM' (Uyf'), with (¢ : ¥ — X') €| Sign ||, M’ € |[Mod(X')| and
/" €llMod(Z) |].

Definition 2.2.3. Let £ = (Sign,Mod, Sen, |=) denote a logical system. A ¥'-model M' is a ¥'-
extension (respectively coextension) of a X-model M along a signature morphism ¢ : ¥ — X' if
and only if there exists a X-homomorphism f: M — M'[x (f : M'|s— M).

Definition 2.2.4. Let £ = (Sign,Mod, Sen, |=) denote an institution.

1. An (L-)specification is a pair (X, E) with ¥ € |Sign| and E C Sen(X).

2. A ¥-model M satisfies a specification (X, E) (written M |=x. E') if and only if M =5 e for
eache € E.

3. An L-specification is consistent if and only if it has at least one model.

4. A X-sentence e is semantically entailed by a class E of Y-sentences (written E =5, e) if
and only if M |=x, E implies M |=sx, e for any M € |Mod(X)|.

5. An (L-)theory is an L-specification (X, E) such that E is closed w.r.t. =x,. The closure of
a class E of Y-sentences under =y, is denoted E*.
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6. A signature morphism ¢ : ¥ — X' defines an (L-)specification morphism ¢ : (X, E) —
(X', E") if and only if Sen(¢)(E) C E'".

7. An (L-)theory morphism is an L-specification morphism between L-theories.

In an institution (Sign, Mod, Sen, |=), one writes Mod(X, E) for the full subcategory of Mod(X)
whose objects satisfy the specification (X, E). Then, specification morphisms ¢ : (3, E) — (X', E')
induce theory morphisms ¢ : (%, E*) — (X', E'™) on the one hand (see [GB92, Lemma 8]), and
reduct functors Uy : Mod (X', E') — Mod(X, E) on the other.

If Spec denotes the category of specifications and specification morphisms of an institution, then
diagrams in Spec can be used to formalise the relationships that exist between the components
of the system being specified, while colimits in Spec yield a canonical way to combine existing
specifications of the system components into a specification of the system as a whole. The next
two results concern the existence of colimits in Spec.

Theorem 2.2.5 ([GB92]). Let (Sign, Mod, Sen, =) denote an institution, let Spec denote its cat-
egory of specifications, and let Sig : Spec — Sign denote the functor taking specifications to their
underlying signatures. Then, Sig lifts colimits.

Corollary 2.2.6 ([GB92]). If the category of signatures of an institution is finitely cocomplete,
then so is its category of specifications.

The notion of entailment employed by institutions is based on the satisfaction of sentences by models.
A different notion of entailment, based on the inference of sentences from collections of sentences
according to specified rules is captured by entailment systems.

Definition 2.2.7 ([Mes89]). An entailment system is a triple (Sign, Sen, =), where:

1. Sign is a (quasi-)category whose objects are called signatures

2. Sen : Sign — SET is a functor giving, for each signature, a class of sentences over that
signature

3. I is a signature-indexed family of relations (Fx)xc|sign| With, for ¥ € |Sign|, the relation

Fss C P(Sen(X)) x Sen(X) being called ¥-entailment

such that the following hold:

1. {e} Fx e, fore € Sen(X) (reflexivity)
2. Etyeand E CE' imply E' b5, e (monotonicity)
3. Erxeifori el and{e; | i€ I} Fxeimply EFyx e (transitivity)
4. E by e implies Sen(¢)(E) Fxr Sen($)(e), for ¢ : X2 — X' (t-translation)
A desirable property of any specification logic which involves both an institution and an entailment

system is the existence of a certain compatibility between its two notions of entailment, in a sense
made precise below.
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Definition 2.2.8. Let Sign, Mod, Sen, |=, and \ be such that (Sign,Mod, Sen, |=) is a logical
system and (Sign, Sen, ) is an entailment system. Then, - is sound (respectively complete) for
= if and only if E t-x, e implies E |=x, e (E |=x. e implies E Fx, e) for any ¥ € |Sign|, E C Sen(X)
and e € Sen(X).

2.3 Algebraic Specification

2.3.1 Many-Sorted Algebra

The theory of many-sorted algebras [GTWT78] is a generalisation of the theory of universal algebras
that uses multiple sorts to specify collections of types (as opposed to single types). A brief account
of the use of many-sorted algebras for the specification of data types is given in the following.

Definition 2.3.1. A (many-sorted) signature is a pair (S, %), with S a sort set and X an S* x S-
sorted set of operation symbols (with S* denoting the set of finite sequences of elements of S).
Operation symbols o € ¥, ; (with € denoting the empty sequence) are called constant symbols.

The sorts in a many-sorted signature denote types, while the operation symbols denote type con-
structors.

Many-sorted signatures (S,X) are abbreviated ¥ whenever the context allows it. If ¥ denotes a
many-sorted signature with sort set S, one writes 0 : 51...5, — s for o € Xy, s, 5, and X for the
subsignature {0 : s1...5, = s | 51,...,8, € S} with s € S.

Example 2.3.2. The many-sorted signature Yy, consisting of a sort Nat, a constant symbol 0 : — Nat
and a unary operation symbol succ : Nat — Nat specifies natural numbers.

Particular values of the types specified by a many-sorted signature can be referred to by means of
algebraic terms.

Definition 2.3.3. Let X denote a many-sorted signature with sort set S. The S-sorted set T, of
ground Y-terms is defined inductively as follows:

1. oeTy, foro € X
2. O'(tl,. .. ,tn) S Tz,s for o € 251...sn,s and t; € Tz,si, 1=1,...,n.

If V denotes an S-sorted set of variables, the S-sorted set Tx.(V) of £-terms with variables in V
is the S-sorted set of EU{V : = s | V €V, s € S}-terms.

That is, X-terms are generated by the operation symbols of 3, while Y-terms with variables in V
are generated by the operation symbols of 3 together with the variables in V (regarded as constant

symbols of an enriched signature).

Example 2.3.4. succ(0), succ(succ(0)), ... are ground Xyar-terms of sort Nat.
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One writes V : s for V. € Vs and t : s for t € Tx(V)s, with s € S.

Definition 2.3.5. Let ¥ denote a many-sorted signature, let t € Tx.({V1,...,V,}) with V; : s; for
i=1,...,n, and let t; € T5(V)s, fori=1,...,n. The substitution of ¢, ... ,t, for V1,...,V, in
t, denoted t(t1/V1,...,tn/Vyn) (t(t/V') for short), is defined inductively as follows:

1. V;(t/V)=t; fori e {1,...,n}
2. (o(th, -, ) F/V) = o(t1E/V), - 8, (V)
for o € Es’l...s’m,s and t; S TE({Vl, .. 'aVn})s;r 1=1,...,n.

Many-sorted algebras interpret the sorts and operation symbols in many-sorted signatures as sets
and respectively functions on these sets, while algebra homomorphisms provide structure-preserving
mappings from one algebra to another.

Definition 2.3.6. Let ¥ denote a many-sorted signature with sort set S. A (many-sorted) X-
algebra is an S-sorted set A together with, for each o € ¥, s with w € S* and s € S, a function
oa: Ay — As (with A, = {x} and As,..5, = As; X ... x As, forn>1and sy,...,s, € S). The
S-sorted set A is called the carrier of the algebra. A (many-sorted) >-homomorphism between
Y-algebras A and B is an S-sorted function f : A — B additionally satisfying:

1. fs(oa) =0p foro € X4

2. fs(oalar,...,an)) =0B(fs1(a1),..., fs.(an)) foro € 3y, s, sanda; € Ag,, i =1,...,n.

For a many-sorted signature ¥, the category of X-algebras and X-homomorphisms is denoted Alg(X).

The interpretation of Y-operation symbols by >.-algebras extends to an interpretation of X-terms by
>-algebras.

Definition 2.3.7. Let . denote a many-sorted signature, and let ) denote a set of variables. The in-

terpretation of a X-termt € Tx,(V)s, withs € S, in a ¥-algebra A is a functionty : [[ Ay —
XeV,X:s
A, defined as follows:

1. Xy=7mx for X eV,
2. (U(tl,...,tn))A =040 ((tl)A,---,(tn)A> for o € Esl...sn,s and t; € TE(V)si: 1=1,....n

with ((t1)a,...,(tn)a) s JI Ag — As, X ... X A, denoting the unique Set-arrow induced by
Xev,X:s'
(ti)A: H A51—>A5i with:t=1,...,n.
XeEV,X:s!

Theorem 2.3.8 ([GTWT78]). Let ¥ denote a many-sorted signature with sort set S. Then, the S-
sorted set T, carries a ¥:-algebra structure. Moreover, this 3.-algebra, known as the term X-algebra,
is initial in Alg(X%).
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Remark 2.3.9. The unique X-homomorphism from the term X-algebra to an arbitrary Y-algebra A
takes a M-term ¢t € T to its interpretation t4 € A,.

Corollary 2.3.10. Let > denote a many-sorted signature with sort set S, and let V denote an
S-sorted set of variables. Then, the S-sorted set Tx,(V) carries a ¥.-algebra structure.

Proof. The conclusion follows from Theorem 2.3.8, by taking X to be the signature X U {V : —
s|VeVs, seSt O

Definition 2.3.11. Let ¥ denote a many-sorted signature. A 3-algebra A is reachable if and only
if 14,5 is surjective for each s € S, where !4 : Ts; — A denotes the unique ¥.-homomorphism from
T, to A.

Example 2.3.12. An initial Xya7-algebra is the algebra I interpreting:

— the sort Nat as the set Iyay = {0, succ(0), succ(succ(0)), ...}
— the constant symbol 0 as the element 0; = 0 of Iy,;

— the unary operation symbol succ as the function succy : Iyay — Iyaw defined by: succy(0) =

succ (0), such(succ(O)) = succ(succ(0)), ...

Initial algebras satisfy an induction principle, which exploits the existence and uniqueness of ho-
momorphisms into any other algebra. Specifically, the existence of such homomorphisms yields a
definition principle for functions on the initial algebra, while the uniqueness of such homomorphisms
yields a proof principle for inductively defined functions.

Example 2.3.13. Given the many-sorted signature Yy,7 in Example 2.3.2, one can use induction to
define a function even : T%,,, — Bool = {true, false}, which takes a Xyar-term ¢ to the boolean
value true, respectively false, depending on whether the natural number denoted by ¢ is even or
not. After appropriately defining a Xyar-structure on Bool, the Xyyr-homomorphism from T, to
Bool resulting from the initiality of 7% provides a definition for even. The desired Yyr-structure on
Bool is given by:

— Opoo1 : {*} = Bool, Opye1 = true

— SUCCpoo1 : Bool — Bool, succpeei(true) = false, succpee(false) = true

Furthermore, one can use induction to prove that even(succ(succ(t))) = even(#) holds for any
Yyar-term ¢. This is a consequence of the uniqueness of a Xyr-homomorphism from 1%, to
Bool, together with the observation that the function taking a Xyar-term ¢ to the boolean value
even(succ(succ(#))) defines such a homomorphism:

— even(succ(succ(0))) = suCCpoo1 (8UCCEoo1 (OBoo1)) = true = Opoo1

— even(succ(succ(succ(t)))) = succpee (even(succ(succ(t))))
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For a many-sorted signature with sort set S, there exists a canonical way of extending an S-sorted
set to a Y-algebra.

Theorem 2.3.14 ([GTW78]). Let ¥ denote a many-sorted signature with sort set S, and let
U: Alg(X) — Set® denote the functor taking Y-algebras to their carrier. Then, for any A € |Set®
there exists A% € |Alg(X)| free over A w.r.t. U.

’

Proof (sketch). For A € |Set®|, A# is given by an initial algebra of the signature £, = L U {a : —
s|la€A; seS}t. O

Remark 2.3.15. The free Y-algebra over the empty S-sorted set is isomorphic to 7%, while the free
Y-algebra over an S-sorted set V of variables is isomorphic to 7% (V).

Equations are used to constrain the values associated to data types, namely by identifying values
constructed in different ways.

Definition 2.3.16. Let ¥ denote a many-sorted signature with sort set S. A (many-sorted) X-
equation is a tuple (V,l,r) (also denoted (YV) | = r) with V an S-sorted set (of variables) and
l,r € Ts(V). If V = 0, the equation is called ground. A Y-algebra A satisfies a Y-equation
(VV) I =r (written A =5 (VV) | = r) if and only if for any assignment of values in A to the
variables in V, in the form of an S-sorted function 6 : V — UA, 0% (1) = 0% (r) (with 0% : Ts,(V) —
A denoting the unique extension of @ : V — UA to a ¥-homomorphism).

Remark 2.3.17. A variant of the notion of Y-equation is that of a conditional >.-equation, given by a
tuple WV, (I,7), (l1,71), -+, (In,mn)) (also denoted (VV) I =rifly =ry,...,l, =r,). A X-algebra
A is said to satisfy a conditional equation of the above form if and only if, for any assignment
6:V — UA, 6% (1) = 0% (r) holds whenever each of % (I;) = 67 (r;) with i = 1,...,n does.

Translations between (the sorts and operation symbols of ) many-sorted signatures are specified using
many-sorted signature morphisms.

Definition 2.3.18. Let 3 and ¥’ denote many-sorted signatures with sort sets S and respectively
S’. A (many-sorted) signature morphism ¢ : X — X' consists of a function ¢ : S — S’ together
with an S* x S-sorted function (¢y s)wes+ scs, With dys @ By s — E’*(w),¢(s) for w € S* and
s € S (with ¢* denoting the pointwise extension of ¢ to a function from S* to S'*).

The category of many-sorted signatures and signature morphisms is denoted Sign.

At the syntactic level, many-sorted signature morphisms ¢ : ¥ — ¥/ induce (pointwise) translations
of X-terms to ¥/-terms, and of X-equations to X'-equations. This yields a functor Eqn : Sign — SET,
taking a signature ¥ to the set of all X-equations, and a signature morphism ¢ : ¥ — ¥/ to the
function translating YX-equations to Y/-equations along ¢.

Also, at the semantic level, many-sorted signature morphisms ¢ : ¥ — X' induce reduct functors
Uy : Alg(X') — Alg(X), taking X'-algebras to the X-algebras obtained by ignoring the interpretations
of the X'-sorts and operation symbols that are not in the image of ¢:
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1. for A € |Alg(X')|, UgA is given by:

(@) (UpA)s = Ay, for s € S
(b) 0U¢A(a1, cosan) = @(0)alar,. .. a,) for o € Xy .5 and a; € (UgA),,, 1 =1,...,n

2. for (f : A — B) €||Alg(X')

, Uy f is given by (Uyf)s = fy(s) for s € S.

This yields a functor Alg : Sign — CAT®P, taking a signature 3 to the category Alg(X), and a
signature morphism ¢ : ¥ — ¥’ to the functor Uy : Alg(X') — Alg(X).

Furthermore, the satisfaction condition holds for the tuple (Sign, Alg, Eqn, |=).
Theorem 2.3.19 ([GB92]). (Sign, Alg, Eqn, =) is an institution.

This institution is known as many-sorted equational logic, and has the property that its category of
signatures is finitely cocomplete.

Theorem 2.3.20 ([GB84]). Sign is finitely cocomplete.

It then follows by Corollary 2.2.6 that the category Spec of many-sorted specifications and specifi-
cation morphisms it itself finitely cocomplete.

Corollary 2.3.21 ([GB84]). Spec is finitely cocomplete.

The semantic constructions used to provide denotations for many-sorted specifications and specifi-
cation morphisms are outlined in the following.

Definition 2.3.22. Let ¥ denote a many-sorted signature with sort set S, and let A denote a
Yl-algebra. A Y-congruence on A is an S-sorted equivalence relation = on the carrier of A,
additionally satisfying: oa(a1,...,an) =s oa(dl,...,a},) for o € Xy, 5. s and a;,a; € A, with
a; =, a;, 1 =1,...,n. The quotient of a X-algebra A by a ¥.-congruence = on A is the X-algebra,
denoted A/=, whose carrier is given by: (A/=)s = As/=, for s € S, and whose operations are given

by: UA/E([al],...,[an]) =[oalar,...,an)] foro € Xy, 5, sanda; € Ag,, i =1,...,n.

If 3 denotes a many-sorted signature and A denotes a Y-algebra, then any set E of YX-equations
induces a X-congruence =4 i on A. Specifically, =4 g is the least ¥-congruence containing =4 g,
with =4 5 C A x A being given by:

0% (1) =,z 07 (r) whenever (YV) I =risin Eand §:V — UA
Theorem 2.3.14 then extends from signatures to specifications.

Theorem 2.3.23 ([GTW78]). Let U : Alg(X,E) — Set® denote the functor taking (%, E)-
algebras to their carrier. Then, for any A € |Set®|, there exists A# € |Alg(X, E)| free over A

w.r.t. U.
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Proof (sketch). For A € |Set®|, A# is the quotient of the free -algebra A’ over A by the X-
congruence =4/ g induced by E on A’. O

Theorem 2.3.23 provides a canonical way of extending an S-sorted set to a (X, F)-algebra. By
Proposition 2.1.54, the free (X, E')-algebra over the empty S-sorted set is an initial (X, E')-algebra,
denoted Tx r. The Y-algebra Tx g has the property that the ground ¥-equations it satisfies are
precisely those semantically entailed by E.

Proposition 2.3.24. Let Y. denote a many-sorted signature, let E denote a set of Y.-equations, and
let e denote a ground X-equation. Then, E |=yx. e if and only if Ts g =5 e.

Proof. For a (X, E)-algebra A, let !y : Ts,  — A denote the unique X-homomorphism from the
initial (X, F)-algebra to A. Then, by initiality of T%;, the following diagram commutes:

Ty —2 5 A

| A

Tx E

That is, t4 =!,(try, ) for any ground ¥-term ¢. Hence, Ity , = 71y, implies [4 = r4 for any
ground Y-equation (V()) [ = r. This proves the if direction.

The only if direction follows immediately from T, g being a (X, E)-algebra. O

The preceding result justifies the use of initial algebras as denotations for many-sorted specifications.

An alternative way of interpreting a many-sorted specification is as the category of algebras satisfying
it. This category enjoys a closure property which will be described in the following.

Definition 2.3.25. Let ¥ denote a many-sorted signature with sort set S, and let A denote a
Yl-algebra. An S-sorted subset B of UA defines a Y:-subalgebra of A if and only if B carries a
Y-algebra structure which makes the inclusion of B into UA a ¥-homomorphism. Also, a 3-algebra
C is a homomorphic image of A if and only if there exists a -homomorphism f : A — C with
fs surjective for each s € S.

Proposition 2.3.26. For a many-sorted signature 3., the category Alg(X) has products.

Definition 2.3.27. Let ¥ denote a many-sorted signature. A full subcategory of Alg(X) is a -
variety if and only if it is closed under subalgebras, homomorphic images and arbitrary products.

The previously-mentioned closure property of the category of algebras of a many-sorted specification
amounts to this category being a variety. Furthermore, according to Birkhoff's variety theorem, any
algebraic variety is characterisable by equations.

Theorem 2.3.28 ([MT92]). Let X denote a many-sorted signature, and let IC denote a full sub-
category of Alg(X). Then, K is a variety if and only if KC is equational (i.e. there exists a set E of
Y-equations such that KL = Alg(3, E)).
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We now describe the semantic constructions used as denotations for signature morphisms and spec-
ification morphisms.

Theorem 2.3.29 ([TWW82]). Let Uy : Alg(X') — Alg(X) denote the reduct functor induced
by a many-sorted signature morphism ¢ : X — X!. Then, for any A € |Alg(X)|, there exists
A% € |Alg(X")]| free over A w.r.t. Uy.

Proof (sketch). For A € |Alg(X)|, A# is the quotient of the free Y'-algebra Ts/(A') over the

S’-sorted set A = ( J[ As)ses by the least X'-congruence relating ts(oa(a1,...,a,)) with
o(s)=s'
() 1y, Ay (tsy (1), - -+ s ts, (an)) whenever o € 55, 5, s and a; € Ay, i =1,...,n. O

Remark 2.3.30. The free ¥'-algebra A% over the Y-algebra A w.r.t. Uy is the least X'-extension of
A along ¢ (see Definition 2.2.3), in that A% has a unique X'-homomorphism into any other such

extension.

Theorem 2.3.29 generalises from signatures to specifications.

Theorem 2.3.31 ([TWW82]). Let U, : Alg(X',E') — Alg(3, E) denote the reduct functor
induced by a many-sorted specification morphism ¢ : (X, E) — (X', E'). Then, for any A €

|Alg(3, E)|, there exists A" € |Alg(X/, E')| free over A w.r.t. U,.

Proof (sketch). For A € |Alg(X, E)|, A¥ is the quotient of the free >'-algebra over A w.r.t. U, by
the X'-congruence induced on it by the equations in E'. O

The following deduction calculus, known as many-sorted equational deduction, can be used to reason
about the satisfaction of equations by algebras of many-sorted specifications:

[ base] Tre ¢S E
e
[ reflexivity | AR
symmetry] BV E=F
y YW Erwv) v =t
eransitivity] ZZ YV L=t BE (V) =t
y EF(VV)t=1t"
o EF(X1)...(vXp) t =1
[substitution | o X, Xa) = (0 X T X
¢ oy
congruence] ZEOVI 0=t o BE 0V =ty o

EF (V) oty tn) = o(t),.... 1))

Letting FxC P(Eqn(X)) x Eqn(X) be given by: E b5 e if and only if E' - e can be inferred using
a finite number of applications of the above rules, for E C Eqn(X), e € Eqn(X) and ¥ € |Sign|
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yields an entailment system (see Definition 2.2.7) (Sign, Eqn,F). Moreover, the induced notion of
entailment is both sound and complete for the satisfaction of equations by algebras.

Theorem 2.3.32 ([GMB81]). Let ¥ denote a many-sorted signature, let E denote a set of -
equations, and let e denote a Y.-equation. Then, E |=x e if and only if E Fx e.

The Lawvere category of a many-sorted signature is a category whose arrows correspond to algebraic
terms over that signature, and has the property that algebras of the signature correspond to product-
preserving functors from the Lawvere category to Set, while algebra homomorphisms correspond to
natural transformations between such functors.

Definition 2.3.33. Let 3 denote a many-sorted signature with sort set S. The Lawvere category
of ¥ is the least category L* satisfying:

1. L* has finite products
2. SC|L¥|

3. Sesns CLE(s1 X ... X 8p,8) forn € N and s1,...,8n,8 € S.

Proposition 2.3.34. Let 3 denote a many-sorted signature. There exists a one-to-one correspon-
dence between s-sorted Y-terms t € T ({X1,..., X, })s with X; : s; fori = 1,...,n and L*-arrows
[t] : s1%...x8y, — s. Furthermore, ift; € Tx(V)s, fori =1,...,n, then [t(t1/X1,...,t,/Xp)] =

[l o (T, - - Ttnd)-

Proof (sketch). The L*-arrow [[t] : 51 X...x s, — s associated to a X-term ¢t € Ts({X1,..., Xn})s
with X; : s; fori =1,...,n is defined inductively by:

1. [[Xz]] = T;:81 X ... X 8, =S forie{l,...,n}

2. [o] = 0:1— sforo€X.sand s €S (with 1 denoting the empty product in L*)

3. [o(t,-ste)] = [olo([tal, - [tel) s s1% ... xsp > sforo € By g s SyeiiySps €S
and t; € TE({Xl,... aXn})sg. forj=1,...,k.

|

Proposition 2.3.35. Let 3. denote a many-sorted signature. Then, Y-algebras A are in one-to-
one correspondence with product-preserving functors [A] : L> — Set, while $-homomorphisms
f: A — B are in one-to-one correspondence with natural transformations [f] : [A] = [B].

Proof (sketch). For a -algebra A, [A] is given by:

L. [A](s) = As for s € S
2. [Al(o) =04 : [A](s1 % ... X s5) = [A](s) for 0 € Xy, 5, 5
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Corollary 2.3.36. Let X denote a many-sorted signature, and let A denote a Y-algebra. Then,
A Ex (VV) L =r if and only if [A]([1]) = [A]([r])-

Proof (sketch). The fact that [A]([t]) = ta for any t € Tx(V) is used. O

2.3.2 Algebras of Endofunctors

The notion of algebra of a many-sorted signature is an instance of that of an algebra of an endo-
functor.

Definition 2.3.37. Let F : C — C denote an arbitrary endofunctor. An F-algebra is a pair (A, «)
with A a C-object and a : FA — A a C-arrow. A is called the carrier of the algebra. An F-
algebra homomorphism between F-algebras (A, «) and (B, () is a C-arrow f : A — B such that
BoFf=foa.

FA——A

F fl lf

FBT>B

For an endofunctor F, the category of F-algebras and F-algebra homomorphisms is denoted Alg(F).

Remark 2.3.38. If ¥ denotes a many-sorted signature with sort set S, then Alg(X) is isomorphic to
Alg(Fs), with Fy, : Set® — Set® being given by:

FsX),= J] (Xox...xX,), s€§

UEESI...sn,s

Example 2.3.39. Natural numbers (see Example 2.3.2) are specified by taking C to be Set and
F : Set — Set to be the functor X — 1+ X (with 1 denoting a final object in Set). Then,
F-algebras are given by functions o : 1 + A — A, with A € |Set|. (The function co¢; : 1 - A
provides the interpretation of the constant symbol 0, while the function acoug : A — A provides the
interpretation of the unary operation symbol succ.)

If F: C — C denotes an arbitrary endofunctor, and if U : Alg(F) — C denotes the functor taking F-
algebras to their carrier, then a desirable property of U is the creation of coequalisers of congruences.

Definition 2.3.40 ([P0i92]). A functor U : D — C creates coequalisers of congruences if,
whenever f,g: A — B inD andh : UB — C in C are such that Uf,Ug : UA — UB define a kernel
pair in C and h defines a coequaliser for Uf,Ug in C, there exists a unique D-arrow k : B — D in
D such that Uk = h, and moreover, k is a coequaliser for f,g in D. If, in addition, U creates limits
and has a left adjoint, then U is called algebraic.

Example 2.3.41. If ¥ denotes a many-sorted signature, the functor taking X-algebras to their carrier
is algebraic.
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The next two definitions give generalisations of the notions of subalgebra, homomorphic image and
variety (Definitions 2.3.25 and 2.3.27) to arbitrary endofunctors F : C — C.

Definition 2.3.42. Let F : C — C denote an arbitrary endofunctor, and let (A,«) denote an F-
algebra. An F-subalgebra of (A, «) is an object ((B,[3),b) of the slice category Alg(F)/(A, ),
such that the C-arrow underlying b is a monomorphism. Also, a homomorphic image of (A, «)
is an object ((B,[3),c) of the category Alg(F)\(A, «), such that the C-arrow underlying c is an
epimorphism.

Definition 2.3.43. Let F : C — C denote an arbitrary endofunctor. A full subcategory of Alg(F)
is an F-variety if and only if it is closed under subalgebras, homomorphic images and arbitrary
products.

The following result, obtained by strengthening the hypotheses of a result in [SP82], gives sufficient
conditions for the existence of initial algebras of endofunctors.

Theorem 2.3.44. Let C denote a category with initial object and colimits of w-chains, and let
F : C — C denote an w-cocontinuous endofunctor. Then, Alg(F) has an initial object.

Proof (sketch). If O denotes an initial C-object and ! : 0 — FO denotes its unique C-arrow into FO,
then an initial object in Alg(F) is obtained by suitably endowing the colimit object of the following
w-chain:

! ! 21
0 >F0 F.>F20 F.>___

with an F-algebra structure. O

2.3.3 Algebras of Monads

Definition 2.3.45. Let C denote an arbitrary category. A monad (on C) is a tuple T = (T,n, u),
with T:C—C,n:ldc = T and p: T2 = T, such that the diagrams:

T=L LT T3 =L 2
Nﬂu / A
T T?==T

commute. (n is called the unit, while i is called the multiplication of the monad.)

Let (T,n,pu) and (T',n', ') denote monads on C and respectively C'. A monad morphism from
(T,n,p) to (T',n',u') is a pair (U,v), withU: C" — C and v : TU = UT’, such that the diagrams:

U U T2y = TUT =2 772
Y
TU=—=UT TU _ uT’

commute.
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Definition 2.3.46. Let T denote a monad on C. A T-algebra is a pair (A, ) with A € |C| and
(a: TA— A)€|C

, such that the diagram:

A= TAG—T24

Nk

commutes. A T-algebra homomorphism between T-algebras (A,«) and (B,[3) is a C-arrow
fi:A— Bsuchthat o Tf = foa.

TA—2+ A

Tfl \Lf

TB T)B
For a monad T, the category of T-algebras and T-algebra homomorphisms is denoted Alg(T). Then,
monad morphisms (U,v) : (T,n,u) — (T',n', 1) induce functors U,/ : Alg(T') — Alg(T), with
(U,v) taking a T'-algebra (A, a) to the T-algebra (UA,Uaor4). (The conditions in the definition
of monad morphisms guarantee that (UA, U o v4) defines a T-algebra whenever (A, ) defines a
T'-algebra.)

Remark 2.3.47. For a monad (T,n, ) on C, the functor U : Alg(T) — C taking T-algebras to their
carrier has a left adjoint F. (F maps C € |C| to (TC, uc) € |Alg(T)|.) In particular, this results in
the existence of an initial T-algebra, given by (TO, 110), whenever C has an initial object 0.

The following result is typically used to infer the existence of limits and colimits in categories of
algebras of monads.

Proposition 2.3.48 ([Bor94b]). Let (T,n,u) denote a monad on C. Then, U : Alg(T) — C
creates limits. Also, if T preserves a certain kind of colimits, then U creates those colimits.

Proof (sketch). Limits (respectively colimits) in Alg(T) are computed as limits (colimits) in C en-
dowed with T-algebra structure. Naturality of 7 and p ensure that the resulting structures satisfy
the constraints in the definition of algebras of monads. O

Corollary 2.3.49. Let (T,n,p) denote a monad on C. If C has a certain kind of limits, then so
does Alg(T), and U : Alg(T) — C preserves them. Also, if C has, and T preserves a certain kind of
colimits, then those colimits exist in Alg(T), and are preserved by U.

Endofunctors F : C — C with C and F subject to additional constraints induce monads (T, 7, 1) on
C, in such a way that the category of algebras of the induced monad is isomorphic to the category
of algebras of the original endofunctor.

Proposition 2.3.50. Let C denote a category with finite coproducts and colimits of w-chains, and let
F : C — C denote an endofunctor which preserves colimits of w-chains. Then, Alg(F) is isomorphic
to Alg(T) for some monad (T,n, 1) on C.
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Proof. Let T : C — C denote the endofunctor obtained as a colimit object (in the quasi-category

[C,C]) of the w-chain defined by ¢g; : F; = F;41 with 2 = 0,1,..., where Fg,F;,... : C - C
are given by: Fg = Idc, Fi41 = Idc + FF; for 2 = 0,1, ..., while go,g1,... are given by g9 = ¢1,
gi+1 = ligc + Fg; for i = 0,1,.... (The existence in [C,C] of colimits of w-chains follows by

Proposition 2.1.413)

= g1=14-+Fg 92=1i4-+Fg
Fo = Ilde === F) = ld¢ + FFp ————" o F, = ld¢ + FF; ———<—
“lh
q0 q2
T

Also, let ¢; : F; = T with 4 = 0,1, ... denote the colimit arrows, and let  : Idc = T be given by
q0-

Note that w-cocompleteness of F yields a unique natural transformation o : FT = T satisfying
git10t2 =aoFg; fori=0,1,....

FFo oo FF, For
\m“
100 F”T q20L2
Il
“
v
a

Now let 4 : T2 = T denote the unique natural transformation satisfying: o (¢;)1 = f; for
i =0,1,..., where the natural transformations f; : F;T = T with ¢ =0, 1,... are given by fy = 17,
fi_|_1 = [IT,Oz o Ffz] for i = 0, 1, ceen

FoT (g0)T T (g1)7

(qO)T (‘h)T“

2

fo -I|—| 1

Il
o
\%

T

(The fact that fo, f1,... define a cocone on (go)T,(91)T,- - - follows by induction.)

Then, (T,n, ) defines a monad on C. The fact that u o pt = 11 follows immediately from the
definition of u. Also, because of the colimiting property of T, proving that po Tnp = 11 amounts to

3The generalised version of this result (see Remark 2.1.42) is needed if C is not small.
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proving that o Tnoq; = ¢q; for e = 0,1, ..., which follows from:

poTnog; = (definition of )
poTgoogi = (naturality of ¢;)
po ()T o Figo = (definition of 1)
fioFiqo = (%)
4;

(The last of the above equalities follows by induction of i. On the one hand, fy o Fogqy = qo holds.
Also, assuming that f; o F;qo = ¢; holds, the fact that f; 11 o F; 1190 = gi+1 also holds follows from:

fi-l—l o Fi+1q0 = (definitions of fi+1, Fi-l—l)
[Lr,a o Ffi] o (g0 + FFigo
(90, ¢ 0 Ffi o FFigo

)
]
[q0, v © Fa;]
]
]

property of coproducts)

induction hypothesis)

definition of «)

90, Gi+1 0 12 definition of T)

(
(
(
(
= (
= (

[Gi+1 © L1, Git1 0 L2 property of coproducts)

qi+1

for i = 0,1,....) Finally, because of the colimiting property of T, proving that poput = po Tp
amounts to proving that p o put o (g;)12 = o Tpo (g;)t2 for i = 0,1,..., which follows from:

popto(gi)re = (definition of uT)
po (fi)jr= (%)
fioFiu = (definition of p)
(

po(gi)ToFiu= (naturality of g;)

o Tpo(gi)re
(The second of the above equalities uses the fact that p o at = a o Fu. This follows from:

poartoF(g)r = (definition of @)
o (giv1)T o (t2)T =
fir10(t2)T =
aoFf; =

aoFpuoF(g)r

definition of p)
definition of f;y1)

~—~ o~ ~

definition of p)

using the colimiting property of T together with the w-cocontinuity of F. Then, the fact that
po (fi)t = fi o Fiu follows by induction on . On the one hand, o (fo)T = fo o Fou holds. Also,
assuming that p o (f;)T = p = fi o Fip holds, the fact that p o (fi+1)T = fit1 © Fip1p also holds
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follows from:

po (fir1)t = (definition of f;y1)
po [Irz, a1 o F(fi)r
[, poar o F(fi)T

]
]
[, 00 Fo F(fi)7]
]
)

property of coproducts)

o T N s T e

poar =aoFpu)
induction hypothesis)
[, o0 Ff;oFF;
[Lr a0 Ffi]o (u+ FFip
fir1oFipip

property of coproducts)

definition of fiy1, Fit1)

fori=0,1,....)

The monad T thus defined has the property that T-algebras are in one-to-one correspondence with
F-algebras. For, given an F-algebra (A, ), the unique C-arrow ¢ : TA — A induced by the cocone
(A, v0,71,-..) with v9 = 14 and vj41 = [1la,yo Fy] fori =0,1,... on (go)4,(g1)a4,-.. defines a
T-algebra structure on A. (The fact that vg,71,... define a cocone on (go)a, (g1) 4, - .. follows by
induction.) Also, given a T-algebra (A, ), the C-arrow o (q1)a0t9 : FA — A defines an F-algebra
structure on A. Moreover, the two mappings are functorial, and are inverse to each other. O

Remark 2.3.51. By Proposition 2.1.41, T preserves any small colimits which exist in C and are
preserved by F. Also, if F preserves epimorphisms, then so does T.

If (T,n,u) and (T',n’, ') denote the monads induced by the endofunctors F: C -+ Cand F' : C' —
C', then pairs (U,¢) with U : C' — C and ¢ : FU = UF’ subject to additional constraints can be
used to define monad morphisms (U,v) : (T,n,u) — (T',7n', 1).

Proposition 2.3.52. LetF:C — CandF' : C' — C' denote endofunctors satisfying the hypotheses
of Proposition 2.3.50. Also, let (T,n,u) and (T',n',u') denote the monads induced by F and
respectively F', and let V : Alg(T) — Alg(F) and V' : Alg(T') — Alg(F") denote the functors
taking (A,a) € |Alg(T)| to (A, 0 (q1)a o t2) € |Alg(F)|, and respectively (A',a') € |Alg(T')]
to (A',a! o (q})ar o th) € |Alg(F")|. Finally, let U : C' — C denote an arbitrary functor, let
¢ : FU = UF' denote a natural transformation, and let Ug : Alg(F') — Alg(F) denote the functor
taking (A', ') € |Alg(F")| to (UA',Ua/ o €4/) € |Alg(F)|. Then, the following diagram commutes:

Alg(T') —225 Alg(T)

v| I

Alg(F") o Alg(F)
3
for some monad morphism (U,v) : (T,n,u) — (T', 0", 1).

Proof. Let v : TU = UT’ denote the natural transformation arising from the observation that TU
is a colimit object for the w-chain defined by (g;)y : F;U = F;;1U for i = 0,1,... (with colimiting
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arrows (g;)u : F;U = TU fori =0,1,...), whereas UT' together with Ug;o¢&; for i =0, 1,... define
a cocone on this w-chain:

FoU (90)u F,U (91)u F,U (92)u

Ugoéo

with & : F;U = UF; being given by: & = Ly, {1 = [Ut}, Uty 0§ o FE] for i = 0, 1,..

FinU=U+FRU—""_ y4FuF
Il
&t ll “1U+§F’i
Y
UF’,, = U(ldgs + F'F}) e=——U + UF'F,
i+1 = U(ldc ) A

For, induction on i can be used to show that the upper-half of the following diagram commutes*:

FoU (90)u F,U (91)u F,U (92)u
50“ & 62“
Ugt Ug} Ugs,
UFy ———— UF} - UF, -
U !
Uq(’) q; Uqu
uT’

whereas the definition of T’ ensures that its lower-half commutes, thus making UT’ the object of a
cocone on the w-chain defining TU.

The resulting natural transformation v therefore satisfies v o (g;)y = Ugq, 0 & for i = 0,1,.... In
particular, v o (q1)y = Uq] o &, which, in turn, yields UV’ = VU,.. For, the following holds:

UeV/(A' o) = (definition of V')
Ue(A', @' o (q})ar 0 th) = (definition of Ug)
(UA",Uc o U(g})ar o Uth o &ar) = (definition of &)
(UA",Ud/ o U(gy)ar o (€1)ar 0 t2) = (Ugy o0& =vo(qi)u)
(UA",Ud/ ovar o (q1)uar o t2) = (definition of V)
(UA' Ua' ovy) = (definition of U,)
U, (4, )

*This observation will also be used in Section 3.3.6.
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for any T'-algebra (A’, o).

Furthermore, the natural transformation v satisfies the conditions in the definition of monad mor-
phisms. The fact that v o py = Uz follows immediately from the definition of v (which gives
v o (go)u = Ug( 0 &), while the fact that v o puy = Up/ o v o T follows from:

vopyo (g)ryu = (definition of u)
vo (fiju= (%)
Uflo (&)1 o Fiv = (definition of ')
Up' o U(g})1r o (&)1 o Fiv = (definition of v/)
Up' ovrro (qi)ur o Fiv = (

Up' o v o Tro (gi)Tu

naturality of ¢;)

for i = 0,1,..., using the colimiting property of T. (The second of the above equalities uses the
fact that v o ay = U/ o &1 o Fr. This follows from:

voayoF(g)y = (definition of ay)

vo (qiy1)yoty = (definition of v)

Ugi i 0&ip1 0t = (definition of &)
Ugjyq o Uy o {p o FE = (definition of o)

Ua' o UF'q o §pr o FE = (

Ua/ o &y 0 FUq; oF& = (

Ua o &1 o Fro F(g;)uy

naturality of £)

definition of v)

for i =0,1,..., using the colimiting property of FTU®. Then, the fact that vo(f;)u = Uf/o (&)1 0
F;v follows by induction on i. On the one hand, vo(fy)y = Uffo (&)1 oFov holds. Also, assuming
that v o (f;)u = Uf] o (&)1 o Fiv holds, the fact that v o (fiy1)u = Uf{,; o (§&41)T o Fip1v also
holds follows from:

vo (fit1)u = (definition of fi}1)
vo[lry,ay o F(fi)u

[V, UO/ e} §T’ (e} Fy o F(fl)U

[v,Ud’ o &1 o FUF! o F(&;) 1 o FFv

[V, UOél [¢] UF,fZI [e] §FIiT, [¢] F(§Z)T’ [e] FFZV

voay = Ud o & oFv)

(
(
(induction hypothesis)
(naturality of &)

(

]
] =
] =
] = (definitions of fil-i-l’ &i+1, Fit1)
Ufivio (Gisr)T o Fipar

fori=0,1,....) O

Remark 2.3.53. If the endofunctors F and F’ preserve epimorphisms, and if the functor U : C' — C
preserves finite coproducts and colimits of w-chains, then whenever & is a natural epimorphism
(respectively isomorphism), so is v. Moreover, in either case, the C-arrow underlying the unique
T-algebra homomorphism from the initial T-algebra to the T-reduct of the initial T’-algebra is an

®The w-cocontinuity of F is used here.
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epimorphism. For, if £ is a natural epimorphism (isomorphism), then so is each of the &s. (The
preservation of epimorphisms by F and the preservation of binary coproducts by U are used here.)
Then, if £ (and hence each of the ¢;s) is a natural epimorphism, the fact that v is a natural
epimorphism follows from the observation that v o (g;)y = Ug, o & for i = 0,1,..., together
with the colimiting property of UT’ (following from the colimiting property of T’ together with the
preservation of colimits of w-chains by U):

fovx =govx =
fovxo(g)ux =govxo(g)ux, i=0,1,... &
foU(g)xo(&)x =goU(g)x o (&)x, i=0,1,... &
foU(g)x =goVU(g)x, i=0,1,... &

f=g

Also, if £ (and hence each of the ;s) is a natural isomorphism, the fact that v is a natural isomorphism
follows from the observation that, in this case, UT’ is itself a colimit object for the w-chain defining
TU. In either case, the C-arrow underlying the unique T-algebra homomorphism from the initial
T-algebra (TO, pu0) to the T-reduct (UT'0, v o Upg, ) of the initial T'-algebra (T'0/, ug,) is given
by vy o T4, with 0 and 0" denoting initial C- and respectively C'-objects, and with 7 : 0 — U0/
denoting the unique C-arrow resulting from the initiality of 0. Moreover, v is an epimorphism (see
above), while 7 is an isomorphism (as U preserves initial objects). Hence, vy o Ti is an epimorphism.

2.4 Coalgebraic Specification

The categorical duals of F-algebras (with F : C — C an arbitrary endofunctor) are called F-coalgebras
and are typically used to specify structures that involve observation (as opposed to construction).

Definition 2.4.1. Let G : C — C denote an arbitrary endofunctor. A G-coalgebra is a pair (C,~)
with C' a C-object and v : C — GC a C-arrow. C' is called the carrier of the coalgebra. A
G-coalgebra homomorphism between G-coalgebras (C,~) and (D,) is a C-arrow g : C — D
additionally satisfying: o g = Gg o ~y:

c—LsGo

| e

The category of G-coalgebras and G-coalgebra homomorphisms is denoted Coalg(G).

Example 2.4.2. A coalgebraic specification of infinite lists of natural numbers is obtained by taking
C to be Set and G : Set — Set to be the functor X — N x X (with N denoting the set of natural
numbers). Then, G-coalgebras are given by functions v : C — Nx C, with C € |Set|. The functions
head, =m0y :C — Nand tail, =m0y : C — C give the head and respectively the tail of an
infinite list. Moreover, the G-coalgebra (C,~) is fully determined by these two functions.
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Example 2.4.3. A coalgebraic specification of finite and infinite lists of natural numbers is obtained
by taking C to be Set and G : Set — Set to be the functor X — 1+ (N x X). Then, G-coalgebras
are given by functions 7 : C — 1+ (N x C), associating, to each ¢ € C, either the unique element
x of 1, if ¢ denotes an empty list, or a pair (n,c’) € N x C (with n and ¢’ giving the head and
respectively the tail of ¢), if ¢ denotes a non-empty list.

Dualising the definitions of subalgebra, homomorphic image and variety (Definitions 2.3.42 and
2.3.43) yields coalgebraic notions of homomorphic image, subcoalgebra and covariety.

Of particular interest amongst the coalgebras of an endofunctor is the final one. The following result
gives sufficient conditions for the existence of final coalgebras.

Theorem 2.4.4. Let C denote a category with final object and limits of w®P-chains, and let G :
C — C denote an w°P-continuous endofunctor. Then, Coalg(G) has a final object.

Proof (sketch). The carrier F' of the final G-coalgebra is constructed as a limit object of the following

wC®P-chain:
1 !

2
1+ Gl ¢ 21 <&

with ! : G1 — 1 denoting the unique arrow from G1 to the final C-object 1. O

Example 2.4.5. Since Set is complete, and since polynomial endofunctors are w®P-continuous (see
Example 2.1.37), the above theorem yields final coalgebras for the specifications of infinite lists
in Example 2.4.2 and respectively of finite and infinite lists in Example 2.4.3. The carriers of the
final coalgebras are given by: F = Nx Nx ... ~ NV and respectively F/ = 1+ (N x (1 +
Nx(...)) =~ (N)* UNY (with (N)* denoting the set of finite sequences of natural numbers),
while their coalgebraic structures are given by: ¢ : FF — N x F', {((en)nen) = (€0, (én+1)nen) and
respectively ' : F' — 1+ (N x F'), {'(€) = 11(*) (with € denoting the empty sequence of natural
numbers), ('(e: 1) = 1a(e, ).

Final coalgebras satisfy a coinductive definition principle, which states the existence of a coalgebra
homomorphism from any other coalgebra, and which can be used to define C-arrows into the carriers
of final coalgebras.

Example 2.4.6. If (F, () denotes a final coalgebra of the specification of infinite lists in Example 2.4.2,
then a merging operation merge : F' X F' — F on infinite lists can be defined coinductively as
the underlying map of the (unique) coalgebra homomorphism from a suitably-chosen coalgebraic
structure ¢ on F' X F to the final coalgebra. Specifically, p : F' x FF — N x (F' x F) is taken to be
given by:

e((l,12)) = (m1(¢(1)), {l2, m2(C (1))

for (I1,1ls) € F x F. Similarly, if (F', (") denotes a final coalgebra of the specification of finite and
infinite lists in Example 2.4.3, then an empty list empty € F’ can be defined coinductively as the
image of the unique element of the one-element set 1 under the (unique) coalgebra homomorphism
from (1,¢1) (with ¢y : 1 — 14+(Nx1)) to (F’, (). Finally, a merging operation merge : F' x F' — F'
on finite and infinite lists can also be defined coinductively, namely as the underlying map of the



Preliminaries 40

(unique) coalgebra homomorphism from the coalgebra (F' x F' ¢'), with ¢’ : (F' x F') — 1+
(N x (F' x F")) being given by:
Ll(*) if C’(ll) Ll(l) and C’(lg) € Ll(l)
©'((I1,12)) = < @' ((I2, 1)) if ¢'(11) € 11(1) and ¢'(l2) € 1o(N x F')
v2({n1, (l2,t1)))  if (1) = ea((na, 1))

for (I1,l2) € F' x F', to the final coalgebra.

S
S

The following result can be used to infer the existence of limits in Coalg(G).

Proposition 2.4.7. Let G : C — C denote an arbitrary endofunctor. If G preserves a certain kind of
limits, then the functor U : Coalg(G) — C taking G-coalgebras to their carrier creates those limits.

Corollary 2.4.8. Let G: C — C denote an arbitrary endofunctor. If C has, and G preserves a certain
kind of limits, then those limits exist in Coalg(G), and are preserved by U.

Also, the existence of colimits in Coalg(G) follows from the existence of colimits in C.

Proposition 2.4.9 ([Bar93]). Let G : C — C denote an arbitrary endofunctor. Then, U :
Coalg(G) — C creates colimits.

Corollary 2.4.10. Let G : C — C denote an arbitrary endofunctor. If C has a certain kind of
colimits, then so does Coalg(G), and U preserves those colimits.

Limits and colimits in Coalg(G) are computed as limits and colimits in C endowed with G-coalgebra
structure.

The notion of bisimulation also plays an important réle in the study of coalgebras.

Definition 2.4.11. Let C denote an arbitrary category, and let G : C — C. Also, let (C,v) and
(D, d) denote G-coalgebras. A relation (R,r1,72) on C, D defines a G-bisimulation between (C,~y)
and (D, d) if and only if there exists a G-coalgebra structure (R, p) on R such that r1,ry define G-
coalgebra homomorphisms from (R, p) to (C,~) and (D, ) respectively. The largest® G-bisimulation
between (C.,v) and (D, §), if it exists, is called G-bisimilarity.

Remark 2.4.12. If the endofunctor G preserves pullbacks, and if a final G-coalgebra exists, then
largest G-bisimulations on G-coalgebras exist and are given by (the C-arrows underlying) the kernel
pairs of the unique G-coalgebra homomorphisms into the final G-coalgebra. In this case, final coal-
gebras satisfy a coinductive proof principle, which states that any bisimulation on a final coalgebra
is contained (via <) in the equality relation on the carrier of that coalgebra. Consequently, proving
equality in a final coalgebra can be reduced to proving equality up to some bisimulation on that
coalgebra. This proof principle will be used in the forthcoming chapters to derive techniques for
proving properties up to bisimulation.

bw.r.t. <, see Remark 2.1.12.
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Example 2.4.13. The notion of bisimilarity associated to the specification of infinite lists in Exam-
ple 2.4.2 (respectively to the specification of finite and infinite lists in Example 2.4.3) relates two
elements ¢ and d of the coalgebras (C,~) and respectively (D,d) if and only if they denote lists
with (the same number of elements and) the same elements.

Example 2.4.14. If (F',('), empty € F' and merge : F' x F' — F' are as in Example 2.4.6,
then proving that merge (empty,empty) = empty by coinduction amounts to exhibiting a bisimula-
tion (R, r1,72) on (F' (") such that merge(empty,empty) R empty. For instance, (R,ri,73) can
be taken to be the least bisimulation satisfying the above condition, i.e. the relation given by
{(merge (empty,empty), empty)}. The fact that this defines a bisimulation on (F’,(’) follows from
the definitions of empty and merge as coalgebra homomorphisms. For, these definitions yield:

(' (merge(empty, empty)) = (definition of merge)
(11 + (1 x merge)) (¢’ ((empty, empty))) = (definitions of empty and ')
(11 + (Iy x merge))(e1(*)) =
Ll(*)
and:

(' (empty) = (definition of empty)

Al (*)

We conclude this section by noting that notions of comonad and coalgebra of a comonad are defined
similarly to those of monad and algebra of a monad.

Definition 2.4.15. Let C denote an arbitrary category. A comonad (on C) is a tuple D = (D, ¢, 9),
with D : C — C, €: D = Idc and § : D = D?, such that the diagrams:

0

N2 = 2 ——= 3
D De D €D D D Dé D

commute. (e is called the counit, while ¢ is called the comultiplication of the comonad.)

Let (D,¢€,0) and (D', €,d") denote comonads on C and respectively C'. A comonad morphism from
(D,€,0) to (D',€,d") is a pair (U,v), with U : C" — C and v : UD' = DU, such that the diagrams:

UD'==DU uD’ = DU
Ue’“ ﬂfu Ué’u ﬂ%
U U UD'? == DUD' => D*U

commute.
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Definition 2.4.16. Let D denote a comonad on C. A D-coalgebra is a pair (C,~) with C € |C|
and (y: C — DC) €||C

, such that the diagram:

c—sDC

y e

C? DC(S—)DZC
% c

commutes. A D-coalgebra homomorphism between D-coalgebras (C,v) and (D,6) is a C-arrow
f:C — D such that Df oy =40 f.

c—sDC

1 |

DT>DD



3 Equational Specification in an Abstract
Setting

This chapter presents an abstract equational framework for the specification of structures having
both an observational and a computational component. The framework is obtained by clearly dis-
tinguishing between observational and computational features and using coalgebra and respectively
algebra for their formalisation, and by taking a layered approach to their integration. In addition,
the framework uses abstract equational sentences to formalise properties which concern either the
observational or the computational features, with both categories of features being used in defining
the associated notions of satisfaction.

First, a coalgebraic framework for the specification of observational structures is introduced. This
framework unifies some of the existing equational approaches to the specification of state-based
systems, including [Rei95, HR95, Jac96c, Jac96a, GM97, Cor98], by capturing at an abstract level
the concepts typically employed by such approaches. The resulting framework involves notions of
abstract cosignature, used to specify particular kinds of observational structures, coalgebra of an
abstract cosignature, used to provide a particular interpretation for the structure specified by the
cosignature, observer over a cosignature, used to extract information from the coalgebras of the
cosignature according to their particular interpretation for the specified structure, and coequation
over a cosignature, used to constrain the coalgebras of the cosignature by requiring different ob-
servers to yield similar (either equal or just observationally equal) results on the same coalgebra. In
addition, a notion of (horizontal) cosignature morphism is used to specify a change in the type of
information being observed, and this is shown to yield an institution w.r.t. the satisfaction (up to
observability) of coequations by coalgebras. Canonical ways of combining related specifications and
their implementations are shown to exist, while final and cofree coalgebras are shown to provide
suitable denotations for coalgebraic specifications and their morphisms.

An algebraic framework for the specification of structures involving computation is then derived
essentially by dualising the previously-obtained coalgebraic framework. The dualisation results in
notions of abstract signature, algebra of an abstract signature, constructor and equation, with
the many-sorted algebraic notions of signature, algebra, term and equation being instances of the
corresponding abstract notions.

Finally, the two frameworks are integrated in order to account for the relationship between computa-
tions and observations in structures having both a computational and an observational component.
Such an integration builds on the work in [Tur96] (see also [TP97]) on well-behaved operational
semantics, and amounts to lifting the coalgebraic structure of semantic domains to computations
over these semantic domains, in order to interpret computations on the semantic domains induced
by the observational component. The resulting interpretations are well-behaved, in that the notion
of bisimulation induced by the observational component is preserved by computations, whereas the

43
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notion of reachability induced by the computational component is preserved by observations. A dual
approach, which involves interpreting observations on the syntactic domains induced by the compu-
tational component is also obtained. In each case, equations and coequations are used to formalise
correctness properties of the resulting interpretations, with such properties only being required to
hold up to bisimulation and respectively up to reachability. This gives rise to institutions. Also in
each case, both initial and final models exist, with the quotients of the unique homomorphisms from
the initial to the final models providing suitable denotations for the resulting specifications. Two
compositionality results, allowing specifications and respectively implementations to be combined in
a canonical way are also formulated for the combined framework.

The chapter is structured as follows. Section 3.1 introduces the equational coalgebraic framework for
the specification of structures involving observation, Section 3.2 derives a similar framework for the
specification of structures involving computation, while Section 3.3 integrates the two frameworks.

3.1 Specification of Observational Structures

[Rut96] presents a general coalgebraic framework for the specification of state-based systems, with
arbitrary endofunctors on Set being used to specify system behaviour, and with coalgebras of such
endofunctors providing (abstractions of) particular implementations of the specified behaviours. The
approach in [Rut96] is here specialised in order to give a categorical account of equational coalgebraic
approaches to specification!. A framework which unifies some of the existing equational approaches
to system specification (including [HR95, Jac96c, GM97, Cor98]) is introduced, the existence of
suitable denotations for the specification techniques supported by this framework is investigated,
and the expressiveness of the resulting approach is briefly discussed.

3.1.1 Cosignatures, Coalgebras, Finality and Bisimulation

We begin by introducing an abstract syntax for specifying observational structures.

Definition 3.1.1. An (abstract) cosignature is a pair (C,F), with C a category which is complete,
cocomplete? and regular, and with F : C — C an endofunctor which preserves pullbacks and limits
of w®P-chains.

Remark 3.1.2. Powerset functors (of form P(L x _) : Set — Set, taking a set X to the set of
subsets of L x X, or of form P(_) : Set — Set, taking a set X to the set of mappings from
L to the set of subsets of X) are not w°P-continuous, and therefore do not give rise to abstract
cosignatures. A generalisation of the coalgebraic framework presented here which also accounts for
powerset functors of bounded cardinality (with only the subsets of cardinality smaller than some
fixed cardinal being considered in this case) constitutes the subject of future work. The approach
to such a generalisation is briefly outlined in Section 6.2.

'Our setting is, however, more abstract than the one in [Rut96], as endofunctors on arbitrary categories are
considered here.
21t would be sufficient to require that C has finite limits, limits of w®-chains, quotients and coproducts.
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Remark 3.1.3. A framework for the specification of structures involving computation will be de-
rived in Section 3.2 essentially by dualising the coalgebraic specification framework described in
this section. However, since both in the coalgebraic case and in the algebraic case the semantic
constructions of interest involve quotients, the condition requiring the regularity of the underlying
categories of abstract cosignatures will be carried over unchanged to the algebraic framework, while
the condition requiring the preservation of pullbacks by the endofunctors defining abstract cosig-
natures will be replaced by a condition which guarantees the creation of quotients by the functors
taking algebras of abstract signatures to their carrier’. All the forthcoming definitions and results
which do not depend on/make use of the preservation of pullbacks by the endofunctors defining
abstract cosignatures will be marked *, in order to indicate that a dual version of the definition or
result in question exists in the algebraic framework.

Abstract cosignatures specify the type of information that can be observed about particular sys-
tems. The coalgebras of the endofunctors in question then provide (abstractions of) specific system
implementations.

Definition* 3.1.4. Let (C,F) denote an abstract cosignature. A (C,F)-coalgebra (respectively
(C, F)-coalgebra homomorphism) is an F-coalgebra (F-coalgebra homomorphism).

For an abstract cosignature (C, F), the category of (C, F)-coalgebras and (C, F)-coalgebra homomor-
phisms is denoted Coalg(C, F), while the functor taking (C, F)-coalgebras to their carrier is denoted
Uc : Coalg(C,F) — C.

Remark 3.1.5. An abstract cosignature (C, F) induces a comonad (D, ¢, ) on C having the property
that Coalg(D) ~ Coalg(C,F). This is a consequence of the existence in C of finite products and of
limits of w°P-chains, together with the preservation by F of limits of w°P-chains. The construction
of this comonad is dual to the construction of the monad induced by an endofunctor satisfying dual
restrictions (see Proposition 2.3.50). In particular, the endofunctor D : C — C is obtained as a limit
in (the quasi-category) [C, C] of the following w°P-chain:

1|dC ><F(1|dC ><F71'1)

T 1|dc><F7T1
ldc <———=Id¢ X F <—=—=Id¢ X% F(ldc X F)

The next three examples are the first in a series of examples aimed to illustrate that the abstract coal-
gebraic specification framework introduced here unifies some of the existing equational formalisms
for the specification of state-based, dynamical systems.

Example 3.1.6 ( Destructor Hidden Signatures). Let V' denote a set of visible sorts, let ¥ denote
a V-sorted signature (the data signature), and let D denote a W-algebra all of whose elements
are named by W-terms* (the data algebra). A hidden signature (over W) [GM97] is a pair (H,Y),
with H a set of hidden sorts (disjoint from V') and ¥ an S = V U H-sorted signature, additionally
satisfying:

= Yuwp =Yy forweV*¥andv eV

*Note that the preservation of pullbacks by the endofunctors defining abstract cosignatures also ensures the creation
of quotients by the functors taking coalgebras of abstract cosignatures to their carrier (see Proposition 2.4.7 and 2.4.9).
*That is, for any v € V and d € D,, there exists t € Ty, satisfying tp = d.
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— if o € ¥y, then w contains at most one hidden sort.

That is, apart from W-operation symbols, hidden signatures may only contain generalised hidden
constants (i.e. operation symbols o : w — h with w € V* and h € H), methods (i.e. operation
symbols o : w — h with w containing precisely one hidden sort and h € H) and attributes
(i.e. operation symbols o : w — v with w containing precisely one hidden sort and v € V). Given
a hidden signature X, a hidden X-algebra (respectively hidden Y-homomorphism) is a many-sorted
Y-algebra A (many-sorted X-homomorphism f) such that A[gy= D (f[yv= 1p). The category of
hidden X-algebras and hidden YX:-homomorphisms is denoted Alg(X). Finally, a destructor hidden
signature [Cir98] is a hidden signature ¥ additionally satisfying: X, = 0 for any w € V* and
h € H. That is, destructor hidden signatures contain no generalised hidden constants. As a result,
destructor hidden signatures (H,Y) induce abstract cosignatures (Set?),Fy), with Fy : Set? —
Set?, being given by:
[1 XD if seH
(FuX)s = { 050,
D, if seV

for X € |Set?)| and s € S. For, the category Set?, is complete, cocomplete and regular (see Exam-
ples 2.1.31 and 2.1.47), while Fy, preserves pullbacks and limits of w°P-chains (see Example 2.1.37).
Moreover, Alg(X) ~ Coalg(Set?, Fx:) (see [Cir98]).

To illustrate the relationship between the hidden algebra formalism and the abstract coalgebraic
framework introduced here, we consider a hidden signature specifying cells holding natural numbers.
(The example is taken from [GMO00].) This signature consists of a visible sort Nat, a hidden sort
State, a hidden constant init : — State, an attribute getx : State — Nat and a method putx :
Nat State — State. The destructor hidden subsignature of this hidden signature, obtained by
leaving out the hidden constant init, induces an abstract cosignature (Setg}at’smte}, F), with F :

SetI{NNat,State} N SetI{NNat,State} taking (N, X) c |Set1{\lNat,State}| to (N,N % XN) c |SetI{NNat,State}|.

Example 3.1.7. Coalgebras of endofunctors of form G : Set — Set, GX = [] (B;+C;xX)% are
i=1,...,n
used in [Jac96c, Jac96a, Jac97] to specify object interfaces. Such endofunctors preserve pullbacks

and limits of w°P-chains (see Example 2.1.37), and therefore induce abstract cosignatures.

Example 3.1.8 ( Co-signatures). A co-signature [Cor98] is a triple IT = (S, OP, [.]), where S (the
sorts), OP (the operators) and [_] (the interpretation of visible sorts) are as follows:

— Sis a triple (X, {I1,...,1;},{O1,...,04}), where X is the hidden sort, I; is an input sort
for j = 1,...,k, and Oj; is an output sort for j = 1,...,h. The sets of input and output
sorts need not be disjoint. Their elements are called visible sorts.

— OPis a pair OP = ({my,...,my},{a1,...,an}), where m; : X x I, — X is a method for
J=1,...,0,and aj : X x Iy, = Oy, is an attribute for j =1,...,n.

— [-] is a function mapping each visible sort to a non-empty set. Moreover, if V' is a visible sort,
then each v € [V] is denoted by a constant v : V.
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Given a co-signature II, a II-coalgebra [Cor98] consists of a set X4 (the carrier), a function m;, :
Xa x [Iy;] — Xa for each j € {1,...,l}, and a function a;, : Xa x [Iy;] — [Oy,] for each
j € {l,...,n}. Given two Il-coalgebras A and B, a Il-coalgebra homomorphism is a function
f+ X4 — Xp additionally satisfying:

1. mp(f(z),v) = f(ma(z,v)) for any z € X4 and v € [I]
2. ap(f(z),v) = aa(x,v) forany z € X4 and v € [I]

The category of II-coalgebras and II-coalgebra homomorphisms is denoted Coalg(II). Co-signatures
IT = (S, 0P, []) induce abstract cosignatures (Set, Fi), with Fr; : Set — Set being given by:

FpX = H x U1 o H [[Ohj]]ﬂfk]—]]
Je{1,...,0} J€l,..,n}

for X € |Set|. For, Set is complete, cocomplete and regular (see Examples 2.1.31 and 2.1.47),
while Fyp preserves pullbacks and limits of w°P-chains (see Example 2.1.37). Moreover, Coalg(II) ~
Coalg(Set, Fir) (see [Cor98]).

An immediate consequence of Definition 3.1.1 is the existence of final coalgebras of abstract cosig-
natures.

Proposition* 3.1.9. Let (C,F) denote an abstract cosignature. Then, Coalg(C,F) has a final
object.

Proof. The conclusion follows by Theorem 2.4.4. O

Also, for an abstract cosignature (C, F), the existence of pullbacks in C together with the preservation
of pullbacks by F result in the existence of pullbacks in Coalg(C,F).

Proposition 3.1.10. Let (C,F) denote an abstract cosignature. Then, Uc creates pullbacks.
Proof. The conclusion follows by Proposition 2.4.7. O

Corollary 3.1.11. For an abstract cosignature (C,F), Coalg(C,F) has pullbacks and Uc preserves
them.

Proof. The conclusion follows by Corollary 2.4.8. O

Corollary 3.1.12. Let (C,F) denote an abstract cosignature. Then, Uc preserves as well as reflects
monomorphisms.

Proof. Let f : (C,v) — (D,d) denote a (C, F)-coalgebra homomorphism. Then, by 3 of Proposi-
tion 2.1.43, f (respectively Uc f) is a monomorphism if and only if (1,c .y, Licy)) ((1c, Lc)) defines
a kernel pair for f (Ucf). The conclusion then follows from the fact that Uc preserves as well as
creates kernel pairs. O
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Proposition 2.1.30 together with Proposition 3.1.9 and Corollary 3.1.11 yield the following.
Corollary 3.1.13. For an abstract cosignature (C,F), Coalg(C,F) has finite limits.

Remark 3.1.14. Since Uc preserves kernel pairs, it follows by 5 of Proposition 2.1.43 that kernel
pairs in Coalg(C,F) define (C,F)-bisimulations. And since F preserves pullbacks and Coalg(C, F)
has a final object, it follows that largest bisimulations on (C, F)-coalgebras exist and are given by
(the C-arrows underlying) the kernel pairs of the unique (C, F)-coalgebra homomorphisms into the
final (C, F)-coalgebra (see Remark 2.4.12). Furthermore, the resulting (C, F)-coalgebra structures
on the largest bisimulations are the only ones which make the two C-arrows defining the largest
bisimulations into (C, F)-coalgebra homomorphisms.

A notion of observability of coalgebras can also be defined.

Definition* 3.1.15. Let (C,F) denote an abstract cosignature. A (C,F)-coalgebra (C,~) is ob-
servable if and only if the C-arrow underlying the unique homomorphism from (C,~y) to the final
(C,F)-coalgebra is a monomorphism.

It then follows by Remark 3.1.14 together with 3 of Proposition 2.1.43 that a (C, F)-coalgebra is
observable if and only if the largest bisimulation on it is given by the equality relation on its carrier.

Example 3.1.16 ( Final Hidden Algebras, Behavioural Equivalence). Let (H,3) denote a hid-
den signature. A X-context of sort h € H [GM97] is a visible-sorted ¥-term containing a single
occurrence of a variable z of sort h. Then, behavioural equivalence [GM97] on a hidden ¥-algebra
A is the S-sorted relation ~ on A given by:

— a1 ~yag ifandonly if a; = ao, forv eV

— a1 ~p ag if and only ca(a1) = ca(ag) for any 3-context ¢ of sort h, for h € H (with ca
denoting the function interpreting the YX-context ¢ as a function on Ay,).

It is shown in [GM97] that final algebras exist for destructor hidden signatures — their elements
of type h are given by functions assigning, to each context ¢ of sort h and result type v, a value
d € D,. As a result, if (Set?), Fs) denotes the abstract cosignature induced by a destructor hidden
signature ¥ (see Example 3.1.6), then behavioural equivalence on a X-algebra A is the same as
(Set), Fy;)-bisimulation on the corresponding (Set?, Fx:)-coalgebra.

Given the hidden signature of cells in Example 3.1.6, the following are contexts of sort State:
getx(z), getx(putx(0,z)), getx(putx(1,putx(0,z))). One algebra of this hidden signature has
hidden carrier N, and interprets init, getx and putx as 0 € N, 1y : N — N and respectively
71 : N X N — N. Behavioural equivalence on this algebra is given by the equality relation. Another
algebra of the hidden signature of cells has hidden carrier (N)™ (finite, non-empty sequences of
natural numbers, providing a history of cells), and interprets init, getx and putx as (0) € (N)*,
first : (N)™ — N (taking a list to its first element) and respectively append : N x (N)* — (N)*
(appending the natural number given by its first argument to the front of the list given by its



Equational Specification in an Abstract Setting 49

second argument). Behavioural equivalence on this algebra relates any two lists whose first elements
coincide. The final algebra of the destructor hidden subsignature of the hidden signature of cells is
given by the reduct of the first algebra considered here to this subsignature.

Example 3.1.17. [Jac96c] gives a characterisation of final coalgebras of endofunctors G : Set — Set
of form GX = [] (B;+C;x X)“: their elements are given by suitably-restricted functions from

i=1,...,n
(A +...+A)" o (By+...+ By)+ (Cy +... +C,) (assigning, to each sequence of inputs, a
value defining the visible outcome of the experiment defined by these inputs on the given element).

The existence of colimits in C results in the existence of colimits in Coalg(C, F) and in their preser-
vation by Uc.

Proposition® 3.1.18. Let (C,F) denote an abstract cosignature. Then, Coalg(C,F) has colimits
and Uc preserves them.

Proof. The conclusion follows by Corollary 2.4.10. O
Also, the creation of cokernel pairs by Uc yields a characterisation of epimorphisms in Coalg(C, F).

Corollary* 3.1.19. Let (C,F) denote an abstract cosignature. Then, Uc preserves as well as reflects
epimorphisms.

Proof. Similar to the proof of Corollary 3.1.12. O

Finally, the existence of quotients in C together with the preservation of kernel pairs by F result in
the existence of quotients in Coalg(C, F) and in their preservation by Uc.

Proposition 3.1.20. Let (C,F) denote an abstract cosignature. Then, Uc creates quotients.
Proof. Uc creates kernel pairs (see Proposition 3.1.10) and coequalisers (see Proposition 2.4.9). O

Corollary 3.1.21. For an abstract cosignature (C,F), Coalg(C,F) has quotients and Uc preserves
them.

The quotient of a (C, F)-coalgebra homomorphism defines a homomorphic image of the domain of
this homomorphism (as Uc preserves epis, see Corollary 3.1.19). And because C is regular, this also
yields a subcoalgebra of the codomain of the given homomorphism.

Corollary 3.1.22. Let (C,F) denote an abstract cosignature, let f denote a (C,F)-coalgebra ho-
momorphism with quotient e, and let f = 1 o e denote the factorisation of f resulting from the
universality of e. Then, e defines a homomorphic image of the domain of f, while v defines a
(C, F)-subcoalgebra of the codomain of f.

Proof. The preservation of quotients by Uc results in Uce being an epimorphism. Also, the regularity
of C results in Uct being a monomorphism (see Proposition 2.1.46). O
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3.1.2 Observers, Coequations and Satisfaction (up to Bisimulation)

Abstract cosignatures specify basic ways of observing particular systems: an abstract cosignature
(C,F) induces a natural transformation A : Uc = FUc, with A,y : C — FC being given by
Ny = v for (C,) € |Coalg(C,F)|. (A uses the coalgebraic structure given by v to extract
information of type F from the carrier C' of v.) More complex observations on the carriers of (C, F)-
coalgebras can also be defined, e.g. by considering natural transformations of form F?»~1 \o...oF )Xo\ :
Uc = F"Uc, with n € N*. The next definition formally captures such complex observations, as well
as more general ones, by exploiting the fact that the result of an observation depends solely on the
coalgebraic structure.

Definition* 3.1.23. Let (C,F) denote an abstract cosignature. A (C,F)-observer is a pair (K, c),
with K : C — C an endofunctor which preserves monomorphisms, and with ¢ : Uc = KU¢ a natural
transformation. (K is called the type of the observer.)

(C, F)-observers are parameterised by (C, F)-coalgebras: a (C,F)-observer (K, c) specifies, for each
(C,F)-coalgebra (C,7v), a C-arrow ¢, : C — KC, extracting information of type K from C
using the coalgebraic structure . In addition, (C,F)-observers are well-behaved w.r.t. coalge-
bra homomorphisms, in that if f : (C,vy) — (D,?d) is a (C, F)-coalgebra homomorphism, then
csoUcf = KUcf oc,.

U
o p

CW\L J/Cé
KC m} KD

That is, the extraction of K-information from coalgebras commutes with coalgebra homomorphisms.

Remark 3.1.24. (C,F)-observers can be composed. Specifically, if (K,c) and (K',¢') are (C,F)-
observers, then so is (KK',Kc' o ¢). (The preservation of monomorphisms by K and K’ results in
their preservation by KK'.)

In particular, if A : Uc = FUc is as before, then F*~*Xo...0FXo) : Uc = F"Uc is a (C, F)-observer,
for any n € N*.

Pairs of observers are used to constrain system implementations, by requiring that the specified
observers yield similar results.

Definition* 3.1.25. Let (C,F) denote an abstract cosignature. A (C,F)-coequation is a tuple
(K,1,7r), with (K,l) and (K,r) denoting (C,F)-observers. A (C,F)-coalgebra (C,~) satisfies a
(C, F)-coequation (K,l,r) (written (C,v) EF) (K,I,7)) if and only if I, = 7.

For an abstract cosignature (C,F) and a class E of (C,F)-coequations, the full subcategory of
Coalg(C, F) whose objects satisfy the coequations in E is denoted Coalg(C,F, E).

Example 3.1.26 ( Standard Equational Satisfaction in Hidden Algebra). If (Set?), Fx) denotes
the abstract cosignature induced by a destructor hidden signature ¥ (see Example 3.1.6), then any
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conditional X-equation e in one hidden-sorted variable induces a (Set?, Fx)-coequation ¢ such that
A =5 e if and only if (C,7) ):(Set%fz) ¢, with A a hidden X-algebra and (C, ) its associated
(Set?), Fx:)-coalgebra. Specifically, if e is of form (VZ) I =7 if Iy = r1,...,l, = 7y, then ¢ is of
form (K,I',7'), with K : Set?, — Set?, being given by:

1+X, if Z:h

, he H
1 otherwise

Man{
(KX)y =D,, veV

where s denotes the type of [ and , and with I',7/ : U = KU (where U : Coalg(Set?), Fy;) — Set?,
denotes the functor taking (Set?, Fy;)-coalgebras to their carrier) being given by:

) {zﬁl’“”""(l””“ if Z:h
h:

, he H
1:Cp =1 otherwise

U?C,w

(l?c’,}/))v = ]‘Dv veV

for (C,~) € |Coalg(Set?), Fx)| with A its associated hidden X-algebra (and similarly for '), where

l%l’“)""’(l”’r"),r%l’rl)""’(l"’r”) : Ap — 1+ Ag are given by:

l(ll,rl),...,(ln,rn)(a) _ LQ(ZA(G)) if (ll)A(a) = (Ti)A(a) fori=1,...,n
A 11 (%) otherwise

for a € A, (and similarly for r%l’”)""’(l"’r”)). The fact that K preserves monomorphisms follows by

Example 2.1.37.

Similarly, any conditional Y¥-equation e in one hidden-sorted variable and a number of visible-sorted
variables induces a (Set?), Fx)-coequation ¢, such that A k=5 e if and only if (C, ) |:(Set%,Fz;) c.
Specifically, if e is of form (VZ)(VX1)... (VX)) I =7 ifly =r,... 1, = ry with X; : v; for
i=1,...,m, then cis of form (K,I’,'), with K : Set?, — Set?, being given by:

I1---JI1+X5) if Z:h
(KX)h =4 Do Don , heH
1 otherwise

(KX)y =Dy, vEV
and with I’ 7' : U = KU being given by:
l(ll,rl),...,(ln,rn) F Z:h
o) =44 , he H
(em ':Cp —1 otherwise

(l?c’,}/))v = ]‘Dv’ veV

(and similarly for r') where lgl’”)""’(l"’r"),rfjl’“)""’(l”’r”) :Ap — ] ... [ (1+As) are given by:
Do, Do,

(L1,71)y s (InyTn) LQ(ZA(aa Ci)) if (li)A(aa CZ) = (Ti)A(aa J) fori=1,...,n
(I (a))q = .
11 (%) otherwise
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fora € A, and d € Dy, x ... x D, (and similarly for r%l’“)""’(l"’r")).

In the case of unconditional equations, the induced coequations have a simpler form, with (KX),

being given by X and respectively [] ... [][ Xs (rather than by 1 + X and respectively
Dy, Do,

IT--- II (1 + X)), and with the definitions of I’, 7' being adjusted accordingly.
Dy, D

The following equations are used in [GMO0O] to constrain the behaviour of cells (see Example 3.1.6):

(VN)(VS) getx(putx(N,S)) =N

(VS)(VN)(VM) putx(N, putx(M,S)) = putx(N,S)
The (Setg]at’smte}, F)-coequations (K, I,r) and (K',!’, ") induced by the above equations are given
by:

(KX)State = H N
neN
(licy) )state = (getxy o putxy(n, -))nen

(T<C,’Y> )State = <n>nEN

(with the constant function taking a € Agtate to n € N also being denoted by n) and respectively:

(K,X)State = H H XState

meNneN
(1 C,7>)State = (putx 4 (n, ) o putx (M, -)}meNneN

'
(
(Tzcm)sme = <putxA(n, —)>mEN,nEN

{Nat,State}

for (C,v) € |Coalg(Sety ,F)| with A its associated hidden algebra.

Example 3.1.27 ( Co-signatures Contd.). Let II = (S, OP,[_]) denote a co-signature (see Exam-
ple 3.1.8). A Il-context of sort Y [Cor98] is a well-sorted term of sort Y built from the operators
of IT and from constants of input sorts, containing precisely one occurrence of a variable, denoted
x, which must be of hidden sort. Contexts of hidden sort are called transition sequences, while
contexts of output sorts are called observations. Given a Il-context ¢ together with a II-coalgebra
A= (Xa,(mj,)jeq,..1 (@4) jeqr,...n} ) the interpretation of ¢ in Ais a function [c]4 with domain
X 4 defined as follows:

— [z]a: Xa— X4 isgiven by 1x,.

— If ¢: X is a transition sequence of form m(c/,v) for some transition sequence ¢’ : X, some
method m and some constant v of input sort, then [c]4 : X4 — X4 is given by [c]4(y) =
ma([d]a(y),v) fory € Xa.

— If ¢ : O is an observation of form a(c’, v) for some transition sequence ¢’ : X, some attribute a
and some constant v of input sort, then [c]4 : X4 — [O] is given by [c]a(y) = aa([c']a(y),v)
for y € X4.
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A II-term [Cor98] is either an observation or a constant of output sort. The interpretation of a
II-term ¢ : O in a II-coalgebra A is a function [t]4 : X4 — [O] defined by:

] {[c]A if ¢ is given by an observation ¢
A =

v if ¢ is given by a constant v

A II-equation [Cor98] is a pair (t; : O,t2 : O) of II-terms of the same sort, and is alternatively
denoted t; =¢p t2. A Il-coalgebra A is said to satisfy a Il-equation t; =¢ to if and only if
[t1]a = [t2]a (as functions from X 4 to [O]).

If (Set,Fy1) denotes the abstract cosignature induced by the co-signature IT (see Example 3.1.8),
then TI-contexts ¢ induce (Set, Fy)-observers (K, 0), with K : Set — Set being given by:

KX — X if ¢ is a transition sequence
[O] if cis an observation of type O

for X € |Set

, and with o : Uset = KUse: being given by:

0(cyy) = [ca

for (C,~y) € |Coalg(Set, Fi)| with A its associated II-coalgebra. Similarly, II-terms ¢ : O induce
(Set, Fyp)-observers (K, c), with K : Set — Set being given by:

KX =[0]
for X € |Set|, and with ¢ : Usey = KUse being given by:

oy = [tla

for (C,v) € |Coalg(Set, Frr)| with A its associated II-coalgebra. Finally, II-equations ¢, =¢ t2
induce (Set, Fyy)-coequations (K, ¢1,co), with K being as before and with ¢1,¢5 : Usey = KUget
being the (Set, Fiy)-observers induced by the II-terms ¢1,t2, such that A |=p1 t1 =0 t2 if and only
if (C,7) F(set,ru) (K;c1,c2), with A a Tl-coalgebra and (C, ) its associated (Set, Fi1)-coalgebra.

The notions of satisfaction considered in Examples 3.1.26 and 3.1.27 have the property of being
preserved by homomorphisms whose underlying functions are surjective, and reflected by homomor-
phisms whose underlying functions are injective. The next result generalises this property to the
abstract notion of satisfaction of coequations.

Proposition* 3.1.28. Let (C,F) denote an abstract cosignature, let f : (C,v) — (D, §) denote a
(C, F)-coalgebra homomorphism, and let (K,l,r) denote a (C,F)-coequation. Then, the following
hold:

1. IfUcf is an epimorphism, then (C,v) =) (K,l,7) implies (D,d) = r (K,1,7).
2. If Ucf is a monomorphism, then (D, 6) =y (K,l,7) implies (C,v) = (K, I,7).



Equational Specification in an Abstract Setting 54

Proof. 1 follows from:

(C,7) B (K ,r)
ly=ry

KUcfoly =KUcfory
lsoUcf =rsolUcf

ls =15

(D,0) Ecr (Kir)

Tt 40

while 2 follows from:

(D,6) Ec,r (K1)
ls=rs

lsoUcf =rsoUcf
KUcfoly =KUcfor,

Tt 40

ly=ry
<07 7) ):(C,F) (K,l,’l")

(The fact that K preserves monomorphisms is used in proving 2.) O

The requirement that Uc f is an epimorphism (respectively a monomorphism) amounts to f defining
a homomorphic image (subcoalgebra).

Another property of the abstract notion of satisfaction of coequations is that it is preserved by
colimits in Coalg(C,F).

Proposition* 3.1.29. Let (C,F) denote an abstract cosignature. Also, let d : D — Coalg(C, F)
denote a diagram of shape D in Coalg(C,F), and let ({(C,v),(fp : dD — (C,7v))pe|p|) denote its
colimit. Finally, let (K,l,r) denote a (C, F)-coequation. IfdD =) (K,l,7) for any D € |D|, then
<C7 7> |:(C,F) (Kalvr)'

Proof (sketch). The conclusion follows from: I, oUc fp = KUc fpolagp = KUcfporap =ryoUcfp
for D € |D|, together with Uc preserving D-colimits. O

Corollary* 3.1.30. Let (C,F) denote an abstract cosignature, and let E denote a class of (C,F)-
coequations. Then, Coalg(C,F, E) is a covariety.

Proof. The conclusion follows by Propositions 3.1.28 and 3.1.29. O

Remark 3.1.31. The question whether any (C, F)-covariety is of form Coalg(C, F, E') for a suitably-
chosen E will be discussed in Section 3.1.6.

For a (C, F)-coalgebra (C, ) and a (C, F)-coequation e (respectively a class E of (C, F)-coequations),
the full subcategory of Coalg(C, F)/~ whose objects satisfy the coequation e (the coequations in
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E) is denoted (Coalg(C,F)/v)¢ ((Coalg(C,F)/v)¥). (Recall from Example 2.1.6 that the slice
category Coalg(C, F)/v has objects given by pairs ((D,d),d) with (D,d) a (C,F)-coalgebra and
d:(D,d§) — (C,v) a (C,F)-coalgebra homomorphism, and arrows from ((D, d),d) to ((D', ¢}, d’)
given by (C, F)-coalgebra homomorphisms f : (D,d) — (D', d') satisfyingd =d' o f.)

The observation that abstract cosignatures induce comonads (see Remark 3.1.5) results in the
existence of final objects in (Coalg(C,F)/v)¢ and (Coalg(C,F)/v)¥.

Proposition 3.1.32. Let (C,F) denote an abstract cosignature, let (C,~) denote a (C, F)-coalgebra,
and let e denote a (C, F)-coequation. Then, (Coalg(C,F)/v)¢ has a final object, which at the same
time defines a (C, F)-subcoalgebra of (C,~).

Proof. Say e is of form (K,l,r). Let (D,¢,d) denote the comonad induced by (C,F), let lfy,r,by :
(C,7v) — (DKC,~') denote the unique (co)extensions of the C-arrows i,r, : C' — KC to (C,F)-
coalgebra homomorphisms, and let ¢ : (S,&) — (C,~) denote an equaliser for l;,rfy (see Corol-
lary 3.1.13). Then, Uct is a monomorphism (see Corollary 3.1.12), and therefore ((S,£),t) defines
a (C, F)-subcoalgebra of (C,7). Moreover, ((S,€),¢) is final in (Coalg(C,F)/y)¢. The fact that
(S,€) =(c,F) e follows from:

KUctole = (naturality of [)

lyoUct = (definition of 1)

definition of 77)

(

(
exc o Ucll o Uct =  (definition of )

€KC O Ucri oUct= (

(

ry o Uct = (naturality of )

KUct o e

together with the observation that KUct is a monomorphism (as Uce is a monomorphism, while K
preserves monomorphisms). Also, finality of ((S,&),¢) in (Coalg(C, F)/~)¢ follows from the unique-
ness of (C, F)-coalgebra homomorphisms with codomain (DKC,+') (co)extending a given C-arrow
with codomain KC, together with the couniversality of ¢. For, given ((D, d),d) € |(Coalg(C,F)/v)¢,
the fact that (D, ) =(cF) e together with the naturality of [, yield [, o Ucd = 1, o Ucd, that is,
€KC © Uc(l,by od) =ekc o Uc(rky od). Hence, lfr od= rf’y od. Then, the couniversality of ¢ yields a
unique (C, F)-coalgebra homomorphism e : (D,d) — (S, ) satisfying d = toe. That is, there exists
precisely one (Coalg(C, F)/y)¢-arrow from ((D,d),d) to ((S,€),t). This concludes the proof. O

The existence of limits of w°P-chains in Coalg(C, F) (following from the existence of such limits in
C together with their preservation by F, see Corollary 2.4.8) now yields the following.

Proposition 3.1.33. Let (C,F) denote an abstract cosignature, let (C,~y) denote a (C, F)-coalgebra,
and let E denote an enumerable set of (C,F)-coequations. Then, (Coalg(C,F)/v)¥ has a final
object, which at the same time defines a (C, F)-subcoalgebra of (C,~).

Proof. Say E ={ e; | i € N }. Now let (Cp,v) = (C,7). Also, for i € N, let ((Cit+1,7Vit+1),Ci+1)
denote a final object in (Coalg(C, F)/~;)¢. Finally, let ((S, &), (¢i)ien) define a limit for the w°P-chain
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defined by ¢y, co,. ...
(S,6)

S
<00770> <C—1 <01371> <C—2 e

The fact that Uc creates limits of w®P-chains together with the fact that each of Uccy,Uces, ...
are monomorphisms result in each of Uctg,Ucty,... being monomorphisms. In particular, Uceg
is @ monomorphism, and hence ((S,£),tp) defines a (C,F)-subcoalgebra of (C,7). Moreover,
(S,€) FE(cp E. This follows by 2 of Proposition 3.1.28 from Uct;4+1 being a monomorphism
together with (Cit1,7i+1) F(cF) ei, for i € N Also, the fact that ((Cit1,7it+1),civ1) is final
in (Coalg(C,F)/v;)%, for i € N results in ((S,£), 1) being final in (Coalg(C,F)/v)F. For, given
{((D,6),d) € |(Coalg(C,F)/v)¥|, the finality of ((Ciy1,vis1),civ1) in (Coalg(C,F)/v;)¢+!, with
i =0,1,... successively yields (C, F)-coalgebra homomorphisms d;11 : (D,d) — (Cit1,7vit1) sat-
isfying ¢; 11 0 djy1 = d;, for i = 0,1,... (with dy = d). The couniversality of ((S,&), (¢;)icn) then
yields a unique (C, F)-coalgebra homomorphism [ : (D, ) — (S, &) satisfying 1; 0 f = d; for i € N.
In particular, 1o o f = d. This concludes the proof. O

Corollary 3.1.34. Let (C,F) denote an abstract cosignature, and let E denote an enumerable set
of (C,F)-coequations. Then, Coalg(C,F, E) has a final object.

Proof. Propositions 3.1.9 and 3.1.33 are used. O

A notion of satisfaction of coequations up to bisimulation, which generalises the various notions of
satisfaction up to observability employed by existing equational specification formalisms, including
[GM97, Jac96a, Jac97] can also be defined.

Definition* 3.1.35. Let (C,F) denote an abstract cosignature. A (C, F)-coalgebra (C,~) satisfies
a (C,F)-coequation (K,I,7) up to bisimulation (written (C,~) |:E’C r (K.L,r)) if and only if
KUc!ol, = KUclor,, with!: (C,v) — (F,() denoting the unique (C,F)-coalgebra homomorphism

from (C,~) to the final (C,F)-coalgebra.

Remark 3.1.36. If K preserves kernel pairs, then (C,~) |:'(’C7F) (K,I,r) holds precisely when (l,,7,)
factors through (Kry, Kra):

Iy,
0f”—”>>KC><KC

~
7: ~ (K7‘1,K7“2>
~
~

KR

with (R, 71, 72) denoting (C, F)-bisimilarity on (C,~y). For, in this case, Kry, Kry define a kernel pair
for KUc! (see also Remark 3.1.14).

Example 3.1.37 ( Behavioural Equational Satisfaction in Hidden Algebra). Let (H,Y) denote a
hidden signature (see Example 3.1.6). A 3-context ¢ (see Example 3.1.16) is said to be appropriate
[GM97] for a X-term ¢ if and only if the sort of ¢ matches that of the variable z. In this case, one writes
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c[t] for the result of substituting ¢ for z in ¢. A X-algebra A is said to behaviourally satisfy [GM97] an
unconditional Y-equation e of form (VV) | = r (written A [=y e) if and only if 67 (c[l]) = 6% (c[r])
holds for any Y-context ¢ appropriate for [,r, and any assignment 6 : V — UA. Also, A is said to
behaviourally satisfy [GM97] a conditional ¥-equation e of form (VV) I =rifly =r1,...,lh =1,
(written A [Ex, €) if and only if 0% (c[l]) = 0% (c[r]) holds for any Y-context c appropriate for [,
whenever 0% (c;[l;]) = 0% (c;[r;]) holds for any Y-context c; appropriate for I;,7;, for i = 1,...,n,
for any assignment 6 : V — UA. Equivalently, A =5 e if and only if 8% (1) ~ 6% (r) whenever
0% (1;) ~ 0% (r;) for i = 1,...,n, for any assignment 6 : V — UA (with ~ denoting behavioural
equivalence on A).

Now let (Set?), Fx;) denote the abstract cosignature induced by a destructor hidden signature 3 (see
Example 3.1.6). Also, let e denote a conditional X-equation of form (VZ)(VX;)...(VX,,) [ =
rifly =ry,...,0l, =7, with Z:hand X; : v; for i = 1,...,m. Then, e induces a (Set%,Fg)—
coequation ¢, with ¢ being constructed as in Example 3.1.26, except that the conditions (/;) 4(a) =
(ri)a(a) are replaced by (I;)a(a) ~ (r;)a(a). Moreover, A Ex e if and only if (C,~) :?SEt%,FE) c.
This follows by the previously-mentioned characterisation of behavioural satisfaction in terms of
behavioural equivalence.

Consider, for instance, the equations used to specify the behaviour of cells (see Example 3.1.26).
The first of these equations, namely (VN)(VS) getx(putx(N,S)) = N, is of visible sort, and conse-
quently its behavioural satisfaction by an algebra of the cell signature is equivalent to its stan-
dard satisfaction by that algebra. The same can not, however, be said about the equation:
(VS)(VN)(VM) putx(N,putx(M,S)) = putx(N,S). Its behavioural satisfaction by algebras of the cell
signature will later be shown to follow from the (behavioural) satisfaction of the previous equation
by such algebras.

Standard satisfaction of (K,l,7) by (C,v) implies its satisfaction up to bisimulation by (C,~).
And if, in addition, (C,~) is observable, then the converse also holds. For, in this case, Uc! is a
monomorphism, while K preserves monomorphisms.

Satisfaction up to bisimulation can be expressed in terms of standard satisfaction by the codomains
of the quotients of the unique homomorphisms into the final coalgebra.

Proposition 3.1.38. Let (C,F) denote an abstract cosignature, let (C,~y) denote a (C, F)-coalgebra,
and let (K,l,r) denote a (C,F)-coequation. Also, let e : (C,v) — (E,n) denote the quotient
of the unique (C,F)-coalgebra homomorphism from (C,~) to the final (C,F)-coalgebra. Then,

<Ca 7> |:|E’C7F) (K’lalr) if and only if (Ean> ):(C,F) (K,l,’l”)-

Proof. Let !, : (C,vy) — (F,¢) and !, : (E,n) — (F,() denote the unique (C,F)-coalgebra
homomorphisms from (C,~) and respectively (E,n) to the final (C, F)-coalgebra. Also, note that
Uce is an epimorphism (see Corollary 3.1.22), whereas KUc!,, is a monomorphism (as Uc!;, is a
monomorphism (see Corollary 3.1.22), while K preserves monomorphisms). Then, the conclusion
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follows from:

(Co7) Elcry (Kilyr)

KUc!y oly = KUc!y o7,

KUc!;, o KUceol, = KUc!;, o KUceor,
KUc!, ol o Uce = KUc!, oryoUce

KUc!, ol;, = KUc!, oy

S R

ly=mry

(Ev 7]) ):(C,F) (Kv L ’I“)
a

The notion of satisfaction of coequations up to bisimulation enjoys properties similar to those
of standard satisfaction. In particular, Propositions 3.1.28, 3.1.29, 3.1.32 and 3.1.33, as well as
Corollaries 3.1.30 and 3.1.34 hold. Moreover, the implication in 1 of Proposition 3.1.28 becomes an
equivalence, while 2 of Proposition 3.1.28 requires no restriction on the homomorphism involved.

Proposition* 3.1.39. Let (C,F) denote an abstract cosignature, let f : (C,v) — (D, §) denote a
(C, F)-coalgebra homomorphism, and let (K,l,r) denote a (C,F)-coequation. Then, the following
hold:

1. If Ucf is an epimorphism, then (C,~) |:E’C F) (K,l,r) implies (D, ¢) |:E’C F) (K,l,7).
2. <D36> ):?C,F) (K,l,’l") Implles <077> ):?C,F) (K,l,’l")-

Proof. Let !, : (C,v) = (F,¢) and !5 : (D,d) — (F,() denote the unique (C, F)-coalgebra homo-
morphisms from (C,+) and respectively (D, ) to the final (C, F)-coalgebra. Then, the conclusion
follows from:

(D,d) ):?C,F) (K,Lr)

KUc!lsols = KUcls 01
KUclsolsoUcf = KUclsorsoUcf
KUc!s o KUcf ol, = KUc!s o KUcf ory
KUc!y ol, = KUc!y o,

(C,) ):?C,F) (K,Lr)

with the implication in the second line of the proof becoming an equivalence if Ucf is an epimor-
phism. O

t 4

Proposition* 3.1.40. Let (C,F) denote an abstract cosignature. Also, let d : D — Coalg(C, F)
denote a diagram of shape D in Coalg(C,F), and let ({(C,v),(fp : dD — (C,7v))pe|p|) denote its
colimit. Finally, let (K,l,r) denote a (C,F)-coequation. If dD ):E’C F) (K,l,r) for any D € |D|, then

<Ca 7> |:|€C’F) (Ka la Ir)'

Proof. Similar to the proof of Proposition 3.1.29. O
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Corollary* 3.1.41. Let (C,F) denote an abstract cosignature, and let E denote a class of (C,F)-
coequations. Then, the full subcategory of Coalg(C, F) whose objects satisfy the coequations in E
up to bisimulation is a covariety.

Proposition 3.1.42. Let (C,F) denote an abstract cosignature, let (C,~y) denote a (C, F)-coalgebra,
and let E denote an enumerable set of (C,F)-coequations. Then, the full subcategory of
Coalg(C,F)/vy whose objects satisfy the coequations in E up to bisimulation has a final object.
Furthermore, the final object defines a (C, F)-subcoalgebra of (C,7).

Proof. Similar to the proof of Proposition 3.1.33. (A version of Proposition 3.1.32 concerning the
satisfaction of equations up to bisimulation is also needed.) O

The following also holds.

Proposition 3.1.43. Let (C,F) denote an abstract cosignature, let E denote an enumerable set
of (C,F)-coequations, and let (F',(') denote a final (C,F, E)-coalgebra®. Then, (F' (') is final
amongst the (C,F)-coalgebras satisfying the coequations in E up to bisimulation. Moreover, a
(C, F)-coequation holds in (F', (') if and only if it holds, up to bisimulation, in all (C, F)-coalgebras
satisfying £ up to bisimulation.

Proof. Say E = { e; | i € N }. Finality of (F",(’) amongst the (C, F)-coalgebras satisfying E
up to bisimulation follows from its finality in Coalg(C,F, E) together with the observation that, if
(C,7) |:t()C,F) E, then (C,~) defines the object of a cone on the following w-chain:

(Fo, o) = (F,C) <L (Fy, c1) <2 -

with (F, () denoting a final (C, F)-coalgebra, and with ((Fji1,(i+1), fi+1) denoting a final object in
(Coalg(C,F)/¢)%, for i =0,1,....

Then, the if direction follows from (F’, (") ?C,F) E (as (F',¢") () E), while the only if
direction follows from the finality of (F’,(’) amongst the (C,F)-coalgebras satisfying E up to
bisimulation, together with the satisfaction of coequations up to bisimulation being reflected by
coalgebra homomorphisms. O

Provided that the functors K used to define the types of coequations preserve kernel pairs, proofs
of satisfaction of coequations up to bisimulation can benefit from the use of generic bisimulations,
as defined below.

Definition 3.1.44. Let (C,F) denote an abstract cosignature, and let C denote a full subcategory
of Coalg(C,F)®. A generic (C, F)-bisimulation on C is given by a tuple (R, 71, m) withR:C — C
and i, m2 : R = Ucle, such that (Ry,m,m2) defines a (C,F)-bisimulation on (C,~y) for any
(C,7) €lC].

*Hence, (F',{") ey E-

8C could, for instance, consist of all (C, F)-coalgebras satisfying (possibly only up to bisimulation) a given set of
C, F)-coequations.
(G, q
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That is, a generic bisimulation on C associates to each coalgebra in C a bisimulation relation on it,
with this association being functorial.

Then, proving that a (C, F)-coequation (K, [, ) with K preserving kernel pairs holds, up to bisimula-
tion, in a full subcategory C of Coalg(C, F) can be reduced to exhibiting a generic (C, F)-bisimulation
(R, 71, m2) on C, such that (I, r,) factors through (K7, Kma ) for any (C,v) € |C|:

l~,r
0\“—”>K0><K0

\c ~ T<KW1,77K7"2,7>
h b
KR~

(see also Remark 3.1.36).

Example 3.1.45 ( Hidden Coinduction). Let X denote a hidden signature. A hidden congruence
on a Y-algebra A is a many-sorted 3-congruence = on A (see Definition 2.3.22) additionally satis-
fying: =, = =, for v € V.. Then, behavioural equivalence on a Y-algebra A is the largest hidden
congruence on A. This observation is exploited in [GM99, GMO00] to derive a proof technique for
behavioural satisfaction called hidden coinduction. Using this technique for proving the behavioural
satisfaction of an equation by an algebra amounts to exhibiting a hidden congruence on that algebra
which relates the interpretations of the lhs and rhs of the given equation. The technique can also
be used to prove the behavioural satisfaction of an equation by all the algebras satisfying a given
equational specification. In this case, the required hidden congruences are defined generically, typ-
ically as behavioural equivalence relations w.r.t. a subsignature of the underlying hidden signature.
The use of generic bisimulations in proving the satisfaction of coequations up to bisimulation gen-
eralises the use of such generic hidden congruences in proving the behavioural satisfaction of hidden
equations. An example of a such a proof is given in the following. Consider the specification of cells
holding natural numbers, given by the hidden signature in Example 3.1.6 together with the equation
(VN)(VS) getx(putx(N,S)) = N. Also, for an algebra A of this specification, consider the relation =
on A given by:

— n =yt n ifand only if n =n'

— @ =gtate ¢’ if and only if getx ,(a) = getx,(a’).

Then, a =gtate @' implies putx(n,a) =state putx(n,a’) for any n € Ayas. (The fact that
A | (YN)(VS) getx(putx(N,S)) = N is used here.) That is, = is a hidden congruence on A,
and consequently =C ~ (with ~ denoting behavioural equivalence on A). As a result, prov-
ing that A E (VS)(VN) (VM) putx(N,putx(M,S)) = putx(N,S) can be reduced to proving that
A E (VS)(VN) (VM) getx(putx(N,putx(M,S))) = getx(putx(N,S)). But this follows from A |=
(VN) (VS) getx(putx(N,S)) = N by standard equational reasoning.

Example 3.1.46. The assertions used in [Jac96c, Jac96a, Jac97] to specify object behaviour are an
instance of the abstract notion of coequation. To illustrate this, we consider the following example
of an object specification, taken from [Jac96a]:
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class spec: Stack(A)
methods:
push: X x A —> X
pop: X - X
top: X -1+ A
assertions:
s.push(a).top = a
s.push(a).pop & s
s.top = x - s.pop & s
creation:
new.top = *
end class spec

The models of the above specification are given by coalgebras of the endofunctor G : Set — Set,
GX = X4 x X x (1 + A) (or, equivalently, by tuples (C,pushc, pop,tops), with C € |Set|,
push: Cx A — C, popy : C — C and top : C — 1+ A) which, in addition, satisfy the specified
assertions. (The satisfaction of assertions by coalgebras is defined by interpreting the symbol < as
bisimilarity on those coalgebras.)

Since assertions refer to single states (denoted by s in the above example), they induce (Set, G)-
coequations. For instance, the (Set, G)-coequation (K,I,r) induced by the last of the above as-
sertions has K : Set — Set given by KX = 1+ X for X € |Set|, and I,7 : U = KU (with
U : Coalg(Set, G) — Set taking (Set, G)-coalgebras to their carrier) given by:

Lo (€) = {G(popc(c)) f topo(e) € n (1)
(Cm) 0 (%) if topc(c) € 1a(A)
reon(€) = {L2(C) if topc(c) € 11(1)
(€ vi(x) if tope(c) € 12(A)

for any (Set, G)-coalgebra (C,~y), with pushy : C x A — C, popr: C — C and top : C — 1+ A
alternatively defining its structure, and any ¢ € C. Furthermore, a coalgebra satisfies a given
assertion precisely when it satisfies the induced coequation up to bisimulation.

3.1.3 Institutions of Observational Structures

Translations between abstract cosignatures, specifying a change in the type of information that can
be observed about a system, are captured by abstract cosignature morphisms.

Definition* 3.1.47. An (abstract) cosignature morphism between abstract cosignatures (C,F)
and (D, G) is a pair (U,n), with U : D — C a functor which preserves limits’ and has a right adjoint
R8, and with 1 : UG = FU a natural transformation. If, in addition, U lifts limits and colimits®, and
if R is also a right inverse to U, then the cosignature morphism (U,n) is called strong.

"It would be sufficient to require that U preserves pullbacks and limits of w°P-chains.
8Consequently, U also preserves colimits (see Proposition 2.1.54).
®Hence, by Proposition 2.1.35, U preserves limits and colimits.
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If (U,n): (C,F) = (D,G) and (V,€) : (D,G) — (E,H) are (strong) abstract cosignature morphisms,
then so is (UV,nyoU¢) : (C,F) — (E,H). The quasi-category of abstract cosignatures and abstract
cosignature morphisms is denoted Cosign, while the quasi-category of abstract cosignatures and
strong abstract cosignature morphisms is denoted SCosign.

An abstract cosignature morphism (U,n) : (C,F) — (D,G) induces a reduct functor U, :
Coalg(D,G) — Coalg(C,F), with U, taking a (D, G)-coalgebra (C,7v) to the (C,F)-coalgebra
(UC,nc o Uy). (Intuitively, the action of U, can be regarded as extracting a (C, F)-(sub)system
from a given (D, G)-system.) This yields a functor Coalg : Cosign — CAT®P, taking an abstract
cosignature to its category of coalgebras, and an abstract cosignature morphism to the induced
reduct functor.

An abstract cosignature morphism (U,n) : (C,F) — (D, G) also induces a translation, itself denoted
n, of (C,F)-observers to (D, G)-observers. This translation takes a (C,F)-observer (K,c) to the
(D, G)-observer (RKU,cbn):

UcU, = UUp Up
Cunﬂ Cbnﬂ
KUcU, = KUUp RKUUp

where:
U77
Coalg(C, F) <—— Coalg(D, G)

S——————=D
C . s

The preservation of monomorphisms by RKU follows from the preservation of monomorphisms by
each of U (as U preserves pullbacks), K and R. And if, in addition, K preserves kernel pairs, then
so does RKU (as both U and R preserve kernel pairs).

The translation of (C,F)-observers into (D, G)-observers extends to a translation of (C,F)-
coequations into (D, G)-coequations. This yields a functor Coeqn : Cosign — SET, taking abstract
cosignatures to their classes of coequations, and abstract cosignature morphisms to the functions
translating coequations over their source to coequations over their target.

As one would expect, a (C, F)-coequation holds in the (C,F)-reduct of a (D, G)-coalgebra if and
only if its translation along the cosignature morphism (U,7n) : (C,F) — (D, G) holds in the given
(D, G)-coalgebra.

Proposition* 3.1.48. Let (U,n) : (C,F) — (D, G) denote an abstract cosignature morphism, let
(D, d) denote a (D, G)-coalgebra, and let e denote a (C, F)-coequation. Then, U,(D,d) =) e if
and only if (D, 0) =, n(e)-

Proof. If e is of form (K, [,7), then U, (D, d) () e translates to ly,5 = 7y, s, while (D, §) = g)

n(e) translates to lbné = Tbna- The conclusion then follows by standard properties of adjunctions.
O

Theorem* 3.1.49. (Cosign, Coalg, Coeqn, |=) is an institution.
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Definition* 3.1.50. A specification (respectively specification morphism) of this institution is called
an abstract coalgebraic specification (specification morphism ).

Since final coalgebras are used as denotations for coalgebraic specifications, of particular interest
amongst coalgebraic specification morphisms will prove those which preserve these denotations.

Definition* 3.1.51. A coalgebraic specification morphism (U,n) : (C,F,E) — (D,G,E') is con-
servative if and only if U, (F',(') ~ (F,(), with (F,¢) and (F',(') denoting the final (C,F, E)-
and respectively (D, G, E')-coalgebrast®.

In Chapter 4 (see e.g. Example 4.2.20), conservative specification morphisms will be shown to arise
e.g. from coinductive definitions. (Such definitions can be regarded as definitions up to bisimulation.)

Example 3.1.52 ( Destructor Hidden Signature Maps). Let (H,Y) and (H',Y’) denote hidden
signatures over (V,¥). A hidden signature map [GMO00] ¢ : (H,X) — (H',%') is a many-sorted
signature morphism ¢ : (V U H,X) — (V U H',Y') additionally satisfying: ¢ly= 1y : ¥ — X’ and
¢(H) C H'. Hidden signature maps ¢ : (H,X) — (H',¥') induce reduct functors Uy : Alg(X') —
Alg(X), with the action of Uy on a hidden X-algebra A being given by the action of the reduct
functor induced by the underlying many-sorted signature morphism on the many-sorted X.-algebra

A.

Now let (H,) and (H', %) denote destructor hidden signatures, and let (Set?), Fx) and (Set?), Fy)
denote the abstract cosignatures induced by 3 and respectively ¥’ (see Example 3.1.6). Then,
hidden signature maps ¢ : (H,X) — (H',X') induce abstract cosignature morphisms (U, 7). with
U : Set}, — Set}, taking A’ € [Set? | to (A’d)(s))seg € |Set?)|, and with 7, : UFsy = FxU being
given by:

(16, x)0(f) = (fo(0))oespu. If [ = (for)oresy

d(h)w',s’ ;
’
TEX Y hywt 5"

(nqﬁ,X)v = le, veV

for X € |Set?|. For, the functor U preserves limits (see Example 2.1.38) and has a right adjoint R
(see Example 2.1.52). And if, in addition, ¢ is injective on sorts, then U lifts limits and colimits (see
Example 2.1.38), while R is also a right inverse to U (see Example 2.1.52). Moreover, U, agrees
with Uy, while the translation of (Set%, Fy)-coequations along 7, agrees with the translation of
Y-equations in one hidden-sorted variable along ¢.

Since the notions of bisimilarity associated to the source and target of cosignature morphisms do
not, in general, coincide (that is, the largest bisimulation on the reduct of a coalgebra of the target
cosignature is not, in general, isomorphic to the image under U of the largest bisimulation on the
original coalgebra), the notion of cosignature morphism does not give rise to an institution w.r.t. the
satisfaction of coequations up to bisimulation. However, restricting attention to a certain category
of cosignature morphisms does yield an institution, as shown in the following.

YE and E’ are assumed to be enumerable sets, in order to ensure the existence of final (C,F, E)- and (D, G, E')-
coalgebras (see Proposition 3.1.34).
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Definition* 3.1.53. An abstract cosignature morphism (U,n) : (C,F) — (D, G) is horizontal if
and only if n is a natural monomorphism.

The quasi-category of abstract cosignatures and horizontal abstract cosignature morphisms is de-
noted HCosign.

Remark 3.1.54. If (U,n) : (C,F) — (D,G) denotes a horizontal abstract cosignature morphism,
then the C-arrow underlying the unique (C,F)-coalgebra homomorphism from the (C,F)-reduct
of a final (D,G)-coalgebra to a final (C,F)-coalgebra is a monomorphism. (This follows by an
argument similar to the one given in Remark 2.3.53.) Consequently, if (D,J) denotes a (D, G)-
coalgebra, and if ! : Uy(D,d) = (F,¢) and " : (D,6) — (F',(’) denote the unique coalgebra
homomorphisms from U, (D, ) and (D, §) to the final (C,F)- and respectively (D, G)-coalgebras,
then KUc! o ly,5 = KUc! o 1y, is equivalent to RKUUp! o Iy s = RKUUp! o) ;.

ubD D
lUMJlTUn‘; lb,,s\urbna
KUD RKUD
D
KUc! RKUUp !’
KE <o~ KUF RKUF'
ct

For, if ¢ : Uy (F", (") — (F, () denotes the unique homomorphism resulting from the finality of (F, (),
then the following holds:
KUc!o lUné = KUc!o TU,6 < (' =10 Uﬂ!,' UCU,, = UUD)
KUct o KUUp! oly,s = KUct o KUUp! ory, 5 = (Uce is mono, K preserves monos)
KUUp! oly,s = KUUp! o1y, 5 < (property of adjunction)
RKUUp! o 1§y 5 = RKUUp! o1y, 5
Proposition* 3.1.55. Let (U,n) : (C,F) — (D,G) denote a horizontal abstract cosignature

morphism, let (D,d) denote a (D,G)-coalgebra, and let e denote a (C,F)-coequation. Then,
U, (D, ) |:'(’C7F) e if and only if (D, ) |:t()D,G) n(e).

Proof. Say e is of form (K,[,r). The conclusion then follows from:
Un(D,6) Efcpy e ¢ (definition of |=°)
KUc!oly,s = KUc!ory,s < (Remark 3.1.54)
RKUUp! o If; 5 = RKUUp! o, ; < (definition of |=°)
(D, d) |:?C,F) €

|

Theorem* 3.1.56. (HCosign, Coalg[Hcosign: Coeqn[Hcosign, [=P) is an institution.
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Example 3.1.57 ( Destructor Hidden Signature Morphisms). A hidden signature map ¢ :
(H,X) — (H',X') defines a hidden signature morphism [GD94] if and only if whenever o’ € &), ,
and some sort appearing in w' is of form ¢(h) for some h € H, it follows that o' = ¢(o) for
some o € ¥, with & appearing in w'l. Now, if (Sets),Fs) and (Set},Fsy) denote the abstract
cosignatures induced by the destructor hidden signatures (H,Y) and (H',X') (see Example 3.1.6),
and if ¢ : (H,X) — (H',X') denotes a hidden signature morphism, then the abstract cosignature
morphism (U, 74) induced by ¢ (see Example 3.1.52) is horizontal. (In this case, all the components

of the natural transformation 7)4 are monomorphisms.)

3.1.4 Compositionality Results

This section is devoted to the formulation of two compositionality results, allowing coalgebraic
specifications and their models to be combined in a canonical way.

We begin by noting that any functor U : D — C satisfying the conditions in the definition of abstract
cosignature morphisms induces a lifting of abstract cosignatures over C to abstract cosignatures over
D. Specifically, the lifting of an abstract cosignature (C, F) along U is the abstract cosignature (D, F),
with F = RFU. (The preservation of pullbacks and of limits of w°P-chains by F follows from their
preservation by each of U, F and R.) Moreover, the counit € : UR = Id¢ of the adjunction U 4 R
induces a cosignature morphism (U, ery) : (C,F) — (D, F). Then, an arbitrary cosignature morphism
(U,n) : (C,F) — (D, G) determines an abstract cosignature morphism (ldp,7) : (D,F) — (D,G),
with 7 : G = F denoting the natural transformation whose components are given by 77p = 7733 for
D € |D|, such that the following holds: (ldp,7) o (U,ery) = (U,n). This observation will allow
any finite diagram in SCosign to be lifted to a diagram all of whose cosignatures have the same
underlying category.

Theorem 3.1.58. SCosign is finitely cocomplete.

Proof. An initial object in SCosign is given by the abstract cosignature (1,ld;), with 1 denoting
a category with one object and one arrow. Given an arbitrary cosignature (C,F), the cosignature
morphism (U,7n) : (1,1d;) — (C,F), with U : C — 1 denoting the only functor from C to 1, and
with 1 : UF = U denoting the natural transformation all of whose components are identities is the
only cosignature morphism from (1,1d;) to (C,F).

The pushout in SCosign of (Uy,7n1) : (C,F) — (Cy,F1) and (Ua,n2) : (C,F) — (Co, F2) is computed
as follows. First, let U} : C" — Cy, U, : C' — Cy define the pullback of Uy, Uy in CAT (see
Example 2.1.32 and Remark 2.1.33), and let R} : C; — C’, R}, : Co — C’ denote the only functors
satisfying U|R| = Id¢c,, U4R] = RoU; (resulting from the fact that U;ldc, = U; = UsRyUy), and

"The condition used here is slightly stronger than the one given in [GD94]. This is actually needed in order for the
notion of hidden signature morphism to yield an institution.
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similarly for RY.

Then, R and R}, define right adjoints, right inverses to U} and respectively U5. (This follows from
the construction of pullbacks in CAT. For, any Cy-arrow f : U{C’" — C; determines a C'-arrow
f': C" — RLCy, with £’ being the only C'-arrow satisfying U} f' = f and ULf" = (Ui f)’ : ULC! —
RoUC1, resulting from the fact that Uy f = U2(U1f)b.) Moreover, R|Ry = R,Ra. This follows from
URIRy = U,R4Ry for ¢ = 1,2, together with the couniversality of (U}, U}). Also, the existence of
limits and colimits in C, C; and Cs together with the lifting of limits and colimits by U; and Us
result in the existence of pullbacks and of limits of w°P-chains in C’ and in their lifting by U} and U}
(see Proposition 2.1.39 and Remark 2.1.40). Finally, the regularity of each of C, C; and Cy together
with the preservation of pullbacks and coequalisers by U}, U5 and U;U] = UgUj result in C' also
being regular. For, given the following pullback diagram in C':

with e a regular epimorphism, the fact that e is a coequaliser of its kernel pair (see 7 of Proposi-
tion 2.1.43) together with the preservation of coequalisers by U}, U5 and U;U] result in Uje, Ube
and U;U’e being coequalisers, and hence regular epimorphisms. The regularity of C;, Cy and C
together with the preservation of pullbacks by U}, U, and U; U] then result in Uje’, Uje’ and U, U} ¢’
being themselves regular epimorphisms, and hence (as Cq, Co and C have kernel pairs) coequalisers
of their kernel pairs. The preservation of kernel pairs by U}, U, and U U} together with the con-
struction of coequalisers in C' from suitably-chosen coequalisers in Cy, C5 and C then results in €
defining a coequaliser of its kernel pair, and hence a regular epimorphism. This concludes the proof
of the regularity of C'.

Now let F,Fy,Fy : C' — C' denote the liftings of F, F; and Fy along U = U U} = UsU}, U/ and
Ul respectively. Finally, let m : F''= Fi, ny : F' = Fy denote the pullback of R’ (7j1)y; : F1 = F
and Ry(72)u;, : F2 = F in (the quasi-category) [C', C'] (see Proposition 2.1.41 and Remark 2.1.42).
Note that Un! has domain U,F’ and codomain U,R}F;U} = F;U%, for i = 1,2.

The preservation of pullbacks and of limits of w°P-chains by each of F, F; and Fs results in their
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preservation by F’' (see Proposition 2.1.41).

_F <
77,1§ _=7 Sso Q77"2
=77 RN _
Fi =R{FU} RLFoU, = Fo
RY(m)y, R (72)y;,
Fy RR1FU1U} = F = RyRoFULU) Fy
X /
Uik RiFU; RsFUq UaFs

X /
FU, FUs

The pushout of (Uy,71) and (Ug,n2) is then given by (Uj,U}n}) : (Ci,F1) — (C',F') and
(UL, Uhnl) = (Co, Fa) — (C',F'). The universality of (U, U n}), (U}, Usn,)) is a consequence of the
couniversality of (U}, U) together with the couniversality of each of 71, 72 and the couniversality
of (11, 75)-

The conclusion now follows by the dual of Proposition 2.1.30. O

Remark 3.1.59. Theorem 3.1.58 and Corollary 2.2.6 result in the subcategories of the categories of
specifications associated to the institutions (Cosign, Coalg, Coeqn, |=) and (HCosign, Coalg[Hcosign
, Coeqn[Hcosign» [=P) (see Theorems 3.1.49 and 3.1.56) whose specification morphisms are underlain
by strong abstract cosignature morphisms also being finitely cocomplete.

The construction of pushouts in SCosign also yields the following result.
Theorem 3.1.60. The functor Coalg[scosign: SCosign — CAT®P preserves finite colimits.

Proof. It suffices to prove that Coalg[scosign Preserves the initial object and pushouts. First, the
category of coalgebras of the cosignature (1,1d;) (see the proof of Theorem 3.1.58) has one object
and one arrow, and therefore is a final object in CAT. Also, given the pushout diagram in SCosign
obtained in the proof of Theorem 3.1.58, the fact that its image under Coalg[scosign defines a pullback
in CAT follows from any span (G, Gg) with source D on Coalg(Cy,F;), Coalg(Cs, F2) in CAT,
additionally satisfying U, G = U,,Go, inducing a unique functor G : D — Coalg(C', F’) satisfying
Uyry G = G for i = 1,2. Specifically, for D € [D|, GD is the unique (C', F")-coalgebra induced by
the images of D under G, Gy and U,, G; = U,, Gy respectively. Say G;D = (Cj,;) for i = 1,2.
Then, UmGl = Un2G2 immediately gives U;Cy = U3Cy = C and Ul((ﬁl)Cl 0")/1) = UQ((ﬁg)C2 O’)/Q)
(where (7;)¢; 0 : C; — R;FC for i = 1,2). The construction of pullbacks in CAT (see the proof of
Proposition 2.1.39 and Remark 2.1.40) now yields a unique C'-arrow ¢’ : C' — R{R{FC' = R,RyFC
satisfying Uic' = (7;)c; 0 7i for @ = 1,2. Furthermore, ¢ = R.(7;)¢, o 72 for i = 1,2. This follows
from R’ being right adjoint, right inverse to U’ together with U’.(R%(7;)c; 07?) = (7ii)c; o yi = U'd,
for i = 1,2. The definition of 7}, 7}, together with R} (771)¢, o] = R, (72)c, 075 now yields a unique
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C'-arrow 7' : C" — F'C" satisfying (17})cr oy = =2, and hence U’(1!)cr o ULy = ; for i = 1,2 (with
n : F'' = Fi and nj) : F' = Fy being as in the proof of Theorem 3.1.58). That is, Uy, (C",7') =
(Cy,;) for i = 1,2. (The uniqueness of o' follows from the couniversality of (U, U}) together with
the couniversality of (1},75).) Moreover, the couniversality of (n},n5) can be used to show that
the correspondence D — (C’,') is functorial. For, given d : D — E in D, with D — (C",+')
and E — (F',¢'), the fact that Uy, Gid = U,,Gad (and hence U;Uc, Gid = UaUc,Gad) yields a
unique C'-arrow f : C' — F' satisfying U’ f = Uc,G;d for i = 1,2. Moreover, f defines a (C',F;)-
as well as a (C',Fy)-coalgebra homomorphism (as U} f and U, f define (Ci,Fy)- and respectively
(Cq, F3)-coalgebra homomorphisms). Then, ¢’ o f = F'f o+'. This follows from the couniversality
of (n},nh), together with:

(n)pr o F'f o' = (naturality of 7))
Fifo(n)croy = (f defines a (C',F;)-coalgebra homomorphism)
(ni)p o' o f

for i = 1,2. That is, f defines a (C',F')-coalgebra homomorphism from (C’,~') to (F',¢'). This
concludes the proof. O

3.1.5 Cofree Coalgebras

This section investigates the existence of cofree constructions along abstract cosignature morphisms
(i.e. the existence of right adjoints to the reduct functors induced by such cosignature morphisms).
In particular, a generalisation of a result in [Rut96] regarding the existence of cofree coalgebras is
formulated, and this generalisation is used to obtain a cofreeness result for equational coalgebraic
specification. (The generalisation involves endofunctors on arbitrary categories, and accounts for
a possible change in their underlying category when moving from one category of coalgebras to
another.)

Remark 3.1.5 immediately results in the existence of cofree coalgebras w.r.t. the functor Uc :
Coalg(C,F) — C12,

Proposition* 3.1.61. Let (C,F) denote an abstract cosignature. Then, Uc has a right adjoint.

The constraints in the definitions of abstract cosignatures (in particular, the preservation of pullbacks
by the endofunctors involved) and respectively abstract cosignature morphisms (in particular, the
existence of right adjoints to the functors between the underlying categories) will now be used to
prove the existence of cofree coalgebras w.r.t. the reduct functors induced by abstract cosignature
morphisms.

Theorem 3.1.62. Let (U,7n) : (C,F) — (C',F') denote an abstract cosignature morphism. Then,
U, : Coalg(C’,F") — Coalg(C,F) has a right adjoint.

Proof. Let R denote a right adjoint to U, let 79 : Idc = RU and ¢g : UR = Id¢ denote the unit
and respectively the counit of the adjunction U - R, and let (D,¢,d) and (D', €¢,d’) denote the
comonads induced by the abstract cosignatures (C, F) and respectively (C', F’).

12Gee also Remark 2.3.47 and Proposition 2.3.50.
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Now let (C,~) denote a (C,F)-coalgebra. The construction of a (C', F’)-coalgebra (C’,~') cofree
over (C,y) w.r.t. U, is as follows. Consider the cofree (C, F)-coalgebra (DC, () over C, as well as the
cofree (C', F')-coalgebra (D'RC, (') over RC. Then, the C-arrows e = €y ¢ 0 Uep : UD'RC — C
and 1¢ : C — C extend to (C,F)-coalgebra homomorphisms f : U,(D'RC,({') — (DC,() and
respectively g : (C,y) — (DC,(), satisfying ec o Ucf = e and respectively ec o Ucg = 1¢.
Moreover, the second equality results in Ucg being a monomorphism.

!

e - > FIC!
uc,i lF'UC,L
D'RC ¢ > F'D'RC
(Ucf)bll(Ucyoe)b
C RDC
UD'RC —5 UF'D'RC ~2%% FUD'RC
Ucf FUcf
e|pc ¢ »FDC
Ucg FUcg
C C i s FC

Now let + : (C',4") — (D'RC,(’) denote the equaliser of ((Ucf)’)’ and ((Ucg o €)’)’ in
Coalg(C’,F")13 (see Corollary 3.1.13). Then, e o UUct defines a (C, F)-coalgebra homomorphism
c:Up(C",4') — (C,~). This follows from:

FUcgoyoeoUUct = (gisa (C,F)-coalgebra homomorphism)
(oUcgoeoUUct =

¢ oUcf o Ul =

FUcf o nprre 0 U¢ 0 UUcre =
FUcf onprre © UF'Ucre o Uy' =
FUcf o FUUcLomer o Uy =

FUcg o Fe o FUUcr o ner o Uy

definition of ¢)
fis a (C, F)-coalgebra homomorphism)
¢ is a (C, F)-coalgebra homomorphism)

naturality of 7)

~ N N /N N

definition of )

together with FUcg being a monomorphism (as Ucg is a monomorphism, while F preserves monomor-
phisms).

Moreover, (C',~') is cofree over (C,v) w.r.t. U,. For, given an arbitrary (C’,F’)-coalgebra (D, d)
together with a (C, F)-coalgebra homomorphism & : U,(D,§) — (C,~), the fact that R is a right
adjoint to U yields a C’-arrow (Uck)’ : D — RC satisfying €y, o U(Uck)” = Uck. This, in turn,

BThe inner * refers to the adjunction between C and C', whereas the outer ” refers to the adjunction between C’
and Coalg(C’, F').
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yields a (C’, F')-coalgebra homomorphism [ : (D, §) — (D'RC, (') satisfying ek, o Ucrl = (Uck)".
Moreover, (Ucf)’ o Ucil = (Ucg o e)’ o Uerl. This follows from:
€0.,c o U((Ucf)’ oUcl) = (definition of (Ucf)’)
UcfoUUcl = (UUc =UcUy)
UcfoUcUyl= (foUyl=gok)
Ucg o Uck = (definition of (Uck)’)
Ucg o en,coU(Uck) = (
Ucg o €o,c 0 Uege o UUcl = (
(

definition of [)
definition of e)
UcgoeoUUcl = (definition of (Ucgoe)’)

eo,c o U((Ucgoe) oUcrl)
together with R being a right adjoint to U, where the fact that f o U,l = g o k follows from the
uniqueness of (C, F)-coalgebra homomorphisms n : U, (D, ) — (DC, () satisfying ec o Ucn = m
with m : UcU,(D,d) — C a C-arrow, together with:

ec oUcf oUcU,l = (definition of f)
eoUcU,l = (UcU, =UUc)
eoUUcl = (definition of e)

definition of 1)
definition of (Uck)’)
definition of g)

€0,C © Ue'RC oUU¢gl =

€0,C © U(Uck)b =

Uck =
ecoUcgoUck

—~ N N N /S

Then, couniversality of ¢ yields a (C’, F')-coalgebra homomorphism &’ : (D, ) — (C',~') satisfying
Lok’ =1. Moreover, co U,,kb = k. This follows from each of ¢, Unkb and k being (C, F)-coalgebra
homomorphisms, together with:

UccoUcUpk’ = (UcU, = UUcr)

Ucco UUck’ = (definition of c)

eoUUcoUUck’ = (definition of k’)

eoUUcl = (definition of e)

€0,c © Uege 0o UUel =  (definition of 1)
€0.c o U(Uck)” = (definition of (Uck)’)

Uck

Finally, the uniqueness of a (C', F’)-coalgebra homomorphism K’ satisfying co U,,kb = k follows from
the cofreeness of (D'RC, (") together with the couniversality of .. O

The induced right adjoint to the reduct functor U,, provides a canonical way of constructing (most
general) (C',F')-coalgebras over given (C,F)-coalgebras. This makes the cofree construction a
suitable denotation for abstract cosignature morphisms.
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Remark 3.1.63. In [Rut96], a result similar to Theorem 3.1.62 is proved for coalgebras of endofunc-
tors on Set. There, endofunctors T,S : Set — Set together with reduct functors U,, : Coalg(S) —
Coalg(T) induced by natural transformations n : S = T are considered, and the existence of
cofree coalgebras w.r.t. U, is proved under the assumption that, for any set C, the endofunctor
S x C : Set — Set (taking a set X to the set SX x (') has a final coalgebra. Theorem 3.1.62
replaces this assumption with the stronger one involving the preservation of limits of w°P-chains
by the endofunctors defining abstract cosignatures. In this respect, our result is less general than
the one in [Rut96]. On the other hand, the result here is formulated for endofunctors on arbitrary,
possibly distinct categories, thus being more abstract than the one in [Rut96].

If attention is restricted to coalgebraic specifications involving enumerable sets of coequations, then
Theorem 3.1.62 generalises to specification morphisms.

Theorem 3.1.64. Let (U,7n) : (C,F,E) — (D, G, E") denote an abstract coalgebraic specification
morphism, such that E' is enumerable. Then, Uy [coaig(p,6,5): Coalg(D, G, E') — Coalg(C,F, E)
has a right adjoint.

Proof. Let (C,v) denote a (C,F, E)-coalgebra, and let €, : U,(D,d) — (C,v) denote a couni-
versal arrow from U, to (C,v). Also, let ((D’,8'),d) denote a final object in (Coalg(D,G)/d)"
(see Proposition 3.1.33). Then, €, 0 Uyd : Upy(D',¢") — (C,~) defines a couniversal arrow from
Uy Icoalg(D,G,E") o' to v. (Its couniversality is a consequence of the couniversality of €, and of
the finality of ((D’,¢'),d).) The correspondence (C,v) — (D’,d') extends to a right adjoint to

Un rCoaIg(D,G,E’)- U

3.1.6 Expressiveness

This section investigates the expressiveness of the coalgebraic framework previously introduced from
the point of view of characterising covarieties by means of coequations.

The starting point in this investigation is a Birkhoff-style characterisability result in [Kur00], stating
that covarieties are definable by means of modal formulae. The notion of covariety used in [Kur00]
is more general than the one used here, being defined relatively to a factorisation system (£, M)
for the category of coalgebras in question. (Closure under homomorphisms belonging to M and
& are used instead of closure under subcoalgebras and respectively homomorphic images.) An
instantiation of the result in [Kur00] which provides a characterisability result for covarieties over an
abstract cosignature (C, F) (as defined here) therefore has to consider a factorisation system (£, M)
for Coalg(C, F) whose E-arrows are precisely the homomorphic images, and whose M-arrows are
precisely the subcoalgebras. Such an instantiation is possible due to the following result.

Proposition 3.1.65. Let (C,F) denote an abstract cosignature, with (Epi(C), Mono(C)) defining a
factorisation system for C. Then, (UEI(Epi(C)), UEI(Mono(C))) defines a factorisation system for
Coalg(C,F).

Proof. The fact that F preserves monomorphisms (see Definition 3.1.1) results in the functor
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Uc : Coalg(C,F) — C creating factorisations w.r.t. (Epi(C), Mono(C))*. This follows by [Kur00,
Proposition 1.3.3]. The conclusion then follows by [Kur00, Theorem 1.3.7]. O

The modal formulae [Kur00] associated to an abstract cosignature (C, F) satisfying the hypothesis
of Proposition 3.1.65 are given by (C, F)-subcoalgebras (i.e. Uc*(Mono(C))-homomorphisms) with
Uc! (Mono(C))-injective codomains. Moreover, according to [Kur00, Proposition 2.2.10] (see also
the remark following Proposition 2.2.10), the UZ'(Mono(C))-injective objects in Coalg(C,F) are
retracts of cofree coalgebras. As a result, any modal formula over (C,F) is of form ¢ : (S,¢) —
(D, §), with ¢ defining a (C, F)-subcoalgebra, and with (D, d) denoting a (C, F)-subcoalgebra of a
cofree (C, F)-coalgebra.

A modal formula ¢ : (S,&) — (D, ) holds [Kur00] in a (C, F)-coalgebra (C, ) (written (C,7) |= ¢)
if and only if any (C, F)-coalgebra homomorphism f : (C,~v) — (D, §) factors through .

(C,7)

A
X

The following is a consequence of Proposition 3.1.65 and of [Kur00, Corollary 2.5.5].

Theorem 3.1.66. Let (C,F) denote an abstract cosignature, such that (Epi(C), Mono(C)) defines
a factorisation system for C, and such that C has enough injectives and is wellpowered™®. Then,
a full subcategory K of Coalg(C,F) is a covariety if and only if K is definable by a class of modal
formulae.

Proof. By Proposition 3.1.65, (Uc'(Epi(C)),Uc'(Mono(C))) defines a factorisation system for
Coalg(C,F). Also, the fact that C has enough injectives and is wellpowered results in Coalg(C, F)
also having enough injectives!® and being U (Mono(C))-wellpowered. Finally, Definition 3.1.1 and
Corollary 2.4.10 result in Coalg(C,F) having coproducts. The conclusion then follows by [Kur00,
Corollary 2.5.5]. O

A closer analysis of the proof of [Kur00, Theorem 2.5.4] (used to derive [Kur00, Corollary 2.5.5])
reveals that, under the hypotheses of Theorem 3.1.66, modal formulae of form ¢ : (S,&) — (D, J)
with ¢ a (C, F)-subalgebra and (D, §) a cofree (C,F)-coalgebra over an injective C-object are suf-
ficient to characterise (C, F)-covarieties. In the following, modal formulae ¢ of this form will be
shown to induce (C, F)-coequations (K, ,r) having the property that (C,v) = (K,[,r) if and only if
(C,7v) = . This, in turn, will yield a characterisability result for covarieties in terms of coequations.

The construction of the (C, F)-coequation induced by a modal formula ¢ of the above form is as
follows. Say (D, ¢) is cofree over Z w.r.t. Uc, with Z injective. Let h,k : D — E define a cokernel

“Given categories C and D together with a factorisation system (£, M) for D, a functor U : C — D creates
factorisations w.r.t. (£, M) if and only if for any C-arrow f and any (&, M)-factorisation of form Uf = m o e, there
exists a unique factorisation of form f = m' o e’ with Ue' = e and Um’ = m.

A category C is M-wellpowered if and only if for any C-object C, there exists, up to isomorphism, only a set of
M-arrows with codomain C. C is wellpowered if it is Mono(C)-wellpowered.

18[Kur00, Proposition 2.2.10] is used to show this.
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pair for Ucyp, and let K: C — C denote the functor given by:

KA:HE

fiA=Z

, and:

Ka—<7TgoagB_>Z H E— H E
fiA—=Z g:B—Z

for (a : A — B) €| C||. Then, K preserves monomorphisms. For, if a : A — B is a C-
monomorphism, injectivity of Z yields, for each C-arrow f : A — Z, a C-arrow g : B — Z satisfying
[ = goa. Consequently, Ka oz = Ka oy implies 7y o2z = my oy for any f : A — Z, which, in
turn, implies z = y. Finally, let [, : Uc = KU¢ be given by:

lcyy = (hoUcf) pomsz
ricny = (ko Ucf’) r.omz

for (C, ) € |Coalg(C,F)|. (Recall that (D, ¢) is cofree over Z w.r.t. Uc.)

We now show that, under the assumption that all C-monomorphisms are regular, (C,v) E ¢ is
equivalent to (C,v) = (K,,r). This follows from:

CNEe <
For any f: C — Z, there exists g : (C,7y) — (S, €) satisfying fr= pog &
For any f : C — Z, there exists ¢’ : C' — S satisfying Ucfb =Ucpog &
For any f: C — Z, hOUCfb:kOUCfb &
keyy =rem ©
(C7) E (K Lr)
(C,7)
9// \Lfb
k/
Coalg(C, F) (S,6) — (D, )
ucl
C C
/// UCfb
x” h
T

The first and last of the above equivalences are just the definitions of the notions of satisfaction of
modal formulae and respectively of coequations. The second equivalence is based on the observation
that any ¢’ : C — S satisfying Ucf’ = Ucy o ¢’ defines a (C, F)-coalgebra homomorphism. This
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follows from:

FUcpoFg' oy = (Ucpog =Ucf’)
FUcf’ oy = (f is a (C,F)-coalgebra homomorphism)
JoUcf’ = (Ucf =Ucpog)
doUcpog = (¢isa (C,F)-coalgebra homomorphism)
FUcpogoyg

together with FUcp being a monomorphism (as Ucy is a monomorphism, while F preserves
monomorphisms). Also, the third equivalence exploits the hypothesis that any C-monomorphism
(and hence also Ucy) is regular to infer that Ucy defines an equaliser for h, k. (The dual of 7 of
Proposition 2.1.43 is used here.) Finally, the fourth equivalence uses the definitions of [ and r.

The following can now be inferred about the expressiveness of abstract coequations with regard to
characterising covarieties.

Corollary 3.1.67. Let (C,F) denote an abstract cosignature, such that (Epi(C), Mono(C)) defines a
factorisation system for C, such that all C-monomorphisms are regular, and such that C has enough
injectives and is wellpowered. Then, a full subcategory K of Coalg(C, F) is a covariety if and only if
IC is definable by a class of (C, F)-coequations.

Remark 3.1.68. The requirement that all C-monomorphisms are regular amongst the hypotheses
of Corollary 3.1.67 is directly related to the fact that the definition of covarieties requires closure
under homomorphisms whose underlying C-arrows are arbitrary monomorphisms. This require-
ment would not be necessary if a notion of covariety that involved closure under homomorphisms
whose underlying C-arrows are regular monomorphisms was considered. In this case, however,
(Epi(C), RegMono(C)) would have to define a factorisation system for C. Furthermore, the endo-
functor F would have to preserve regular monomorphisms, in order to allow this factorisation system
to be lifted to Coalg(C,F). Under these assumptions, [Kur00, Proposition 1.3.3] would result in Uc
creating factorisations w.r.t. (Epi(C), RegMono(C)), while [Kur00, Proposition 1.3.5] would result
in (Uc'(Epi(C)),Uc! (RegMono(C))) defining a factorisation system for Coalg(C, F).

Remark 3.1.69. Stronger characterisability results (see [Kur00, Theorem 2.5.7 and Corollary 2.5.8]),
stating the definability of covarieties in terms of single modal formulae exist for bounded categories
(see [Kur00, Definition 1.5.3]). A variant of Corollary 3.1.67 which, under the assumption that
Coalg(C,F) is bounded (e.g. by a cofree coalgebra), states the definability of (C,F)-covarieties in
terms of single coequations can also be formulated.

While important from a theoretical point of view, Corollary 3.1.67 is of little practical importance
since, unlike in the algebraic case, the coequations used to characterise covarieties do not have
finitary syntactic presentations. This observation will become more apparent in Chapter 4, where
coalgebraic notions of coterm and coequation, syntactically dual to the many-sorted algebraic notions
of term and equation, will be shown to be insufficiently expressive to yield characterisability results
for covarieties.
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3.2 Specification of Computational Structures

Dualising the notions of abstract cosignature (after leaving out the requirement that the endofunctor
in question preserves pullbacks, see Remark 3.1.3), observer and coequation yields notions of abstract
signature, constructor and equation, with results similar to the ones stated in Section 3.1 and
marked * holding for categories of algebras. Further constraints on the endofunctors defining abstract
signatures are, however, required to guarantee the existence of quotients in the categories of algebras
of abstract signatures and their creation by the functors taking algebras of abstract signatures to their
carrier. This section outlines the algebraic framework obtained by incorporating such constraints
into the approach resulting from the previously-mentioned dualisation.

3.2.1 Signatures, Algebras, Initiality and Reachability

Definition 3.2.1. An (abstract) signature is a pair (C,F), with C a category which is complete,
cocomplete'” and regular, and with F : C — C an endofunctor which preserves coequalisers of kernel
pairs, epimorphisms and colimits of w-chains.

Definition 3.2.2. Let (C,F) denote an abstract signature. A (C,F)-algebra (respectively (C,F)-
algebra homomorphism) is an F-algebra ( F-algebra homomorphism).

For an abstract signature (C,F), the category of (C,F)-algebras and (C,F)-algebra homomor-
phisms is denoted Alg(C,F), while the functor taking (C, F)-algebras to their carrier is denoted
Uc : Alg(C,F) — C.

Remark 3.2.3. For an abstract signature (C,F), the fact that F preserves coequalisers of kernel
pairs results in Uc creating coequalisers of congruences (see Definition 2.3.40). by Uc. For, if
fsg: (A a) — (B,[) denote (C,F)-algebra homomorphisms such that Uc f,Ucg define a kernel
pair in C, and if ¢ : B — C denotes a coequaliser for Uc f, Ucg, the preservation of coequalisers of
kernel pairs by F results in Fg defining a coequaliser for FUc f, FUcg.

FUcf Fq
FA—=FB——FC

FUcg
Ucf
Ucg

This, together with go foFUcf = go 8o FUcg (following from the fact that ¢ is a coequaliser for
Ucf,Ucg together with the fact that f and g are (C, F)-algebra homomorphisms) yield a unique C-
arrow v : FC' — C satisfying go 8 = yoFq. That s, ¢ defines a (C, F)-algebra homomorphism from
(B, B) to (C,~). The uniqueness of a (C, F)-algebra structure (C,v) making ¢ into a (C, F)-algebra
homomorphism follows from any such structure having to satisfy go3 = yoFq, together with Fq being
an epimorphism (as it is a coequaliser). Also, the fact that ¢ defines a coequaliser for f, g in Alg(C,F)
follows from ¢ defining a coequaliser for Ucf,Ucg in C, together with Fq being an epimorphism.

71t would be sufficient to require that C has pullbacks, products, finite colimits and colimits of w-chains.
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For, given a (C, F)-algebra homomorphism p : (B, ) — (D, J) satisfying po f = pog, the fact that
q defines a coequaliser for Ucf, Ucg yields a unique C-arrow r : C — D satisfying Ucp = r o q.
Moreover, roy = doFr. This follows from: royoFg =rogof8 =UcpoS =doFUcp = doFrokFy,
together with Fg being an epimorphism. That is, r defines a (C, F)-algebra homomorphism from
(C,~) to (D, ). This concludes the proof of the fact that Uc creates coequalisers of congruences.
Proposition 3.2.4. Let (C,F) denote an abstract signature. Then, Uc : Alg(C,F) — C is algebraic.
Proof. The creation of coequalisers of congruences by Uc follows by Remark 3.2.3. Also, the
existence of a left adjoint to Uc and the creation of limits by Uc follow by Proposition 2.3.50
together with Remark 2.3.47 and Proposition 2.3.48. O

Example 3.2.5 ( Many-Sorted Signatures). Many-sorted signatures are an instance of the abstract
notion of signature. The preservation of coequalisers of kernel pairs, of epimorphisms and of colimits
of w-chains by the endofunctors induced by many-sorted signatures (see Remark 2.3.38) follows by

Example 2.1.37.

The constraints in Definition 3.2.1 ensure the existence of an initial object in Alg(C,F) (see
e.g. [SP82]).

Proposition 3.2.6. Let (C,F) denote an abstract signature. Then, Alg(C,F) has an initial object.

Also, the existence of limits in C results in the existence of limits in Alg(C, F) and in their preservation
by Uc.

Proposition 3.2.7. Let (C,F) denote an abstract signature. Then, Uc creates limits.

Proof. The conclusion follows by the dual of Proposition 2.4.9. O

Corollary 3.2.8. For an abstract signature (C,F), Alg(C,F) has limits and Uc preserves them.
Proof. The conclusion follows by the dual of Corollary 2.4.10. O

The existence of quotients in C together with the preservation of coequalisers of kernel pairs by F
result in the existence of quotients in Alg(C,F).

Proposition 3.2.9. Let (C,F) denote an abstract signature. Then, Uc creates quotients.

Proof. Uc creates kernel pairs and coequalisers of kernel pairs. O

Corollary 3.2.10. For an abstract signature (C,F), Alg(C,F) has quotients and Uc preserves them.
Proof. By Corollary 3.2.8, kernel pairs exist in Alg(C,F) and are preserved by Uc. Then, since Uc

creates coequalisers of congruences (see Remark 3.2.3), and since coequalisers exist in C, it follows
that quotients exist in Alg(C, F) and are preserved by Uc. O
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The quotient of a (C, F)-algebra homomorphism defines a homomorphic image of the domain of
this homomorphism. And because C is regular, this also yields a subalgebra of the codomain of the
given homomorphism.

A notion of reachability of algebras, dual to that of observability of coalgebras (see Definition 3.1.15)
and of which that of Definition 2.3.11 is an instance can also be defined.

Definition 3.2.11. Let (C,F) denote an abstract signature. A (C,F)-algebra (A, «) is reachable
if and only if the C-arrow underlying the unique homomorphism from the initial (C,F)-algebra to
(A, «) is an epimorphism.

3.2.2 Constructors, Equations and Satisfaction (up to Reachability)

Dualising the coalgebraic notions of observer, coequation and coequational satisfaction (Defini-
tions 3.1.23 and 3.1.25) yields algebraic notions of constructor, equation and equational satisfaction.

Definition 3.2.12. Let (C,F) denote an abstract signature. A (C, F)-constructor is a pair (K, c),
with K : C — C a functor which preserves epimorphisms, and with ¢ : KUc = Uc a natural transfor-
mation. A (C,F)-equation is a tuple (K,l,r), with (K,I) and (K,r) denoting (C, F)-constructors.
A (C,F)-algebra (A, ) satisfies a (C,F)-equation (K,l,r) (written (A,a) F(cF) (K,l,7)) if and
only iflo, = rq.

For an abstract signature (C,F) and a class E of (C, F)-equations, the full subcategory of Alg(C, F)
whose objects satisfy the equations in E is denoted Alg(C,F, E).

Example 3.2.13 ( Many-Sorted Equational Satisfaction). The many-sorted algebraic notion of
term is an instance of the abstract notion of constructor, while the many-sorted algebraic notions of
equation and equational satisfaction are instances of the abstract notions of equation and respectively
equational satisfaction. For, if Fy : Set® — Set® denotes the endofunctor induced by a many-sorted
signature 3 with sort set S (see Remark 2.3.38), then X-terms t € T5(V)s with V consisting of
variables X7 : s1,...,X,, : s, induce (Set®, Fy)-constructors (K, #'), with K : Set® — Set® being
given by:

(KX), = {Xs1 X...xXs if =35

otherwise

for X € |Set®|, and with ¢’ : KU = U (where U : Alg(Set®, F5) — Set® denotes the functor taking
(Set®, Fy)-algebras to their carrier) being given by:

ta if s'=s

(taa)s = {

l:0 — Ay otherwise

for (A, ) € |Alg(Set”,Fx)| with A its associated ¥-algebra. (The fact that K preserves epimor-
phisms follows by Example 2.1.37.) Also, unconditional Y-equations e of form (VV) [ = r induce
(Set”, Fx;)-equations (K, ', '), with K : Set® — Set” being as before, and with I, 7/ : KU = U being
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the (Set®, Fx)-constructors associated to I and respectively 7. Moreover, (A, c) F(sets Fy) (K, I',r")
if and only if A =5 (VV) [ =218,

We conclude this example with a remark on the expressiveness of (SetS, Fx)-constructors. Specif-
ically, we note that any (Set®,Fx)-constructor (K,c) with K of the above form induces a -
term t € Tx({X1,..., Xm})s, with ¢ being given by cry(x,, . x,),s(X1,- -+ Xm). Furthermore,
the (Set®, Fy)-constructor induced by the resulting S-term ¢ coincides with (K,c). This follows
from: ciaa) (a1, am) = 0% (crgx,, xo) (X1, X)) = 0%(t) = ta for any (A,0) €
|Alg(Set®, Fx)| and any a; € Ay, for i = 1,...,m, with § : V — A assigning the value a; to
the variable X;, for i = 1,...,m. (The first equality is a consequence of the existence of a
(Set®, Fx;)-algebra homomorphism 6# : Ts(X1,..., X;) — (A, @) extending #.) The existence of
such a close relationship between Y-terms and (Set®, Fx)-constructors is due to the existence of a
characterisation of free algebras as sorted sets of terms with variables. We shall see in Chapter 4
that a similar relationship does not hold between a coalgebraically-defined notion of coterm over a
many-sorted cosignature and the abstract notion of observer.

Remark 3.2.14. The notion of constructor introduced in Definition 3.2.12 is a slight generalisation
of the notion of semantic operation introduced in [Man76] in the context of monads on Set. Given
a monad (T,n, ) , a semantic operation in X (w.r.t. T) [Man76,
Definition 5.3] is a natural transformation of type (1)X o U = U, with the functor U : Alg(T) — Set
taking T-algebras to their carrier, and with the functor ()X : Set — Set taking a set A to the set of
functions from X to A. The semantic operations in X are then shown [Man76, Theorem 5.5] to be
in one-to-one correspondence with the syntactic operations in X [Man76, Definition 5.3], defined

as elements of TX.

Now let (Set, F) denote an abstract signature over Set, and let (T, 7, 1) denote the monad induced
by F (see Proposition 2.3.50). Also, let G : Alg(F) — Alg(T) and H : Alg(T) — Alg(F) denote
the functors defining the isomorphism of categories Alg(T) =~ Alg(F), satisfying GH = Idaig(T) and
HG = Idaig(F), as well as UG = Use; and UsetH = U (see Proposition 2.3.50).

Alg(F : Alg(T

m/

Then, semantic operations « : (_)* o U = U induce (Set, F)-constructors ((_)X,a’), with o/
()% 0 Uset = Use: being given by ag. (However, not any (Set, F)-constructor corresponds to a
semantic operation.)

In the case of abstract signatures (Set,Fy) induced by a one-sorted signature 3, the one-to-one
correspondence between Y-terms with variables in V and (Set, Fx)-constructors of form ((_)V, ¢) out-
lined in Example 3.2.13 is precisely the one-to-one correspondence between syntactic and semantic
operations in V described in [Man76].

8This does not generalise to conditional many-sorted equations, since such equations do not, in general, induce
pairs of arrows into the carriers of algebras of the underlying signature.
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A notion of satisfaction of equations up to reachability, dual to that of satisfaction of coequations
up to bisimulation, can also be defined.

Definition 3.2.15. Let (C,F) denote an abstract signature. A (C,F)-algebra (A, «) satisfies a
(C, F)-equation (K, [, ) up to reachability (written (A, c) ):EC,F) (K,I,7)) if and only ifl,,oKUc! =
rooKUc!, with!: (I,£) — (A, «) denoting the unique (C, F)-algebra homomorphism from the initial
(C,F)-algebra to (A, a).

Example 3.2.16 ( Many-Sorted Equational Satisfaction up to Reachability). Let 3 denote a
many-sorted signature with sort set S. A 3-algebra A is said to satisfy a Y-equation e of form
(VV) I = r up to reachability (written A % e) if and only if 6%(I) = 0%(r) holds for any
assignment 6 : V — Im(!l4), where !4 : T, — A denotes the unique X-homomorphism from the
initial X-algebra to A. Now if Fx, (K,I',7") and (A, @) are as in Example 3.2.13, then A |=5. e holds

ESetS,FE)
admitting a factorisation of form 6 =!4 o &, for some 6’ : V — Tx.)

precisely when (A, a) = (K,I',7") does. (This follows from any assignment 6 : V — Im(!4)

Standard satisfaction of (K, [, 7) by (A, ) implies its satisfaction up to reachability by (A4, ). And if,
in addition, (A, «) is reachable, then the converse also holds. (In this case, KUc! is an epimorphism.)

Similarly to the coalgebraic case, satisfaction up to reachability can be expressed in terms of standard
satisfaction by the codomains of the quotients of the unique homomorphisms from the initial algebra.

Proposition 3.2.17. Let (C,F) denote an abstract signature, let (A,«) denote a (C,F)-algebra,
and let (K,l,r) denote a (C,F)-equation. Also, let e : (A,a) — (E,n) denote the quotient of the
unique (C,F)-algebra homomorphism from the initial (C, F)-algebra to (A, «). Then, (A, «) |:EC,F)
(K,I,r) ifand only if (E,n) =cF) (K,I,7).

Proof. Similar to the proof of Proposition 3.1.38. O

Proving that a (C, F)-equation (K,,r) holds in a full subcategory A of Alg(C,F) can be reduced
to exhibiting a functor S : A — Alg(C,F) together with a natural transformation + : S = |4,
with |4 denoting the inclusion of A into Alg(C,F)!°, such that S{A,«a) |:EC,F) (K,1,7) for each
(A, ) € |A].

Results similar to those marked * in Section 3.1.2 hold for the satisfaction (up to reachability) of
equations by algebras of abstract signatures. In particular, equations induce varieties of algebras,
both w.r.t. standard satisfaction and w.r.t. satisfaction up to reachability.

3.2.3 Institutions of Computational Structures

Definition 3.2.18. An (abstract) signature morphism between abstract signatures (C,F) and
(D, G) is a pair (U,£), with U : D — C a functor which preserves colimits®® and has a left adjoint

The natural transformation ¢ could, for instance, define a (C, F)-subalgebra of (4, a), for each (4,a) € |A|.
21t would be sufficient to require that U preserves pushouts, coequalisers and colimits of w-chains.
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L2, and with & : FU = UG a natural transformation. If, in addition, U lifts limits and colimits??,
and if L is also a right inverse to U, then the signature morphism (U, &) is called strong.

The quasi-category of abstract signatures and abstract signature morphisms is denoted Sign, while
the quasi-category of abstract signatures and strong abstract signature morphisms is denoted SSign.
(The composition of abstract signature morphisms (U,¢) : (C,F) — (D,G) and (V,7n) : (D,G) —
(E,H) is given by the abstract signature morphism (UV,U¢ o ny) : (C,F) — (E,H). Moreover, if
(U,€) and (V,n) are strong, then so is (UV,U& ony).)

An abstract signature morphism (U, &) : (C,F) — (D, G) induces a reduct functor U¢ : Alg(D, G) —
Alg(C,F) on the one hand (with U taking a (D, G)-algebra (A, o) to the (C, F)-algebra (UA,Uao
€4)), and a translation of (C, F)-constructors and equations to (D, G)-constructors and equations
on the other (with the translation of a (C,F)-constructor (K, c) along (U, &) being given by the
(D, G)-constructor (LKU,ci)B). This yields functors Alg : Sign — CAT®P and respectively Eqn :
Sign — SET.

Theorem 3.2.19. (Sign, Alg, Eqn, |=) is an institution.
Proof. Similar to the proof of Theorem 3.1.49. O

Example 3.2.20 ( Many-Sorted Signature Morphisms). Many-sorted signature morphisms are an
instance of the abstract notion of signature morphism. For, if (Set”,Fy;) and (Set®’,Fy) denote
the abstract signatures induced by the many-sorted signatures (S,3) and respectively (S, %) (see
Example 3.2.5), then many-sorted signature morphisms ¢ : ¥ — X' induce abstract signature
morphisms (U, 74), with U : Set®" — Set” taking X’ € |Set¥'| to (X;S(s))ses € |Set®|, and with
Ny : FxU = UFsy being given by:

(77¢,X)S(LU(<$17 s 7$m>)) = Lqﬁ(a)((xlv s 7$m>)

for X € |SetS', s €S, 0 € s, 5,5 and z; € Xy, for v = 1,...,m. For, the functor U
preserves colimits (see Example 2.1.38) and has a left adjoint L (see Example 2.1.52). And if, in

addition, ¢ is injective on sorts, then U lifts limits and colimits (see Example 2.1.38), while L is also
a right inverse to U (see Example 2.1.52). Moreover, U% agrees with Uy, while the translation of
(SetS, Fx)-equations along 7)4 agrees with the translation of ¥-equations along ¢.

As in the coalgebraic case, further constraints need to be imposed to abstract signature morphisms
in order to obtain an institution w.r.t. the satisfaction of equations up to reachability.

Definition 3.2.21. An abstract signature morphism (U,€) : (C,F) — (D, G) is horizontal if and
only if & is a natural epimorphism.

ZLConsequently, U also preserves limits (see Proposition 2.1.54).

ZHence, by Proposition 2.1.35, U preserves limits and colimits.

BThe preservation of epimorphisms by LKU follows from the preservation of either pushouts or epimorphisms by
each of U, K and L.
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The quasi-category of abstract signatures and horizontal abstract signature morphisms is denoted
HSign.

Theorem 3.2.22. (HSign, Alg[Hsign, Eqn[Hsign. [=") is an institution.

Example 3.2.23 ( Many-Sorted Signature Morphisms Contd.). If the many-sorted signature mor-
phism ¢ : ¥ — X' is such that o/ € Z;},,¢(s) implies o' = ¢(o) for some o € Xy, 5, then the abstract
signature morphism induced by ¢ is horizontal. (In this case, all the components of the natural
transformation 74 are epimorphisms.)

3.2.4 Compositionality Results

Similarly to the coalgebraic case, any functor U : D — C satisfying the conditions in the definition
of abstract signature morphisms induces a lifting of abstract signatures (C,F) over C to abstract
signatures (D, F) over D (with F being given by LFU), such that (U,nry) (where 5 : Idc = UL
denotes the unit of the adjunction U I~ L) defines a signature morphism from (C,F) to (D, F). (The
preservation of epimorphisms and of colimits of w-chains by each of U, F and L results in their
preservation by F. Also, the preservation of coequalisers by U and L together with the preservation
of kernel pairs by U and the preservation of coequalisers of kernel pairs by F result in the preservation
of coequalisers of kernel pairs by F.) Then, an arbitrary signature morphism (U, ¢) : (C,F) — (D, G)
determines an abstract signature morphism (Idp,&) : (D,F) — (D,G), with £ : F = G denoting
the natural transformation whose components are given by ép = fﬁ for D € |D|, such that the
following holds: (Idp,£) o (U, nry) = (U, €). This observation will allow any finite diagram in SSign
to be lifted to a diagram all of whose signatures have the same underlying category.

Theorem 3.2.24. SSign is finitely cocomplete.

Proof. An initial object in SSign is given by the abstract signature (1,ld;), with 1 and Id; having
the same denotations as in Theorem 3.1.58.

The construction of pushouts in SSign is similar to the construction of pushouts in SCosign (see
Theorem 3.1.58). Let (Uy,&;) : (C,F) = (Cy1,Fy) and (Ug, &) : (C,F) — (Cy, F2) denote abstract
signature morphisms. Also, let U] : C' — Cy, U, : C' — Cy define the pullback of Uy, Uy in CAT,
and let L} : C; — C’, L, : Co — C’ denote the only functors satisfying U{ L} = Idc,, ULL] = LaUy
(resulting from the fact that Uildc, = Uy = UsLyUq), and similarly for LY.

LaU;
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Then, L) and L), define left adjoints, right inverses to U} and respectively Uf, and moreover, LiL; =
L5Ly. Also, C' has limits and colimits, while U} and Uj, lift them. (The proof of these statements uses
Proposition 2.1.39 and Remark 2.1.40, and is similar to the proof of the corresponding statements
in Theorem 3.1.58.) Finally, C' is regular. (Again, this follows similarly to Theorem 3.1.58.)

Now let F,Fy,Fo : C' — C’ denote the liftings of F, Fy and Fo along U = U;U} = UyU%, U} and U},
respectively. Finally, let ¢] : Fy = F', &, : F5 = F’ denote the pushout of L’l(fl)uf1 :F=F, and
L5(€2)u; : F = F2 in (the quasi-category) [C', C'] (see Proposition 2.1.41 and Remark 2.1.42).

L,FULU, = F = L,LyFU, U,

\FUl LQF/ UaFs

The preservation of coequalisers of kernel pairs, of epimorphisms and of colimits of w°P-chains by

UiFy

each of F, F; and F; results in their preservation by F’ (see Proposition 2.1.41).

The pushout of (U1, &;) and (Usg, &) is then given by (U}, U1&)) : (Ci,F1) — (C',F') and (UL, USEL) -
(Ca,F2) — (C',F"). The universality of ((U},U’&]), (US, U58L)) is a consequence of the couniver-
sality of (U}, U}) together with the umversallty of each of &1, & and the universality of (£],£5).

The conclusion now follows by the dual of Proposition 2.1.30. O

Remark 3.2.25. Theorem 3.2.24 and Corollary 2.2.6 result in the subcategories of the categories of
specifications associated to the institutions (Sign, Alg, Eqn, =) and (HSign, Alg[Hsign, Eqn[Hsign, =)
(see Theorems 3.2.19 and 3.2.22) whose specification morphisms are underlain by strong abstract
signature morphisms also being finitely cocomplete.

The following also holds.
Theorem* 3.2.26. The functor Alg|ssign: SSign — CAT®P preserves finite colimits.

Proof. Similar to the proof of Theorem 3.1.60. O

3.2.5 Semantic Constructions

The formulation of results similar to Proposition 3.1.33 and Theorem 3.1.64 for abstract algebraic
specifications and respectively algebraic specification morphisms requires further constraints on ab-
stract signatures, namely constraints which ensure the existence of arbitrary coequalisers in the
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categories of algebras of such signatures. According to [Bor94b, Theorem 4.3.5], imposing some
additional constraints to the underlying categories of abstract signatures is sufficient in this sense.
Specifically, it is shown there that if the underlying category C of a monad T is complete, cocom-
plete and regular, and if each regular epimorphism in C has a section, then the category Alg(T) is
itself complete, cocomplete and regular. According to Proposition 2.3.50, the category Alg(C,F)
with (C,F) an abstract signature is isomorphic to the category Alg(T) for some monad T on C.
Consequently, if each regular epimorphism in C has a section, the category Alg(C, F) has coequalisers.

Moreover, the requirement that regular epimorphisms in the underlying categories of abstract signa-
tures have sections is preserved by finite colimits in SSign, provided that the diagrams considered are
such that the functors underlying the abstract signature morphisms defining these diagrams also lift
sections of regular epimorphisms. For, the initial abstract signature satisfies the above-mentioned
property, and this property is preserved by pushouts in SSign of abstract signature morphisms whose
underlying functors lift sections of regular epimorphisms. Specifically, given the pushout diagram
in SSign obtained in the proof of Theorem 3.2.24, the existence of a section s for each regular
epimorphism 7 in C’ follows from the existence of sections s; and s, for U|r and respectively Ufr,
additionally satisfying U1s1 = Usss (as Uy preserves sections of regular epimorphisms, while Us lifts
them).

Provided that coequalisers exist in the categories of algebras of abstract signatures, one can assign
suitable denotations to abstract algebraic specifications and algebraic specification morphisms.

Proposition 3.2.27. Let (C,F) denote an abstract signature, such that Alg(C, F) has coequalisers.
Also, let (A, «) denote a (C, F)-algebra, let e denote a (C, F)-equation, and let (Alg(C, F)\«)¢ denote
the full subcategory of Alg(C, F)\« whose objects satisfy the equation e. Then, (Alg(C,F)\«)¢ has
an initial object, which at the same time defines a (C, F)-homomorphic image of (A, «).

Proof. Say e is of form (K,l,r). Let (T,n,u) denote the monad induced by (C,F), let 1%, ri :
(TKA,o') — (A, ) denote the unique extensions of the C-arrows l,,7, : KA — A to (C,F)-
algebra homomorphisms, and let ¢ : (A,a) — (Q,&) denote a coequaliser for lf,r#. Then,
Ucq is an epimorphism. This follows from ¢ being the coequaliser of its kernel pair (see 7 of
Proposition 2.1.43), together with Uc preserving kernel pairs and creating (and hence preserving)
coequalisers of congruences. It then follows similarly to Proposition 3.1.32 that (@, &) ):(C,F) e and
moreover, ((Q,&),q) is initial in (Alg(C,F)\«)¢. O

Proposition 3.2.28. Let (C,F) denote an abstract signature, such that Alg(C,F) has coequalisers.
Also, let (A, «) denote a (C, F)-algebra, let E denote an enumerable set of (C, F)-equations, and let
(Alg(C,F)\a)¥ denote the full subcategory of Alg(C, F)\a whose objects satisfy the equations in E.
Then, (Alg(C,F)\@)¥ has an initial object, which at the same time defines a (C, F)-homomorphic
image of (A, a).

Proof. Similar to the proof of Proposition 3.1.33. O

Theorem 3.2.29. Let (U, &) : (C,F) — (C',F") denote an abstract signature morphism, such that
Alg(C',F") has coequalisers. Then, Ug : Alg(C',F') — Alg(C,F) has a left adjoint.
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Proof. Similar to the proof of Theorem 3.1.62. O

Theorem 3.2.30. Let (U,¢) : (C,F,E) — (D,G,E') denote an abstract algebraic specifica-
tion morphism, such that Alg(D,G) has coequalisers, and such that E' is enumerable. Then,
Uelaig,c,E): Alg(D, G, E') — Alg(C,F, E) has a left adjoint.

Proof. Similar to the proof of Theorem 3.1.64. O

3.2.6 Expressiveness

Results regarding the expressiveness of abstract equations from the point of view of characterising
varieties can be derived essentially by dualising the results in Section 3.1.6. Such a dualisation
is possible due to the existence of characterisability results for varieties [BH76]%* dual to those
formulated in [Kur00] for covarieties. In particular, a consequence of the results in [BH76] is that
varieties (defined here in terms of the factorisation system (U< ' (Epi(C)),Uc'(Mono(C))) obtained
by lifting the factorisation system (Epi(C), Mono(C)) along Uc) are definable by homomorphic images
(i.e. U (Epi(C))-homomorphisms) with U ! (Epi(C))-projective domains. Moreover, in the presence
of free algebras, homomorphic images whose domains are given by free algebras over projective
C-objects are sufficient to characterise varieties. This observation can be exploited to derive a
characterisability result for varieties in terms of abstract equations.

A formula ¢ : (F,¢) — (B, 3) holds [BH76] in a (C,F)-algebra (A, a) (written (A, a) = ¢) if and
only if any (C, F)-algebra homomorphism f : (F, &) — (A, «) factors through .

(F,&) —— (B, p)

fi 7
)4

(4, )

Now given an abstract signature (C,F), any homomorphic image ¢ : (F, &) — (B, ) with (F,&) a
free algebra over some projective C-object X induces an abstract equation (K, I, r), in such a way
that (A, @) = ¢ is equivalent to (A,a) = (K,l,r) for any (C,F)-algebra (A, ). Specifically, if
h,k : C — F define a kernel pair for Ucy, then the functor K : C — C is given by:

KA:HC

[ X—A

for A € |C|, and:
Ka:[Laof]f;X—hqi H C — H C

f: X—A g:X—B

for (a : A — B) €| C||, while the natural transformations [, : KUc = Uc are given by:

Loy = (Ucf# oh)pxoa
ricqy = (Ucf# ok)rxa
2% Alternatively, see [AHS90, Chapter 16].
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for (A, ) € |Alg(C,F)|.

Again, under the additional assumption that all C-epimorphisms are regular, one can show that
(A,a) |= ¢ is equivalent to (A,«a) = (K,I,r), for any (C,F)-algebra (A,a). As a result, under
assumptions dual to those of Corollary 3.1.67, (C,F)-varieties are definable by classes of (C,F)-
equations. (Further assumptions need to be made about Alg(C, F) in order to be able to characterise
(C, F)-varieties by single (C, F)-equations.)

3.3 Specification of Combined Structures

Sections 3.1 and 3.2 have illustrated how coalgebra and algebra can be used to specify and reason
about structures that involve observation and respectively computation. The resulting frameworks
are here integrated in order to account for the relationship between computations and observations
in structures having both a computational and an observational component.

Our approach builds on the functorial approach to operational semantics in [Tur96], where liftings of
syntactical monads to categories of coalgebras of behaviour endofunctors are used to capture well-
behaved operational semantics. Here we consider liftings of monads induced by abstract signatures
to categories of coalgebras of abstract cosignatures. The algebras of the lifted monads interpret
computations on the carriers of particular coalgebras, in such a way that bisimilarity on the underlying
coalgebra is preserved by computations, while reachability in the resulting algebra is preserved by
observations. Abstract equations and coequations are then used to formalise correctness properties of
such algebras, with the associated notions of satisfaction abstracting away bisimilar and respectively
unreachable behaviours. A dual approach, involving liftings of the comonads induced by abstract
cosignatures to categories of algebras of abstract signatures is also obtained.

3.3.1 Lifted Signatures and their Models

We begin by noting that abstract signatures (C,F) induce monads (T,n,u) on C having the
property that Alg(T) ~ Alg(C,F) (as C has finite coproducts and colimits of w-chains, while
F preserves colimits of w-chains, see Proposition 2.3.50), and that abstract signature morphisms
(U, €) : (C,F) = (C',F") induce monad morphisms (U,v) : (T,n,u) — (T',n', ') having the prop-
erty that U, : Alg(T') — Alg(T) agrees with U : Alg(C', F") — Alg(C,F) (see Proposition 2.3.52).

Following [Tur96], we use natural transformations o : TUc = GTUc, with Uc : Coalg(C,G) —
C denoting the functor taking (C, G)-coalgebras to their carrier, and with (T,n, ) denoting the
monad induced by the abstract signature (C, F), to define liftings of the monad T to the category
Coalg(C, G). Such liftings are specified using lifted signatures, while translations between liftings
are specified using lifted signature morphisms.

Definition 3.3.1. An (abstract) lifted signature is a tuple (C,G,F,o), with (C,G) an abstract
cosignature, (C,F) an abstract signature and o : TUc = GTUc a natural transformation, such that
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the following diagram commutes:
O'TO_
T?Uc == GT?Uc
MUC GMUC

TUc =%—= GTUc¢

nUc GTIUC

Uc =——GUc

where the natural transformation X : Uc = GUc is given by: A\ = for (C,~) € |Coalg(C, G)|,
while the functor T, : Coalg(C, G) — Coalg(C, G) is given by:

- T,(C,v) =(TC,0,) for (C,v) € |Coalg(C,G)|
— UcT,f = TUcf for f €| Coalg(C,G)||*®

(and consequently UcT, = TUc).

An (abstract) lifted signature morphism from (C,G,F,0) to (C',G',F',¢0") is a tuple (U, T,¢&)
with (U,7) : (C,G) — (C',G') an abstract cosignature morphism and (U,¢) : (C,F) — (C',F') an
abstract signature morphism, such that ¢ : FU = UF’ is a natural isomorphism, and such that the

following diagram commutes:

oy

TUcU, - GTUCU,
TUUG GTUUG
VUC/ GVUC’

UT'Ucr —_— UG'T'Uc = GUT' U
o cr

where (U,v) : (T,n,p) — (T',n', ") is the monad morphism induced by the signature morphism
(U, €)%, A lifted signature morphism (U,7,£) is strong if and only if both (U,T) and (U,&) are
strong.

Remark 3.3.2. The definition of A\ immediately yields A\t = o.
The components of the natural transformation o used to define a lifted signature (C, G, F, o) define

(C, G)-coalgebra structures on (the carriers of) the free T-algebras over (the carriers of) (C, G)-
coalgebras. The constraints defining lifted signatures ensure that, for any (C, G)-coalgebra (C,~),

% Naturality of o ensures that TUcf defines a (C, G)-coalgebra homomorphism.
%The fact that F and F’ preserve epimorphisms, together with the fact that U has a right adjoint (and therefore
preserves colimits) ensure that v is a natural isomorphism (see Remark 2.3.53).



Equational Specification in an Abstract Setting 87

the C-arrows ¢ : C — TC and pc : T2C — C define (C, G)-coalgebra homomorphisms.

T20 —— GT2C

Ze) Guco
~N- Oy ~-
TC ——GTC
A A
nc Gne

Cf)GC

This results in the tuple (T,,7n, 1) defining a monad on Coalg(C,G). An algebra of this monad is
given by a (C, G)-coalgebra (C,~y) together with a (C, G)-coalgebra homomorphism « : T,(C,vy) —
(C,~), additionally satisfying: conc = 1¢ and aopuc = aoTa. Equivalently, a T,-algebra is given
by a C-object C carrying both a (C, G)-coalgebra structure (C,~y) and a T-algebra structure (C, a)
((C,F)-algebra structure '), such that « defines a (C, G)-coalgebra homomorphism from (TC, o)
to (C, 7).

Tc -2 GTC

C#)GC

Similarly, a T,-algebra homomorphism from ((C,~),a) to ((D,d), ) is given by a C-arrow f :
C — D defining both a (C, G)-coalgebra homomorphism from (C,v) to (D,d) and a T-algebra
homomorphism from (C,a) to (D, () ((C,F)-algebra homomorphism from (C, /) to (D, 3")).

The models of a lifted signature (C,G,F, o) are taken to be the algebras of the lifted monad T,.
The functor taking T,-algebras to their carrier is denoted Ucoaig(c,c) : Alg(T,) — Coalg(C, G).

Remark 3.3.3. Given endofunctors F, G : C — C, the category Bialg(F,G) of (F, G)-bialgebras has
objects given by tuples (C,a, ) with (C,«) an F-algebra and (C,v) a G-coalgebra, and arrows
f:{(Cya,vy) = (D,p,9) given by C-arrows f : C'— D defining both an F-algebra homomorphism
from (C, a) to (D, ) and a G-coalgebra homomorphism from (C,v) to (D, d)?". Then, for a lifted
signature (C,G,F, o), the category Alg(T,) is isomorphic to the full subcategory of Bialg(F, G)
whose objects (C,a’, ) are such that yoa = Ga oo, (where (C, ) denotes the T-algebra induced
by the F-algebra (C, ), as given by the proof of Proposition 2.3.50).

The constraints defining a lifted signature morphism (U, 7,¢) : (C,G,F,0) — (C',G',F',0’) ensure
that, for any (C', G')-coalgebra (C’,~'), the (C',G’)-coalgebra structure induced by o' on T'C’
agrees with the (C, G)-coalgebra structure induced by o on TUC".

O—TC, oU~/

TUC' > GTUC!

IJO/J( lGI/CI

uTt'c’ T UG T'C' —— GUT'C’
,YI

TTI C’

2"The notion of bialgebra coincides with that of algebra-coalgebra pair introduced in [Mal96].



Equational Specification in an Abstract Setting 88

This results in lifted signature morphisms (U, 7,¢) : (C,G,F,0) — (C',G',F’, ') inducing reduct
functors Ui, ¢) @ Alg(T;,) — Alg(T,) (with Ui, ¢) taking a T/,-algebra ((C',7'),) to the T,-
algebra ((UC', 7¢r o Uy'), U o ver)). For, if the diagram:

TC! o s G'T'C!

commutes in C’, then the diagram:

Or yoUny/

TUC' —~— GTUC'

Ua’ouofl J/G(Uoz’ouor)

UC' ———> GUC’

TeroUy!

commutes in C. This follows from the commutativity of each of the subdiagrams of the following
diagram:

O-TC[ oUy/

TUC' >GTUC!

Ve GI/C/
UT'C" == UG'T'C" — > GUT'C!
o, o

Ua/ UG'a’ GUo'

uc’ T) UG'C" ——— GUC’
(Commutativity of the top, bottom-left and respectively bottom-right subdiagrams follow from the
definition of lifted signature morphisms, ((C’,7'),&') being a T/ -algebra, and respectively the
naturality of 7.)

Remark 3.3.4. As a result, lifted signature morphisms also induce reduct functors between the sub-
categories of bialgebras associated to their target and source signatures (see Remark 3.3.3).

If (U,7,¢) : (C,G,F,o) — (C',G',F',¢') and (U, 7', ¢") : (C",G',F,o") — (C",G",F", o") are
(strong) lifted signature morphisms, then so is (UU', 7y o U, U&’ o £yr). The quasi-category of
lifted signatures and lifted signature morphisms is denoted LSign, while the quasi-category of lifted
signatures and strong lifted signature morphisms is denoted SLSign.

Instances of the notions of lifted signature and lifted signature morphism will be used in Chapter 5
to specify the relationship between structure and functionality in object systems (with polynomial
endofunctors of restricted forms being used in this sense).

Some properties of the categories of algebras of lifted signatures are stated in the following.

For a lifted signature (C, G, F, o), the existence of finite limits in Coalg(C, G) (see Corollary 3.1.13)
results in the existence of finite limits in Alg(T,).
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Proposition 3.3.5. Let (C,G,F, o) denote a lifted signature. Then, Ucoaig(c,G) creates finite limits.
Proof. The conclusion follows by Proposition 2.3.48. O

Corollary 3.3.6. For a lifted signature (C,G,F, o), Alg(T,) has finite limits and Ucoaig(c,c) preserves
them.

Proof. The conclusion follows by Corollary 2.3.49. O

In particular, Alg(T,) has a final object, given by the T,-algebra ((F)(),!s), with (F,() denoting
a final (C, G)-coalgebra, and with !;. : (TF,0¢) — (F,() denoting the unique (C, G)-coalgebra
homomorphism from (TF, o) to (F,(). The final T,-algebra provides an interpretation of arbitrary
computations on abstract states.

Also, kernel pairs exist in Alg(T,) and are created by Ucoalg(c,G)- This yields a T,-algebra structure
on (C, G)-bisimilarity on the underlying coalgebra of a T,-algebra, in such a way that the coalgebra
homomorphisms defining the bisimilarity relation become T ,-algebra homomorphisms. (Recall from
Remark 3.1.14 that bisimilarity is given by the kernel pair of the unique coalgebra homomorphism
into the final coalgebra.) That is, (C, G)-bisimilarity on the underlying coalgebra of a T,-algebra is
preserved by the T-algebra structure.

Remark 3.3.7. A similar approach to integrating algebraic and coalgebraic features, also based on
[Tur96], is presented in [HK99] (see also [KH, Kur00]). The structures considered there, called
(2, E)-structures, are given by (€2, E)-bialgebras (see Remark 3.3.3) with ©,E : Set” — Set",
subject to additional constraints which ensure that Z-bisimilarity on the underlying coalgebras is
compatible with the €2-structure of the underlying algebras. This compatibility is shown to arise
e.g. from coinductive definitions, defined as liftings of {2 to E-coalgebras. Such liftings are less
general than the ones considered here, as they correspond to natural transformations of type FUc =
GFUc. In addition, the liftings considered in [HK99, KH, Kur00] are not required to be functorial,
that is, no naturality condition is imposed to the arrows FC' — GFC with (C,~) € |Coalg(G)|.

On the other hand, the existence of an initial object in Coalg(C,G) (following from the existence
of an initial object in C, see Corollary 2.4.10) results in the existence of an initial T,-algebra (see
Remark 2.3.47).

Proposition 3.3.8. Let (C,G,F, o) denote a lifted signature. Then, Alg(T,) has an initial object.

An initial object in Alg(T,) is given by the T,-algebra (T,(0,!co), o) = ((T0,01¢,), f0), where 0
denotes an initial C-object (and consequently !go : 0 — GO defines an initial (C, G)-coalgebra). The
initial T,-algebra provides an observational structure on ground computations.

Now observe that each of the categories C, Coalg(C,G), Alg(T) ~ Alg(C,F) and Alg(T,) have
kernel pairs, and that the functors Uc, U (with Uf : Alg(T) — C taking T-algebras to their carrier)
and Uceaig(c,G) Create as well as preserve kernel pairs (see Propositions 3.1.10, 3.2.7 and 3.3.5, and
Corollaries 3.1.11, 3.2.8 and 3.3.6). Consequently, the functor Upig(t) : Alg(T,) — Alg(T) (taking
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T,-algebras to their underlying T-algebras) also creates (and hence preserves) kernel pairs. For, if
f denotes an arrow in Alg(T,), and if g, h define a kernel pair for Upjg(T)f, then the preservation
of kernel pairs by Uf together with the creation of kernel pairs by Uc and Ucoalg(c,G) yield a kernel
pair g', b’ for f in Alg(T,) such that UcUagm)9" = Ucg and UcUpgmyh' = Uch. The creation
of kernel pairs by U then yields Upjgr)g’ = g and Upigr)h' = h. That is, Upjg(t) creates kernel
pairs.

AIg(T)

Alg(T,) — Alg(T)

UCoaIg(C,G)J/ lu’c

Coalg(C, G) —5—C
C

On the other hand, quotients exist in C, Coalg(C, G) and Alg(T). Moreover, the functor Ut preserves
quotients (see Corollary 3.2.10), while the functor Uc creates them (see Proposition 3.1.20). This
results in the existence of quotients in Alg(T,) and in their preservation by Ucoaig(c,6) and Uaig(T)-

Proposition 3.3.9. Let (C,G,F,0) denote a lifted signature. Then, Alg(T,) has quotients, while
Ucoalg(c,G) and Uaig(t) preserve them.

Proof. Let f denote an arrow in Alg(T,), and let g, h define its kernel pair in Alg(T,). Then, since
Ucoalg(c,6) and Uc preserve kernel pairs while Ut creates kernel pairs, and since UcUcoalg(c,c) =
U'CUA|g(-|—), it follows that Uaigt)g, Uaig(T)h define a kernel pair of Upig(t)f in Alg(T). Now let
q: (A,a) — (B, B) denote a quotient for Upig(T)g, Uaig(m)h in Alg(T) (see Corollary 3.2.10). Then,
the preservation of quotients by Ui (see Corollary 3.2.10) together with the creation of quotients
by Uc (see Proposition 3.1.20) yield a quotient p : (A,v) — (B,d) for Ucoaig(c,6)9> Ucoalg(c,c)M
in Coalg(C,G). Moreover, Ucp = Ug = 7. To show that r defines an arrow in Alg(T,), it
suffices to show that ((B,0d),3) € |Alg(T,)| (as ((A,7),a) € |Alg(T,)|). But this follows from
((A,7), @) € |Alg(T,)| together with p and ¢ defining (C, G)-coalgebra and respectively T-algebra
homomorphisms, r being an epimorphism (as it is a quotient), and T preserving epimorphisms (as
F preserves epimorphisms, see also Remark 2.3.51):

dofoTr=

doroq =

q is a T-algebra homomorphism)
p is a (C, G)-coalgebra homomorphism)
(

(4, 7), ) € |Alg(To)])

q is a T-algebra homomorphism)
r=

(

(
Groyoa= (
GroGaooy = (
(

GBoGTroo, =
GBoosoTr

= Ucp, naturality of o)

Hence, r defines a T,-algebra homomorphism s : ((A,v),a) — ((B,d),5). Moreover, s defines
a quotient of f in Alg(T,). (This follows from p and ¢ defining quotients in Coalg(C,G) and
respectively Alg(T).) O

Consequently, each T,-algebra homomorphism f has a unique factorisation of form f = 1oe, with e
defining a homomorphic image of the domain of f, and with ¢ defining a subalgebra of the codomain

of f.
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Proposition 3.3.10. Let (C,G,F, o) denote a lifted signature, let f denote a T ,-algebra homomor-
phism with quotient e, and let f = 10 e denote the factorisation of f resulting from the universality
of e. Then, e defines a homomorphic image of the domain of f, while . defines a T,-subalgebra of
the codomain of f.

Proof. The fact that Uceaig(c,G)€ Is @ quotient results in it being an epimorphism. That is, e defines
a homomorphic image of the domain of f. Also, the fact that UcUcoaig(c,G)€ Is a quotient together
with the regularity of C result in UcUcoalg(c,G)t being a monomorphism (see Proposition 2.1.46).
Hence, by Corollary 3.1.12, Ucoalg(c,c)t is also a monomorphism. That is, ¢ defines a T,-subalgebra
of the codomain of f. O

Remark 3.3.11. By taking the T,-algebra homomorphism f in the statement of Proposition 3.3.10
to be the unique homomorphism from the initial T,-algebra to an arbitrary one, one obtains, for
each T,-algebra ((C,7),a), a T,-subalgebra of ((C,~), @) which is reachable.

3.3.2 Correctness Properties

Once the relationship between computations and observations has been specified by means of a lifted
signature, abstract equations and coequations can be used to formalise correctness properties of the
specified structures. Specifically, high-level requirements referring to the equivalence of computations
can be captured by equations, whereas low-level requirements regarding system invariants can be
captured by coequations. Since the interest is in the observable result of ground computations, the
associated notions of satisfaction abstract away bisimilar and respectively unreachable behaviours.

Definition 3.3.12. Let (C,G,F,0) denote a lifted signature. A Ts-algebra ((C,~),«) satisfies
a (C,G)-coequation (K,l,r) up to reachability (written ((C,v),a) =" (K,l,r)) if and only if
ly o UcUcoalg(c,6)! = 7y © UcUcoalg(c,G)!, with ! denoting the unique T,-algebra homomorphism
from the initial T ,-algebra to ((C,~), a).

Also, ((C,7),a) satisfies a (C,F)-equation (K',I’,7') up to bisimulation (written ((C,~),a) =P
(K, 1',¢")) if and only if UcUcoaig(c,6)! © Ity = UcUcoalg(c,c)! © 7y, with ' denoting the unique
T,-algebra homomorphism from ((C,v),a) to the final T -algebra, and with (C, ') denoting the
(C,F)-algebra induced by the T-algebra (C, ).

Remark 3.3.13. Standard satisfaction of coequations (respectively equations) by the underlying coal-
gebra (algebra) of a T,-algebra implies their satisfaction up to reachability (up to bisimulation) by
the T,-algebra in question. That is, (C,7) F(cg) (K,l, ) implies ((C,7),a) =" (K,l,7), while
(C.d) Ewcrp (K, implies ((C,y),a) EP (K',I',r'). Moreover, if the underlying algebra
(respectively coalgebra) is reachable (observable), then the converse also holds. For, in this case,
UcUcoaig(c,)! (respectively UcUcoaig(c,6)!') is an epimorphism (monomorphism).

Remark 3.3.14. Since Uc preserves kernel pairs, it follows that ((C,v),a) =2 (K',I’,7') holds if and
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only if (I!,,r!,) factors through (ri,72):
(l;/aT;/>
K CxC
N E . T<r1,7'2>
N
R

with (R, 71, r2) denoting (C, G)-bisimilarity on (C,~).

The maximality of bisimilarity amongst the bisimulations on a given coalgebra yields a coinductive
technique for proving the satisfaction of equations up to bisimulation. Specifically, proving that a
(C, F)-equation holds, up to bisimulation, in a full subcategory A of Alg(T,) can be reduced to
exhibiting a generic (C, G)-bisimulation?® (R, 7, m) on Ucoaig(c,c) (), such that (I, r/,) factors

through (71 4, m2,) for any ((C,7), a) € |Al.
C
> T1,9,72,7)

For this, in turn, yields a C-arrow d : KC' — Ry such that (my,,m,) o d = (I.,,rl,). Also, the
maximality of (C, G)-bisimilarity on (C,~) yields a C-arrow e : Ry — R. Then, c is taken to be
eod.

K C

%m———%x

xE__
3

An instance of the abstract notion of equation will be used in Chapter 5 to capture the equivalence
of computations yielding system states. The proof technique outlined above will then be used to
reduce proving that two computations are observationally equal to exhibiting bisimulation relations
which relate the results yielded by those computations (see Section 5.3.2).

Remark 3.3.15. A technique similar to the one outlined above is used in [Jac96a, Jac97] (see also
Example 3.1.46) for proving the correctness of coalgebraic refinements. The setting in [Jac96a,
Jac97] is mainly coalgebraic. The only algebraic feature refers to an initial state, which does
not have to be fully specified in terms of the coalgebraic features. The technique introduced in
[Jac96a, Jac97] involves two specifications (abstract and concrete), and is intended for proving that
the concrete specification refines the abstract one. The existence of a refinement relation amounts
to the behaviour of the initial state in any model of the abstract specification being realisable in
any model of the concrete specification. Proving the correctness of a refinement then reduces to
exhibiting a bisimulation relation between models of the abstract specification on the one hand and
models of the concrete specification on the other, which, in addition, relates the initial state of
each abstract model with some reachable state of each concrete model. This is similar to exhibiting

BSee Definition 3.1.44.
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a generic bisimulation, except that, instead of bisimulations on (classes of) models, one defines
bisimulations between different (classes of) models, and instead of requiring the bisimulations to
relate the interpretations of the lhs and rhs of an equation, one requires them to relate initial states
with reachable states.

Similarly, proving that a (C, G)-coequation holds, up to reachability, in a full subcategory A of
Alg(T,) can be reduced to exhibiting a natural homomorphism ¢ : S = WU pigr (A) (defining, for
instance, for each T,-algebra in A, a T-subalgebra of its underlying T-algebra) for some endofunctor
S : Upig)(A) — Alg(T) (with Iy, 4y defining the inclusion of Uajg(t)(A) into Alg(T)), such
that [, o Ugtq = 1y 0 Uity for any ((C,7), @) € |A|.

UeUnig(m (7))

T0 ——— US(Ca) —— ¢

U’c!S(C,a) UC[/Q
Z’YJ'J/T’Y

KC

An instance of the abstract notion of coequation will be used in Chapter 5 to specify invariants on
the structure of state-based systems. The proof technique outlined above will then be used to reduce
proving that a system invariant holds in reachable states to exhibiting subspaces of the state spaces
which contain the reachable states and whose states satisfy the given invariant (see Section 5.3.2).

The following result further justifies the use of inductive and coinductive techniques in proving the
satisfaction of coequations up to reachability, and respectively of equations up to bisimulation, by
T,-algebras.

Proposition 3.3.16. Let (C,G,F, o) denote a lifted signature. Then, the following hold:

1. A (C, G)-coequation is satisfied (up to reachability) by the initial T,-algebra precisely when it
is satisfied up to reachability by any T,-algebra.

2. A (C,F)-equation is satisfied (up to bisimulation) by the final T ,-algebra precisely when it is
satisfied up to bisimulation by any T,-algebra.

Proof. The conclusion follows immediately using the naturality of (C, G)-observers and respectively
of (C, F)-constructors. O

3.3.3 Institutions

The triviality of the algebraic component of lifted signature morphisms results in the notions of
reachability associated to the source and target of such morphisms being essentially the same. This,
in turn, yields an institution w.r.t. the satisfaction of coequations up to reachability by algebras of
lifted signatures.

Theorem 3.3.17. (LSign, Alg, Coeqn, =") is an institution.
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Proof. Let (U,7,&) : (C,G,F,o0) — (C',G,F',o’) denote a lifted signature morphism, let
((C',~"),d') denote a T!,-algebra, and let (K,l,7) denote a (C,G)-coequation. Also, let ! :
TO — UC" and ! : T'0' — (' denote the C- and respectively C'-arrows underlying the unique
T,- and T/ ,-algebra homomorphisms from the initial T,- and T(,-algebras to U, ¢ ((C",7'), )
and ((C',~'), ). Then, the following holds:

(C ),y E (K, L)

b r__ .0
lUT’Y’O! = TUT’Y’

< (definition of ")
=
ly,yoU'=ry ol &
=
=

(

ol (U4R)
(o is epi)
(

(

Uo' =0, U oy =!)
definition of |=")

ly, o U'ory = TU,~' © U o vy

lUT'y’o! = ’r'UTA/O!
U(T,§)<<C,771>7O/> ):r (K,l,’f’)
O

The requirement that the natural transformations v : TU = UT’ induced by the signature mor-
phisms used to define lifted signature morphisms are natural epimorphisms is crucial to the proof of
Theorem 3.3.17. Without this requirement, only one implication of the satisfaction condition can be
shown to hold (as, in this case, the third equivalence in the above proof becomes an implication). A
similar condition needs to be imposed to the cosignature morphisms used to define lifted signature
morphisms in order to obtain an institution w.r.t. the satisfaction of equations up to bisimulation
by algebras of lifted signatures.

Definition 3.3.18. A lifted signature morphism (U, 7,&) is horizontal if and only if (U, 7) is hori-
zontal.

The quasi-category of lifted signatures and horizontal lifted signature morphisms is denoted HLSign.

The notions of bisimilarity associated to the source and target of horizontal lifted signature mor-
phisms are essentially the same (see Remark 3.1.54). This, in turn, yields an institution.

Theorem 3.3.19. (HLSign, Alg[HLsign; EanlHLsign, [=P) is an institution.
Proof. Similar to the proof of Theorem 3.3.17. O

The conditions defining (horizontal) lifted signature morphisms might appear restrictive at first, since
such morphisms are unable to capture development steps which specialise (either the observational
or) the computational features of existing components. However, these conditions simply state that
the notions of observation and computation must be established before beginning to reason about
the observational equivalence of computations or the satisfaction of state invariants in reachable
states (as changing these notions would usually result in different equivalences holding between
computations, and respectively in different invariants being satisfied in reachable states).

Due to the presence of semantic constraints on the algebras of lifted signatures (namely of con-
straints relating their underlying algebraic and coalgebraic structures), the notions of specification
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associated to the institutions (LSign, Alg, Coeqn, |=") and (HLSign, Alg[nLsign, Eanluisign, E°) play
a less important réle than, for instance, the specifications of (Cosign, Coalg, Coeqn, |=) or those of
(Sign, Alg, Eqn, |=) (see Theorems 3.1.49 and 3.2.19). For, restricting the category of algebras of a
lifted signature (C, G, F, o) to algebras satisfying some given coequations up to reachability yields a
category of models which is:

1. empty, if the final T,-algebra does not satisfy the coequations up to reachability,

2. the same as Alg(T,), if the (C, G)-coalgebra underlying the initial T,-algebra already satisfies
the coequations,

3. a full subcategory of Alg(T,), otherwise. (This subcategory contains the initial, but not the
final T,-algebra.)

Similarly, restricting the category of algebras of (C, G, F, o) to algebras satisfying some given equa-
tions up to bisimulation yields a category of models which is:

1. empty, if the initial T,-algebra does not satisfy the equations up to bisimulation,

2. the same as Alg(T,), if the (C, F)-algebra underlying the final T,-algebra satisfies the equa-
tions,

3. a full subcategory of Alg(T,), otherwise. (This subcategory contains the final, but not the
initial T,-algebra.)

3.3.4 Compositionality Results

This section combines the compositionality results in Sections 3.1.4 and 3.2.4 in order to derive
similar results for the combined framework.

Theorem 3.3.20. SLSign is finitely cocomplete.

Proof. An initial object in SLSign is given by the lifted signature (1,1d,1d;, 1), with 1 denoting a
category with one object and one arrow, and with 1 : U; = U; denoting the natural transformation
whose only component is given by the identity arrow (where U; : Coalg(1l,1d;) — 1 takes (1,ldy)-
coalgebras to their carrier).

Pushouts in SLSign are constructed from the pushouts of the underlying diagrams in SCosign and
SSign as follows. Let (U;,74,&;) : (C,G,F,0) — (C;, G, F;, 07) with ¢ = 1,2 denote lifted signature
morphisms, and let (U}, Ul7]) : (C;, G;) — (C',G') with ¢ = 1,2 and (U}, U%E)) : (C;,F;) — (C',F)
with 7 = 1,2 denote the pushouts of (U, 71) and (Us, 72) in SCosign and respectively of (Uy,&;) and
(Ug, &2) in SSign (see the proofs of Theorems 3.1.58 and 3.2.24). Then, the natural transformations
ULl FiUL = UZF" with 4 = 1,2 are natural isomorphisms. For, the preservation of pushouts by U}
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results in the diagram:

N
2\
N
N
/
Vi
/

FU, Ly UsFoUl
(é_l)ufl Li(€2)yy
LiFUL U, = L FU,U,

defining a pushout in C;. (The fact that U|L, = L1Us is also used here.) This, together with
&- being a natural isomorphism result in U{¢] also being a natural isomorphism. The fact that
ULES is a natural isomorphism follows in a similar way. Then, Remark 2.3.53 results in the nat-
ural transformations v} : T;U}| = U{T' and v}, : ToU) = U,T defining the monad morphisms
induced by the signature morphisms (U}, U{&]) and respectively (U, ULES) (see Proposition 2.3.52)
also being natural isomorphisms. Next, one can exploit the couniversality of (G',7{,75) (see the
proof of Theorem 3.1.58) to define a natural transformation ¢’ : T'"Ucr = G'T'Ucr which makes
(UL, ULl ULED) a lifted signature morphism from (C;, G;, F;, 04) to (C', G/, F', "), for i = 1,2. First,
the fact that UiU{&] o (§1)yr = U2U585 o (§2)uy (following from the construction of &1, &5, see the
proof of Theorem 3.2.24) can be used to show that Uyzj o (v1)y; = Uy o (12)y,. Specifically,
this follows from Uiz o (v1)yr © (gi)u,u; = Uars o (12)yy, © (gi)u,uy for i = 0,1,... (where the
natural transformations ¢; : F; = T for ¢ = 0,1,... have the same denotation as in the proof of
Proposition 2.3.50), using the colimiting property of T. (The proof of U1/ o (v1)yr o (@i)y,u; =
Uzvjo(v2)uy ©(gi)u,uy uses the fact that Ui&] ;o (€1i)u; = Uagy ;0 (62,i)uy. where the natural trans-
formations £;; : F;U; = U;F;; and respectively ¢ ; : F;;U; = U;F; for j = 1,2 and i = 0,1,...
are defined similarly to the natural transformations &; : F;,U = UF, for i = 0,1,... in the proof
of Proposition 2.3.50. This, in turn, follows by induction on i.) Then, the natural transformations
Gi = Gi(¥})ug © (Ui)UU'iT{ o (VZ’)GCII : U T'Ue = GU,T'Uc for i = 1,2 yield natural transformations

¢! T'Uo = G;T'Uc (where G; = R.G;U%) for i = 1,2.

)y,

/Uy
TZ'U;-UC/ —_— U’iTIUC/ T'Uc
(U'z)UullTl, Cl Cf
C; GiTiU’iUcl ﬁ GiU’iT’UC/ GiT,UCI C’
i\V; Uer

Moreover, the following holds: R} (71)y: 1y, © g = Ry (T2)u, U © ¢5 (where the natural transfor-
mations 7; : G; = R;GU; with ¢ = 1,2 are defined similarly to the natural transformations 7; : F; =
R;FU; with i = 1,2 in the proof of Theorem 3.1.58). This follows from U1 U’ (R} (71)y; 17y, © ) =
U2U5(Rh(72)uy Ty, © €3), together with the fact that RiR; = RyRy is a right adjoint, right inverse
to UiU} = UsUy. (The fact that Uiy o (v1)y, = Uswy o (12)yy, together with the constraints
defining the lifted signature morphisms (U1, 71,&1) and respectively (Usg, 72,&2) are used to show
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that Uy U (R} (71) 7o © €1) = UaUS (RS (T2) o, © 63)-)

T'Ucr
Il

-,
e

v
G'T'Uc
(i, w
GlT,UC/ GZT,UC’
Ry (ﬂ)U'lT'Uc’ %U{ZT,UC’
GT'Uc

The couniversality of (G',7{,75) now yields a unique natural transformation ¢’ : T'"Ucr = G'T'U¢
satisfying (7])u, 00’ = ¢? for i = 1,2. This, together with the definition of ¢; yield Ui (7)) 170y ©
Uio' o ())ue = Gi(¥))u © (i)uy,, for i =1,2. Thatis, (U, Ui}, Uil) defines a lifted signature

morphism from (C;, G;,F;,0;) to (C',G',F',¢'), for i = 1,2. This concludes the proof. O

Remark 3.3.21. Theorem 3.3.20 and Corollary 2.2.6 result in the subcategories of the categories
of specifications associated to the institutions (LSign, Alg, Coeqn,|=") and (HLSign, Alg [HLsign
, Eqn [HLsigns [=P) (see Theorems 3.3.17 and 3.3.19) whose specification morphisms are underlain
by strong lifted signature morphisms also being finitely cocomplete.

The following also holds.
Theorem 3.3.22. The functor Alg[sisign: SLSign — CAT®P preserves finite colimits.

Proof. It suffices to prove that Alg [sisign preserves the initial object and pushouts. First, the
category of algebras of the lifted signature (1,1dy,ldq, 1) has one object and one arrow, and there-
fore is a final object in CAT. Also, given the pushout diagram in SLSign obtained in the proof
of Theorem 3.3.20, the fact that its image under Alg [s sign defines a pullback in CAT follows
from any span (Hj,Hs) with source D on Alg(Cy, Gy, Fy,01),Alg(Co, Go, Fo,09) in CAT, addi-
tionally satisfying U(;, ¢ )H1 = U(g, ¢,)H2, inducing a unique functor H : D — Alg(C',G',F',0")
satisfying Ui, urgyH = Hi for i = 1,2, For D € |D|, HD is constructed as follows. Say
H;D = ((Ci, i), ;) for i = 1.2. Then, Theorem 3.1.60 yields a unique (C’,F’)-coalgebra (C',~')
satisfying Uy - (C",7") = (Cy, ;) for i = 1,2. (The fact that pushouts in SLSign are constructed
from pushouts in SCosign is used here.) Moreover, the Ci- and Co-arrows a0 (})c' : Ui T'C! — Cy
and respectively a o (v4)c' : UL T'C' — O are such that their images under U; and respectively
Uy coincide. (The fact that Uiv] o (v1)y; = Uarj o (v2)yy, that each of these is an isomorphism,
and that U, a1 = U,,ay are used to show this.) This yields a unique C'-arrow o' : T'C' — C’
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satisfying U’/ = a; o ( Z()E,l, thatis, U, o' = o, for i =1, 2.

c T’C’ - % G T’C’ c’
U} uj
a’l IG’ !
< <
G ' ;26 Co
T.C; —3 G T C, ToCy — GoToCh
alJ/ J/Glal QZJ/ J/Ggaz
Ci— Gy Cy —— G2Chy
G Tc—2>GTC Co
\ aJ/ \LG@ /
U1 U2
C C — GC C

Next, the couniversality of (G',7{,75) can be used to show that 7' oo/ = G'a/ o a;,. This follows
from (7])cr 0y 0 & = (7{)¢r 0 G'e/ 0 0, for i = 1,2, which, in turn, follows from:

Ui((j)cr oy o) =
yi o U =

Uy (C'7') = (C,)
definition of )
((Ciy i), i) is a Ty, -algebra)

definition of o)

vio ;o (v )611 =

Giavj 0 (0i)y, © ()i =

GiUja/ 0 Gy(vf)cr 0 (09)y, © (V) =

GiUja' o U(7])rcr 0 Ujor, =
Ui((r{)cr 0 G'a’ 0 0%y

(U7l U%ED) is a lifted signature morphism)

e e N T e T

naturality of U}7})

using the fact that R} is a right adjoint, right inverse to U}, for i = 1,2. Hence, ((C',7),d/) €
|Alg(T7,/)| and moreover, Uy yien((C,7'), ) = ((Ci,7i), ). The functoriality of D
((C",4"), ) follows similarly to the functoriality of D + (C’,~') in the proof of Theorem 3.1.60.
This concludes the proof. O

3.3.5 Semantic Constructions

This section is devoted to providing suitable denotations for lifted signatures and lifted signature
morphisms.

We first consider lifted signatures. Neither final nor initial algebras provide suitable denotations
for lifted signatures, as final algebras are not reachable, while the underlying coalgebras of initial
algebras are not observable. However, according to Proposition 3.3.10, the codomain of the quotient
of the unique homomorphism from the initial to the final T,-algebra is reachable, while its underlying
coalgebra is observable. Moreover, this algebra has the property that it satisfies (in the standard
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sense) precisely those equations which are satisfied up to bisimulation by the initial algebra, and
precisely those coequations which are satisfied up to reachability by the final coalgebra.

Proposition 3.3.23. Let (C,G,F, o) denote a lifted signature, let! : ((TO, 01,), po) — ((F, (), o)
denote the unique T,-algebra homomorphism from the initial T,-algebra to the final one, and let
e: ((T0,01,), o) — ((R,7),) denote the quotient of !. Then, the following hold:

1. If (K,l,r) denotes a (C,G)-coequation, then ((F,(),!s.) E" (K,l,r) is equivalent to
(R, ), @) F" (K, 1,7), as well as to (R,7) [=(cq) (K, ;7).

2. If (K',I',r") denotes a (C,F)-equation, then ((TO,o1.,), o) E® (K',I',r") is equivalent to
((R,7), ) EP (K, I',r"), as well as to (R, o) [=(cry (K, 1,7").

Proof. Let v : {((R,7),a) — ((F,(),!s.) denote the unique T,-algebra homomorphism resulting
from the universality of e. It then follows by Proposition 3.3.10 that UcUcoaig(c,6)€ is an epimor-
phism, while UcUcoaig(c,G)t Is @ monomorphism.

Then, 1 follows from:

(F, (), 1o0) B (K, 1,r) < (definition of =)
by, ©UcUcoaig(c,6)! = 71, © UcUcoaigc,6)! & (' =t oe UcUcoarg(c,6)¢ s epi)
l!"g o UcUcoalg(c,c)t = Ty, © UcUcoalg(c,c)t & (naturality of [,7)
KUcUcoalg(c,6)t © Iy = KUcUcoalg(c,c)t © Ty € (UcUcoalg(c,G)t is mono, K preserves monos)
l, =r, < (definition of |=)
(R,7) F(c,e) (K, l,m) & ((R,a) is reachable, Remark 3.3.13)

<<R7 7)7 a> |:r (Kv L, T)

Also, 2 follows from:

((TO, 01, ), o) =° (K, 1',r") & (definition of |=P)
UcUcoalg(c,6)! © 1y = UcUcoaigic,6)! 07y & (! =t 0 e, UcUcoaig(c,Fyt is mono)
UcUcoalg(c,6)€ © l;m = UcUcoalg(c,6)€ © r:m < (naturality of I,r)
lla o K,UCUCoaIg(C,G)e = ’f':l o KIUCUCoaIg(C,G)e = (Ucucoa|g(c,c)€ is epi, K’ preserves epis)
II, =7l < (definition of |=)
(R,a) Ecr (K,I',r") < ((R,7) is observable, Remark 3.3.13)

)
((R,7), ) E” (K ,r)
O

The above property of the codomain of the quotient of the unique homomorphism from the initial
to the final T,-algebra makes this algebra a suitable denotation for the lifted signature (C, G, F, o).

We now consider lifted signature morphisms. A consequence of their definition (and also one of the
reasons for this particular definition) is the existence of cofree constructions along such morphisms.
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As one would expect, the cofree construction induced by a lifted signature morphism builds on the
cofree construction induced by its underlying cosignature morphism.

Theorem 3.3.24. Let (U,7,€) : (C,G,F,0) — (C',G',F',0’) denote a lifted signature morphism.
Then, U(,¢) : Alg(T.,) — Alg(T,) has a right adjoint.

Proof. Let ((C,7),) € |Alg(Ts)l|, let e, : U(C",7") = (C,v) denote a couniversal arrow from
U : Coalg(C', G') — Coalg(C,G) to (C,7), and let o/ : (T'C",07,) — (C',7') denote the unique
(co)extension of avo Tey o v, U(T'C",0%,) = (C,7) to a (C', G')-coalgebra homomorphism.

TTlolOUO';, ol

UT'C ———— GUT'C" TICr — 5 G
-~ A~ I I
IJCIlJ/: Ve Gren :JGVC} : :
' Turo ' | |
TUC — > GTUC : |

Te, GTe, of : : 6ol
~ oy ~- | |
TC > GTC | |
I I
el Ga I I

4 € <+ <+
c C : > GO 0'——— G c

(Commutativity of the inner, and therefore also outer, upper-left square of the above diagram is a
consequence of the definition of lifted signature morphisms. Also, commutativity of the middle-left
square is a consequence of the naturality of o. Finally, commutativity of the bottom-left square
follows from ((C,~), ) being a T-algebra. Consequently, azo Tey 0 ua,l defines a (C, G)-coalgebra
homomorphism from (UT'C”, 7ri¢cr 0 Uol,) to (C,v).) Then, the fact that o/ defines a (C',G')-
coalgebra homomorphism from (T'C”, 0,) to (C’, ') translates to y'oa’ = G'a’oc’,, which amounts
to ((C",7'), ') defining a T’,-algebra. Also, the definition of o gives a0 Te, o v,! = €, 0 Ud/,
that is, o Te, = €, 0Ua/ ovcr. This makes €, into a T-algebra homomorphism from U, (C’, &) to
(C, @), and therefore also into a T,-algebra homomorphism from U, ) ((C",7"), &) to ((C,7), @).

Moreover, €, defines a couniversal arrow from U, ¢ to ((C,7),a). For, given an arbitrary T/,-

algebra ((D, d), B) together with a T,-algebra homomorphism f : U o ((D,d),8) — {(C,7), a),

the unique (co)extension of the (C, G)-coalgebra homomorphism f : (D,d) — (C,v) to a (C',G')-

coalgebra homomorphism f” : (D,8) — (C',+') also defines a T!,-algebra homomorphism from

((D,8),B) to ((C","),a'). This follows from the couniversality of e, after noting that e, o U(f’ o

B) = ey o U(a/ o T'f*). The last equality is a consequence of the fact that f defines a T-algebra
homomorphism from U, (D, 3) to (C, «), and of the fact that v is a natural isomorphism:

€y 0 Uf’oUBowp = (definition of f7)

foUBovp = (fisa T-algebra homomorphism)

aoTf = (definition of f°)

aoTe, o TUF = (

ey o Ua/ o ver oTUS = (

ey 0Ua’ o UT'f” o up.

€y is a T-algebra homomorphism)

naturality of v)
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v U
TUD -2 uTD -5 Up

TUS? J/UT’fb us
~N- ~N-

Tf TUCI&UTICIU—O/>UC, f

Tey €y

~- ~

>C

d

Remark 3.3.25. It is precisely the triviality of the algebraic component of lifted signature mor-
phisms that guarantees the existence of T’ -algebra structures on the cofree coextensions of the
carriers of T,-algebras along U,. Moreover, this triviality also results in the couniversal arrows
ey + Uz (C',9),e') = ((C,7),a) preserving reachability. That is, if l(c,) 4 = ¢ o e and
licr yy,ary = ¢/ 0 € denote the factorisations of the unique T,- and T{,-homomorphisms from the
initial T,- and T/ ,-algebras to ((C,v),a) and ((C',7'),d'), as given by Proposition 3.3.10, then
€y © U(T,g)bl factors through ¢. This follows from the commutativity of the outer square of the

29
U(r,@C’luU(nodz

following diagram=”:
-1 10/ /
<<T03 U!gg)a ;U'0> < U(T,§)<<T 0 7U!G10/>7 /1’[)’>

e U(T,g)e’
(R.8).B) ¢~~~ Urg (R0, ')
L Uer eyt

((Cv 7>7 a) # U(T,&) <<Clv 71>a O/>

(where !': ((TO,01¢,), o) = Uz e)((T'0", 01, ), ) defines the unique T,-algebra homomorphism

resulting from the initiality of ((TO, o1, ), 10)3°, and where ¢}, ¢, define a kernel pair for Lt ayar

in Alg(T!,)), together with U, )¢}, U, )¢5 defining a kernel pair for Ui ¢)!i(cr 41y, in Alg(To)3!,
U(re)e’ defining a quotient for U ¢)licr 41y oy in Alg(T,)3?, and ¢ defining a monomorphism in
Alg(T,)33. This property of the couniversal arrows e, results in cofree algebras providing suitable

denotations for lifted signature morphisms.

2This is a consequence of the initiality of ((T0, Tleo)s H0)-

39 The fact that ! is an isomorphism follows from UcUcoalg(c,6)! = vor, together with v being a natural isomorphism.

31T his follows from the preservation of kernel pairs by Ucr Ucoalg(cr, ey and by U, together with the creation of kernel
pairs by UCuCoaIg(C,G)-

$2This follows by a similar argument.

3This follows from the creation of pullbacks (and hence the reflection of monomorphisms) by UcUcoaig(c,c)-
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3.3.6 A Particular Case

The natural transformation o : TUc = GTUc required by the definition of lifted signatures can
be given in terms of a natural transformation p : FUc = G(Uc + FUc¢), defining the one-step
observations of the results yielded by one-step computations as either zero- or one-step computations
on observations of their arguments. To see this, note that TUc is a colimit object for the following

w-chain:
(90)u (91) (92)uc

UC:>C Uc—i-FUC:UC>Uc+F(UC+FUC):>...
with go, g1, ... being as in Proposition 2.3.50, and with (go)u. : Uc = TUc, (q1)uc : Uc +FUc =
TUc, ... as colimiting arrows. Then, defining 0 : TUc = GTUc amounts to making GTUc into a
cocone on this w-chain. The following diagram defines such a cocone:

Uc (90)uc Uc + FUc (91)uc Uc + F(Uc + FUQ) (92)uc o

o=\ A1=[X0;G(go)uc 07, iGl(g0)uc 2] || A2=[X0;G(g0)uc3G(91)uc PR, 3G(91)uc 2]l
—G FUc) ———G F F _— ...
U G(go)uc (Ue +FUc) G(g1)uc (Ue + F(Uc +FUc)) G(g2)uc

with the natural transformation A : Uc = GUc being given by A (¢, = v for (C,7) € |Coalg(C, G)|,
and with the natural transformations Ag, A1, ... being defined inductively by: Ao = X and A1 =
[Ao; G(g0)uc; - - -3 G(gi)ucs P, Gl(gi)uc, t2]] for i = 0,1,..., where F; : Coalg(C,G) — Coalg(C,G)
takes (C,v) to (F;C,(X;),), for i = 0,1,..., and where F; : C — C with 4 = 0,1,... are as in
Proposition 2.3.50. (Commutativity of the upper squares follows by induction, using the naturality of
p.) The colimiting property of TUc then yields a natural transformation o : TUc = GTUc satisfying:
G(gi)ucoNi = 0o(gi)uc fori =0,1,.... (Thatis, the components of (¢;)u. define (C, G)-coalgebra
homomorphisms from the coalgebras defined by the components of A; to the coalgebras defined by
the components of o, for i =0, 1,....) Moreover, o satisfies the conditions in the definition of lifted
signatures. The fact that oo (qo)u. = G(go)u, o A follows immediately from the colimiting property
of TUc. Also, the fact that couy. = Guy, oo, follows from oopy. o(gi)Tu. = GprucooT, o(¢i)Tuc
for i =0,1,..., using the colimiting property of T?Uc:

definition of p)

*)

definition of y)

TUc = UcT,, definition of o)

00 pyc © (¢i)Tuc =

oo (fi)uc =

G(fi)uc o ()T, =

Gpuc © G(gi)Tuc © (N1, =

Gpue © o1, © (gi)Tuc

(
(
(
(

with f; : F;T = T for i =0,1,... being as in Proposition 2.3.50.
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The second in the above sequence of equalities, that is, o o (f;)u. = G(fi)uc © (Ai)T, follows by
induction on i. For i = 0 the following holds: oo (fo)u. = 0 o 1Ty, = lgTuc 00 = lgTUC © AT, =
G(fo)uc © (Ao)T,3*. Now assume o o (fi)uc = G(fi)uc © (Ai)T,., that is, the components of (fi)u.
define (C, G)-coalgebra homomorphisms from the coalgebras defined by the components of (\;)T,
to the coalgebras defined by the components of . By universality of coproducts, showing that
oo (fi-l—l)Uc = G(fi-i—l)Uc o (>\i+1)Ta' amounts to showing that o o (fi—l—l)Uc oL = G(fi—l—l)Uc o
(Ait1)T, o tj for 5 = 1,2. For j = 1, the definition of f;11 gives oo (fiy1)uc ©t1 = 0. Also, the
following holds:

G(fi+1)uc © (Nit1)T, o t1 = (definition of Aj;1)
G(fi+1)uc © G(gi)ucT, ©--- 2 G(g0)ucT, ° AT, = (A1, =0)
G((fi+1)uc © (gi)Tuc ©--- 0 (g0)TUc) 00 = (property of fo, f1,...)
G(fo)uc e o = (G(fo)uc = 11uc)
g

Hence, 0 o (fi+1)uc © t1 = G(fit1)uc © (Aig1)T, © t1. It remains to show that o o (fit1)uc 0 t2 =
G(fi+1)uc © (Ni41)T, 0 t2. Thatis, o o ayc o F(fi)uc = G(fi+1)uc © G[(gi)ucT,,t2] © pg.1,. of
equivalently, o o ay. o F(fi)uc = Gl(fi)uc, auc © F(fi)uc] © PE,T, - (The previous equivalence is a
consequence of fy, f1,... satisfying fit10(g;)t = fi and fit1 = [11,a0Ff;] fori =0,1,....) But
this follows from the commutativity of the following diagram:

PR, T
FF,TUc —=% G(F; TUc + FF; TUc)

F(fi)uc G((fi)uc +F(fi)uc)
FTUc =22 G(TUc + FTUc) Gl(fi)ue aucoF (fi)uc]

ayc G[ltuc,ouc]

TUg———— GTUce———

with the commutativity of the top-left square following by the naturality of p (by the induction
hypothesis, the components of (f;)u. define (C, G)-coalgebra homomorphisms from the coalgebras
defined by the components of (\;)1, to the coalgebras defined by the components of o), the com-
mutativity of the right square following by standard properties of coproducts, and the commutativity
of the bottom-left square following by the colimiting property of FTUc (the fact that F preserves
colimits of w-chains is used here) from:

ooayc o F(g)uc = (definition of )

00 (git1)uc © L2 =

G(gi+1)uc © Ait1 012 =

G(gi+1)uc © G[(gi)uc, L2] © P, =

G[(¢i)uc, (gi+1)uc © t2] © pp, =

G[1tuc, @uc) o G((gi)uc + Fgi)uc) © pg, =
G[lruc, auc) o pr, o Flgi)uc

definition of o)
definition of A;y1)
definition of TUc¢)

definition of «)

A~ N SN SN S/~

naturality of p)

3 Remark 3.3.2 is used here.
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for i = 0,1,.... (The fact that the components of (¢;)u. define (C, G)-coalgebra homomorphisms
from the coalgebras defined by the components of A; to the coalgebras defined by the components
of o is used for the last equality.)

Also, if (C,G,F,0) and (C',G',F’, ¢’) are the lifted signatures induced by the natural transformations
p: FUc = G(Uc + FUc) and respectively p' : FFUcr = G'(Uer + F'U¢), and if (U,7) : (C,G) —
(C',G') is a cosignature morphism and (U, ¢) : (C,F) — (C',F’) is a signature morphism with ¢ a
natural isomorphism, such that the following diagram commutes:

FUcU, Por G(UcU; + FUCU,)

FUUc G(UUe 4 FUUG)
G(Luug +Euer)

Suer G(UUcr + UF'Ucr)

G[U.],Ud]

UF’ Ucr U:> UG’ (UC/ + F UC/) —_— GU(UC/ +F Ucl)

C’+F,UC’

then (U, 7,¢) defines a lifted signature morphism from (C,G,F, o) to (C',G',F',o"). The fact that
TT'Uqr © Uo’ o W = GVUC, o oy, follows from:

TT'Ug © Uo' o We © (@i)ucu, (property of v, see proof of Proposition 2.3.52)
10 0 U’ o U(gi)ug © (§iue = (
U © UG (g))u o UX o (&)u, = (

GU(gi)uy © Trrug © UA o (&)ue = (%)
GU(g9)ue © G(&)ue © (M)u, = (
Gryg, © G(gi)uuy © (Ni)u. = (

Gry, oy, © (gi)ucu,

definition of o)

naturality of 7)

property of v/, see proof of Proposition 2.3.52)

)

definition of o, UUc = UcU,)

)

(with F, ¢/ and X! being defined similarly to F;, g; and \; respectively) for i = 0,1,..., using the
colimiting property of TUcU,. The fact that TFLU, © UX] o (€)ua = G(&)uy © (Ai)u, follows by
induction on 1.

Ai
F,UUc Sl GF;UUc

(Ei)uc,“ HG(&)UC,

UF’iUC/ — UG,FIZ-UC/ —— GUF’iUC/
U] T U

For i = 0 the following holds: ¢y, oUAjo(0)u,, = Tu, 0UNolyy, = Ty, oUN = Ay, = Glyy, ©
Au, = G(€o)uy 0Au, - (The definitions of A and A’ are used here.) Now assume 71y, oUN;0(&)u, =
G(&i)ue © (Ai)u,, that is, the components of ({;)y,, define (C, G)-coalgebra homomorphisms from
the coalgebras defined by the components of (\;)y, to the coalgebras defined by the components
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of U;AL. Again, showing TF, Uy © UN, 1o (§ir1)ue = G(&ir1)uy © (Air1)u, amounts to showing
TF, ,Ug © UN 10 (Gir1)ue © b5 = G(&it1)u © (Nit1)u, ot for 7 =1,2. But this follows from:

G(&i+1)uy © (Ait1)u, o t1 = (definition of \;41)
G(&i+1)uy © G(gi)uug © -2 G(go)uuy © (Mo)u, = (property of &g, &1, ...)
GU(gi)ug © -2 GU(gg)ue © (Mo)u, = (Au, =7y, o UX)
GU(gi)uy ©--- 0 GU(gp)u, © TR U © UXy = (naturality of 7)
TEr, Uqs © UG'(gi)uy ©--. 0 UG'(gh)u. o UXg = (definition of X, )
TFL,,Ugr © UXi; i o Uy = (definition of &41)

!/
T, U © UAis © (Giri)ug o n
together with:

G(&it1)ue © (Nig1)u, 012 =
(definition of A\j11)
G(&i+1)ua © Gl(gi)uug s 2] © Py, =
(*)
G[U(gi)u» bl © G[Uey, Uih) o G(1ypry,, +Eru.) © G((E)ue + F(&iug) © pru, =
(naturality of p, induction hypothesis)
GU(gi)u» e2] © G[Uuy, Usg] 0 G(Lyprug, +&rug) © pu, i © F&i)uy =
(F:Ucr = Uc/FY, property of p,p)
GUI(9)ucs» t2] © Trug +FFrue © U © Errug © F(&ug =
(naturality of 7)
76, Ue © UG (g))ug 2] o Upte, © Eryg, o F(&)ue =
(definition of \j )
Ter, g © Uiy o Ui o &y, o F(&)ue, =
(definition of &11)
Ter, U © Ui 0 (Gi1)ug o L2
where F’ : Coalg(C',F’) — Coalg(C’,F’) takes (C",v") to (F;C", (\}),) for i =0,1,..., and where
(*) uses the fact that (&1+1)ug © [(9i)uugste] = [U(gi)u o] o [Uih, Uiy o (Typry,, + &rug) ©
((&)ug + F(&i)ue ), which follows from:
(Cir1)ug o [(gi)uug s 2] o1 =
(&+1)ugy © (9i)uuy =
U(gi)ugy © (§i)uy =
[U(gi)ug» ta] © [Ueh, Ueg] o (Lypru, +&Frug,) © ((€)ug + F(&ue) ot
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together with:

(&i+1)ue o [(9i)uug s 2] o b2 =
(€it1)ug ©
Ut 0 &pryg, © F(&i)uy =
[U(g1)uers t2] o [Uih, Uts] o (Tuprug, + &rug) © ((Gi)ug + F&)ug) o e

Remark 3.3.26. Let o : TUc = GTUc denote the natural transformation induced by a natural
transformation p : FUc = G(Uc+FUc). Also, let (C, ) denote a (C, G)-coalgebra, let a: TC = C
define a T-algebra structure on C, and let o/ : FC — C denote the F-algebra structure induced by
«, as given by the proof of Proposition 2.3.50. Then, the diagram:

FC—2G(C +FC)

O/J/ JG[I(,*,O/}

CﬁGC

commutes if and only if the diagram:

commutes. The if direction follows from:

yoa' = (definition of a')

yoao (q) yoa=Gaoo,)
Ga ooy o (q1)
Gao G(q1)c o ()\1)AY 0Ly =
Garo G(a1)c 0 py =
[Glae (q1)c o1, Glao (qi)c o w)] o py =
G[lg, ]

COly =

definition of A1)

(
(

c oty = (definition of o)
(
(property of coproducts)
(a

o(qi)c ot =ao(q)c = lc, definition of &)

The only if direction uses the definition of « in terms of o as given by the proof of Proposition 2.3.50.
Specifically, « : TC' — C'is the unique C-arrow satisfying « o (¢;)c = «; for i = 0,1,..., where
the C-arrows «; : F;C — C with i = 0,1,... are given by: ag = 1¢ and a;+1 = [1¢, &' o Fay] for
1 =0,1,.... Then, the conclusion follows from:

vyoao (g)c = (definition of «)
yoai= (¥)

Gaj o (A;)y = (definition of )

Gao G(gi)c o (Ai)y = (definition of o)

Gaooyo(g)c
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fori=0,1,..., using the colimiting property of T. (The fact that yoa; = Ga;o()\;), fori =0,1,...
follows by induction, using the naturality of p.)

As a result, T,-algebras ((C, ), @) are in one-to-one correspondence with (F, G)-bialgebras (C, &, )
additionally satisfying: v oo/ = G[1¢, '] o p,. (Remark 3.3.3 is also used here.)

In [TP97], liftings of monads T induced by endofunctors F to categories of G-coalgebras are shown to
arise from natural transformations of type F(Idc x G) = GT. Moreover, such natural transformations
are shown to be in one-to-one correspondence with natural transformations of type F(T x GT) =
GT. The latter are essentially the same as natural transformations F(Ur x GU¢) = GUg (with
Ut : Alg(C,F) — C denoting the functor taking (C, F)-algebras to their carrier), and therefore also
determine liftings of the comonad D induced by G to F-algebras. (This follows by an argument
dual to the one given above.) The apparent mismatch between the approach in [TP97] and the
one presented here (caused by the fact that in [TP97] the emphasis is on the labelled transitions
performable by programs over a given language, and consequently the system dynamics is captured
by the coalgebraic component, whereas here the emphasis is on the computations performable on
system states, and as a result the system dynamics is captured by the algebraic component) is,
however, of no importance, since liftings of T to G-coalgebras are shown in [TP97] (see also the
concluding remarks in Section 3.3.7) to be in one-to-one correspondence with liftings of D to F-
algebras, and therefore either of the two forms of natural transformations can be used to specify
either of the two kinds of liftings.

The natural transformations ¢ arising from natural transformations p of the form considered in this
section will prove sufficiently general for our purpose. This will become more apparent in Chapter 5,
where the specification framework introduced here will be instantiated in order to obtain a formalism
for the specification of objects.

3.3.7 A Dual Approach

An approach which involves lifting the algebraic structure of syntactic domains (of programs) to
observable behaviours over these syntactic domains can be obtained essentially by dualising the
definitions and results of Sections 3.3.1-3.3.6. The resulting approach is briefly outlined in the
following. Such an approach will prove suitable for extending data type specifications with definitions
of data observers with structured result type. (This will be illustrated in Section 5.2.)

Lifted cosignatures are used in the resulting approach to specify liftings of comonads induced by
abstract cosignatures to categories of algebras of abstract signatures, while lifted cosignature mor-
phisms are used to specify structure-preserving translations between such liftings. Specifically, lifted
cosignatures are defined as tuples (C,F, G, o), with (C,F) an abstract signature, (C,G) an abstract
cosignature and ¢ : FDUy = DU a natural transformation (where U : Alg(C,F) — C denotes
the functor taking (C,F)-algebras to their carrier, and where D denotes the comonad induced by
the abstract cosignature (C, G)), subject to constraints similar to the ones in Definition 3.3.1. Also,
lifted cosignature morphisms are defined as tuples (U, &, 7), with (U,&) a signature morphism and
(U, 7) a cosignature morphism such that 7 is a natural isomorphism, again, subject to constraints
similar to those in Definition 3.3.1.
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The models of a lifted cosignature (C,F, G, o) are the coalgebras of the comonad D, on Alg(C,F)
induced by the natural transformation . The following diagram summarises the relationship between
D,-coalgebras on the one hand and (C, F)-algebras and D-coalgebras on the other.

Ucoalg (D)

Coalg(D,) —— Coalg(D)

UAlg(c,F)l luc

Alg(C,F) ——— C
C
The relevant properties of the categories and functors appearing in this diagram can also be sum-
marised as follows:

1. Coalg(D,) has any colimits that exist in Alg(C,F). (This follows by the dual of Corol-
lary 2.3.49.) In particular, Coalg(D,) has an initial object, whose underlying (C, F)-algebra is
an initial (C, F)-algebra.

2. Coalg(Dy) has a final object, whose underlying D-coalgebra is a final D-coalgebra. (This
follows similarly to Proposition 3.3.8.)

3. Coalg(Dy) has pullbacks, while Ucoaigpy and Uajg(c Fy create as well as preserve them.

4. Coalg(Dy) has quotients, while Ucoaig(p) and Uaig(c,F) Create as well as preserve them. (This is
a consequence of the existence of quotients in Alg(C, F) and Coalg(D) and of their preservation
by Uc and creation by Uf, and follows similarly to Proposition 3.3.9.)

As in the operational approach, the quotient of the unique homomorphism from the initial to the final
D,-coalgebra is used to provide a denotation for the lifted cosignature (C,F, G, o). Since quotients
in Coalg(Dy) are preserved by Upig(cF), it follows that the codomain of the quotient of a D,-
coalgebra homomorphism defines a homomorphic image of the domain of the given homomorphism,
as well as a subcoalgebra of the codomain of that homomorphism. As a result, the codomain of the
quotient of the unique homomorphism from the initial to the final D,-coalgebra is observable, while
its underlying algebra is reachable. (The fact that Ui preserves quotients is also used here.)

The notions of satisfaction of equations up to bisimulation and of coequations up to reachability
by coalgebras of lifted cosignatures are defined as in Section 3.3.1, and enjoy properties similar to
those of their operational counterparts. In particular, the codomains of the quotients of the unique
homomorphisms from the initial to the final D,-coalgebras satisfy precisely those equations which
are satisfied up to bisimulation by the initial D,-coalgebras, and precisely those coequations which
are satisfied up to reachability by the final D,-coalgebras.

Finally, the natural transformations o : FDU{- = DUf required by the definition of lifted cosignatures
can be given in terms of natural transformations p : F(Ur x GU;) = GU¢, defining the one-step
observations of the results yielded by one-step computations as computations on zero- and one-step
observations of their arguments.

A similar approach to specification is taken in [CHM99] (see also [CGRH98]), where suitably-
restricted heterogeneous transition systems (that is, transition systems whose states carry algebraic
structure) are regarded as coalgebras of endofunctors on categories of algebras. Specifically, the
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setting in [CHM99] is obtained by taking C to be Set, F : Set — Set to be the endofunctor induced
by a (one-sorted) signature 3, G : Set — Set to be given by P.(L x _)3° for some set L (of labels),
and o to be the natural transformation induced by a set of structural operational semantics rules
over 3 and L. The behaviour induced by these rules is required to be compositional, in that tran-
sitions on complex states (denoted by Y-terms) must be derivable from transitions on component
states (denoted by the variables appearing in these Y-terms) using the given rules. Such rules are
then shown to induce liftings of the endofunctor P.(L x _) to categories of Y-algebras, and this
observation is used to obtain conditions under which P.(L x _)-bisimilarity is a congruence w.r.t. the
algebraic structure.

Also related to the approach presented here (and indeed, to the one in [CHM99]) is the calculus of
communicating systems (CCS) [Mil80]. There, terms over a suitable signature are used to denote
processes, and an operational semantics for the resulting process algebra is defined using structural
rules over this signature. The observational equivalence of processes, given by strong bisimulation,
is then shown to be a congruence w.r.t. the algebraic structure. This allows various equivalences
between processes to be derived using equational reasoning.

We conclude this section with a few remarks on the relationship between the operational approach
described in Sections 3.3.1-3.3.6 and the denotational approach outlined above. In [Tur96] (see
also [TP97]), monads T and comonads D are used to specify syntax and respectively behaviour, and
distributive laws (defined as natural transformations A\ : TD = DT subject to certain compatibility
conditions involving the unit and multiplication of T and respectively the counit and comultiplication
of D) are used to relate the two. It is also shown in [Tur96] that distributive laws A : TD =
DT are in one-to-one correspondence with liftings of T to D-coalgebras (or, equivalently, to G-
coalgebras), as well as with liftings of D to T-algebras (or, equivalently, to F-algebras). Consequently,
the operational approach to specification described in Sections 3.3.1-3.3.6 and its denotational
counterpart outlined in Section 3.3.7 are equally expressive for specifying the relationship between
computations and observations in structures having both a computational and an observational
component. Nevertheless, both from a semantic point of view and in order to facilitate specification
and correctness proofs, it is worth distinguishing between the two kinds of approaches. Again, this
will become more apparent in Chapter 5, where the two approaches will be used for the specification
of systems with state (with finality being relevant at the semantic level, and with coinduction
prevailing as a proof technique) and respectively of data types (with initiality being of interest from
a semantic point of view, and with induction being typically used in proofs).

3.3.8 Related Work

This section briefly compares the approach presented in this chapter with similar work in [Fok96]
(extending previous work in [Man76], see Remark 3.2.14) on semantic generalisations of the notion
of equation.

Notions of transformer and law, generalising those of term and equation, are introduced in [Fok96]
in the context of dialgebras. If F,G: A — B denote arbitrary functors, an (F, G)-dialgebra is given
by a pair (A, ) with A an A-object (called the carrier of the dialgebra) and ¢ : FA — GA a

%The endofunctor P (L x _) : Set — Set takes a set X to the set of all countable subsets of L x X.
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B-arrow. Also, an (F, G)-dialgebra homomorphism from (A, ) to (B,) is given by an A-arrow
f : A — B additionally satisfying: Gf o ¢ =1 o Ff. The category of (F,G)-dialgebras and (F, G)-
dialgebra homomorphisms is denoted Dialg(F, G). Thus, dialgebras generalise both algebras (which
are obtained by taking B = A and G = Ids) and coalgebras (which are obtained by taking B = A
and F = Idp).

In this setting, a transformer of type (F,G) — (H, K) [Fok96], with F,G: A — Band H,K: A — C,
is given by a mapping T from (F, G)-dialgebras to (H, K)-dialgebras, additionally satisfying:

fro—=rcY = f:To—=ux Ty

that is:
Gfop=9oFf = KfoTp=T¢poHf

for any (F, G)-dialgebra homomorphism f : (A, p) — (B,4). Also, a law of type (F,G) — (H,K)
is given by a pair of transformers of type (F,G) — (H,K). A law (T,T") is said to hold for an
(F, G)-dialgebra (A, ¢) if and only if T = T" .

[Fok96] also shows that transformers of type (F,G) — (H, K) are the same as natural transformations
of type HU = KU, with U : Dialg(F,G) — A denoting the functor taking (F, G)-dialgebras to
their carrier, while the satisfaction of a law (7, 7") by an (F,G)-dialgebra (A, ) amounts to the
p-components of the natural transformations associated to T" and T" being the same. In this
respect, transformers and laws are generalisations of the notions of observer and abstract coequation
introduced in Section 3.1.2, as well as of the dual notions of constructor and abstract equation
introduced in Section 3.2.2.

In the following, the use of laws in specifying observational and computational structures on the
one hand and combined structures on the other is discussed in comparison with the approaches
presented in Sections 3.1 and 3.2, and respectively with the approach presented in Section 3.3.

As far as the notion of observer over an abstract cosignature is concerned, the only reason for
using natural transformations of type HUc = KUc, as opposed to natural transformations of type
Uc = KU, in defining it would, in our opinion, be to allow the result type of observers to lie in a
less structured category than the category used to define the cosignature. Such an approach would,
for instance, allow unconditional hidden X-equations of form (V Z) | = r, with ¥ a destructor hidden
signature, to be captured by abstract coequations of form (H,K, '), with H : Set?, — Set being
given by:
HX = X,

for X € |Set})| (where h denotes the type of Z), with K : Set?) — Set being given by:
KX = X,

for X € |Set})| (where s denotes the type of | and r), and with I',7' : HU = KU (where U :
Coalg(Set}), Fx;) — Set?, denotes the functor taking (Set?), Fy)-coalgebras to their carrier) being
given by:

for (C,~) € |Coalg(Set?), Fx)| with A its associated hidden X-algebra, and similarly for /. Under
the approach presented in Section 3.1, such equations are captured by (more complex) abstract
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coequations of form (K,1’,r'), with K : Set?, — Set?) being given by:

Xy, it Z:h
(KX), = ~ , heH
1 otherwise

(KX)y =D,, vEV

where s denotes the type of [ and r, and with I, : U = KU being given by:

R N if Z:h heH
(Cry)/h ':C), — 1 otherwise ’

for (C,v) € |Coalg(Set$, Fy)| with A its associated hidden ¥-algebra, and similarly for .

However, the use of natural transformations of type HUc = KU does not appear to increase the
expressiveness of the notions of observer and coequation, at least not in the case when H: C — D
is a functor having a right adjoint R : D — C (which is the case in the previous example). For, in
this case, natural transformations ¢ : HUc = KUc are in one-to-one correspondence with natural
transformations ¢’ : Uc = RKU¢ (with cl(cm : C — RKC being given by c?cm for any (C, F)-
coalgebra (C,~)). Moreover, the satisfaction of a generalised (C,F)-coequation (H,K,[,r), with
I,r : HUc = KUc, by a (C,F)-coalgebra (C,7) is equivalent to the satisfaction of the (C,F)-
coequation (RK,”,7) by (C,~). This follows from:

<077> ):(C,F) (H,K,l,’l") <
ly=r, &

b
i

<C7 7> |:(C,F) (RK, lba Tb)

A similar observation can be made about the use of natural transformations of type KUc = HU¢

b
lv—r s

(as opposed to natural transformations of type KUc = Uc) in defining the notion of constructor
over an abstract signature. A detailed investigation of the properties enjoyed by such generalised
notions of observer and constructor constitutes the subject of future work.

The use of laws in specifying the relationship between computations and observations in structures
having both a computational and an observational component constitutes an alternative approach
to the specification of such structures. This approach is illustrated in [Fok96] using a number of
examples of data type specifications. Rather than taking a layered view towards the integration of
computational and observational features, such an approach considers both categories of features
at the same time. On the one hand, this allows for more freedom in specifying the relationship
between the two categories of features, as no restrictions are imposed to the sets of laws used for
specification. On the other hand, such an approach does not guarantee either the existence of
initial/final models, or the existence of a compatibility between the induced notions of reachability
and observational indistinguishability.



4 Coalgebraic Specification

Existing formalisms for the specification of state-based, dynamical systems typically employ an
algebraic syntax in formalising and reasoning about state observations [GM97, Cor98, HB99, HK99].
The use of such a syntax prevents these formalisms from accommodating observers whose result type
is structured as a coproduct of basic types. Such observers are essential in system specification, as
they offer a choice in what can be observed of a system in a particular state. For instance, an observer
of type next : Stream — 1 + Stream (with 1 denoting a one-element type) is needed to specify the
fact that streams can terminate at any point, whereas an observer of type ? : Tree — Leaf + Node
is needed to classify binary trees into leaves and nodes (as the type of information that can be
observed about leaves differs from the type of information that can be observed about nodes).
This chapter presents a coalgebraic specification formalism which accommodates observers of the
above-mentioned form.

From a syntactic point of view, the approach is dual to the many-sorted algebraic approach to
the specification of data types. Observers whose result type is structured as a coproduct of basic
types are specified using the notion of many-sorted cosignature, while arbitrary state observations
are formalised using the notion of coterm, which captures the successive evaluation of observers
by providing alternatives for proceeding with an evaluation, depending on the type of the result
yielded by the most recently evaluated observer. (Covariables are used in coterms as place-holders
for the possible results of such evaluations.) Coequations are then used to constrain the specified
behaviours, by requiring different observations of the same state to yield similar results. Coequations
may be conditional, this allowing the formulation of a sound and complete deduction calculus for
reasoning about the specified behaviours.

From a semantic point of view, however, an approach which simply dualises the many-sorted al-
gebraic approach to specification proves not to be completely satisfactory, as the expressiveness of
the resulting formalism does not equal that of many-sorted algebra (or, equivalently, of arbitrary
polynomial endofunctors) from the point of view of the structures specifiable within it. This lack
of expressiveness is reflected in the fact that the induced notion of observational indistinguishability
is not sufficiently fine, and at the same time suggests the need for a data universe w.r.t. which
observational properties are specified!. Indeed, allowing specifications to be relative to a fixed data
universe increases the expressiveness of the formalism to that of extended polynomial endofunc-
tors. And although coequations are still not sufficiently expressive to allow the formulation of a
characterisability result similar to Birkhoff's (see Theorem 2.3.28), they succeed in capturing the
kinds of constraints one expects to impose when specifying state spaces; these are constraints on
the topology of state-based systems, referring to various dependencies between the system compo-
nents (including the sharing? of data or of subcomponents between the system components, or the

' This suggestion is strengthened by the presence, in existing specification formalisms, of a similar data universe.
2Qur approach to sharing is based on the assumption that two systems sharing a component are both subsystems
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presence or absence of certain components in some of the system states).

The chapter is structured as follows. Section 4.1 introduces a formalism for the specification of
observational structures, whose syntax and semantics dualise the syntax and semantics of many-
sorted algebra. Section 4.2 extends this formalism in order to account for the availability of a fixed
data universe w.r.t. which observational properties are specified, and then discusses the expressiveness
of the resulting approach.

Note The work reported in this chapter was carried out independently of (and prior to) the work
described in Chapter 3. Furthermore, this work has partly influenced the abstract coalgebraic ap-
proach to specification presented in Section 3.1 — several of the abstract notions introduced in
Section 3.1 are generalisations of notions defined in this chapter. This particular ordering of the two
chapters is intended to simplify the presentation of the results in the present chapter, by allowing
a number of properties of the concrete formalism introduced here to be derived automatically from
properties of the abstract framework presented in Section 3.13.

4.1 Many-Sorted Coalgebra

This section presents a formalism for the specification of observational structures allowing for a
choice in the result type of observers, obtained essentially by dualising the many-sorted algebraic
formalism for the specification of data types. A sound and complete deduction calculus for reasoning
about the specified behaviours is also formulated.

4.1.1 Cosignatures, Covariables, Coterms and Substitution

Definition 4.1.1. A (many-sorted) cosignature is a pair (S,A) with S a set of sorts and A an
S x ST-sorted set of operation symbols (where ST denotes the set of finite, non-empty sequences
of sorts). One writes 0 : s — s1...8p for 0 € Ng g s,

Cosignatures (S, A) are abbreviated A whenever the context allows it. For a many-sorted cosignature
A with sort set S, the set {0 | 6 € Ags4,..5,,51,.-.,5, € S} with s € S is denoted A,. In the
following it is only assumed that the sets A with s € S are enumerable. In practice however, these
sets are usually finite.

The operation symbols of a many-sorted cosignature specify basic ways of observing the states of a
given system. An operation symbol § : s — s ... s, denotes an operation whose domain is the type
denoted by s and whose codomain is given by the coproduct of the types denoted by s1, ..., sp.

Example 4.1.2. Lists (finite or infinite) are specified using sorts 1 (denoting a one-element set),
Elt (for the list elements), List and NeList (for arbitrary and respectively non-empty lists), and
operation symbols empty? : List — 1 NeList (used to classify lists into empty and non-empty

of a larger system.
*Direct proofs of some of these properties can be found in [Cir99al.
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ones), head:NeList — Elt and tail : NeList — List (yielding the head and respectively the tail
of a non-empty list).

Arbitrary state observations are formalised by the notion of coterm, which provides alternatives for
proceeding with an observation, depending on the type of the result yielded by the most recently
evaluated observer. Covariables are used in coterms as place-holders for their potential outputs, in
a manner similar to the use of variables as place-holders for the inputs of algebraic terms.

Definition 4.1.3. Let A denote a many-sorted cosignature with sort set S, and let C denote an
S-sorted set (of covariables). The (S-sorted) set TA[C] of A-coterms with covariables from C
is the least S-sorted set satisfying:

1. Z € TA[C]s for Z € C;

2. [t1,...,ty]0 € TA[C]s for 6 € Ag5,..5, and t; € TAICls,, i =1,...,n.

Coterms of sort s € S (elements of TA[C]s) specify ways of observing states of type s. Specifically,
a coterm of form Z denotes a trivial observation, whose result is precisely the state being observed,
whereas a coterm of form [t1,...,%,]d denotes an observation which amounts to first evaluating the
observer denoted by ¢ and then, depending on whether the result of this evaluation is of the type
denoted by si, s9, ... or s,, continuing with the observation denoted by one of ¢1,¢s,...,t,. That
is, evaluation begins from the right and proceeds towards the left according to the type of the result
yielded by the most recently evaluated observer. It is also worth noting that there are no coterms
over an empty set of covariables.

Example 4.1.4. The following are coterms of sort List: [F,N]empty? (used to observe whether a list
is empty or not), [F, [E]lhead]empty? (used to observe the first element of a list, in case it exists),
[F, [[F, [Elheadlempty?]ltaillempty? (used to observe the second element, in case it exists), and
so on. The result types of these coterms are: 1 NeList, 1 Elt, and respectively 1 E1t*. Now consider
the second of these coterms, i.e. [F, [Elhead]lempty?. This coterm denotes an observation which,
when applied to an element of type List, amounts to first evaluating the observer denoted by empty?
on that element, and then, provided that the result of the evaluation is of type NeList, evaluating
the observer denoted by head on this result.

One writes Z : s for Z € Cs and t : s for t € TA[C]s, with s € S. Also, the (S-sorted) set of
covariables actually appearing in a coterm ¢ € TA[C] (in general, a subset of C) is denoted covar(t).
It then follows by Definition 4.1.3 that covar(t) is finite for any ¢ € TA[C].

Definition 4.1.5. Let A denote a many-sorted cosignature. A coterm t € TA[C] is non-identifying
if it contains at most one occurrence of each covariable in C.

For a many-sorted cosignature A, the S-sorted set of non-identifying A-coterms with covariables in
C is denoted T} [C].

*The reason for the last coterm having result type 1 E1t, rather than 1 1 Elt, is its use of two occurrences of
the same covariable, rather than of two distinct covariables, of sort 1.



Coalgebraic Specification 115

Remark 4.1.6. Since, for a many-sorted cosignature A, the sets A; with s € S are enumerable, and
since the sets Ti,s with s € S are defined inductively, restricting attention to coterms over some
fixed S-sorted set of covariables all of whose components are infinite but enumerable does not reduce
the expressiveness of the formalism. We therefore let Cy denote an S-sorted set of covariables, such
that Co s is infinite but enumerable for any s € S. Also, for a many-sorted cosignature A, we let
Ti denote the set of non-identifying A-coterms with covariables in Cy. Then, since both Cp 5 with
s € S and A with s € S are enumerable, so are the sets Ti,s with s € S. The elements of Ti
will be referred to simply as non-identifying A-coterms. The set Ti will play an important rdle in
characterising the elements of final and cofree coalgebras, as well as in proving a completeness result
later in this chapter.

Substitution of coterms for covariables is now defined as follows.
Definition 4.1.7. If t € TA[{Z1,...,2Zn}]|s with Z; : s; for i = 1,...,n, and if t; € TA[C]s,

for o = 1,...,n, the coterm obtained by substituting ¢,,...,%, for Zy,...,7Z, in t, denoted
[t1/Z1, ..., tn)Zu)t ( [t/ Z]t for short) is defined inductively on the structure of t as follows:

1. [f/ ]Zi:tz' fori = 1,...,77,
2. [/ Z)([t,, ... th,10) = [t/ Z]t},. .., [t/ Z]t.,]d for § € Agg.s, andt; € TaA[{Z,. .. ,Zn}]s;,,
j=1,...,m.

Example 4.1.8. Given the cosignature in Example 4.1.2, the coterm obtained by substituting the
coterms F and [F, [E]lhead]empty? for the covariables F and respectively N in [F, [N]taillempty?
is [F, [[F, [Elhead] empty?]taill empty?.

Given t € Ta[{Z1,...,Zyn}], we write ¢ for a coterm with the following properties:

L. EETi[{XlaaXTTL}]
2t =[Zi X1y Zi [ Xt With Ziyo oy Zie €400 Z).

That is, t is obtained from ¢ by renaming and possibly identifying some of its covariables. (Note
that ¢ is only defined up to a bijective renaming of its covariables.)

Remark 4.1.9. Coterms can be represented as trees with the leaves labelled by covariables and with
the internal nodes labelled by operation symbols:

1. covariables Z are represented as trees having one node, labelled by Z

2. coterms of form [t1,...,t,]0 are represented as trees having the root labelled by ¢ and its
subtrees given by the trees associated to ty,...,t,.

A path from the root of the tree associated to a coterm to one of its leaves will be called an
evaluation path for that coterm.
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Example 4.1.10. Given the cosignature in Example 4.1.2, the tree associated to the coterm
[F, [E]lhead]empty? is:
empty?

F/ N

head

N

E

with one evaluation path corresponding to an empty list and another corresponding to (the extraction
of the first element of) a non-empty list.

4.1.2 Coalgebras, Finality and Bisimilarity
The models of a many-sorted cosignature provide interpretations for its sorts and operation symbols.

Definition 4.1.11. Let A denote a many-sorted cosignature with sort set S. A (many-sorted)
A-coalgebra is given by an S-sorted set A together with, for each § : s — s1...sy, in A, a function
da:Ag = Ag, + ...+ A,

Given A-coalgebras A and B, a A-homomorphism f : A — B is given by an S-sorted function
(fs)ses with fs: Ag — By for s € S, additionally satisfying:

[t10 fsyyeevstno fs,](0a(a)) = dp(fs(a))

for each  : s — s1...s, in A and each a € As, with s,s1,...,5, € S (where 1; : Bs, —
Bs, +...+ By, forj =1,...,n are the coproduct injections).

For a many-sorted cosignature A, the category of A-coalgebras and A-homomorphisms is denoted
Coalg(A).

Example 4.1.12. Consider the following coalgebra of the cosignature given in Example 4.1.2:

Ay = {*}
AEltzN
AList — (N)*

ANeList — (N) +

if 1=
empty7, (1) = {10 I=e
w(l) if l#e€
heady(n:l) =n
taily(n:1l) =1

with € denoting the empty sequence of natural numbers. This coalgebra provides an implementation
of finite lists. An implementation of finite as well as infinite lists can be obtained by replacing the
sets of finite (respectively finite, non-empty) sequences of natural numbers in the above definition
with the sets of finite or infinite (non-empty, finite or infinite) sequences of natural numbers.

We also note that, at this point, the interpretation of the sort 1 in coalgebras of the list specification
can not be constrained to a one-element set. This issue will be dealt with in Section 4.2.
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Remark 4.1.13. Many-sorted cosignatures and their coalgebras are instances of the abstract notions
of cosignature and coalgebra of an abstract cosignature (see Definitions 3.1.1 and 3.1.4). Specifically,
if A denotes a many-sorted cosignature with sort set S, and if Ga : Set® — Set® denotes the
endofunctor whose components are given by:

GaX)s= ] Xo+...+X,)
(5€As,sl...sn

for X € |Set®| and s € S, then the tuple (Set”, G ) defines an abstract cosignature whose category
of coalgebras is isomorphic to Coalg(A). For, the category Set® is complete, cocomplete and
regular (see Examples 2.1.31 and 2.1.47), while Ga preserves pullbacks and limits of w°P-chains
(see Example 2.1.37). Also, A-coalgebras A induce Set®-arrows a : A — GaA (with o, mapping
a € Ag to (0a(a))sen,,, .,  for s € S), and conversely, any such Set®-arrow defines a A-coalgebra
structure on its domain; moreover, the two mappings are inverse to each other.

Example 4.1.14. The endofunctor associated to the cosignature given in Example 4.1.2 is of form

G : SetilBltList Nelist} _, gor{lBlt List Nelist} \\ith the components given by:

(GX)1 =1

(GX)ge =1
(GX)List = X1 + XyeList
(GX)eList = X1t + Xiist

for X € |Set{1aE1t,List,NeList}|

Given a A-coalgebra A, a set {Z1,...,Z,} of covariables with Z; : s; for i = 1,...,n and a
covariable Z € {Z1,...,Z,} with Z : s, one writes 17 : A; — A, +...+ A, for the corresponding
coproduct injection.

The interpretation of A-operation symbols by A-coalgebras extends to an interpretation of A-
coterms by A-coalgebras.

Definition 4.1.15. Let A denote a many-sorted cosignature, and let C denote a set of covariables.
The interpretation of a A-coterm t € TA[C|s, with s € S, in a A-coalgebra A is a function

ta:As— || Ay defined as follows:
ZeC,Z:s!

1. Zp=y for Z € Cq
2. ([t1,...,tn]0)a =[(t1)a,...,(tn)a] 004 for 6 € Ay, s, and t; € TAICls,, i =1,...,n

with [(t1) A, ..., (th)a] : Asy +... + A5, = ] As denoting the unique Set-arrow induced by
ZeC,Z:s!
(ti)a:As;, > I Ay withi=1,...,n.
ZeC,Z:s!

Given a many-sorted cosignature A with sort set S, the unique A-coalgebra structure on the empty
S-sorted set yields an initial A-coalgebra. However, this coalgebra provides no information about the
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behaviours observable using the operations specified by A. A characterisation of these behaviours
is, instead, given by (the elements of) a final A-coalgebra.

The existence of final coalgebras of many-sorted cosignatures is an immediate consequence of Re-
mark 4.1.13 together with Proposition 3.1.9. An alternative proof of the existence of such coalgebras
which, in addition, provides a concrete description of their elements is given in the following.

Proposition 4.1.16. Any many-sorted cosignature A admits a final coalgebra.

Proof. Let F' denote the A-coalgebra given by:
Fs={¢p: Ti,s — U{covar(t) | t € Ti,s} |t e Ti’s = p(t) € covar(t),
tat, € Ti,s? t'= [tl/ZIa s atn/Zn]tv (p(t) =Zr = (p(tl) € CO’UG’I”(tk) }
for s € S, and:

Sr(p) =1z,(¢"), (') =0([Z1,...,t,..., Zy)0) fort' € Ti’sl
if o([Z1,...,20]0) = Z; : &'

for ¢ € Fs and § € Ay, .5,. The correctness of the above definition follows from the
observation that, if ¢, d and ¢’ are as above, and if t,¢/ € Ti,s' are such that ¢ =
[t1/Z1,. .., tm/Z],)t and ¢ (t) = Z], (or, equivalently, ©([Z1,...,t,...,Z,]0) = Z;), then ¢ € F}
gives o([Z1,...,[t1/Z1,. .., tm/Z],)t, ..., Z,]0) € covar(ty), thatis, ¢'(t') € covar(ty). Thus, the
elements of F are suitably-restricted mappings from non-identifying coterms to covariables appear-
ing in them (with, for each such coterm, the choice of covariable determining an evaluation path®
for that coterm).

Then, F' is a final A-coalgebra. For, given an arbitrary A-coalgebra A, one can define a A-
homomorphism f : A — F by: f(a)(t) = Z; if ta(a) € 1z,(As,), for t € Ti,s, a € As and
s € S. The fact that f(a) € Fs for any a € As; and s € S follows from the observation that
tala) € vz;(As;) implies ([t1/Z1,...,tn/Zp]t)a(a) € 1z(Ag) for some Z € covar(t;)s, for any
t € TA[{Z1,...,Zn}]s and any suitable A-coterms #; € T , with ¢ = 1,...,n. The fact that f
is a A-homomorphism follows in a similar way. Moreover, any A-homomorphism from A to F is
necessarily defined in this way. O

Example 4.1.17. The carrier of the final coalgebra of the cosignature in Example 4.1.2 is given by:
Fy = {x}, Fpy = {*}, Fyerist = N* U {00} and FList = N U {oo} (with lists of length n being
denoted by n, for n € N, and with infinite lists being denoted by co). The reason for this rather
unexpected result is that no observers have been provided for the type E1t; as a result, list elements
can not be distinguished from each other, and all that can be observed about a list is its length.

Remark 4.1.18. For C € |Set®|, a cofree A-coalgebra A over C'is given by:
As={¢: Ti,s — U{covar(t) x C |t € Ti,s} |t e Ti,s = 71 (p(t)) € covar(t),
t,t' e Ti’s, t'=1[t1/Z1,...,tn)Zu)t, T1(p(t)) = Zr = m1(p(t')) € covar(ty)

and moreover, T (p(t')) = ma(p(t)) if tx is a covariable }
See Remark 4.1.9.
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for s € S (where the product covar(t) x C' is taken in Set¥), and:

Salp) =1z.(0"), &' (t") =o([Z1,.- 1., Z]0) for t' € Ti,s,
if o([Z1,...,2,)0) = (Zi,c;) with Z; : '

for p € Ay and § € Ay, 5,. This can be shown similarly to Proposition 4.1.16.

The next result gives a characterisation of the notion of bisimilarity associated to (the endofunctors
induced by) many-sorted cosignatures.

Proposition 4.1.19. Let A denote a many-sorted cosignature with sort set S, and let A denote a
A-coalgebra. Then, given s € S, two states a,a’ € Ay are bisimilar if and only if for any t € Ti,s,
there exist ' € S and Z € covar(t)y such that ta(a),ta(a’) € Lz(Ag).

Proof. Recall from Remark 3.1.14 that bisimilarity on an arbitrary coalgebra is given by the kernel
of its unique homomorphism into the final coalgebra. Then, according to the proof of Proposi-
tion 4.1.16, a and o' are bisimilar (i.e. fs(a) = fs(a'), with f : A — F denoting the unique
A-homomorphism from A to the final A-coalgebra) precisely when t4(a),ts(a’) € tz(Ag) for some
Z € covar(t)y and s’ € S, for any t € TAS. 0

That is, two states of a given coalgebra are bisimilar if and only if, when observed using any non-
identifying coterm, the results yielded correspond to the same evaluation path for that coterm.

Example 4.1.20. The notion of bisimilarity associated to the cosignature given in Example 4.1.2
relates two states of a coalgebra if and only if they denote lists with the same number of elements.
A finer notion of bisimilarity, which distinguishes between lists with different elements, could be ob-
tained either by providing suitable observers for the sort E1t (as already noted in Example 4.1.17), or
by fixing the interpretation of the sort E1t. (The latter alternative will be considered in Section 4.2.)

The characterisation of bisimilarity given by Proposition 4.1.19 together with the observation that
bisimilarity on final coalgebras coincides with the equality relation (see Remark 3.1.14) yield a
coinductive technique for proving the equality of observations on the elements of final coalgebras.

Corollary 4.1.21. Let A denote a many-sorted cosignature with sort set S, let F' denote a final
A-coalgebra, and let I,r € TA[{Z1,...,Zn}]s with Zy : s1,...,Zy : Sp. Then, given ¢ € Fj,
lrp(p) = rr(p) holds if and only if ([t1/Z1,...,tn/Zn))r(p) and ([t1/Z1,. .., tn/Zn|T)r(p) are
both in vz (Fy) for some Z : s' and s' € S, for any t; € Ti,si withi=1,...,n.

Proof. The only if direction is straightforward. For the if direction, it suffices to show that [p(¢) ~p
rr(p), with ~p denoting A-bisimilarity on F' (see Remark 3.1.14). Taking t; = Z; fori=1,...,n
gives Ip(p),r(p) € 1z,(Fs;) for some i« € {1,...,n}. Then, for any ¢t € Ti,sl,, taking t; = Z;
for j € {1,...,i —1,i+1,...,n} and t; = t in the hypothesis gives tr(lr(p)) = tr(rr(p)).
Proposition 4.1.19 now yields [(¢) ~ps; 7#(p), while Remark 3.1.14 yields [z () = rp(p). O
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4.1.3 The Lawvere Category of a Many-Sorted Cosignature

To each many-sorted cosignature one can associate a category whose objects denote types and
whose arrows denote type observations. The construction of this category is dual to that of the
Lawvere category associated to an algebraic signature (see Definition 2.3.33).

Definition 4.1.22. The Lawvere category L® associated to a many-sorted cosignature A is the
least category with finite coproducts which has the sorts in S as objects and the operation symbols
of A as arrows.

That is, the objects of L2 are of the form +;cys; with I finite and s; € S for each i € I, while the
arrows of L are of one of the following forms:

d:s—=s1+...+s,withd € Ag, 6,
- 18 > S1+...+s,withie{l,...,n}
— [,y is1+ ... Fsp = zwithly:s; >z fori=1,...,n

— a composition of such arrows.

Remark 4.1.23. The following closure rules can be used to generate La(s,s1 + ... + s,), with
$,81,...,8, € S and n € N*:

- (ti:si—=>s1+...+s,) € La(siys1+...+sy,) fori e {l,...,n}

- ([, lp)0 s = sh+ ...+ 8),) € La(s,s) +...+s),) for 6 € Agy,.5, and [; €
La(si, sy +...+s),) fori=1,...,n.

This is a consequence of the fact that [l1,...,l,] o t; = [; for any ly,...,l, as above and any
ie{l,...,n}

Proposition 4.1.24. [et A denote a many-sorted cosignature with sort set S. There exists a
one-to-one correspondence between coterms t € Ta[{Z1,...,Zp}]s with Z; : s;, i = 1,...,n and
arrows [t] in L2(s,s1 + ... + sp). Moreover, [[t1/Z1,- . tn/Za]t] = [[t1],-- -, [ta]l] © [t] for any
t € TA[{Z1,...,Zp}]s and any t; € TAICls, fori=1,...,n.

Proof. For s € S, s € Sfori=1,...,nand n € N*, let [_]s : Ta[{Z1,...,Zn}]s — La(s,s1 +
...+ 8p) be given by:
1. [[Zz']]si =y; fori € {1,... ,n}
2. [[[tl,...,tk](ﬂ]s = [[[tl]]sla---a[[tk]]sk] od for § € As,sl...sk and t; € TA[{Zl,...,Zn}]si, 7 =
1.k

We first use structural induction to show that for any [ € La(s,s1 + ... + $,), there exists t €
TAl{Z1,...,Zn}]s with Z; : s; fori =1,...,n such that [t]s =

1. Ifl =;, then [[Zz']]si =1.
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2. 1 1=1[ly,....LJod with 0 € A,y o and [ti] =1; for i = 1,... .k, then [[t1, ..., t]0]; =
[IItl]]Sllv"' ) IItk]]s;C] 0 = [ll,... alk] o) =1.

Hence, [] is surjective.

We now use structural induction on ¢ to show that [[t]s = [t']s implies ¢t = ¢

1. t=2;

Then, [t]s, = [t']s; together with the definition of [_]s, yield [¢']s, = ti, which, by the
definition of [_]s, and of La, can only hold if ¢ = Z;. Hence, t =¢'.

2. t=[ty,... )6

Then, [t]s = [t']s together with the definition of [_]s yield [#']s = [[t1]ls., - - -, [tk]s,]0. The
definitions of [_], and La give t' = [t],...,}]0 for some #|,... ¢, satisfying [t;]s; = [ti]s,
for i = 1,...,k. The induction hypothesis then gives ¢; = t for ¢ = 1,...,k, which implies
(b1, ti]d = [t .., 14]0, ie. t =1,

Hence [] is injective. Therefore, [-] is a one-to-one correspondence.

The fact that [[t1/Z1, ..., tn/Zn)t] = [[t1]), - - -, [ta]] o [¢] follows, again, by structural induction on
t. O

As in many-sorted algebra, there exists a correspondence between coalgebras of a many-sorted
cosignature and functors on its Lawvere category.

Proposition 4.1.25. For a many-sorted cosignature A, A-coalgebras A are in one-to-one corre-
spondence with coproduct-preserving functors A : L® — Set, while A-homomorphisms f : A — B
are in one-to-one correspondence with natural transformations f : A = B. Furthermore, A[t] = ta
for any A-coalgebra A and any A-coterm t.

Proof (sketch). Any coproduct-preserving functor A : L® — Set defines a A-coalgebra A (with the
carrier of A being given by A; = As for s € .S, and with the operations of A being given by 64 = Ad
for 6 € Ags,..5,), and conversely. O

4.1.4 Coalgebraic Equational Specification

In algebraic specification, many-sorted equations are used to constrain the interpretation of terms
by algebras. A similar approach proves suitable for constraining state observations, provided that
one’s interest is in relating different observations of the same state. This section presents such an
approach, illustrating the kinds of constraints specifiable within it.

A first approximation of the notion of coequation is given by a pair of coterms of the same sort.
Satisfaction of a coequation by a coalgebra then corresponds to the coalgebra providing identical
interpretations for the two coterms. For instance, a coequation of form:

[[F, [Elhead]lempty?]tail = [E]lhead
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constrains the interpretation of the sort NeList in coalgebras A satisfying it to constant, infinite
lists, by requiring the observations:

[tF, tg o headg] o empty?, o taily : Ayerist — A1 + A

tgoheada : AyeList — A1 + Ape
(with ¢z : Ay — Ay + Ag1e and g : Ap1e — A1 + Agre denoting the two injections) to yield similar
results on any non-empty list.

However, due to the presence of choice in the result types of observers, reasoning about the satis-
faction of coequations by algebras may involve some case analysis on the possible evaluation paths
of coterms. For instance, in order to infer the satisfaction of the coequation:

[[F,N]empty?]tail = [[F’,N]empty?]tail
(constraining empty? , otaily to always yield a result of type NeList, by requiring the observations:

[tr, tn] 0 empty?, o taily : Aperist — A1 + A1 + Averist
[tr, tn] 0 empty? 4 o taily : Ayerist — A1 + A1 + Averist

to yield similar results on any non-empty list) from the satisfaction of the coequation:
[[F, [E]lhead]lempty?]tail = [Elhead

a case analysis on the possible evaluation paths for [[F,N]empty?]tail should be carried out.
Specifically, the satisfaction of the above coequation would follow from its satisfaction both under
the assumption that the evaluation path corresponds to the covariable N (in which case the proof
is trivial), and under the assumption that the evaluation path corresponds to the covariable F (in
which case a contradiction can be inferred from the assumption together with the satisfaction of
the initial coequation, and consequently the assumption is invalidated). It turns out that, in order
to obtain a complete deduction calculus for coequations, such assumptions must be incorporated in
the notion of coequation. In this case, the satisfaction of the coequation:

[[F,N]empty?]tail = [[F’,N]empty?]ltail
would follow from the satisfaction of the following two (conditional) coequations:

[[F,N]empty?]tail = [[F’,N]lempty?]ltail if ([[F,N]empty?]tail,N)
[[F,N]empty?]tail = [[F’,N]empty?]ltail if ([[F,N]empty?]ltail,F)

The presence of conditions in the above coequations is intended to specify the fact that the inter-
pretations of the lhs and rhs of the coequations are only required to coincide on non-empty lists
satisfying these conditions (i.e. on non-empty lists on which the evaluation of [[F,N]empty?]ltail
yields a result of type NeList, respectively 1).

The above discussion justifies the following definition.

Definition 4.1.26. Let A denote a many-sorted cosignature with sort set S, and let s € §. A A-
coequation of sort s is a tuple (I,r,C), with l,r € TA[C]s, and with C' = {(t1,C}), ..., (tn,C})}
for some t; € TA[Ci]s and C, C C;, withi =1,...,n. A A-coalgebra A satisfies a A-coequation
e of the above form (written A \=n e) if and only if l4(a) = r4(a) holds whenever a € A is such
that (t;)a(a) € vz,(As,) for some Z; € (C})s,, fori = 1,...,n (in which case a is said to satisfy
the conditions C').



Coalgebraic Specification 123

The coequation (I,r,C) (with C being as in Definition 4.1.26) is alternatively denoted | =
rif (t1,C1),. .., (tn,C}). Also, if C; = {Z;}, one writes (t;,Z;) as a shorthand for (¢;,C}). Fi-
nally, given a set E of A-coequations together with s € S, one writes F; for the subset of E
consisting of coequations of sort s.

Remark 4.1.27. The notion of coequation could have alternatively been defined as a tuple of form
((L,r), {(t1, Z1), ..., (tn, Zn)}), with t; € TA[C;] and Z; € C; for ¢ = 1,...,n. The notion of
coequation in Definition 4.1.26 acts as a shorthand for sets of coequations of the above form — a
coequation of form [ = r if (¢1,C}),..., (tn,C},) is semantically equivalent to the following set of
coequations: { I =7 if (t1,Z1),...,(tn, Zn) | Z1 €CY,..., Zy €C), }.

Example 4.1.28. Given the cosignature in Example 4.1.2, the coequation:
[[F, [E]lhead]lempty?]tail = [Elhead
constrains the interpretation of NeList to constant, infinite lists, while the coequation:
[[F, [Elhead]lempty?]tail = [Elhead if ([[F,N]empty?]tail,N)
constrains the interpretation of NeList to constant, finite or infinite lists. (The presence of a

condition in the second coequation allows the constraint in the main part of the coequation to only
be imposed on non-empty lists having at least two elements). Similarly, the coequation:

[[F,[[F’,[Elhead]empty?]taillempty?]tail = [E]lhead
constrains the interpretation of NeList to alternating, infinite lists, while the coequation:

[[F,[[F’,[Elhead]empty?]tail]empty?]tail = [E]head
if (L[F,[[F’,N]empty?]tail]empty?]tail,N)

constrains the interpretation of NeList to alternating, finite or infinite lists.

Example 4.1.29. An alternative specification of lists can be given using sorts 1, E1t and List, and
operation symbols first : List — 1 E1t and rest : List — 1 List, subject to constraints captured
by the following coequations:

[Z,L]lrest = [Z,L’]rest if ([Z,E]lfirst,Z)
[Z,Elfirst = [Z,E’]first if ([Z,L]lrest,Z)

formalising the fact that a list is either empty, in which case it has neither head nor tail, or non-empty,
in which case it has both a head and a tail.

Remark 4.1.30. The notions of A-coterm, A-coequation and satisfaction of A-coequations by A-
coalgebras are instances of the abstract notions of observer, coequation and coequational satisfaction
(see Definitions 3.1.23 and 3.1.25). For, given a A-coterm ¢ € TA[C]s with C a finite set of
covariables®, one can define a (Set”, Ga)-observer (K,#') having the property that £, coincides

with t’<A oy for each A-coalgebra A with (A, @) the associated (Set®,Ga)-coalgebra. Specifically,

8For instance, C can be taken to be covar(t).
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K : Set® — Set” is given by:

(KX)S = H H Xgn

s"eS ZeCyn
(KX)y =1, fors' €S\ {s}

for X € |Set®|, while #' : U = KU (with U : Coalg(Set®, Ga) — Set® denoting the functor taking
(Set®, Ga)-coalgebras to their carrier) is given by:

—~
~
~~
=
Q
<
~—
CI:\
—
IS
~
SN
*
—
o
=
V)
~
m
n
/
~=
V)
—~—

for each (Set”,Ga)-coalgebra (A, ) with A its corresponding A-coalgebra. (The fact that K
preserves monomorphisms follows by Example 2.1.37.)

Also, given a A-coterm ¢ € TA[C]s, with C a finite set of covariables, together with some conditions
C of form (t1,C1), ..., (t,,Cpn) for the sort s, one can define a (Set”, Ga)-observer (K, '), with
K : Set® — Set” being given by:

KX)s =1+ [T T X«

S”ESZECSII
(KX)y =1, fors' €S\ {s}

for X € |Set®|, and with ¢ : U = KU being given by:

, ~ Ja(ta(a)) if C holdsina
( )+(a) {Ll(*) otherwise

(Hla)s (@) =, for s' € S\ {s}

for each (Set”,Ga)-coalgebra (A, ) with A its corresponding A-coalgebra. (The fact that K
preserves monomorphisms follows, again, by Example 2.1.37. Also, note that K only depends
on C.) Now, if e denotes a A-coequation of form [ = r if C, and if (K,I') and (K,r') denote
the (Set”, Ga)-observers induced by the A-coterms [ and 7 together with the conditions C, then
A Ea eis equivalent to (4, ) [ ses g (K1, 77).

However, unlike in the algebraic case (see Example 3.2.13), (Set®, Ga)-observers whose type is of
the previous form do not, in general, yield A-coterms. The reason for this is that, while »-terms
(with ¥ a many-sorted signature) can be identified with the elements of certain free ¥-algebras, a
similar observation does not hold for A-coterms.

Given § € Ay, .5, together with i € {1,...,n} and conditions C of form (¢1,C}),..., (tm,C},)
for the sort s;, one writes [Z1,...,C,...,Z,]0 as a shorthand for ([Zl,...,tj,...,Zn](S,C;- U
{Zy,....Zi 1, Zis1, ..., Zn})j=1,..m, With {Z1,..., Z,} Ncovar(t;) =0 for j = 1,...,m. That
is, the conditions [Z1,...,C, ..., Z,]d require the result yielded by (the interpretation of) ¢ to
satisfy the conditions C' whenever the evaluation path for [Z1,..., Z,]d corresponds to the covari-
able Z; : s;. Also, given t € TaA[{Z1,...,Zp}]s with Zy : s for k = 1,...,n, and given i and
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C as before, one writes [Z1/Z1,...,C/Z;,..., Zn[Zp)t for ([Z1/Z0, ..., tj/Zi;. .., Zn|Zy]t,C; U
{Z1,....Zi1,Zi1, ..., Zp})j=1,.,m. This notation will be used in Section 4.1.6 in formulating a
deduction calculus for coequations and in proving its completeness for the satisfaction of coequations
by coalgebras.

While in many-sorted algebra equations of form X = X' are only satisfied by algebras whose
corresponding carrier is a one-element set, here coequations of form Z = Z' are only satisfied by
coalgebras whose corresponding carrier is empty. More generally, coequations of form [ = r with
covar(l) # covar(r) constrain the result type of [ and r to the type of a covariable appearing in
both [ and r. Amongst such coequations, of particular interest are those with [ and r being the
same up to a renaming of their covariables.

Definition 4.1.31. Let A denote a many-sorted cosignature, let t € Ta[C]s; for some set C of
covariables and some s € S, and let C' C C. The coequation:

t: [yl/Xla ree 7ym/Xm]§

where:
- teTA{X1,..., Xm}] issuch that t = [Z;, [ X1, ..., Zi, | Xmlt

Xj if ZZ'].ECI .
-y = ) fory=1,...,m
Y}#XJ if ZijQC’

is called a type constraint for ¢t and is denoted c(t,C").

¢(t,C") constrains the result type of ¢ to the type of a covariable in C': given a A-coalgebra A,
c(t,C") holds in a state a € Ay if and only if t4(a) € 1z (Ay) for some Z € C.,.

If C' ={Z}, c(t,C') is alternatively denoted c(t, Z).

We note that, since ¢ is only defined up to a bijective renaming of its covariables, so are the
type constraints for £. Consequently, the covariables X; and Y; with j = 1,...,m can be arbitrarily
chosen, provided that they are all distinct. This observation will be used when proving a completeness
result for the satisfaction of coequations by coalgebras.

Remark 4.1.32. If t € TA[{Z1,...,Z,}] and i € {1,...,n}, then c(t, Z;) has the form:
t=[Y1/Z1,...,Zi]Ziy...,Yn|Z]t

Example 4.1.33. Given the cosignature in Example 4.1.2, ¢([[F,N]empty?]tail,N) has the form:
[[F,N]empty?]tail = [[F’,N]empty?]ltail
and constrains the interpretation of the sort NeList in coalgebras satisfying this coequation to infinite

lists (by requiring the interpretation of tail in such a coalgebra to always yield a non-empty list).

The next result states some immediate properties of the notion of satisfaction of coequations’.

A slightly weaker version of this result can be obtained as an instance of Proposition 3.1.28, by exploiting the
correspondence between many-sorted cosignatures and abstract cosignatures, and between many-sorted coequations
and abstract coequations.
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Proposition 4.1.34. Let A and B denote A-coalgebras, let f : A — B denote a A-homomorphism,
and let e denote a A-coequation. Then:

1. AEa e impliesIm(f) Ea e.

2. If all the components of f corresponding to sorts of covariables appearing in e are injective,
then B [=a e implies A =4 e.

Proof (sketch). The fact that tim(s)(fs(a)) = [t1 0 fsy,---stn 0 fs,](ta(a)) for each s € S, t €
TaA[{Z1,...,Zp}]s with Z1 @ s1,...,2Z, : sy, and @ € Ay is used. (This is a consequence of the
definition of A-homomorphisms.) O

Corollary 4.1.35. Let A denote a many-sorted cosignature, and let E denote a set of A-
coequations. The full subcategory of Coalg(A) whose objects satisfy the coequations in E is a
covariety.

The fact that many-sorted cosignatures and their coalgebras and coequations are instances of the
corresponding abstract notions introduced in Section 3.1 also results in the existence of largest
subcoalgebras satisfying given sets of coequations (see Proposition 3.1.33). The next result provides
a concrete description of such subcoalgebras.

Proposition 4.1.36. Let A denote a many-sorted cosignature, let E denote a set of A-coequations,
and let A denote a A-coalgebra. Then, the carrier of the largest A-subcoalgebra Ag of A satisfying
the coequations in E is given by:

Aps={a€ As|la(ta(a)) =ra(ta(a)) whenever
teTA{Zy,...,Zy})s,i €{1,...,n} and (I =7 if C) € E,,
are such that ts(a) € vz,(As;) and C holds inty(a) }, s€ S

Proof. To show that the S-sorted set (Ap s)scs defines a A-subcoalgebra of A, let a € Ag s and
§ € Ngsy.s,- Say 0a(a) € 1j(A;) with j € {1,...,m}. Then, given t' € TA[{Z1,..., Zyn}]s; and
(I =rif C) € E such that C holds in t/;(04(a)), taking t = [X1,..., X;_1,t, Xj41,...,Xn]0 in
the definition of Ap gives [4(#,(04(a))) = ra(t'y(6a(a))). Thatis, 4(a) € 1j(AE,s;).

Also, given an arbitrary (A, E)-subcoalgebra A’ of A, the inclusion ¢ 4s of A’ into A factors through
the inclusion 14, of Ag into A. (Proposition 4.1.34 gives Im(z4r) [=a E, which, together with the
definition of Ag, gives Im(va/) C Ag.) Hence, Ag is the largest (A, E)-subcoalgebra of A. O

4.1.5 An Institution of Many-Sorted Coalgebras
Translations between many-sorted cosignatures are captured by many-sorted cosignature morphisms.

Definition 4.1.37. Let A and A’ denote many-sorted cosignatures with sort sets S and respectively
S’. A (many-sorted) cosignature morphism from A to A’ consists of a function ¢ : S — S’
together with an S x S -sorted function (¢s.w)seswes+, With ¢ew : Ny — A;(s),w(w) fors e S
and w € ST (with ¢ denoting the pointwise extension of ¢ : S — S’ to a function from S™ to
S’+).
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The category of many-sorted cosignatures and cosignature morphisms is denoted Cosign.

Cosignature morphisms ¢ : A — A’ induce reduct functors Uy : Coalg(A’) — Coalg(A), taking A'-
coalgebras A’ to the A-coalgebras whose carrier is given by A = (A;a(s))s€5' and whose operations
are given by 4 = ¢(J) 4 for 6 € A.

Remark 4.1.38. Many-sorted cosignature morphisms are an instance of the abstract notion of cosig-
nature morphism (see Definition 3.1.47). For, many-sorted cosignature morphisms ¢ : (S, A) —
(S8, A") induce abstract cosignature morphisms (U,74), with U : Set® — Set® taking X € |Set”|
to (Xy(s))ses € |Set®|, and with 74 : UG — GaAU being given by:

(77¢”X)5((x5')5’6%(3),33...3;) = (2¢(6))6€ 00 5, ..o
for X € |Set”| and s € S. The functor U preserves pullbacks and limits of w°P-chains (see
Example 2.1.38) and has a right adjoint R (see Example 2.1.52). And if, in addition, ¢ is injective
on sorts, then U lifts pullbacks and limits of w°P-chains (see Example 2.1.38), while R is also a right
inverse to U (see Example 2.1.52). Moreover, U, agrees with Uy, while the translation along ¢ of
A-coequations agrees with the translation along 74 of the induced Ga-coequations. (The existence
of a one-to-one correspondence between A-algebras and Ga-coalgebras, and of a correspondence
between A-coequations and Ga-coequations, see Remarks 4.1.13 and 4.1.30, are used here.)

An immediate consequence of the above observation is the existence of cofree coalgebras w.r.t. the
reduct functors induced by many-sorted cosignature morphisms.

Proposition 4.1.39. Let ¢ : A — A’ denote a many-sorted cosignature morphism. Then, Uy :
Coalg(A’) — Coalg(A) has a right adjoint.

Proof. The conclusion follows from Remark 4.1.38 and Theorem 3.1.62. O

On the one hand, the mapping from many-sorted cosignatures to their categories of coalgebras
extends to a functor Coalg : Cosign — CAT®P. On the other hand, the translation of sorts and
operation symbols along many-sorted cosignature morphisms extends to a translation of coterms
and hence of coequations, yielding a functor Coeqn : Cosign — SET. Moreover, the functors Coalg
and Coeqn agree with the restrictions to Cosign of the corresponding abstract functors described in
Section 3.1.3. Then, Proposition 3.1.48 yields the following.

Theorem 4.1.40. (Cosign, Coalg, Coeqn, |=) is an institution.
This institution will be called many-sorted coalgebra®. Its specifications and specification morphisms

will be referred to as (many-sorted) coalgebraic specifications and respectively (many-sorted) coal-
gebraic specification morphisms.

8The use of this terminology is justified by the syntactic duality w.r.t. many-sorted algebra.
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Example 4.1.41. Extending the list specification given in Example 4.1.29 with operation symbols
odd_select : List — List and even_select : List — List (denoting the operations which select the
elements situated in odd and respectively even positions in a list) and coequations:

[[Z,E]first]odd_select = [Z,E]first
[[Z,Llrest]lodd_select = [Z,[Z,[L]odd_select]lrest]lrest
if ([Z,[T,L]lrestlrest,{Z,L})
[[Z,Llrest]lodd_select = [Z,L]rest
if ([Z,[T,L]lrest]lrest,{T})

[[Z,E]lfirst]even_select = [Z,[Z,E]lfirst]lrest
[[Z,L]lrest]even_select = [Z,[Z,[L]even_select]lrest]lrest

yields an inclusion cosignature morphism which at the same time defines a coalgebraic specification
morphism from the list specification given in Example 4.1.29 to the extended list specification given
above. We note that the use of case analysis in the definition of odd_select is required to ensure
that, in coalgebras of the target specification, the list invariant (given by the two coequations in
Example 4.1.29) is preserved by odd_select. (The preservation of the list invariant amounts to the
largest subcoalgebras w.r.t. first and rest which satisfy the list invariant also defining subcoalgebras
w.r.t. odd_select.) The way in which the definition of odd_select ensures the preservation of the
list invariant is to " stop” when an empty list is reached® rather than follow the link from an empty
list to its (non-existent) tail, as this would possibly result in a list which has a head but does not
have a tail. Note that no case analysis is necessary in the definition of even_select.

As in the abstract setting, suitable denotations for coalgebraic specifications and coalgebraic speci-
fication morphisms are provided by final and respectively cofree coalgebras.

Proposition 4.1.42. Any coalgebraic specification (A, E) admits a final coalgebra.

Proof (sketch). A final (A, E)-coalgebra is obtained as the largest (A, E)-subalgebra (see Proposi-
tion 4.1.36) of the final A-coalgebra (see Proposition 4.1.16). O

Proposition 4.1.43. Let ¢ : (A, E) — (A’, E') denote a coalgebraic specification morphism. Then,
Uyl coalg(ar,r): Coalg(A', E') — Coalg(A, E) has a right adjoint.

Proof (sketch). Propositions 4.1.39 and 4.1.36 are used. O

Corollary 4.1.44. Let (A, E) denote a coalgebraic specification. Then, for any C' € |Set®
exists a cofree (A, E)-coalgebra over C.

, there

We conclude this section with a discussion on the existence of finite colimits in Cosign. We begin
by noting that Theorem 3.1.58 does not guarantee the existence of such colimits, as only many-
sorted cosignature morphisms whose sort components are injective induce strong abstract cosignature
morphisms. Theorem 3.1.58 does not even immediately result in the existence of finite colimits in

®An empty list is characterised by the absence of a head and a tail.
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the category of many-sorted cosignatures and cosignature morphisms whose sort components are
injective. For this, one would have to prove that the colimiting cone in the category of abstract
cosignatures and strong abstract cosignature morphisms belongs to the subcategory whose objects
correspond to many-sorted cosignatures and whose arrows correspond to many-sorted cosignature
morphisms which are injective on sorts. Nevertheless, one can show directly that finite colimits
exist in Cosign, and moreover, that the colimits of finite diagrams which only involve cosignature
morphisms whose sort components are injective agree with the colimits of the corresponding diagrams
in the category of abstract cosignatures and strong abstract cosignature morphisms.

Theorem 4.1.45. Cosign is finitely cocomplete.

Proof (sketch). An initial object in Cosign is given by the cosignature with no sorts and no operation
symbols. Also, given many-sorted cosignature morphisms ¢ : (S, A) — (S, A1) and ¢ : (S, A) —
(S2,A3), their pushout in Cosign is given by the many-sorted cosignature morphisms ¢} : (S1, A1) —
(S, A") and ¢, : (S2,A2) — (S',A), with ¢} : S1 — S’ and ¢, : Sy — S’ defining a pushout

for ¢1 : S — Sy and ¢ : S — Sy in Set, and with (¢))s, w; @ (Ai)s;w; — A,q&'.(s-)¢>’.+(w-)
given by (Qb;,)sl,wZ = (lp;)qﬁ'(sl) ¢"+(wi) O Ls; w; for (Siawi) € Sz X Sj, for 1 = 1,2, where (Q/)yl;)s’,w’ :
11 (D) sy w; —>1A’s,,wl, for i = 1,2 define a pushout for (1);) ' : 11 Agw —

d);(si,wi):(s,vw’) ¢;(¢i(svw)):(slaw,)

» L)I( , I)(Ai)si,wi, (i) 0 (5,0(0)) = t,(5) 5 (uy ($i(9)) for i = 1,2, for (s/,w') € §' % St

being

H (Al)Sl,wl ]_[ (A2)82,w2

¢ (s1,w1)=(s",w") B (s2,w2)=(s",w’)

a
Corollary 2.2.6 now yields the following.

Corollary 4.1.46. The category of many-sorted coalgebraic specifications and coalgebraic specifi-
cation morphisms is finitely cocomplete.

Remark 4.1.47. The constructions of finite colimits in Cosign (see the proof of Theorem 4.1.45)
and respectively in the category of abstract cosignatures and strong abstract cosignature morphisms
(see the proof of Theorem 3.1.58) can be used to show that these colimits agree on diagrams only
involving many-sorted cosignature morphisms whose sort components are injective. On the one
hand, the abstract cosignature associated to the initial many-sorted cosignature is an initial abstract
cosignature. Also, if the many-sorted cosignature morphisms ¢; and ¢2 considered in the proof of
Theorem 4.1.45 are injective on sorts, then so are gb’l and ¢’2, and moreover, the abstract cosignature
morphisms associated to ¢} and ¢/, define a pushout for (U, 74,) and (Uz,74,) in the category of
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abstract cosignatures and strong abstract cosignature morphisms (where (Ui, 74,) and (Uz,74,)
denote the abstract cosignature morphisms induced by ¢ and respectively ¢s).

A consequence of the preceding remark is that the restriction of Coalg : Cosign — CAT®P to
many-sorted cosignature morphisms whose sort components are injective preserves finite colimits.
However, the construction of finite colimits in Cosign given in the proof of Theorem 4.1.45 together
with the observation that, if ¢} : S; — S', ¢}, : So — S’ define a pushout in Set of ¢; : S — S,
¢y 1 S — Sy, then Uy @ Set” — Set™, Uy : Set% — Set™ define a pullback in CAT of
Ug, : Set®1 — Set”, Ug, : Set®> — Set® can be used to show that in fact a stronger result holds.

Theorem 4.1.48. The functor Coalg : Cosign — CAT®P preserves finite colimits.

4.1.6 Deduction

We are now in the position to formulate a sound and complete deduction calculus for coequations.
We consider the following deduction rules:

[ base | ec b

Etlre

leond] o O

Ert=1ifC
Ert=1tiC,C

[ weakening |

[ reflexivity |

Ert=t
[s mmetr ] w
y YW Erv=tiC
Ctransitivity] Ert=tifC, EFt=t"ifC
Y Ert=t"ifC
closure] Erty=t,ifCy,...,Ert, =t if Cy
Ettr,....tp]0 =[t),..., 00 if [Ch,....Zp]0,...,[Z1,...,Cpl0
Ert=tif
[ substitution | f=tif o —
EF [tl/Zl,... ,tn/Zn]t = [tl/Zl,... ,tn/Zn]t if C'
[ contradiction | Eri=vitc
Erl=rifC

for t,t' € TA[C]s, covar(t) Ncovar(t') =0, I, € TA[C]s

Ert=tifC, (ty,C1) ,..., EFt=tif C,(to,Cp)
Ert=tiC

for t,t' € TA[C']s, to € TA[C]s, C=C1U...UCy

[case |

Letting FAC P(Coeqn(A)) x Coeqn(A) be given by: E Fa e if and only if E - e can be inferred
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using a finite number of applications of the above rules, for E C Coeqn(A), e € Coeqn(A) and
A € |Cosign| yields an entailment system (see Definition 2.2.7).

Proposition 4.1.49. (Cosign, Coeqn,t) is an entailment system.

Theorem 4.1.50 (Soundness). Let (A, E) denote a coalgebraic specification, and let e denote a
A-coequation. Then, E e implies E |=x e.

Proof. We use induction on the structure of the proof of E - e to show that E |=x e.

If the last rule applied is base, then E |=a e follows from the definition of A =a E for a A-
coalgebra A. If the last rule applied is weakening, then E Ea t = ¢’ if C,C’ follows from the
fact that if C,C’ holds in a state a € Ay of some A-coalgebra A, then C holds in a. If the
last rule applied is cond or reflexivity, then E = e follows by any A-coalgebra (and hence any
(A, E)-coalgebra) satisfying any coequation of form ¢(t,C) if (¢,C), respectively t = ¢. If the last
rule applied is one of symmetry, transitivity or substitution, then £ |=a e follows from the
induction hypothesis by using standard properties of equality. If the last rule applied is closure,
then for any (A, E)-coalgebra A and any a € A; satisfying [C1,...,Z,]9,...,[Z1,...,Cp]d, say
da(a) € vz;(As;) with i € {1,...,n}, the satisfaction of [Z;,...,Cj,...,Z,]0 by a implies the
satisfaction of C; by d.4(a), which yields (¢;) 4(d4(a)) = (t;)a(d4(a)) (by the induction hypothesis);
that is, ([t1,...,tn]0)a(a) = ([t],...,t,]0)a(a). If the last rule applied is contradiction, then
E =a 1 =rif C follows from the fact that for a (A, E)-coalgebra A, there are no states a € Aj
satisfying C' (as they would then have to satisfy t4(a) = t,(a)). Finally, if the last rule applied is
case, E/ |=a t = t' if C follows from one of the conditions (¢9,C1),. .., (to,Cy) holding in any state
a € A satisfying C, for any (A, E)-coalgebra A. O

The completeness proof requires some preliminary results.

Lemma 4.1.51. Let A denote a many-sorted cosignature, and let E denote a set of A-coequations.
fFE-I=rifC,(t,C) and E+ ¢(t,C) if C,C', then EF | =1 if C,C".

Proof (sketch). If C' = covar(t) \ C, then the soundness of the weakening and contradiction rules
gives:
Erl=rifC,C' (t0C)

and:
Erl=rifC,C, (t,C)

The conclusion then follows by the soundness of the case rule. O

The next two lemmas will prove crucial to the completeness proof. The former states that whenever
a set of coequations is inconsistent w.r.t a given sort and a set of conditions for that sort, a
contradiction for the given conditions can be syntactically derived from the coequations, while the
latter states that if two coterms constrained to the same covariable can not be proved equal under
certain conditions, then the two coterms are distinguished by a state satisfying the given conditions,
in a coalgebra satisfying the specification.
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Lemma 4.1.52. Let (A, E) denote a coalgebraic specification, and let F, denote a final (A, E)-
coalgebra. Also, let s € S, and let C' denote some conditions for the sort s. If Et/ 1 =1 if C for
any l,r € TA[C]s with covar(l) N covar(r) =, then Fg,s ={p € Frs | C holds in ¢} # .

Proof. We define an w®P-chain in Set whose limit object L has the following properties:

(a) L # 0 implies Fﬁs #0
(b) if L=0then EF1=rif C with l,r € TA[C]s, covar(l) N covar(r) = 0.

Then, FEC,S = () gives L = 0, which, in turn, gives E - [ = r if C for some I,r € TA[C]s with
covar(l) N covar(r) = (, yielding a contradiction. Hence, Fﬁs # 0.

We begin by recalling that the set Ti,s is enumerable (see Remark 4.1.6); say Ti,s = {t1,12,...}.
We then consider the following w®P-chain:

P1 p2

p3
C < Cy < Cs ¢

where:
Cn={(Z,,...,2,) | Zy; € covar(t;) fori e {1,...,n},
E Vl =rif C, (tlaztl)a---a(tnaztn)
for any I, € TA[C]s with covar(l) N covar(r) =0 }
and:
pn(Ztl,...,Ztn_H) = (Ztl,...,Ztn)
formn=1,2,... . A limit object L for this w°P-chain is given by:

L= { (Zti)iE{l,Z,...} | Zti € covar(ti) for i € {1727 e '}7
E |7(l =rif C, (tl, Ztl)a ey (tnaztn)
for any I, € TA[C]s with covar(l) N covar(r) = () and any n }

To show (a), let (Z;,)ic(1,2,.} € L, and let ¢ : TA , — U{covar(t) | t € T ,} be given by
o(ti) = 2y, fori=1,2,....

To show that ¢ € Fj, let ¢;,t; € Ti,s be such that ¢t; = [t} /Z1,....t,/Zy)t;. f Z};, = Z}, we must
show that Z;; € covar(t)). Suppose Z;; & covar(t). Then:

Erti=[t/Z1,....,t/Z)ti
(following by reflexivity) together with:
Evti=[U1/Z,...,2k] Zk,...,Un/Zn)ti if C,(t1,Z4,), ..., (ti, Zt,)

and:
Etrt;= [Vl/Z{,...,Zt]./Zt]., s Vi 2y It if C, (t1, Z1,),- - - (t5, Zt;)
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(both following by cond and weakening) yield (by substitution followed by weakening and then
by transitivity):

E- [Vl/Z{,...,Zt]./Zt].,...,Vm/Z;l]t- =[U1/Z1,. . ) 2y -, Un [ Zn ]t
if C,(t1,24,),...,(tN, Zty)

with N = maz(i, j). But this contradicts the definition of L, as the lhs and rhs of the last coequation
have no covariable in common. Hence, Z;; € covar(ty,).

To show that ¢ € Fg s, let t € TA[{Z1,...,Zn}]s, i € {1,...,n} and (t; = t, if C;) € E be such
that tr(p) € vz, (Fs,), ti,t; € Ta[Cils; and C; holds in tr(¢). According to Proposition 4.1.36, we

must show that (¢;) p(tr () = (¢;) p(tr(p)). However, by Corollary 4.1.21, it suffices to show that,
for any coterms wy,...,u, of suitable sort, [(¢) and rr(p) are both in vz (Fy) for some Z : s',
where:

[ = [ul/Ul,...,uq/Uq][Zl/Zl,... ,ti/Zi,...,Zn/Zn]t

T = [Ul/Ula---,U/q/Uq][Zl/Zla--- ,t;-/ZZ',...,Zn/Zn]t

with {UI, .. .,Uq} =C; U {Zl,. cos Zi1y L1y - - ,Zn}

Let I = [Vi,/X1,..., Vi, /Xm]l with I € TA{X1,..., Xm}s, and r = [V}, /Y1,...,V;, /Yp]r with
re TA[{Y1,...,Y,}]s. From:
Ert, =t if C

(following by base) we can infer, by successive applications of the closure rule, followed by substi-
tution:
Evrl=rif|(Zi/Z,...,Ci/Zi, ..., Zn]Zy]t

We claim that if Z; = X and Z, =Y, then V;, = V},. For, if this was not the case, cond together
with substitution would yield:

EF[Si/Vi,....Vi,[Vip,..., S0/ Vo]l = [Tl/Vl,...,le/le,...,To/%]T‘
if [ZI/ZIaaCl/ZlaaZn/Zn]ta (LXk)v(Eale)

with V;, # Vj,, which would then yield:

ErS1/Vi,.. o Vi [V, oo So/Voll = [T /Va, ., Vi [V - oo, To [ Volr
if (t1,24,),...,(tN, Zty)

for N sufficiently large (the fact that [Z,/Z1,...,Ci/Z;i,...,Zn/Zy]t holds in ¢ together with
Lemma 4.1.51 are used here). But this would contradict the definition of L. Hence, Vie =V, =
Z:s" and lp(p),rr(p) € tz(Fy). This gives ¢ € Fg 5.

In addition, ¢ € FEC,S. For, if this was not the case, the conditions in C would contradict the
conditions (t1,Zy,), ..., (tn, Zty) for N sufficiently large (by Lemma 4.1.51), yielding £ F | =
rif C,(t1,Z,),. .., (tn, Ziy) with covar(l) N covar(r) = 0. This concludes the proof of (a).

To show (b), assume L = (). Then, for any Z € C), there exists ny € {2,...} such that Z ¢
Im(pyo...0py,). For, if Z € Cy was such that Z € Im(py o ... 0op,) for any n € {2,...}, then
also Z € Im(l;) (with I; : L — C; denoting the corresponding arrow of the limiting cone), which
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would contradict the assumption that L = . Now let n' = maz{nz | Z € C;}. It then follows
by weakening and contradiction that £ + [ = r if C,(t1,21),..., (tw, Zy) for any choice of
7y € covar(ty), ..., Zy € covar(ty ), with [, € Ta[C]s being such that covar(l) N covar(r) = 0.
Then, successive applications of the case rule yield E | = r if C with [, € TA[C|s being such
that covar(l) N covar(r) = (), thus contradicting the hypothesis. This concludes the proof of (b).
O

Lemma 4.1.53. Let (A, E) denote a coalgebraic specification, let |, € TA[C]s for some set C of
covariables and some s € S, and let Z € C. Also, let Ag, denote a cofree (A, E)-coalgebra over the
S-sorted set ({*,*'})scs. HE W1 =1rifC,(l,7),(r,Z), then there exists ¢ € Agz(sl,z),(r,z)
that [, (90) a TAg ((,0)

such

Proof. We begin by recalling that the cofree (A, E)-coalgebra Ay over the S-sorted set ({x,*'})ses
has elements given by functions ¢ : TX , — U{covar(t) x ({*,%'})ses | t € TA ,}, additionally
satisfying:

1. te TAS implies 71 (¢(t)) € covar(t);

2. t,t' € Ti,s, t = [t1/Z1,...,tn/Zy]t and 71 (p(t)) = Zk imply w1 (p(t')) € covar(ty) and
moreover, ma(p(t')) = ma(p(t)) if tx is a covariable;

3. (ti)a(ta(p)) = (t) a(ta(p)) holds whenever p € Ay, t € TA[{Z1,...,Zn}]s, i € {L,...,n}
and (t; = t; if C;) € E are such that t4(p) € vz,(A4s,), ti,t, € Ta[Cils; and C; holds in

)

t4(p), with A denoting the cofree A-coalgebra over ({x,«'})ses.

(This is a consequence of Remark 4.1.18 together with Corollary 4.1.44, see also Proposition 4.1.36.)

The proof is similar to that of Lemma 4.1.52. We define an w®P-chain in Set whose limit object is
a non-empty set provided that E t/ [ = r if C,(l,Z),(r,Z), and then use an element of the limit

object to construct ¢ € Ag,(sl,z),(r,z) with 4, () # ra, ().

Consider the following w®P-chain:

p1

S < Sy < S3 <

where:
Sn =1 (Z,,...,2Z,) | Zi, € covar(t;) fori € {1,...,n},
EWl=ritC,(,2),(r,2),(t1,Zt,),-- -, (tn, Z1,) }
and:
Po(Ztyse s Ziyy) = (Ztys ooy Zy,)
forn=1,2,... . A limit object L for this w°P-chain is given by:
L={(Z)icp2,.} | Zi; € covar(t;) for i € {1,2,...},
EWVil=ritC,(,2),(r,2),(t1,Z¢,),. -, (tn, Zy, ) for any n }
We claim that:

(a) S, # 0 forany n e {1,2,...}
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(b) L#0
To show (a), assume S,, = () for some n € {1,2,...}. Thatis:
Erl=rifC,(1,2),(r,2),(t1,2Z4,),- .., (tn, Zt,)
for any Z;, € covar(t;) with i =1,...,n. It then follows by case that:
Erl=rifC(,2),(r2)

But this contradicts the hypothesis. Therefore S,, # 0 for any n € {1,2,...}.

To show (b), assume L = (). Hence, for any Z € S, there exists ny € {2,...} such that
Z &Im(pro...opy). f n' =max{ny | Z € S1}, it follows by weakening that:

Erl=rifC, (la Z)a (’)", Z)a (tla Ztl)? R (tn’a Ztn/)
for any choice of Z;, € covar(t1),...,Z; , € covar(t,). Hence, by case:
Erl=rifC(,2),(r2)

Again, this contradicts the hypothesis. Hence, L # {).

We now fix (Zy,)i=1.2... € L, and use it to define ¢ € ASGHHD) quch that 14, (0) # ra, (o).

Say C = {Z1,...,Zy}. Then let | = [Z;,/X1,...,Z;, [Xm]l with L € TL[{X1,..., Xm}]s, and
r = [Z;/V1,...,2Z;,/Yplr with r € TA[{Y1,...,Yp}]s. Also, let k € {1,...,m} be such that
Xy =12, and l € {1,...,p} be such that ¥; = Z,. One can immediately infer that Z;, = Z and
Zj, = Z; for if, say, Z;, # Z, then the conditions (/,Z) and (I, X}) would contradict each other,
yielding:

EFl=r"C,(1,2),(r,Z),(t1,Zt,)s--, (N, Zty)

with covar(l") N covar(r') = 0 for N sufficiently large. Finally, for n € {1,2,...}, let C), stand for
(tla Ztl)a SRR (tna Ztn)'

Now define:

T={teTjx,| thereexists n € {1,2,...} such that
Ert=MW/Y,....,Z/Y,....,Y,/Y,rif C,(l,Z),(r, Z),C,, }

where {Y1,....,Y,} N covar(t) = 0 for any t € Ti,s. That is, T' consists of A-coterms whose

(1,2),(r.2) which, in addition, satisfies

interpretation must agree with that of r on any state in Ag A
the conditions (t;, Z;), withi =1,2,.... Then let p € Ag,(l,Z),(r,Z)

S
te Ti s Where:

{* if tgT
Ct —

be given by: p(t) = (Z, ¢;) for

* if teT
Note that if, say, Z : ¢, then t € T gives Z; : s’ (as Z, =Y : §').

We now claim that:

C,(,Z2),(r,Z
(c) ‘PEAE,( ):(r,Z)

S
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(d) TAp ((10) # lAE((IO)

Proving (c) amounts to proving that ¢ € Ag s, and that C, (I, Z), (r, Z) holds in ¢.

The proof of ¢ € As, with A denoting the cofree A-coalgebra over ({,*'};)scs is similar to the
proof of ¢ € F; in Lemma 4.1.52. In addition, here we must show that if ¢;,¢; € Ti,s are such that
ti = [th/21,. . tn/Zy)ti, Zy;, = Zy, and ), = Zy,, then either ¢; and t; are both in 7', or none of
them is in T'. One can distinguish two cases:

1. t; €T. Thatis:
Ert,=[Y1/Y1,.... 2. )Y, ... Y0/ Yulr if C, (I, Z), (r, Z), Cy,
for some ny € {1,2,...}. Then, substitution yields:
Ert=[t1/21,....th/Z Y1 /Y1, o, Z ) Y1s o Yo /Yol if C, (1, Z),(r, Z), Cy,
This, together with:
{Z1,.. .2\, Zprs - 250, Y, Y, Y =0
and t), = Z;, yields:
Erti=MY1/Y1,..., 2 /Y1, ., Yo /[ Yilr if C, (1, Z), (r, Z), Chy

That is, tj erT.
2. tj€T. Thatis:

Ebti=W1/Y1,.... 2 /Y), ..., Y /Yulr it C, (1, Z), (r, Z), Cy,
for some ng € {1,2,...}. Then, t; = [t1/Z],...,t,/Z]]t; gives:
Er[th/Z,.. .t ] Z ]t = Y1/Yi,oo s 2y Yo Yo /Yol if C, (1, Z), (r, Z), Cpg
But Z;, = Z|, together with substitution and cond yield:
Er[t)Z,.. .t ]2t =212, ... 8 ) 2y Z0 | Z0 N i C (1, Z), (r, Z), Cy
for N sufficiently large. Also, ¢} = Zy;. Hence, by transitivity:

Bv (27}, 20y Z s T 200t = V[ Vi 24y [ Vi Y Yinlr
if C, (l,Z), (’I“, Z)a Cn

Finally, substituting Z;, for Z;, yields:
Erti=MW/Y1,.... 2, /Y1, ..., Yo/ Yulr if C, (1, 2),(r, Z),Cn

Thatis, t; € T.
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Hence, either both ¢; and ¢; belong to T', or neither of them does, and therefore ¢;, = Ct; - This
concludes the proof of p € A;.

The proof of ¢ € Ag s is, again, similar to the proof of ¢ € Fg, in Lemma 4.1.52. In addition,
here we must show that given t € TA[{Z],...,Z}}]s, i € {1,...,n} and (t; =t} if C;) € E such
that ta(p) € t7:(As,), i t; € Ta[Cils; and C; holds in £4(p), then either both I"and r" arein T,
or none of them is (where I’ and ' are defined similarly to [ and r from Lemma 4.1.52).

Suppose ' € T. On the one hand,
EVU=rif[2/Z,...,Ci/Z.,.... 2. 2]t

(following by successive applications of the closure rule) together with the fact that the condition
(Z1/Z1,...,Ci/ZL, ..., Z],|Z]]t holds in ¢ yield:

Erl =7"ifCy
for N sufficiently large (Lemma 4.1.51 is used here). That is:
EF Wy /Us,..., W, JUN = [Wj,/Va, ..., W;. [V]r! if Cy

One can immediately infer that if g0 € {1,...,q} and ro € {1,...,r} are defined by Z, = Uy, and
respectively Z,» = Vy, then W; = W;

Jro”

On the other hand, I’ € T gives:
Er-l=Y1/Y1,.... 20| Y., Y/ Yplr if C.(1,Z), (r, Z), Cp,
for some ng € {1,2,...}.
The last two statements, together with:
Erl =W /Ui, ...,Uy/Ugy, ..., Wi, /U if Cy

and:
EFr = Wi /Va, .. -,WO/WO,---,W]‘T/W]EI if Cn

(both following by cond for N sufficiently large) can then be used to infer:
Err=MW/Y1,.... 2| Y., Y/ Yolr if C, (I, Z),(r, Z),Cy

That is, r' € T'. This concludes the proof of ¢ € Ag ;.

It remains to prove that C,(I,Z),(r,Z) holds in . If this was not the case, the condition
C,(l,72),(r,Z),Cn would be contradictory for N sufficiently large. This, in turn, would yield
Eri=rifC (,2),(r,Z),Cy, contradicting the definition of L.

We have therefore proved (c). To prove (d), it suffices to show that [ ¢ T'. Then, since r € T, the
claim follows from * # «'. We show that [ € T yields a contradiction. If [ € T, then:

Erl=[Y1/Y1,...,Xe/YVi,..., Y/ Yulr if C,(1,Z), (r, Z), Cp,
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for some ny € {1,2,...}. This, together with:

and:

Erl=[X1/X1,....,Z/Xp, ..., Xm/Xm]l if Cx

EI—T:[Yl/Yla"wZ/YVla---,}/p/Y};]f if Cn

for N sufficiently large (both following by transitivity and cond) can then be used to infer:

Erl=rifC,(,2),(r2),Cy

for N sufficiently large. But this contradicts the fact that (Zti)i:1,2,... € L. Hence, [ € T. This
concludes the proof of (d).

We have therefore constructed ¢ € Ap s such that C, (1, Z), (r, Z) holds in ¢, but 4, () # la, ().
This concludes the proof. O

Theorem 4.1.54 (Completeness). Let (A, E) denote a coalgebraic specification, and let e denote
a A-coequation. Then, E =x e implies E - e.

Proof. Let e be of form [ = r if C with [, € TA[C]s, let Fr denote a final (A, E)-coalgebra,
and let A denote a cofree (A, E)-coalgebra over the S-sorted set ({x,*'})scs. We distinguish the
following cases.

1. Fg, =0

Then, E + e follows immediately by Lemma 4.1.52.
2. FG #0.

We assume that F ¥ e, and show that this yields a contradiction. From E I e one can
immediately infer that there exist Z € Cy and Z' € Cyv with s',s"” € S such that E t/ [ =
rif C,(I,2),(r,Z") (otherwise E | = r if C would follow by case). We now distinguish
two subcases.

()

Z+7
We have: E /1" =+ if C,(1,2),(r,Z") for any I',7" € TA[C']s with covar(l") N
covar(r') = (0 (otherwise contradiction could be applied to infer that E F [ =

rif C,(l,Z),(r,Z")). Lemma 4.1.52 then gives ¢ € Ff , such that C, (I, Z), (r, Z") holds
in . That is, ¢ satisfies the conditions C but Iz, (¢) # rF () (as lp, (@) € Lz (Fg )
and rp, (@) € Lz (Fg ), with Z # Z'). Hence, Fg [Ea l =1 if C.

7 =17

Since EW/ 1l =rifC,(I,2),(r,Z), it follows by Lemma 4.1.53 that there exists ¢ € Ag ,
such that C, (I, Z), (r, Z) holds in ¢ but l4, () # ra,(p). Hence, Ag n l =1 if C.

In both of the above subcases one can infer that E ~a e, which contradicts the hypothesis.
Hence, F  e.

This concludes the proof of completeness. O



Coalgebraic Specification 139

Example 4.1.55. Given the cosignature in Example 4.1.2, the fact that:
E + [[F,Nlempty?]ltail = [[F’,N]empty?]tail

(capturing the fact that applying tail to a non-empty list always yields a non-empty list) with
E = { [[F, [E]lhead]lempty?]tail = [Elhead } (requiring non-empty lists to have a second element,
and this element to be equal to their first element) follows by case-analysis from:

E + [[F,Nlempty?ltail = [[F’,Nlempty?]ltailif ([[F,N]empty?]ltail,N)
following directly by cond, together with:

E F [[F,N]lempty?]ltail = [[F’,N]empty?]tailif ([[F,N]empty?]tail,F)
following by contradiction from:

E F [Elhead = [E’lhead if ([[F,Nlempty?ltail,F)
The previous statement follows by transitivity from:

E + [[F,[Elheadlempty?]ltail = [[F,N’]empty?]ltailif ([[F,Nlempty?]ltail,F)
and:

E + [[F,[E’]head]lempty?]tail = [[F,N’]Jempty?]tailif ([[F,N]empty?]ltail,F)
(both following by cond followed by substitution), together with:

E F [[F,[Elheadlempty?ltail = [Elheadif ([[F,N]empty?ltail,F)
and:

E + [[F,[E’]head]lempty?]tail = [E’]Jheadif ([[F,N]empty?]ltail,F)

(both following by base followed by weakening).

Example 4.1.56. Given the cosignature in Example 4.1.29, the fact that:
F F [Z,Llrest = [Z’,L]rest
with:
E ={1(z,[Z,Elfirstlrest = [Z’,Elfirst }
follows by case-analysis from:
E F [Z,Llrest = [Z’,L]rest if ([Z,L]rest,L)
following directly by cond, together with:
E F [Z,Llrest = [Z’,L]rest if ([Z,L]lrest,Z)
following by contradiction from:
E + [z,[Z,Elfirstlrest = [2’,E’]first if ([Z,L]lrest,Z)
The last statement follows by transitivity from:
F + [z,[Z,Elfirstlrest = [Z,[Z,E’]first]lrest if ([Z,L]lrest,Z)
following by cond and substitution, together with:

F v+ [Z,[Z,E’]first]lrest = [Z’,E’]first if ([Z,L]rest,Z)
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following by base and weakening.

We conclude this section by noting that a sound and complete deduction calculus could have also
been formulated for the alternative notion of coequation described in Remark 4.1.27.

4.2 Coalgebraic Specification over a Fixed Data Universe

The fact that the components of arbitrary polynomial endofunctors on Set® can be written as
coproducts of finite products of projection functors'® results in many-sorted signatures being at
least as expressive as polynomial endofunctors from the point of view of the structures specifiable
with them!l. However, a similar result can not be stated about many-sorted cosignatures, as the
components of polynomial endofunctors on Set® can not, in general, be written as products of finite
coproducts of projection functors!?.

An expressiveness equal to that of arbitrary polynomial endofunctors can, however, be achieved by
allowing a fixed data universe to be used for specification. For, this yields a notion of cosignature
which is able to capture extended polynomial endofunctors whose components have the form of
products of finite coproducts of constant/projection functors. Also, by allowing a change in the
underlying category, arbitrary polynomial endofunctors can be transformed into endofunctors of the
above-mentioned form. As a result, the new notion of cosignature is as expressive as arbitrary
polynomial endofunctors from the point of view of the structures specifiable with it.

This section extends the approach in the previous section in order to achieve this expressiveness.
The extension assumes the existence of a fixed data universe, in the form of a set V' of visible sorts,
and of a V-sorted set D of data values. (The particular choice of V' and D is determined by the
polynomial endofunctor under consideration.) Furthermore, it is assumed that D, # () for each
veV.

4.2.1 Destructor Cosignatures and Cosignature Morphisms
Definition 4.2.1. A destructor cosignature over V is a pair (H, A) with H a set of hidden sorts
and A a V' U H-sorted cosignature such that A, = () for eachv € V.

A cosignature morphism between destructor cosignatures (H,A) and (H',A") over V is a many-
sorted cosignature morphism ¢ : (VUH,A) — (VUH' A") such that ¢|y=1y : V — VUH' and
such that p(H) C H'.

The category of destructor cosignatures over V' and destructor cosignature morphisms is denoted

OThis is a consequence of the existence of a Set-theoretic isomorphism C' ~ II 1 with C an arbitrary set and 1 a
ceC
one-element set (defining an empty product) on the one hand, and of the distributivity of products over coproducts in

Set on the other.

'Many-sorted signatures are actually more expressive than polynomial endofunctors, as they also cover endofunctors
whose components have the form of infinite coproducts of finite products of projection functors.

12This is due to the fact that constant functors can not be written as products of finite coproducts of projection
functors, as well as to the fact that, in Set, coproducts do not distribute over products.
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Cosigny,. Whenever possible, destructor cosignatures (H,A) over V are abbreviated A, while the
set VU H is denoted S.

Example 4.2.2. The many-sorted cosignature used in Example 4.1.2 to specify finite and infinite lists
can be regarded as a destructor cosignature over 1 and Elt.

Now recall from Theorem 4.1.45 that finite colimits exist in the category of many-sorted cosignatures
and many-sorted cosignature morphisms. To prove a similar result for destructor cosignatures and
their morphisms, it suffices to show that finite colimits in Cosign preserve destructor cosignatures
and their morphisms. But this follows immediately from the construction of finite colimits in Cosign
given in the proof of Theorem 4.1.45. Hence, the following holds.

Theorem 4.2.3. Cosigny is finitely cocomplete.

4.2.2 Coalgebras, Finality and Bisimilarity

Definition 4.2.4. Let A denote a destructor cosignature over V. A Ap-coalgebra is a many-
sorted A-coalgebra A such that A, = D, for each v € V. Also, a Ap-homomorphism between
Ap-coalgebras A and B is a many-sorted A-homomorphism f : A — B such that f, = 1p, for
eachveV.

The category of Ap-coalgebras and Ap-homomorphisms is denoted Coalg(A). Then, destructor
cosignature morphisms ¢ : A — A’ induce reduct functors Uy : Coalgp(A') — Coalgp(A). (The
action of Ug on A p-coalgebras and homomorphisms coincides with that of the reduct functor induced
by the many-sorted cosignature morphism defining ¢ on the underlying many-sorted A-coalgebras
and homomorphisms.)

Example 4.2.5. Given the destructor cosignature in Example 4.2.2, fixing the interpretation of the
sort 1 to {x}, and that of the sort E1t to N results in the coalgebras of this cosignature implementing
finite and infinite lists of natural numbers.

Remark 4.2.6. Destructor cosignatures and their morphisms are instances of the corresponding ab-
stract concepts. Specifically, if A denotes a destructor cosignature over V, and if Ga : Set% — Set%
denotes the endofunctor given by:

D, if seV

GaX)s=1 ] (X +...4X,) ifscH
6EAS,SI...sn

for X € |Set}|, then the categories Coalgp(A) and Coalg(Set}, Ga) are isomorphic. (Ap-

coalgebras A induce Set7-arrows o : A — Ga A, with a; mapping a € Ay, to (0a(a))ocan o an

for h € H, and conversely, any such Set%—arrow defines a Ap-coalgebra structure on its domain;
moreover, the two mappings are inverse to each other.) Also, if ¢ : (H,A) — (H',A’) denotes a
destructor cosignature morphism, and if 1, : UGar = GaU (with U : Set7, — Set}, denoting the
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functor induced by the sort component of ¢) denotes the natural transformation whose components
are given by:

(Mg, x)v =1p,, vEV
(1g,x)n (25 )5 e ) = (Tg0))serna,. oy hEH

gb(h),s’l...sn

for X € |Set™'|, then Uy agrees with Uy, .

This correspondence immediately results in the existence of final and cofree coalgebras. Such coal-
gebras can alternatively be obtained as cofree many-sorted coalgebras over suitably-chosen sorted
sets.

Proposition 4.2.7. Let A denote a destructor cosignature over V, let C' € |Set}|, and let A
denote a cofree many-sorted A-coalgebra over C' (as given by Remark 4.1.18). Then, A defines, up
to isomorphism in Coalg(A), a cofree Ap-coalgebra over C.

Proof. The fact that A, = () for v € V ensures that A defines, up to isomorphism in Coalg(A),
a Ap-coalgebra. Cofreeness of A in Coalg(A) then follows from its cofreeness w.r.t. the functor
taking many-sorted A-coalgebras to their carrier. O

Taking C' to be final in Set% yields a final Ap-coalgebra.

Corollary 4.2.8. Let A denote a destructor cosignature over V, and let C € |Set})| be given by:
Cy =D, forveV, and Cy, = {x} for h € H. The carrier of the final Ap-coalgebra is given by:

F,={¢p: Ti,h — U{covar(t) x C |t € Ti,h} |t e Ti,h = mi(p(t)) € covar(t),
t,t' e Ti,h, t'=1[t1/Z1, ..., tn)Zn]t, T1(0(t)) = Z) = m1(p(t')) € covar(t)
and moreover, m(p(t')) = ma(p(t)) if ty is a covariable }, h € H

F,=D,, veV

Similarly, cofree coalgebras along destructor cosignature morphisms can alternatively be obtained as
cofree many-sorted coalgebras along the underlying many-sorted cosignature morphisms.

Proposition 4.2.9. Let ¢ : A — A’ denote a destructor cosignature morphism, let A denote a Ap-
coalgebra, and let A’ denote a cofree many-sorted A’-coalgebra over the many-sorted A-coalgebra
A w.r.t. Uy : Coalg(A’) — Coalg(A) (as given by Proposition 4.1.39). Then, A’ defines, up to
isomorphism in Coalg(A'), a cofree A',-coalgebra over A w.r.t. U, : Coalgp(A') — Coalgp(A).

Proof. Similar to the proof of Proposition 4.2.7. O

The notion of bisimilarity induced by destructor cosignatures is finer than the one induced by their
underlying many-sorted cosignatures — the visible components of bisimilarity relations are equality
relations, as opposed to universal relations. As far as the hidden components of bisimilarity relations
are concerned, a characterisation similar to the one in Proposition 4.1.19 can be given.
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Proposition 4.2.10. Let A denote a destructor cosignature over V, and let A denote a Ap-
coalgebra. Then, given h € H, two states a,a’ € Ay, are bisimilar if and only if for any t € Ti’h,
there exist s € S and Z € covar(t)s such thatta(a),ta(a’) € 1z (As) and moreover, ta(a) = ta(a’)
ifseV.

Proof. Similar to the proof of Proposition 4.1.19. O

Corollary 4.2.11. Let A denote a destructor cosignature over V', let F' denote a final A p-coalgebra,
and let l,r € TaAl[{Z1,...,Zp}n with Zy : s1,...,Zy : s, and h € H. Then, for ¢ € Fy,
lp(p) = rr(p) if and only if for any t; € Ti,sz_ fori = 1,...,n, ([t1/Z1,...,tn/Zn)l) (@)
and ([t1/Z1,...,tn/Zn]r)r(p) are both in vz(Fs) for some Z : s and s € S and moreover,
([tl/Zl, ce ,tn/Zn]l)F((p) = ([tl/Zl, ce ,tn/Zn]’l")F((p) ifseV.

Proof (sketch). The proof uses Proposition 4.2.10 and is similar to the proof of Corollary 4.1.21. O

Example 4.2.12. The notion of bisimilarity induced by the destructor cosignature given in Exam-
ple 4.2.2 relates two elements of sort List either if both of them denote empty lists (i.e. if the
evaluation path for [Z,N]empty? corresponds to Z), or if both denote non-empty lists (i.e. if the
evaluation path for [Z,N]empty? corresponds to N) and moreover, they have the same number of
elements as well as the same elements. (Recall from Example 4.1.20 that the notion of bisimilarity
induced by the many-sorted cosignature underlying this destructor cosignature did not distinguish
two lists with the same number of elements.)

The algebraic notion of behavioural equivalence captures the indistinguishability of states by obser-
vations of visible type (see e.g. Example 3.1.16). A similar characterisation can be given for the
notion of bisimilarity associated to destructor cosignatures.

Proposition 4.2.13. Let A denote a destructor cosignature over V, and let A denote a Ap-
coalgebra. Also, let V! = V' U{1}, let D" denote the V'-sorted set given by D) = D, forv € V and
D' = {x}, and let A" denote the destructor cosignature over V' given by AU{!: h — 1| h € H}.
Then, for h € H and a,a’ € Ap, a ~4 o' if and only if ta(a) = ta(a’) for any t € Tl’,h which
contains no hidden-sorted covariables.

Proof. The conclusion follows from Proposition 4.2.10, after observing that Ap-coalgebras are
in one-to-one correspondence with A'D,—coalgebras, while A-coterms t of sort h are in one-to-one
correspondence with A’-coterms ¢’ of sort h with no hidden-sorted covariables (with ' being obtained
by substituting [Z']! for each hidden-sorted covariable Z appearing in ¢, and with t4(a) € 1z(Ap)
holding precisely when ¢y (a) € 1z/(A;1)). O

That is, two states are bisimilar if and only if they yield, under any experiment which is performed
on them, either the same visible result or hidden results of the same type!3.

3Note that type information is always observable.
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4.2.3 Abstracting Away Bisimilar States

The standard notion of satisfaction of coequations may prove restrictive in cases where one’s interest
is to only specify system properties up to indistinguishability by observations yielding visible results. In
such cases, a notion of satisfaction of coequations up to bisimulation appears to be more appropriate.
This section discusses the properties of such a notion of satisfaction.

Definition 4.2.14. Let A denote a destructor cosignature over V.. A Ap-coalgebra A satisfies a
hidden A-coequation e of form | = r if (t1,C}), ..., (t,,Cl) up to bisimulation (written A =2 e) if
and only if, whenever a € Ay, is such that (t;) a(a) € vz,(As,) for some Z; € (C})s,, fori =1,...,n,
it follows that l4(a),r4(a) € 1z(Ag) for some Z € covar(l) N covar(r) with Z : s and moreover,
la(a) ~as Ta(a) (with ~4 denoting Ap-bisimilarity on A).

Remark 4.2.15. The notion of satisfaction of hidden coequations up to bisimulation by coalgebras of
destructor cosignatures is an instance of the corresponding abstract notion (see Definition 3.1.35).
For, if (K,I’,7') denotes the (Set?,, Ga)-coequation induced by the hidden A-coequation e (see
Remark 4.2.19), then the requirement that [4(a),74(a) € tz(Ay) for some Z : s’ and that
la(a) ~a,s Ta(a) holds whenever a € Ay, is such that (¢;)a(a) € vz, (Ay,) for some Z; € (C})s;, for

¢ =1,...,n is equivalent to the existence of a Set-arrow ¢ making the following diagram commute:
’ !
a, Lt (4 1T Ag) x (04 1T 1T Ay)
h =" s'€S ZeCy s'€S ZeCy
T~ T(m( Y Y M) LY Y m)
=~ s'es ZeCy s'es ZeCy
=3
T+ I T ~as)
s'€S ZeC,

where [, € TA[C]p,, and where 71, T3 : ~4 — A denote the projections resulting from ~4C A x A.
Also, by Remark 3.1.36, commutativity of the above diagram is equivalent to the satisfaction up to
bisimulation of the (Set?), Ga)-coequation (K, I, ') by the (Set?,, Ga)-coalgebra associated to the
A p-coalgebra A.

For coalgebras that are observable (see Definition 3.1.15), the notion of satisfaction of hidden co-
equations up to bisimulation coincides with the standard notion of satisfaction of hidden coequations.
In particular, this results in a final coalgebra of a destructor specification (A, E) also defining a final
object for the full subcategory of Coalg,(A) whose objects satisfy £ up to bisimulation.

Versions of the results in Section 4.1.4 (Proposition 4.1.34, Corollary 4.1.35 and Proposition 4.1.36)
can also be formulated for the notion of satisfaction of hidden coequations up to bisimulation. Again,
in the case of 2 of Proposition 4.1.34, no restriction on the homomorphism f is required.

According to the remarks in Section 3.1.2, proving the satisfaction of hidden coequations up to
bisimulation by some class of coalgebras can be reduced to exhibiting a suitable generic bisimulation
(see Definition 3.1.44) on that class of coalgebras. This will be illustrated in the following example.

Example 4.2.16. Consider the list specification given in Example 4.1.29. This specification can be
further constrained by adding the coequation:

[Z,[Z,[Z,Elfirst]lrest]lrest = [Z,Elfirst if ([Z,[Z,L]lrest]lrest,L)
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This results in a specification ALT_LIST of alternating lists. For, the coequation:
[Z,[Z,Llrest]lrest = L if ([Z,[Z,L]lrest]lrest,L)

holds, up to bisimulation, in all coalgebras satisfying the above specification. This can be proved
by exhibiting a generic bisimulation (RA)4e|cCoalg(at 1sT) Which relates the Ihs and rhs of the
above coequation whenever the condition of the coequation is satisfied. Specifically, for A €
|Coalg(ALT_LIST)|, R4 is the least relation on A such that:

a Ry ([Z,[Z,L1rest]lrest)4(a) whenever ([Z,[Z,L]lrestlrest)4(a) € t1(AList)

for a € Aprist, and such that the visible components of R4 are the equality relations on {x} and
respectively N. The definition of R4 immediately results in R4 being closed under the application
of rest4. Also, the fact that A satisfies the coequation:

[Z,[Z,[Z,Elfirst]lrest]lrest = [Z,Elfirst if ([Z,[Z,L]rest]lrest,L)

results in R4 also being closed under the application of first4. Hence, R4 defines a bisimulation
on A, whenever A € |Coalg(ALT_LIST)|. On the other hand, R4 relates the Ihs and rhs of the
coequation:

[Z,[Z,Llrest]lrest = L if ([Z,[Z,L]lrest]lrest,L)

whenever the condition of this coequation is satisfied. It therefore follows that this coequation holds,
up to bisimulation, in all coalgebras of the ALT_LIST specification.

We conclude this section with a characterisation of the notion of satisfaction of hidden coequations
up to bisimulation in terms of the standard notion of satisfaction of hidden coequations.

Proposition 4.2.17. Let A denote a destructor cosignature over V, and let V' and A’ be as in
Proposition 4.2.13. Also, let A denote a Ap-coalgebra, and let e denote a hidden A-coequation of
forml =1 if C. Then, AER e ifand only if A Enr [t1/Z1, ... tn)Zn)l = [t/ 20, . s tn) Zn]r if C
for any suitably-typed coterms ti,...,t, € Ti, containing no hidden-sorted covariables (where
{Z1,...,Zy,} denotes the set of covariables appearing in e).

Proof. The if direction follows from Proposition 4.2.13, while the only if direction follows from the
soundness of the substitution rule for the satisfaction of hidden coequations up to bisimulation (see
Theorem 4.2.35), after noting that A =2 e if and only if A =2, e. (Adding!:h — 1, with h € H,
to A does not affect Ap-bisimilarity.) O

4.2.4 Institutions of D-Coalgebras

The fact that destructor cosignatures and their morphisms are (suitably-restricted) many-sorted
cosignatures and respectively cosignature morphisms, and that the reduct functors induced by de-
structor cosignature morphisms are obtained as restrictions of the reduct functors induced by the
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underlying many-sorted cosignature morphisms to coalgebras of destructor cosignatures automati-
cally yields an institution w.r.t. the satisfaction of hidden coequations by coalgebras of destructor
cosignatures.

Theorem 4.2.18. Let Coalgp : Cosigny, — CAT®P denote the functor taking destructor cosigna-
tures to their categories of coalgebras, and let HCoeqn : Cosigny — SET denote the functor taking
destructor cosignatures to their sets of hidden coequations. Then, (Cosigny,, Coalg, HCoeqn, |=)
is an institution.

The specifications and specification morphisms of this institution will be referred to as destructor
specifications and destructor specification morphisms.

Remark 4.2.19. Theorem 4.2.18 could have also been obtained by instantiating Proposition 3.1.48.
For, if Ga : Set}, — Set}, denotes the endofunctor associated to the destructor cosignature (H,A)
(see Remark 4.2.6), then many-sorted A-coequations of form [ = r if C, with [, € TA[C];, for some
h € H, and with C of form (t1,C1), ..., (ts,Cy) induce (Set?,, Ga)-coequations (K, ', ') having the

property that A =a [ = r if C is equivalent to (A, o) ):( ) (K,I',r") for any Ap-coalgebra

Set?,,Ga
A with (A, @) its associated (Set},, Ga)-coalgebra. Specifically, K : Set}, — Set?), is given by:

D, ifseV
(KX)s = 1 if se H\ {h}
1+ [] [I Xy ifs=h
s'€S ZeC,

for X € |Set})]|, while I';7' : U = KU are defined similarly to I’,7' in Remark 4.1.30 (where
U : Coalg(Set?), Ga) — Set?, takes (Set?), Ga)-coalgebras to their carrier).

Example 4.2.20. The coalgebraic specification morphism given in Example 4.1.41 also defines a de-
structor specification morphism. Moreover, this specification morphism is conservative (see Defini-
tion 3.1.51), as the coequations added by its target specification provide definitions up to bisimulation
(i.e. coinductive definitions) for odd_select and even_select. This results in the existence of unique
interpretations of odd_select and even_select in the final coalgebra of the source specification.

Again, suitable denotations for destructor specifications and destructor specification morphisms are
provided by final and respectively cofree coalgebras.

Proposition 4.2.21. Let (A, E) denote a destructor specification, let F' denote a final A p-coalgebra
(as given by Corollary 4.2.8), and let F; denote the largest many-sorted A-subcoalgebra of F' which
satisfies the coequations in E. Then, Fg defines, up to isomorphism in Coalg(A), a final (Ap, E)-
coalgebra.

Proof. The fact that all the coequations in £ are of hidden sort results in Fr defining, up to
isomorphism in Coalg(A), a Ap-coalgebra, while the maximality of Fz amongst the many-sorted
A-subcoalgebras of F' which satisfy the coequations in E results in it being final amongst the
A p-coalgebras satisfying £. O
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Proposition 4.2.22. let ¢ : (A,E) — (A’ E') denote a destructor specification morphism,
let A denote a (Ap,E)-coalgebra, let A’ denote a cofree A,-coalgebra over A w.rt. Uy :
Coalgp(A’) — Coalg)(A) (as given by Proposition 4.2.9), and let A", denote the largest many-
sorted A’-subcoalgebra of A" which satisfies the coequations in E'. Then, A’ defines, up to isomor-
phism in Coalg(A'), a cofree (A',, E')-coalgebra over A w.r.t. Uyl coalg, (ar,mr): Coalgp(A', E') —
Coalgp (A, E).

Proof. Similar to the proof of Proposition 4.2.21. O

The final coalgebra of a destructor specification has the property that it satisfies precisely those
hidden coequations in visible-sorted covariables which are semantic consequences of the coequations
in the specification.

Proposition 4.2.23. Let (A, E) denote a destructor specification, let F; denote a final (Ap, E)-
coalgebra, and let e denote a hidden A-coequation in visible-sorted covariables. Then, E [=a e if
and only if Fg [=n e.

Proof. The if direction follows from 2 of Proposition 4.1.34 (the visible-sorted components of any
Ap-homomorphism, and hence also of the unique Ap-homomorphisms into the final (Ap, E)-
coalgebra, are injective), while the only if direction follows from E |=a e together with Fp Ea E.
O

As pointed out in Section 3.1.3, further restrictions need to be imposed to destructor cosignature
morphisms in order to obtain an institution w.r.t. the notion of satisfaction of hidden coequations
up to bisimulation. Such restrictions amount to the target cosignature not adding new observers for
sorts from the source cosignature.

Definition 4.2.24. A destructor cosignature morphism ¢ : (H,A) — (H', A’) is horizontal if and
only if §' € Al with h € H and w' € S'" implies &' = ¢(6) for some & € Ay, with w € S+.

The category of destructor cosignatures over V' and horizontal destructor cosignature morphisms is
denoted HCosigny,.

Remark 4.2.25. If (U,n4) : (Set}),Ga) — (Set?, Gar) denotes the abstract cosignature morphism
induced by a horizontal destructor cosignature morphism ¢ : (H,A) — (H', A’) (see Remark 4.2.6),
then (U,ny) is horizontal.

Remark 4.2.25 together with Proposition 3.1.55 now yield the following.
Theorem 4.2.26. (HCosigny,, Coalgp [Hcosign, » HCoean Hcosign,, 5 =P) is an institution.

A more general version of Proposition 4.2.23 holds for the satisfaction of hidden coequations up to
bisimulation.

Proposition 4.2.27. Let (A, E) denote a destructor specification, let Fr denote a final (Ap, E)-
coalgebra, and let e denote a hidden A-coequation. Then, E ):bA e if and only if Fg |=x e.
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Proof (sketch). The if direction follows from the fact that coalgebra homomorphisms (in particular,
homomorphisms into the final (Ap, E)-coalgebra) reflect bisimulations, while the only if direction
follows from Fg |:bA E. O

Remark 4.2.28. Theorem 4.2.3 together with Corollary 2.2.6 result in the categories of specifica-
tions associated to the institutions (Cosigny,, Coalg ), HCoeqn, |=) and (HCosigny,, Coalg p[Hcosign,,
, HCoeqnHcosigny, » [=P) also being finitely cocomplete.

The following compositionality result also holds.

Theorem 4.2.29. The functor Coalgp, : Cosigny, — CAT®P preserves finite colimits.

4.2.5 Deduction

The deduction rules of many-sorted coalgebra are sound for the satisfaction of hidden coequations by
coalgebras of destructor specifications. However, in order to derive a completeness result, additional
deduction rules are required. It turns out that adding the following rule:

Z:v, Dyl =1

it
Lunity | VW 4. 2).7.2)
(inspired by a rule in [Cor98]) to the deduction calculus in Section 4.1.6 yields a calculus which
is both sound and complete for the satisfaction of hidden coequations by coalgebras of destructor
specifications.

Theorem 4.2.30 (Soundness). The deduction calculus obtained by adding the unity rule to the
deduction calculus of many-sorted coalgebra is sound for the satisfaction of hidden A-coequations
by (Ap, E)-coalgebras.

Proof. Soundness of the deduction rules of many-sorted coalgebra follows from Theorem 4.1.50
together with the fact that any (Ap, E)-coalgebra is a (many-sorted) (A, E)-coalgebra. Also,
soundness of the unity rule follows from the fact that if Z : v and |D,| = 1, then t4(a) = t/4(a)
holds whenever t4(a),t,(a) € tz(D,), for any Ap-coalgebra A and any a € A;. O

The completeness proof follows the same line as in the many-sorted case.

Lemma 4.2.31. Let (A, E) denote a destructor specification, and let F, denote a final (Ap, E)-
coalgebra. Also, let h € H, and let C denote some conditions for the sort h. If EY/ 1 =1r if C for
any l,r € TA[C]p, with covar(l) N covar(r) =0, then Fg,h # 0.

Proof. We begin by noting that Fg is isomorphic to the many-sorted, cofree (A, E)-coalgebra over
the S-sorted set C given by: C, = D,, for v € V, and C}, = {x} for h € H. (This is a consequence
of Proposition 4.2.8 together with Proposition 4.2.21.)

The proof is now similar to the proof of Lemma 4.1.52. We show that F]gh has a surjective
mapping into the limit object L of the w®P-chain defined in Lemma 4.1.52. Specifically, we show



Coalgebraic Specification 149

that ¢ € Flgh = (m1(p(ti))ief1,2,.} € L defines a surjective mapping from th to L. Then,
F]g’h = () gives L = (), which, by the proof of Lemma 4.1.52, gives E | = r if C for some
l,r € TA[C] with covar(l) N covar(r) = 0, thus contradicting the hypothesis.

For the above mapping to be correctly defined, we must show that (m1(¢(%i)))icq1,2,..} € L for each
pE ngh. If this was not the case for some ¢ € ngh, then EF 1 =rif C, (t1,Z,),..., (tn, Zt,)
for some [, € TA[C]p, with covar(l) N covar(r) = ) and some n € {1,2,...} would contradict the
soundness of - (as both C and each (t;,Z;,) with i = 1,...,n hold in ¢ € FEC’h, whereas [ = r
does not). Hence, (m1(¢(t:))ieq1,2,.} € L for each p € Fif .

To show that the mapping ¢ — (Zi;)ic(1,2,...} IS surjective, we fix cs € C; for each s € S. Then,
given (Z,)icq1,2,.} € L, we let ¢ € FEC,h be given by ¢(t;) = (Z;;,cy,) for i = 1,2,..., with
ey, =cs; it Zy; vsi, fori=1,2,....

(3

The proof of ¢ € Ff, is based on the proof of ¢ € Ff _in Lemma 4.1.52.

First, given t;,t; € TA, with t; = [t1/Z1,...,t,/Z]t; and with Z,, = Z, the proof of
Lemma 4.1.52 gives Z;; € covar(t)). Moreover, if tj = Z;. then s; = s;, and hence ¢;; = ¢y;.

Next, given t € TA[{Z1,...,Zn}n, © € {1,...,n} and (t; =t if C;) € E such that tp(p) €
vz;(Fs;), ti, t; € Ta[Cils; and Cj holds in tr(yp), and given coterms uy, ..., u, of suitable sort, the
proof of Lemma 4.1.52 gives I (¢),7r(p) € tz(Fs) for some Z : s. Moreover, lp(p) = rp(p), as
both are equal to c¢;. Hence, ¢ € Fg ;. The proof of Lemma 4.1.52 also gives ¢ € Fg,h.

Hence, FEC’h has a surjective mapping into L. This concludes the proof. O

Lemma 4.2.32. Let (A, E) denote a destructor specification, let l,r € TA[C];, for some set C of
covariables and some h € H, and let Z € C. Also, let Ag denote a cofree (Ap, E)-coalgebra
over the S-sorted set C' € |Set?)| given by: C, = D, forv € V, and Cy, = {x,+'} for h € H. If
EW1=rifC,(I,Z),(r,2), then there exists ¢ € A" """ such that La, () # ra, ().

Proof. Again, we use the fact that Ap is isomorphic to the (many-sorted) cofree (A, E)-coalgebra
over C.

Say Z : s with s € S. One can immediately infer that s € V implies |Ds| > 1 (otherwise unity
together with weakening would yield E -1 = r if C, (I, Z), (r, Z)). Let ¢s,c, € Cs be such that

cs # c.

The proof is now similar to the proof of Lemma 4.1.53. An element of the limit object L of the

wCP-chain defined in Lemma 4.1.53 is used to construct ¢ € A%%’Z)’(r’z) with 14, (¢) # 74, (@),
under the assumption that E / | = r if C,(l,Z),(r,Z). Specifically, given (Z,)i=1,2,.. € L,
pE Ag’%’z)’(r’z) is given by p(t) = (Z;,¢;) for t € Ti,h' where:

cs f t&T, Z;:s
Ct —
C; IftET, Zt:s

and where T is defined as in Lemma 4.1.53.

(1,2),(r,Z)

The proof of ¢ € Ag’h ’ is similar to the proof of ¢ € Ag’(l’z)’(’"’z)

S

Lemma 4.1.53 also gives 4, () # T4, (¢). This concludes the proof. O

in Lemma 4.1.53.
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Theorem 4.2.33 (Completeness). The deduction calculus obtained by adding the unity rule to the
deduction calculus of many-sorted coalgebra is complete for the satisfaction of hidden coequations
by coalgebras of destructor specifications.

Proof. Let (A, E) denote a destructor specification, and let e denote a hidden A-coequation such
that E [=a e. Also, let Fp denote a final (Ap, E)-coalgebra, and let Ap denote a cofree (Ap, E)-
coalgebra over the S-sorted set C' defined in Lemma 4.2.32. The proof of E I e is similar to the
corresponding proof in Theorem 4.1.54. If Fg,h = (), then E I ¢ follows by Lemma 4.2.31. Also, if
F]g’h # (), Lemma 4.2.31 and respectively Lemma 4.2.32 are used to show that the assumption that
FE t/ e yields a contradiction. O

Example 4.2.34. Consider the list specification given in Example 4.1.29, regarded as a destructor
specification with visible sorts 1 and Elt, and let E consist of the two coequations defining the list
invariant. Then, provided that the sort 1 is interpreted by D as a one-element set, one can show
that the following holds:

EF [Z,Elfirst = [Z,Llrest if ([Z,Elfirst,Z)
This follows by case-analysis from:

EF [z,Elfirst = [Z,L]rest if ([Z,Elfirst,Z),([Z,L]rest,Z)
and:

E\ [z,Elfirst = [Z,L]lrest if ([Z,Elfirst,Z),([Z,L]lrest,L)

with the first statement following by unity (as Z:1), and with the second statement following by
contradiction from:

EtF [Z,L]lrest = [Z’,L’]rest if ([Z,Elfirst,Z), ([Z,L]rest,L)
The last statement follows by transitivity from:

Et+ [Z,L]lrest = [Z,L’]rest if ([Z,Elfirst,Z),([Z,L]rest,L)
(following by base and weakening), and:

Et+ [Z,L]lrest = [Z’,L]lrest if ([Z,Elfirst,Z),([Z,L]rest,L)

(following by cond and weakening).

We conclude this section by noting that the (extended) deduction calculus is also sound for the satis-
faction up to bisimulation of hidden coequations, and complete for the satisfaction up to bisimulation
of hidden coequations with no hidden-sorted covariables.

Theorem 4.2.35. Let (A, E) denote a destructor specification, and let e denote a hidden A-
coequation. Then, the following hold:

1. Et e implies E ER e

2. E R e implies E |- e if e contains no hidden-sorted covariables.
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Proof. Soundness of i~ for |=° follows from the soundness of I for |=, after observing that A =2 E
(respectively A =2 e) is equivalent to A/, Fa E (A/~, Ea e), for any Ap-coalgebra A (see
Proposition 3.1.38).

Completeness of = for the satisfaction of hidden coequations with no hidden-sorted covariables
follows from the completeness of I for =, together with E =R e being equivalent to E [Ea e in
the case when all the covariables appearing in e are visible-sorted. (The fact that A/, =a € is
equivalent to A =a e whenever e only contains visible-sorted covariables is used here.) O

4.2.6 Expressiveness

This section discusses the expressiveness of the formalism previously introduced, both w.r.t. the
structures specifiable within it, and from the point of view of characterising classes of models by
means of coequations.

The main result of this section states that, by allowing a change in the underlying category, any
(extended) polynomial endofunctor can be transformed into an endofunctor whose components
have the form of products of finite coproducts of constant/projection functors, with the categories
of coalgebras of the two endofunctors being isomorphic. Endofunctors of the previously-mentioned
form are then shown to induce destructor cosignatures (over suitably-chosen data universes), with the
categories of coalgebras of the induced cosignatures being isomorphic to the categories of coalgebras
of the given endofunctors. That is, destructor cosignatures are at least as expressive as extended
polynomial endofunctors'# from the point of view of the structures specifiable with them.

Theorem 4.2.36. Let T : Set® — Set® denote an extended polynomial endofunctor. Then,
Coalg(T) ~ Coalg(G) for some endofunctor Gt : Set®™ — Set®T whose components have the
form of products of finite coproducts of constant/projection functors.

Proof. We define St € |Set| and Gt : Set®™ — Set®T by structural induction on the components
of T.

For F : Set® — Set an extended polynomial functor, we let Sg € |Set|, Gf : Set”t5F 5 Set and

(Fs')srese with Fg : SetST5F — Set for s' € Sk be defined as follows:

1. if F =11, for some s € S or if F = A, then:
(a) Sk 0
(b) Gk =F
(F is already of the required form.)

2. if F=F; x Fay, then:

(a) Sg = Sg, + Sk,
(b) Gr = (Gf, 1) x (Gf,1Is)

“Destructor cosignatures are actually more expressive than extended polynomial endofunctors, as they also cover
endofunctors whose components have the form of infinite products of finite coproducts of constant/projection functors.
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(c) Fu — (F1)s, 11 if s =11(s1) for some s1 € S,
’ (Fo)s,IIo  if ' = 19(s2) for some sy € Sk,

where for i € {1,2}, TI; : Set®™5F — Set”+5F: denotes the projection functor induced by the
injection 1g +¢; : S+ Sk, = S + Sg. (If F1 and Fy have already been transformed into the
required form, then the representation of F as a functor of the required form is obtained by
tupling the representations of Fy and Fj.)

3. if F =F; + Fy, then:

(a) Sk = SF, + Sk, + {s1} + {55}
(b) Ge = IT, + T,

(F1)s, 111 if s =11(s1) for some s; € Sk,
(c) Fu = (Fo)s, 1o if §' = 12(s2) for some sy € S,

Gr, 11y if s =u3(s})

Gg, Iy if "= 14(sh)

where, for i € {1,2}, II; : Sett5F 5 Set“*+5F; denotes the projection functor induced by the
injection 1g+¢; : S+ Sf, — S+ Sk, while IT, : SetSt9 _ Set denotes the projection functor
induced by the injection ;43 : {s;} — S+ Sf, + Sk, + {s|} + {s5}. (F is transformed into a
functor of the required form by transferring the structures specified by F; and Fo to two new
sorts s} and s}, and then capturing the structure specified by F by means of an operation
symbol with result type s} + s}.)

4. if F = (F1)4, then:

(a) Sf = SFI
(b) G = TI Gr,
a€A

(c) Fg = (F1)y for each s’ € Sg,

(The existence of a Set-isomorphism between B4 and [] B, with A, B € |Set| is used here to
acA
transform F into a functor of the required form, provided that F; has already been transformed

into the required form.)

It then follows by structural induction on F that both Gg and each of the Fy with s’ € S are in
the form of products of finite coproducts of constant/projection functors.

Now given T : Set® — Set®, T = (T,)scs, let St = S+ [] Sir,) and Gy : Set®™ — Set™T be
s€S
given by:
(Gr)y = Gry)ITs if s =11(s) for some s € S
(Ts)sr Ly if 8" = 13(15(s")) for some s € S and some s” € S(,)

where, for s € S, II, : Set>™ — Set®+5(Ts) denotes the projection functor induced by the injection
lg+1g: S+ S(TS) — ST.
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Then, the fact that Coalg(T) ~ Coalg(Gr) follows by structural induction on (the components of)
T. O

Example 4.2.37. We exemplify the construction of Gt by taking T to be the endofunctor typically
used to specify binary trees, thatis, T : SetiTree} _y GeplTree} T 1 4 (Id x 1d).

In this case, the construction gives:

1. S1=0
G =1
2. Sig=10
Gg=1Id
3. Sidxia =0

Gigxid = Glg xGg=1Id x Id
4. Si4(dxid) = {Leaf ,Node}
Gy (1dxi) ¢ Set{Tmeeteatlodel  Set Gy 14514) = ILeat + Iyode
(1 + (Id x 1d))reat = G11ll1ree =1
(1 + (Id x Id))voge = GiaxidIltree = Mrree X Tltree

(where Tltree, [T1eat, yode : SetilreelLeatliode} _, Gat denote the corresponding projection
functors)

Hence, G : Set{Tree,Leaf,Node} N Set{Tree,Leaf,Node} is given by:
Gr(X,Y,Z) = (Y + Z,1,X x X)

for X,Y,Z € |Set|.

Corollary 4.2.38. Let T : Set® — Set® denote an extended polynomial endofunctor, such that all
the sets appearing as exponents in T are enumerable'®. Then, Coalg(T) ~ Coalgp(A) for some
data universe (V, D) and some destructor cosignature (H,A) over V.

Proof. Let Gt : Set” — Set®T denote the endofunctor yielded by Theorem 4.2.36. Since all the sets
appearing as exponents in T are enumerable, it follows by the proof of Theorem 4.2.36 that all the
components of Gt have the form of enumerable products of finite coproducts of constant/projection
functors.

Now let V' contain a sort v for each constant functor A appearing in the definition of G, and let
D denote the V-sorted set whose v-component is given by the corresponding A, for each v € V.
Also, let H = ST, and let A denote the destructor cosignature induced by the endofunctor G :
SetgusT — SetgusT whose St-components are obtained from the corresponding components of
Gt by replacing each occurrence of a constant functor A with the corresponding projection functor
II, : SetgusT — Set.

15This condition ensures that the set of operations of the induced destructor cosignature is enumerable.
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The construction of G’ immediately yields Coalg(G') ~ Coalg(Gt). Also, Theorem 4.2.36 gives
Coalg(T) ~ Coalg(GT), while Remark 4.2.6 gives Coalg(G') ~ Coalgp(A). Hence, Coalg(T) =~
Coalgp(A). This concludes the proof. O

In particular, if T is a polynomial endofunctor, then T-coalgebras are the same as A-coalgebras
over D, for suitably-chosen D and A. That is, destructor cosignatures are at least as expressive
for coalgebra as many-sorted signatures are for algebra. However, unlike in the algebraic case,
moving from one-sorted to many-sorted coalgebras, and from many-sorted cosignatures to destructor
cosignatures is actually necessary (as well as sufficient) in order to model via cosignatures arbitrary
(extended) polynomial endofunctors!®.

We conclude this section with a few remarks on the expressive power of equational sentences in
coalgebraic specification. It has been shown in [Cor98] that such sentences are not sufficiently
expressive to yield a Birkhoff-style characterisability result. The notion of coequation used here
differs slightly from the one used in [Cor98], but, as the next two examples will illustrate, has an
expressive power similar to the one in [Cor98].

Example 4.2.39. Consider the many-sorted cosignature consisting of sorts 1 and Stream, and of an
operation symbol next : Stream — 1 Stream. Also, define a finite stream to be an element a of a
coalgebra A of this cosignature, additionally satisfying: next’;(a) € ¢,,(A;) for some n € {1,2,...},
where next’y : Ay +(...+ (A1 + Astrean) - - -) with n € {1,2,...} is defined inductively by: next!, =
next and next?fl = (14, + next”j) onexty for n =1,2,.... Then, it is easy to check that the
coalgebras whose elements denote finite streams constitute a covariety which is not specifiable by
coequations. Furthermore, this also holds when regarding the above many-sorted cosignature as a

destructor cosignature over {1}.

Example 4.2.40. Consider the list specification given in Example 4.1.29, regarded as a destructor
specification with visible sorts 1 and Elt. Then, the coalgebras of this specification which, in
addition, have the property that their elements denote lists with any two adjacent elements being
different from each other constitute a covariety!”. However, this covariety is not coequationally
specifiable!®.

This lack of expressiveness is caused by the fact that the coequations used to characterise arbitrary
covarieties (see Section 3.1.6) do not have finitary syntactic presentations. This is different from
the algebraic case, where the equations used to characterise arbitrary varieties (see Section 3.2.6)
induce congruence relations on algebras of terms.

In spite of not being able to provide a characterisability result similar to Birkhoff’s, coequations
succeed in capturing, in a concise manner, observational properties quantified over the entire state
spaces of the systems being specified.

¥ The introduction of new sorts is necessary because coproducts do not distribute over products in Set, while the
use of destructor cosignatures is necessary to capture constant functors.

"The fact that the interpretation of the sort E1t is fixed, and that the ELt-component of any coalgebra homo-
morphism is the identity is used here.

18A coequational specification of lists having the above-mentioned property can, however, be given in a setting
where the underlying data is allowed to carry algebraic structure. This issue will be dealt with in Chapter 5.
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4.2.7 Related Work

This section briefly compares the approach presented in this chapter with other equational approaches
to coalgebraic specification [Jac96c, Jac96a, Jac97, Cor98, Ros98, Gol], as well as with modal logic
approaches to coalgebraic specification [Mos99, Kur98, Kur00, RoB98, RoB00, Jac00].

To a certain extent, our approach can be regarded as a generalisation of both [Jac96c, Jac96a,
Jac97] and [Cor98]. For, destructor cosignatures are able to specify arbitrary extended polynomial
endofunctors (see Corollary 4.2.38), including those considered in [Jac96c, Jac96a, Jac97] (see
Example 3.1.7) and [Cor98] (see Example 3.1.8). For instance, the destructor cosignature induced
by the endofunctor considered in Example 3.1.46 consists of visible sorts 1 and A, a hidden sort
Stack, and operation symbols push, : Stack — Stack for a € A, pop : Stack — Stack and top :
Stack — 1+ A. Furthermore, any assertion (see Example 3.1.46) or equation (see Example 3.1.27)
in which constants are only used as arguments to observers, and whose conditions!® (if any) are
type constraints, induces a coequation over the corresponding destructor cosignature. For instance,
the coequations induced by the the second and third assertions in Example 3.1.46 are as follows:

[[Slpoplpush, = S
[Slpop = S if ([Z,S]top,Z)

(and, in order to agree with the approach in [Jac96c, Jac96a, Jac97], should be required to hold up
to bisimulation).

Still, a major difference between the approaches in [Jac96c, Jac96a, Jac97, Cor98] and the one here
stands in the use, in [Jac96c, Jac96a, Jac97, Cor98], of data values as constant observations. An
instance of this is provided by the first assertion in Example 3.1.46, which has no correspondent in the
form of a coequation. However, the view taken here is that a distinction should be made between
the structure of systems and their functionality, with coalgebra being used to specify structural
properties, and with algebra being used to specify functionality (see Chapter 3). Moreover, in our
opinion, constraints involving constant observations should only be imposed to particular states (such
as those yielded by certain constructors), and hence should not be considered at this level. A similar
observation can be made about operations with structured domains (such as the push operation in
Example 3.1.46), which are typically related to the functionality of systems, and therefore should

not be considered when coalgebraically specifying state spaces®.

Closure properties of equationally-definable classes of coalgebras are also investigated in [Ros98, Gol],
where it is shown that characterisability results similar to Birkhoff’s can be formulated by considering
a different notion of covariety. The setting considered in [Ros98] is that of hidden algebra (see
Examples 3.1.6 and 3.1.37), with no generalised constants being allowed in hidden signatures, and
with equations containing at most one variable of a hidden sort. [Ros98] then shows that the
equationally-definable classes of hidden algebras are precisely those which are closed under domains
and images of homomorphisms, coproducts and representative inclusions (defined as inclusions whose
codomains satisfy exactly the same equations as their domains®!). The results in [Ros98] are taken

This only applies to [Jac96c, Jac96a, Jac97].

2 [Cor98], viewing parameterised methods as observers resulted in complications when attempting to define the
associated operations by equations (as arbitrary algebraic terms were not allowed in equations).

ZClosure of C under representative inclusions requires that, whenever + : A < B is a representative inclusion and
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one step further by [Gol], where the (not fully structural) requirement involving the closure under
representative inclusions is replaced by a requirement involving closure under filter enlargements
(with the filter enlargement of a coalgebra A being defined solely in terms of the structure of A).
Also, the sentences considered in [Gol] are more general than those considered in [Ros98], being given
by boolean combinations of equations (with the associated notion of satisfaction being, as in [Ros98],
behavioural). The main result in [Gol] characterises the classes of models definable by observable
formulae (i.e. formulae only involving equations of visible sort) as classes which are closed under
domains and images of homomorphisms, coproducts and ultrafilter enlargements (with the elements
of the ultrafilter enlargement of a coalgebra A being given by suitably-closed collections of subsets
of the carrier of A, and with the structure of the ultrafilter enlargement of A being determined by
the structure of A). Another result in [Gol] states that the classes of models definable by conditional
equations with observable premises are precisely those which are closed under domains and images
of homomorphisms, coproducts and filter enlargements. In formulating these results, extensive use
is made of equations of form ¢ = d, with ¢ a term and d a data constant. As previously noted, the
approach presented here does not accommodate such equations. Consequently, similar results are
unlikely to hold in our setting.

As far as modal logic approaches to coalgebraic specification are concerned, one of their main assets
stands in the existence of results concerning the expressiveness of modal formulae both w.r.t. single
states and w.r.t. covarieties. Specifically, in such approaches, logical equivalence of states (defined as
the satisfaction of the same modal formulae) coincides with bisimilarity (see [Mos99, Theorem 6.6],
[RoBO0, Proposition 4.8]). This results in the existence of characterising formulae for single states
(see [M0s99, Theorem 7.1]), as well as in the existence of characterisability results for covarieties
(see [Kur00, Theorem 2.8.2]). However, infinite conjunctions and disjunctions are typically needed
in such approaches to characterise single states and respectively covarieties by means of modal
formulae (see [Mos99, Kur00]), while the formulation of completeness results requires a restriction
to finitary sentences, as well as the satisfaction of some rather restrictive finiteness conditions
by the endofunctors in question (see [RoB00, Section 5], [Kur00, Theorem 3.4.2]). While not
sufficiently expressive to yield similar characterisability results, equational approaches only employ
finitary sentences, and do not require any additional restrictions in order to derive completeness
results (see [Cor98, Theorem 15], Theorem 4.2.33).

Some further remarks can be made about the relationship between the equational approach presented
here and the modal logic approaches described in [R6B00] and respectively [Jac00]. The endofunctors
considered there are endofunctors on Set constructed from constant functors, the identity functor,
binary products and coproducts, exponentiation with fixed exponent and powerset (in [R6B00]),
and respectively extended polynomial endofunctors on Set (in [Jac00]). In both cases, the modal
operators used are determined by the form of the endofunctor considered. However, strong next-
time operators are considered in [RoB00], whereas weak next-time operators are used in [Jac00]. To
illustrate the differences between [RoB00] and [Jac00] on the one hand, and between [R6B00, Jac00]
and the approach presented here on the other, we consider as an example the endofunctor G : Set —
Set given by:
GX=(14+X)x(1+N)

Aisin C, then Bis alsoin C.
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for X € |Set|. The destructor cosignature that corresponds to this endofunctor is the one considered
in Example 4.1.29. Also, the modal language associated to G by the approach in [R6B00] is defined
by:

pu= 1] =1 | <tailF>* | <tailS>y | <headF>* | <headS>n

with n € N, whereas the modal language associated to G by the approach in [Jac00] is defined by:

@ u=1]|¢—1| [tailFI* | [tailF]L | [tailS]y |
[headF]* | [headF].L | [headS]n | [headS]L

with n € N. In both cases, tailF, headF and respectively tailS, headS correspond to the situations
when tail and head fail (i.e. yield a result of type 1) and respectively succeed (i.e. yield a result
of type List and respectively Nat). The satisfaction of such formulae by states a of G-coalgebras
(A, a) is then defined by:

(A,a),a | <tailF>* & m(ala)) = 11(*)
(A,a),a |= <tails>p <  mi(ala)) = 1x(a’) and (4,a),d = ¢
(A,a),a [ <headF>* & ma(ala)) = 11(*)
(A,a),a = <headS>n & ma(a(a)) = t2(n)
and respectively by:
(A,a),a = [tailF1* & mi(aa)) = ti(e) implies e = *
(A,a),a = [tailF1L < m(afa)) € 11(1)
(A, a),a = [tailSly & mi(a(a)) = 1a(a’) implies (A, a),d’ = ¢
(A,a),a = [headF1* & mo(a(a)) = ti(e) implies e = *
(A,a),a = [headF1L <& ma(a(a)) € t1(1)
(A,a),a |= [headSIn < ma(a(a)) = t2(m) implies m =n
(A,a),a = [headS]L < ma(afa)) € 12(N)

while the satisfaction of formulae by G-coalgebras is defined as satisfaction in all the states. In
addition, in both approaches, the modal operators satisfy a number of axioms formalising their
behaviour. For instance, the fact that tail yields a result which is either in ¢1(1) or in 15(X) is
captured by the axiom:

<tailF># \/ <tailS>T

in [R6B00], and respectively by the axiom:
[tailS] Ll \/ <tailF>1

in [Jac00].

The list invariant (see Example 4.1.29) is now captured by the formula:
<tailF>* <> <headF>*

using the approach in [R6B00], and respectively by the formula:

[tailS]l < [headS] L
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using the approach in [Jac00].

Also, infinite lists are specified by the coequation:
[Z,L]tail = [Z2’,L]tail

using the approach presented here, and by the formulae:
—<tailF>*

and respectively:
[tailF]L

using the approaches in [RoB00] and [Jac00].

On the other hand, finite lists can not be specified by means of coequations, but can be specified
by the (infinitary) formula:

(<tailF>#) V (<tailS><tailF>#) V (<tailS><tailS><tailF>x) V ...
using the approach in [RoB00], and respectively by the (infinitary) formula:

([tails]l) V ([tailS][tailS]Ll) V ([tailS][tailS][tailS]Ll) V...
using the approach in [Jac00].

Finally, alternating lists have finitary presentations by means of coequations (see Example 4.2.16),
whereas infinitary formulae are needed to specify alternating lists both in [R6B00] and in [Jac00],
with the corresponding formulae being given by:

\/ (<tails><tailS><headS>n — <headS>n)

neN
and respectively by:

V ([headS]n — [tailS][tailS] [headSIn)

neN
(where the satisfaction of the list invariant is also assumed in the second case).

This example strengthens the affirmation that, while less expressive than modal approaches, equa-
tional approaches are able to capture more concisely certain observational properties quantified over
state spaces (whereas infinitary sentences are often needed in modal logic approaches to specify
such properties).



5 Specification of Objects

The abstract equational specification framework described in Chapter 3 is here instantiated to a
formalism for the specification of objects.

Objects are regarded as entities characterised by a state together with an interface providing limited
access to this state, with simple objects being used as components for more complex objects. The
interface of an object can be used to request certain computations to be performed by the object
(with such computations typically resulting in a change of state), or certain information to be
supplied by the object with regard to its current state.

The object-oriented programming paradigm translates these ideas into a programming methodology.
The notion of class is used to define the structure and functionality of a collection of similar objects
(its instances). The structure of the class instances is determined by a number of instance variables,
while their functionality is determined by a number of operations, usually classified into constructors
(used to create new instances) and instance methods (used to modify existing instances). More-
over, classes are organised into inheritance hierarchies, with each class inheriting the structure and
functionality provided by its ancestors, and being able to add new structure/functionality, as well as
to override existing structure/functionality. Each class instance is characterised by its own values
for the instance variables, and shares the class functionality with all the other class instances. In
addition, each class instance has an identity, which distinguishes it from other instances with similar
values for the instance variables.

The formalism about to be described concerns the specification of classes, and therefore abstracts
away the notion of object identity. This allows an instantiation of the abstract framework described
in Section 3.3 to be used for specifying object behaviour and for reasoning about object correctness.
The particular instantiation is determined by the form of object interfaces, and involves the use of
many-sorted coalgebraic operations in specifying structural properties of classes!, and respectively
of many-sorted algebraic operations in specifying the functionality of classes. Relating the two
categories of features then amounts to specifying the changes in structure associated to a particular
choice of functionality. In addition, the instantiation reflects the special treatment received by data
types in object-oriented languages.

As already noted in Chapter 1, the decision to use coalgebra in specifying the structure of objects
and respectively algebra in specifying their functionality is justified by the fact that the attribute
values of an object after a method evaluation depend solely on its attribute values prior to the
method evaluation. This allows the notion of observational indistinguishability of object states to
be defined solely in terms of the object attributes. In this respect, our approach is similar to the
one in [HK99, Kur00], where methods are typically regarded as part of the algebraic component and
are required to preserve the notion of observational indistinguishability induced by the coalgebraic

!The use of many-sorted coalgebra for the observational aspect is further justified by the need to account for the
possibility of a choice in what can be observed of an object, e.g. in the presence of inheritance.

159
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component, and differs from the ones in [Jac96c, Jac96a, Jac97, Kur98, RoB00, Jac00], where
methods also play a part in defining the notion of observational indistinguishability.

By being an instance of the abstract framework presented in Section 3.3, the formalism about to
be introduced benefits from the availability of coinductive techniques for proving the equivalence
of object-oriented programs, as well as of inductive techniques for proving the satisfaction of state
invariants in reachable states. Specifically, proving that two object-oriented programs are observa-
tionally indistinguishable can be reduced to exhibiting some bisimulation (the largest one is often
not the most convenient one) which relates them, whereas proving that a state invariant holds in
reachable states can be reduced to exhibiting a subspace of the state space which contains the
reachable states (again, the subspace consisting only of reachable states is not always the most
convenient one) and whose states satisfy the given invariant.

The chapter is structured as follows. Section 5.1 introduces a syntax for the specification of struc-
tures whose computational and observational features can be captured within (variants of) many-
sorted algebra and respectively many-sorted coalgebra. Sections 5.2 and 5.3 then use this syntax
for specifying data and respectively object types, and for reasoning about their correctness. In addi-
tion, Section 5.3 illustrates the use of the resulting formalism in specifying inheritance relationships
between classes.

5.1 Constraints

If F and G denote the endofunctors associated to a many-sorted signature I' and respectively a
many-sorted cosignature A over the same set S of sorts, with T and D as the induced monad and
respectively comonad, and if U : Alg(F) — Set® and U : Coalg(G) — Set® denote the functors
taking F-algebras and respectively G-coalgebras to their carrier, then defining natural transformations
of types TU = GTU and FDU = DU (inducing liftings of T to G-coalgebras and respectively of D
to F-algebras) involves, in each case, defining the results of G-observations on F-programs in terms
of particular observations of the program arguments. However, specific observations of the program
arguments can only be used in defining the result of observations on the program itself once their
actual result type has been determined. The notion of constraint allows for this type of case analysis
to be performed when defining the above-mentioned liftings. Further intuitions for this notion are
provided by the following example.

Example 5.1.1. An object specification of stacks of natural numbers involves visible sorts 1 and Nat, a
hidden sort Stack, constructors empty :— Stack, push : Stack Nat — Stack and pop : Stack — Stack,
and observers top : Stack — 1 Nat and rest : Stack — 1 Stack?. Then, when defining the effect
of the constructor pop on the observer top, a distinction should be made between stacks containing
at most one element and stacks containing at least two elements. For, in the first case, the top of
the resulting stack is undefined, whereas in the second case the top of the resulting stack is given
by the second element of the original stack. The following constraints are used to specify this:

[Z,N]ltop.pop(s) = Z.*x if [Z,[Z,N]toplrest.s
[Z,N]ltop.pop(s) = N.n if [Z,[Z,N]toplrest.s

Z.z
N.n

?Notions of signature of constructors and cosignature of observers will be introduced in Section 5.3.
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They correspond to the case when the stack contains at most one element (i.e. observing it using
[Z,[Z,N]toplrest yields a result of type 1), and respectively to the case when the stack contains at
least two elements (i.e. observing it using [Z, [Z,N]top]lrest yields a result of type Nat). In the first
case, the resulting stack is empty, and therefore observing it using [Z,N]top yields a result of type
1, whereas in the second case the resulting stack contains at least one element, and hence observing
it using [Z,N]top yields the same result (of type Nat) as when observing the original stack using
[Z,[Z,N]toplrest. This is captured by the use of the variable n both in the condition of the second
constraint, where a value is provided for n, and in the rhs of this constraint, where the value of n is
used to define the value of the lhs of the constraint.

Constraints are now formally defined as follows.

Definition 5.1.2. Let " and A denote a many-sorted signature and respectively cosignature over
the same set S of sorts. A (T, A)-constraint is a tuple (c,t, Z,t',C), where:

— c€TA[C]s and t € Tr(V)s for some s € S
- Z € covar(c)y and t' € Tr({Y1,...,Yn})s for some s’ € S

-C = {(Cl,le,Zl,Yl),...,(Cn,Xjn,Zn,Yn)} with c; € TA[Ci]sir in S var(t)si for some
si € S and Z; € covar(c;)y, Y : s; for some s; € S, fori=1,...n.

(e,t,Z,¢',C) is alternatively denoted c.t = Z.t' if ¢1.X;, = Z1.1,...,c0. X, = Z,.Y,,.

The conditional part C' of a constraint is used to extract the values Y; of the observations ¢; on the
variables X, appearing in t, to be used in ¢ for defining the value of the observation ¢ on the result
yielded by the t.

Instantiating the definition of (F, G)-bialgebras (see Remark 3.3.3) with the endofunctors induced
by a many-sorted signature I' and a many-sorted cosignature A over the same set of sorts yields a
notion of (I', A)-bialgebra. Next, a notion of satisfaction of (I', A)-constraints by (I', A)-bialgebras
is defined.

For a (I', A)-bialgebra A, a set V of variables, a set C' of conditions for the variables in V and an
assighment 6 : V — A, the conditions ¢;. X, = Z1.Y1,...,¢,.Xj, = Z,.Y, in C are said to hold
for 6 if and only if (c;)a(0(X;
writes O¢ : {Y1,...,Y,} — A for the assignment given by 0c(Y;) = a; fori=1,...,n.

)) = tz,(a;) for some a; € A, for i = 1,...,n. In this case, one

i

Definition 5.1.3. Let I and A denote a many-sorted signature and respectively cosignature over
the same set S of sorts. A (I',A)-bialgebra A satisfies a (I', A)-constraint e of form c.t =
Zt if e1. X, = Z1Yh,...,e0. X, = Z,.Y, (written A [=ra €) if and only if ca(07(t)) =
Lz(og(t,)) for any assignment 0 : var(t) — A such that C holds for @ (with 6% : Tr(var(t)) —
A |r and 0# : Tr({Y1,...,Yn}) — A r denoting the unique extensions of 6 and 6¢ to I'-
homomorphisms).

Suitably-restricted sets of (I', A)-constraints can be used to specify lifted signatures and cosigna-
tures, with the models of the resulting lifted signatures or cosignatures being in one-to-one corre-
spondence with the (I, A)-bialgebras satisfying the given constraints. In the following, attention is
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restricted to lifted signatures and cosignatures of the form of the ones considered in Sections 3.3.6
and 3.3.7. Such lifted signatures and cosignatures, defined using natural transformations of type
FU = G(U + FU) and respectively F(U x GU) = GU, will be shown to arise from sets of (", A)-
constraints of form:

[Zl,... ,Zn](S")/(Xl, ,Xm) =Z.tif Cl.le = Zin, ,Ck.Xjk = Z],{:Yk

subject to the additional requirement that ¢ € T ({Y1,...,Yx}) contains at most one I'-symbol,
and respectively that each of ¢y,...,¢, contains at most one A-symbol. (In each case, the sets of
constraints defining the natural transformations are subject to further restrictions.)

In writing constraints, it is often the case that some of the variables appearing in the lhs need
to be indirectly passed as arguments to the term in the rhs, namely through conditions of form
Z.X = Z.Y. For simplicity, in forthcoming examples such conditions will be omitted from the
conditional part of constraints, and the original variables will also be used in the rhs of constraints.

Example 5.1.4. The constraints used to specify the behaviour of stacks (see Example 5.1.1) are as
follows:

[Z,N]top.empty = Z.*
[Z,S]rest.empty = Z.*

[Z,N]top.push(s,n) = N.n
[Z,S]rest.push(s,n) = S.s

[Z,N]ltop.pop(s) = Z.*x if [Z,[Z,N]toplrest.s = Z.z
[Z,N]ltop.pop(s) = N.n if [Z,[Z,N]toplrest.s .n
[Z,S]lrest.pop(s) = Z.x if [Z,[Z,S]lrest]lrest.s = Z.z

[Z,S]lrest.pop(s) = S.s’ if [Z,[Z,S]rest]lrest.s = S.s’

Note that, in the above, the two constraints defining push are shorthands for:

[Z,N]top.push(s,n) = N.n’ if N.n = N.n’
[Z,S]lrest.push(s,n) = S.s’ if S.s = S.s’

The deduction calculi for equations and coequations (see Sections 2.3.1 and 4.1.6) can be suitably
combined into a deduction calculus for constraints. This calculus is sound for the satisfaction
of constraints by bialgebras. However, it is not complete. Nevertheless, provided that sufficient
constraints are given in the premises, and that sufficient assumptions are made about the variables
involved®, its rules are sufficient for rewriting particular observations of given computations into
computations yielding the same result.

3The precise meaning of these requirements will become clear later in the chapter (see Propositions 5.2.11 and
5.3.17).
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The deduction calculus for constraints consists of the following rules:

[ base | ec E

Etre

[ base; | —
EtZt=24Y/X)if Z,.X1 = Z,.Y1,.... 2. Xon = Zn-Ym

[base; | o v ex =2y

[substitution;] EFct=Zt if 1. X;, = Z1.Y1,...,cn.Xj, = Zp.Y,
Et ity = Z0.t, if Cr,... E & cp.tj, = Zn.tl, if Cy
EFctlt/X)=Zt{')Y)if Cy,...,C,

[substitutionz] Etrct= Z{.tl if Cl.le = Zl.Yl, . ,Cm.ij = ZmYm
Erdt =2t"iddY, =2'Y/,....ch. Yy, =2,.Y,)

Er[d/Z"ct = Zt"if (¢;. X}, = Zi.Yi)i=1,..m,
(el 2Zh - ew - Xy = 20 Y Ni=1,..n

Theorem 5.1.5 (Soundness). Deduction using the above rules is sound for the satisfaction of
(T, A)-constraints by (I", A)-bialgebras.

Proof (sketch). The proof uses standard properties of equality. O

Remark 5.1.6. Equations and coequations can sometimes be used as alternatives for (sets of) con-
straints. For, a T'-equation (VV) [ = r with var(r) C var(l) =V holds in the underlying I'-algebra
of a (I, A)-bialgebra if and only if the (T, A)-constraint:

Zl=Zr

holds in the given (T, A)-bialgebra. Also, a A-coequation ¢ = ¢ if (¢1,C1),...,(cn,Cpn) with
covar(c') C covar(c) holds in the underlying A-coalgebra of a (I'; A)-bialgebra if and only if each
of the (I", A)-constraints:

cX=ZYifa.X=2Y,...,cn.X =2, Y0l . X =2Y

with Z; € Cifori =1,...,nand Z € covar(c') holds in the given (I", A)-bialgebra. This observation
will be used later in this chapter to provide alternative definitions for derived constructors and
observers (with derived constructors and observers defining instances of the abstract notions of
constructor and respectively observer).

5.2 Specifying Data

Instantiating the approach outlined in Section 3.3.7 to endofunctors of the form of the ones induced
by many-sorted signatures and cosignatures yields a formalism for the specification of data types.
This formalism constitutes an extension of the standard algebraic approach to the specification of
data types, rather than an alternative to it. The extension involves the specification of a number of
data type observers, and is based on a distinction between generators and defined functions amongst
the algebraic operations associated with a data type.



Specification of Objects 164

5.2.1 Syntax and Semantics

The next two examples give an outline of the approach, and at the same time provide some intuitions
for the notions introduced later in this section.

Example 5.2.1. Boolean values are specified algebraically using a sort Bool and operation symbols
true : — Bool and false :— Bool. These operation symbols define the generators for the type Bool.
Any boolean value can be denoted by a ground term over these operation symbols. Additional
algebraic operations on booleans can then be defined by induction over these ground terms. In
particular, the standard boolean operators, i.e. not : Bool — Bool, and : Bool Bool — Bool and
or : Bool Bool — Bool can be defined using equations:

not (true) = false
not (false) = true
and(false,false) = false
and(false,true) = false

It is important to note that such definitions refer to the initial algebra of the signature of generators,
rather than to an arbitrary algebra of this signature.

One can also give a coalgebraic specification of boolean values, namely by using sorts 1 and Bool
together with an operation symbol 7 : Bool — 1+ 1. The sort 1 denotes a one-element type, and
consequently has no operation symbols associated to it. The operation denoted by ? is used to
observe the truth value of a boolean value (true or false, depending on whether the result of 7 is in
t1(1) orin wa(1)).

The algebraic specification of the type of booleans defines the values as well as the functionality
associated to this type (by means of generators and respectively defined functions), while the coalge-
braic specification of booleans defines ways of observing boolean values. The two specifications can
be combined using the approach in Section 3.3.7. However, due to the nature of defined functions
(which are only defined on the initial algebra of the signature of generators), it is only the generators
that should to be considered when defining the lifting required by this approach. The additional
structure provided by the defined functions on the initial coalgebra of the resulting lifted cosignature
can only be inherited by the coalgebra used as denotation for this lifted cosignature (given by the
quotient of the initial coalgebra of the lifted cosignature by bisimilarity), and only provided that
the defined functions preserve bisimilarity. Nevertheless, in most cases (including the one here),
preservation of bisimilarity by the defined functions is a consequence of the notion of bisimilarity on
the initial coalgebra of the lifted cosignature considered being given by the equality relation. The
availability of the additional structure provided by the defined functions on the coalgebras used as
denotations for lifted cosignatures will prove crucial in certain situations (see e.g. Example 5.3.23).

Now let * :— 1 denote a generator for the type 1, and let F, G : Set{1:Bool} _y Get{1:Bool} genote the
endofunctors induced by the many-sorted signature consisting of *, true and false, and respectively
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by the many-sorted cosignature consisting of ?. The components of F and G are therefore given by:

(FX)1 =
(FX)poor =1+1
(GX)1=1

(GX)Boo1 = X1 + X3

(where 1 is used to denote both a sort, if it appears as a subscript, and the empty product
in Set, otherwise). Finally, let U : Alg(Set{tBool}t F) — SetflBool} denote the functor taking
(Set{l’B°°1}, F)-algebras to their carrier. Then, the following constraints induce a natural transfor-
mation p : F(U x GU) = GU:

[T,F1?.true = T.x*
[T,F]17.false = F.*

Specifically, the components of p are given by:

(pa)i(x) =
( )Bool( 1(*)) ( )
(P4)Boo1 (b2(¥)) = t2(*4)

for each (Set{:Bo°l} F)_algebra A (where * denotes the unique element of 1, while %4 denotes the
interpretation provided by A to the operation symbol * : — 1).

Example 5.2.2. Similarly, natural numbers are specified using sorts 1 and Nat, algebraic operation
symbols * : — 1, 0 : = Nat and s : Nat — Nat, a coalgebraic operation symbol p : Nat — 1 + Nat
(with s and p denoting the successor and respectively predecessor functions), and constraints:

[Z,N]p.0 = Z.*
[Z,N]lp.s(x) =

Now let F, G : Set{t¥at} _y Set{lNat} ganote the endofunctors induced by the many-sorted signature
consisting of *, 0 and s, and respectively by the many-sorted cosignature consisting of p. The
components of F and G are given by:

(FX); =1
(FX)Nat =1+ XNat
(GX); =

(GX)yar = X1 + Xpyat

Also, let U : Alg(Set{t"at} F) — SetitNat} denote the functor taking (Set{!"2t} F)-algebras to
their carrier. Then, the two constraints above induce a natural transformation p : F(U x GU) = GU
whose components are given by:

(pa)1(*)
(Pa)wat (01(*))
(Pa)vat (t2((a,a’)))

()
12(a)
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for each (Seti™Vat} F)-algebra A.

In addition, one can use induction to equationally define other algebraic operations on natural
numbers. For instance, natural number addition can be defined using an algebraic operation symbol
+: Nat Nat — Nat, subject to the following equations:

Oty =y
s(x)+y = s(x+y)

According to the remarks in Example 5.2.1, the correctness of the above definition amounts to the
preservation of bisimilarity by the resulting interpretation of + in the initial coalgebra of the lifted
cosignature of natural numbers. As in Example 5.2.1, this is a consequence of the fact that, in this
coalgebra (whose carrier is isomorphic to ({x},N)), bisimilarity coincides with equality.

We conclude this example by noting that, unlike in Example 5.2.1, where the carriers of the initial
algebra of the underlying signature and respectively of the final coalgebra of the underlying cosig-
nature were both isomorphic to ({*},{t,£}), here these carriers are not isomorphic to each other.
(The former is isomorphic to ({*},N), whereas the latter is isomorphic to ({*},N U {oco0}).)

We now introduce some terminology.

Definition 5.2.3. Let = denotes a many-sorted cosignature with sort set S. A one-step =-
observation of sort s € S is an s-sorted =-coterm containing at most one Z-symbol, while a
with ng € {1,...,n} for £ € Es, s,
A condition of form ¢.X = ZY with X : s, ¢ a one-step E-observation of sort s, Y : s’ and

one-step =-behaviour for the sort s is a tuple (n¢)eez=,,
Z € covar(c)y is said to hold for a one-step E-behaviour (n¢)¢c=, for the sort s if and only if,
whenever c is of form [Z, ..., Z,|§ and ng =1, it follows that Z = Z;. Also, a =-behaviour for the
sort s is an element f € Fs of the final Z-coalgebra. A condition of form c¢.X = Z.Y with X : s,
c € TA[Cls, Y : §' and Z € covar(c)g is said to hold for a E-behaviour f for the sort s if and only
ifCF(f) € Lz(Fsl).

One-step =-behaviours for the sort s specify, for each operation symbol & on s, an evaluation path
for the ZE-coterm [Z1,...,Z,)¢ (where £ : s — s1...5,).

The sets of constraints used in Examples 5.2.1 and 5.2.2 have the property that, for each pair
consisting of an algebraic operation symbol and a coalgebraic operation symbol of the same sort,
there exists precisely one constraint defining the effect of evaluating the coalgebraic operation on
the result yielded by the algebraic operation. It is this property that guarantees the existence and
uniqueness of the natural transformations p. The next definition exploits this observation.

Definition 5.2.4. A data cosignature s a tuple (S,V,=, FE), with U and E denoting a many-
sorted signature and respectively cosignature with sort set S, and with E denoting a set of (U, =)-
constraints additionally satisfying:

1. All the constraints in E are of form:
Z1y oy Zn)ép(Xn, .., X)) = Zit if 1. X, = Z{.Yl, e X = Z,'C.Yk

with ci,...,c, one-step Z-observations.
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2. Foreachs €S, € Wy 5,5 & € Esy s and each choice of one-step =-behaviours for
the sorts s1i,..., Sy, there exists [Z1,...,Zplép(X1,...,Xn) = Z.t if C in E such that C

holds for the chosen one-step E-behaviours for X1, ..., Xp,.
3 Zy, .., Zy)ep( Xy, ..., X)) = Zg, t; if C; in E for i = 1,2 are such that Cy and C»
hold for some choice of one-step E-behaviours for X1,..., X, then Zy, = Zy, and t1 = ty

(where, if c1. X, = Z{.Y1,...,cp.Xj, = Z}..Y}, are the conditions appearing in C; U Cy, then
t1 and ty denote the WU-terms obtained from t, and ty by identifying any two variables Y; and
Y, with in = le and c; = 654).

If F: Set® — Set® and G : Set® — Set® denote the endofunctors associated to ¥ and EZ, if D
denotes the comonad induced by G, and if U : Alg(Set®,F) — Set® denotes the functor taking
(Set”, F)-algebras to their carrier, then data cosignatures (S, ¥, =, E) induce lifted cosignatures
(Set”,F,G,0), with o : FDU = DU being the natural transformation induced by the natural
transformation p : F(U x GU) = GU (see Sections 3.3.7 and 3.3.6) whose components are given by:

me(pas vy ((ais (6f)eez,, Yi=t,...m))) = vz (talyrs- - yk))

foreach U-algebra A, s € S, 9 € Uy, 5,5, £ € Eg o o and (ai, (aé)éeEsJ € A;, x(GA),, withi =
1,...,m, where the constraint [Z, ..., Z,)p( X1, ..., Xm) = Ztife1. Xj, = Z1. Y1, ..., 0. Xj, =
Z.,.Y} in E is such that its conditions hold for the one-step E-behaviours induced by (aé)geg% with
i=1,...,m> and where y, ...,y are given by:

a;; If ¢ =2 .
yi:{ j _ o, ie{l,.. Kk}
a; if ¢ =[Z]¢

Moreover, the coalgebras of the induced lifted cosignature are in one-to-one correspondence with
the (W, Z)-bialgebras satisfying E. This is a consequence of the definition of p, and of the existence
of a characterisation of (Set®, F, G, o)-coalgebras as suitably-restricted (F, G)-bialgebras dual to the
one outlined in Remark 3.3.26.

Finally, W-equations and =-coequations define F-equations and respectively G-coequations (see Ex-
ample 3.2.13 and Remark 4.1.30).

According to the remarks in Section 3.3.7, suitable denotations for data cosignatures are provided by
the codomains of the quotients of the unique homomorphisms from the initial to the final coalgebras
of such cosignatures.

Example 5.2.5. The many-sorted signature, many-sorted cosignature and set of constraints in Ex-
amples 5.2.1 and respectively 5.2.2 define data cosignatures. The carriers of the coalgebras used
as denotations for these cosignatures are isomorphic to ({*},{t,£}) and respectively ({*},N). (In
both cases, bisimilarity on the initial coalgebra is given by the equality relation.)

A notion of data cosignature morphism (inducing a lifted cosignature morphism) can also be defined.

*In this case, Y; and Y] refer to the same value.
®Conditions 2 and 3 guarantee the existence of such a constraint and respectively the independence of the definition
of p on a particular choice of constraint.
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Definition 5.2.6. Let (S, ¥, =, E) and (S',¥',=', E') denote data cosignatures. A data cosigna-
ture morphism from (S, U, =, E) to (S, V', =" E') is a pair (¢,0), with ¢ : (S,¥) — (5',9’) a

many-sorted signature morphism and 0 : (S,Z) — (S',Z') a many-sorted cosignature morphism,
additionally satisfying:

1. ¢ls=0ls
2. the functions O]=,: 25 — Elﬂ(s) with s € S are bijections

3. (¢,0)(e) € E' for each e € E (where, for ¢ € E, (¢,0)(e) denotes the pointwise translation
of e along (¢,6)).

If, in addition:
4. the functions ¢ly,: Vs — \I/;)(s) with s € S are surjections
then (¢,0) is called horizontal.

If (Set®,F,G,0o) and (Set”,F’,G’,o") denote the lifted cosignatures induced by the data cosigna-
tures (S, U, =, E) and respectively (S’, ¥’ ' E’), then (horizontal) data cosignature morphisms
(¢,0) : (S, U,=,E) — (5,9, Z" E') induce (horizontal) lifted cosignature morphisms (U,&,7) :
(Set®,F,G,0) — (Set™,F', G, 0"), with (U, &) : (Set®,F) — (Set™,F’) denoting the abstract sig-
nature morphism induced by the many-sorted signature morphism ¢ (see Example 3.2.20), and with
(U,n) : (Set®,G) — (Set”’,G') denoting the abstract cosignature morphism induced by the many-
sorted cosignature morphism 0 (see Remark 4.1.38). The second requirement in Definition 5.2.6
ensures that 7 is a natural isomorphism, the third requirement guarantees that p, p', £ and 7 satisfy
(the dual of) the compatibility condition required in Section 3.3.6, while the fourth requirement
ensures that £ is a natural epimorphism.

Example 5.2.7. The inclusion of the data cosignature of booleans (see Example 5.2.1) into the joint
data cosignature of booleans and natural numbers (consisting, in addition to the sorts, operation
symbols and constraints given in Example 5.2.1, of the sorts, operation symbols and constraints
given in Example 5.2.2) defines a horizontal data cosignature morphism.

5.2.2 Correctness Proofs

Suitably instantiating the abstract notions of satisfaction given by the dual of Definition 3.3.12 yields
the following notions of satisfaction of equations up to bisimulation and respectively of coequations
up to reachability by coalgebras of data cosignatures.

Definition 5.2.8. Let (S, ¥, =, E) denote a data cosignature. An (S, VU, =, F)-coalgebra A satisfies
a W-equation of form (VV) [ = r up to bisimulation if and only if 0% (1) ~4 0% (r) holds for any
assignment 0 : V — A, with ~4 denoting E-bisimilarity (see Proposition 4.1.19) on Al=. Also, A
satisfies a Z-coequation of form ¢ = ¢ if (¢1,C1),...,(¢y,Cp) up to reachability if and only if,
for any t € Ty, ca(ta) = c/4(ta) holds whenever (c;)a(ta) € 1z,(As,) for some s; € S and some
Z; €Cig,, fori=1,...,n.
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According to the dual of Theorem 3.3.17 and respectively of Theorem 3.3.19, the notion of data
cosignature morphism yields an institution w.r.t. the satisfaction of equations up to bisimulation,
while the notion of horizontal data cosignature morphism yields an institution w.r.t. the satisfaction
of coequations up to reachability. Moreover, since Set® is regular (see Example 2.1.47), it follows
by the remarks in Section 3.3.7 that the coalgebras used as denotations for data cosignatures satisfy
precisely those equations (respectively coequations) which are satisfied up to bisimulation (up to
reachability) by the initial (final) coalgebras.

It should be noted that, in order for the above notion of satisfaction of equations up to bisimulation
not to result in the satisfaction of unwanted equations, the notion of bisimulation induced by
the underlying cosignature should be sufficiently fine. For instance, the absence of a coalgebraic
operation for boolean values would result in the coalgebra used as denotation for the resulting data
cosignature identifying true and false (as, in this case, the notion of bisimulation induced by the
underlying cosignature would not distinguish any two boolean values).

The remaining of this section concerns the formulation and proof of correctness properties for the
behaviours specified by data cosignatures.

To facilitate the formulation of correctness properties, derived Z-observers & : s — s1...S, can be
specified using (0,2 U {{})-constraints E¢ of form:

(Z1,..., 26X = ZY if C

with C' only containing E-symbols, additionally satisfying:

1. For any choice of a E-behaviour for X, E, contains a constraint whose condition holds for
that =-behaviour.

2. Whenever [Zy,...,Z,){.X = Z,.Y), if C; with i = 1,2 in E¢ are such that C; and C5 hold
for some choice of a E-behaviour for X, it follows that Z;, = Z,, and that the conditions
defining Y;, and Y}, are the same up to a renaming of the covariables.

Remark 5.2.9. Since the satisfaction of Z-coequations of form ¢ = ¢ if C with covar(c) C covar(c’)
is equivalent to the satisfaction of sets of constraints of the above form (see Remark 5.1.6), derived
E-observers ¢ can alternatively be specified using sets of = U {¢}-coequations of form:

(Z1,..., Za)E =cif C

with covar(c) C {Zi,...,Z,}, subject to constraints similar to 1 and 2 above®. Furthermore,

previously-defined derived Z-observers can be used in coequations defining new derived Z-observers.

The conditions in the definition of a derived observer ¢ ensure that any Z-coalgebra structure
on A € |Set®| can be uniquely extended to a Z U {€}-coalgebra structure on A which satisfies
the constraints (coequations) defining £. Moreover, =-coalgebra homomorphisms also preserve the

8The reason for defining derived observers using constraints as opposed to coequations in the first place will become
clear when similar definitions will be given for observers on object states. (In the case of objects, the presence of a
fixed data universe carrying both algebraic and coalgebraic structure will result in constraints being more expressive
than coequations in defining derived observers.)
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structure given by the derived observers. As a result, derived observers induce (SetS, G)-observers,
and therefore can be used in formalising correctness properties by means of coequations (see also
Remark 3.1.24).

Remark 5.2.10. If 29 denotes a set of derived Z-observers, and if ES denotes the set of ({}, ZU=9)-
constraints defining them, then arbitrary EUE%-observations can be expressed in terms of E-observers
only using the constraints in E3. That is, for any ¢ € T =¢[C]s and any choice of a E-behaviour
for the sort s, Eg FcX = ZY if C, for some conditions C' which only contain E-symbols and
which hold for the chosen =Z-behaviour for s. This follows by structural induction on ¢. First, if ¢
is a covariable, the conclusion follows immediately by base;. Also, if ¢ = [¢y,..., ¢, )€, depending
on whether ¢ € Z or £ € Z9, it follows by base, and respectively by the definition of ¢ that
ES & [Zy,...,Z,)6.X = Z;,.Y if C, with C holding for the chosen Z-behaviour for s. In both cases,
the induction hypothesis yields E2 I ¢;.Y = Z.Y' if C’, with C’ holding for the Z-behaviour for
(the sort of) Y resulting from the chosen =-behaviour for s together with the condition defining Y.
The conclusion then follows by substitution;.

According to the remarks in Section 3.3.1 (see also Section 3.3.7), proofs of satisfaction of equations
up to bisimulation by coalgebras of data cosignatures can be reduced to defining bisimulation rela-
tions which relate the lhs and rhs of the given equations, while proofs of satisfaction of coequations
up to reachability by coalgebras of data cosignatures can be reduced to defining subalgebras whose
states satisfy the given coequations. In both cases, this involves determining the values of certain
observations on the results yielded by certain computations. The deduction calculus for constraints
can be successfully used in this sense, due to the following result.

Proposition 5.2.11. Let (S,V,E, E) denotes a data cosignature. Then, the following hold:

1. Foreacht € Ty({X1,...,Xm})s, each& € Z, 4,5, and each choice of one-step Z-behaviours
for the sorts of X1,..., X, there exist t' € Ty({Y1,...,Y%}), Z € {Z1,...,Z,} and con-
ditions C' of form ¢;.X;, = Z|.Y1,...,¢;.Xj, = Z..Y}, with c; one-step E-observations,
such that C' holds for the chosen one-step E-behaviours for Xi,...,X,,, and such that
Ev[Zy,....Z, )¢t =Z1 if C.

2. Foreacht € Ty({X1,...,Xm})s, each ¢ € T=z[C]; and each choice of E-behaviours for the
sorts of X1,..., Xy, there exist t' € Ty({Y1,...,Yx}), Z € covar(c) and conditions C' of
form c1.X;, = Z1.Y1,...,c,. X, = Z}.Yy, such that C holds for the chosen E-behaviours for
X1,...,Xm, and such that E& ct = Z.t' if C.

That is, any (one-step) Z-observation of any W-computation rewrites to a W-computation, provided
that sufficiently-many assumptions are made about the (one-step) =-behaviours of the variables
appearing in the term used to denote the initial W-computation.

Proof. The first statement follows by structural induction on ¢. First, if ¢ is a variable X, then
base; yields E & [Zy,...,Z,]6.X = Z)Y if [Z1,...,Z,)6.X = Z.Y, for each £ € E appropriate
for X. Next, if ¢ is of form (t1,...,t;) with ¢1,...,¢ € Ty ({X1,...,Xm})), then the induction

—_
=

hypothesis yields, for each i € {1,...,l} and each ¢ € = appropriate for ¢;, a (¥, Z)-constraint e of
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form [Z])¢€.t; = Z.t' if C such that C holds for the chosen one-step E-behaviours for X1, ..., X,,,
and such that E' - e. These constraints uniquely determine some one-step =-behaviours for (the
sorts of) t1,...,%;. The hypothesis then yields, for each ¢ € = appropriate for ¢, a (¥, =)-constraint
of form [Zl, e ,Zn]fi/)(Xl, e ,Xl) = Ztif Cl.le = Zl.Yl, e 7Ck-Xjk = ZkYk in E, whose
conditions hold for the previously-obtained one-step Z-behaviours for (the sorts of) Xi,...,X|.
Then, substitution; yields Er- [Zl, cey Zn]f.d)(tl, BN ,tl) = Z.t’(t’l/Yl, BN ,t%/Yk) if Cl, cey Cp,
with ¢} and C; being given by E |- ¢;.tj, = Z;.t, if C;, fori =1,...,k’, and with Cj,. .., Cj, holding
for the chosen one-step Z-behaviours for X, ..., X,,.

The second statement follows by structural induction on ¢. First, if ¢ is a covariable Z, then base;
yields E - Z.t = Zt(Y/X) if (Z;.X; = Z;.Y5)i=1,...m- Next, if ¢ is of form [c1,...,¢,]€, then 1
yields, for each t € Ty ({X1,...,Xm}) and each choice of E-behaviours for Xi,..., X, a (¥, 2)-
constraint e of form [Zy,...,Z,){.t = Z;.t' if C, with C of form ¢;.X;, = Z1.Y1,...,¢.X;, =
Zy..Yy, holding for (the one-step E-behaviours induced by) the chosen E-behaviours for X1, ..., X,
such that E F e. The choice of =Z-behaviours for X7,..., X,, together with the conditions defining
Y1,...,Y; uniquely determine a choice of =-behaviours for Yi,..., Y. Applying the induction
hypothesis to ¢/, ¢; and the previously-obtained Z-behaviours for Y7, ..., Y} yields a (¥, =)-constraint
e of form ¢;.t' = Zt" if .Yy, = Z1.Y],...,¢.Yy, = Z].Y] whose conditions hold for these
E-behaviours for Yi,...,Y;, and which is such that F + €'. Then, substitution, yields F +
e, en)ét = ZA" i C,([... &/ Zy, - - Jew, Xy, = Z1.Y])i=1,..0)- O

Remark 5.2.12. In the presence of derived =-observers defined using constraints Eg, the second
statement generalises to coterms c also containing derived observers. (In this case, deduction from
FE is replaced by deduction from EUE%.) This follows by substitution; together with the observation
in Remark 5.2.10.

Example 5.2.13. Consider the specification of natural numbers given in Example 5.2.2, enriched
with a coalgebraic operation symbol ! : Nat — 1 defined using the following constraints:

[Z]'.0 = Z.*
[Z]1'.s(x) = Z.*

The absence of any coalgebraic operations for the sort 1 immediately results in the equation
(Vs,t) s = t with s,¢ : 1 holding, up to bisimulation, in all coalgebras of the data cosignature
of natural numbers. On the other hand, the use of the coalgebraic operation p prevents a similar
situation for equations of type Nat.

The coalgebraic operation ! does not affect the notion of bisimulation induced by the resulting

cosignature. However, this operation is essential for defining derived observers. Specifically, derived
observers <m : Nat — 1 + 1 with m € N can be specified using coequations:

[T,F1<0 = [F]!
[T,F1<(m+1) = [T, [T,Fl<mlp

with m € N. According to Remark 5.2.9, these coequations translate to constraints:

[T,F1<0.n = F.f if [F]!.n = F.f

"Note that, by the induction hypothesis, each of ci,...,ci are one-step S-observations.
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[T,F1<(m+1).n
[T,F1<(m+1).n

F.f if [T,[T,Fl<mlp.n
T.t if [T,[T,Fl<mlp.n

F.f
T.t

A consequence of the coequational definition of <m with m € N is that the coequation:
[T,Fl<(m+1) = [T,Fl<m if ([T,F]<m,T)

with m € N (formalising the fact that a natural number which is smaller than m is also smaller than
m+1) holds in all coalgebras of the cosignature of natural numbers. This follows by induction on N
using the deduction calculus of many-sorted coalgebra. Alternatively, one can use induction both on
N and on the sort Nat to show that the above coequation holds, up to reachability, in all coalgebras
of the cosignature of natural numbers.

In the presence of equationally-defined algebraic operations, standard algebraic techniques can be
used to prove the satisfaction of equations involving such operations by the initial coalgebras of data
cosignatures, as well as by the quotients by bisimilarity of these coalgebras.

Example 5.2.14. Given the joint data cosignature of booleans and natural numbers, additional al-
gebraic operations on natural numbers can be defined similarly to natural number addition (see
Example 5.2.2). In particular, an equality test == : Nat Nat — Bool can be defined inductively using
the following equations:

0==0 = true

0==s(y) = false
s(x)==0 = false
s(x)==s(y) = x==

The correctness of the above definition follows, again, from bisimilarity on the initial coalgebra of the
data cosignature of booleans and natural numbers being given by the equality relation. Furthermore,
one can use induction to prove that the equation:

not (s(x)==x) = true

holds in the initial algebra of the algebraic specification of booleans and natural numbers. Con-
sequently, the equation also holds in the initial coalgebra of the data cosignature of booleans and
natural numbers, as well as in its quotient by bisimilarity.

5.3 Specifying Objects

Instantiating the approach described in Sections 3.3.1-3.3.6 to endofunctors of the form of the ones
induced by many-sorted signatures and respectively cosignatures whose sorts and operation symbols
have been classified into visible and hidden ones (with the interpretation of the visible sorts and
operation symbols being fixed) yields a formalism for the specification and verification of objects.
The resulting formalism and its associated proof techniques are described in the following.
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5.3.1 Syntax and Semantics

As in the case of data types, attention is restricted to lifted signatures of the form of the ones
considered in Section 3.3.6. This restriction simplifies the presentation of the results as well as the
associated proof techniques, and at the same time appears to be sufficiently general to cover the
situations which arise typically in practice.

The next example provides some intuitions for the forthcoming definitions.
Example 5.3.1. Recall from Examples 5.1.1 and 5.1.4 that a specification of stacks involves visible

sorts 1 and Nat, a hidden sort Stack, observers top : Stack — 1 Nat, rest : Stack — 1 Stack,
constructors empty : — Stack, push : Stack Nat — Stack, pop : Stack — Stack, and constraints:

[Z,N]top.empty = Z.*
[Z,S]rest.empty = Z.*

[Z,N]top.push(s,n) = N.n
[Z,S]rest.push(s,n) = S.s

[Z,N]ltop.pop(s) = Z.*x if [Z,[Z,N]toplrest.s =
[Z,N]ltop.pop(s) = N.n if [Z,[Z,N]toplrest.s .
[Z,S]lrest.pop(s) = Z.x if [Z,[Z,S]lrest]lrest.s = Z.z

[Z,S]lrest.pop(s) = S.s’ if [Z,[Z,S]rest]lrest.s = S.s’

|
= N
N

The above specification should be regarded as relative to a fixed data universe, given by a data
cosignature containing the sorts 1 and Nat together with a coalgebra of this data cosignature. The
data cosignature is here taken to consist of sorts 1, Bool and Nat, algebraic operations * : — 1,
true : — Bool, false : — Bool, 0 : — Nat, s : Nat — Nat and coalgebraic operations ? : Bool — 1+ 1,
p: Nat — 1+ Nat, subject to the constraints given in Examples 5.2.1 and 5.2.2, while the coalgebra
is taken to be the quotient by bisimilarity of the initial coalgebra of this data cosignature.

Now let S = {1,Bool, Nat, Stack}, let D denote the above-mentioned coalgebra, let F, G : Set% —
Set?, denote the endofunctors whose 1-, Bool- and Nat-sorted components are identities, and whose
Stack-sorted components are given by:

(FX)Stack =1+ (XStack X XNat) + XStack
(GX)stack = (X1 + Xyat) X (X1 + Xstack)

and let U : Coalg(Set?, G) — Set?, denote the functor taking (Set?,, G)-coalgebras to their carrier.
Then, the above constraints induce a natural transformation p : FU = G(U + FU), whose 1-, Bool-
and Nat-sorted components are identities, and whose Stack-sorted components are given by:

T1((pc)stack (t1(*))) = v1(*p)

m2((pc)stack (¢1(¥))) = t1(*p)

1 ((pc)stack (t2({c, d)))
Ta((pc)stack(t2((c, d)))) = t2(c)

~—
I
~
[N}
—
Y
~
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S L1( )
12(d) € 12(Chat)

) € u(Ch)
) ( ) S LQ(OStack)

L1 *D) [Ll,topc] restc(c)

L2 d) [[’latOPC]

(P stacelt3(e))) = { E
(
(

( )
( )=

restco (c)

*D) if [t1,resto](resto(c

) if [t1, restc](resto(c

72 ((pe)svack (13(€))) = {

L2

)
)
for each (Set%, G)-coalgebra C' and each ¢ € Csgack-

We now fix a data cosignature (V,¥,=, Fy =), and let D denote the quotient of the initial
(V,¥,E, Ey z)-coalgebra by =-bisimilarity. (For convenience, we assume that any derived =-
observers have been incorporated into =, and that the corresponding defining constraints have
been incorporated into Ey =.) It therefore follows that D satisfies (in the standard sense) all the
coequations satisfied up to reachability by the final (V, ¥, Z, Ey =)-coalgebra, as well as all the equa-
tions satisfied up to bisimulation by the initial (V, ¥, E, Ey =)-coalgebra. In particular, D satisfies
(in the standard sense) any coequation or equation satisfied up to reachability, respectively up to
bisimulation by all (V, ¥, =, Ey =)-coalgebras.

As far as equationally-defined algebraic operations on the data are concerned, they are not to be
implicitly regarded as part of the signature W. Such operations can be used in object specifications;
moreover, in certain cases their availability will prove crucial (see e.g. Example 5.3.23). However, the
formulation of some of the forthcoming results relies upon the absence of such operations. For this
reason, in stating these results it is assumed that the many-sorted signature ¥ does not contain any
equationally-defined algebraic operations, and a remark regarding the existence of a generalisation
of the result in question to the case when equationally-defined algebraic operations on the data are
present is added whenever this is appropriate.

We continue with a few definitions.

Definition 5.3.2. A cosignature of observers over = is given by a pair (H,A), with H a set
of hidden sorts and A a V U H-sorted cosignature satisfying: (i) 2 C A, and (i) (A\ E), =0
for v € V. Also, a cosignature morphism between cosignatures of observers (H,A) and (H', A")
is given by a many-sorted cosignature morphism ¢ : (V U H,A) — (V U H', A") satisfying: (i)
pl==1=: 2 — A/, and (ii) $(H) C H'.

Definition 5.3.3. Let A denote a cosignature of observers over E. A Ap-coalgebra (respec-
tively Ap-homomorphism) is a many—sorted (V UH,A)-coalgebra A (many-sorted (V U H, A)-
homomorphism f) such that Al== D|= (flv=1p).

Example 5.3.4. The observers used in Example 5.1.1 to specify stack objects define a cosignature of
observers over the many-sorted cosignature consisting of sorts 1 and Nat, and an operation symbol
p: Nat — 1 + Nat.

Cosignatures of observers and their morphisms are instances of the abstract notions of cosignature
and cosignature morphism®, while many-sorted A-coequations of hidden sort (with Z-operation sym-
bols being allowed in coequations) are an instance of the abstract notion of coequation. Cosignatures

8n particular, this results in the existence of final coalgebras.
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of observers generalise destructor cosignatures (see Definition 4.2.1) by allowing the visible types
to carry coalgebraic structure. Moreover, final Ap-coalgebras are obtained as cofree many-sorted
coalgebras over D [= along the inclusion cosignature morphism of (V,E) into (V U H,A). (The
constraints defining cosignatures of observers ensure that these many-sorted (V U H, A)-coalgebras
define A p-coalgebras, while cofreeness over D= results in them being final.) It is also worth noting
that the (A \ E)p-reducts of final Ap-coalgebras are final (A \ E)p-coalgebras. That is, the =-
structure of D does not influence the construction of final Ap-coalgebras. This, in turn, results in
A p-bisimilarity on Ap-coalgebras being the same as (A\ Z) p-bisimilarity on their (A\ Z) p-reducts.

Definition 5.3.5. Let A denotes a cosignature of observers. A Ap-behaviour fora sort s € VUH
is an element f € Fy of the final Ap-coalgebra®. A condition of form ¢.X = Z.Y with X : s,
c € TAlCls, Y : 8" and Z € covar(c)g is said to hold for a Ap-behaviour f € Fy for the sort s if
and only if cp(f) € 1z (Fy).

Signatures of constructors over ¥ and their algebras, and respectively morphisms between signatures
of constructors are defined similarly to cosignatures of observers and their coalgebras (with initial
algebras for signatures of constructors being obtained as free many-sorted algebras over D [y),
and respectively to morphisms between cosignatures of observers. Signatures of constructors and
their morphisms are instances of the abstract notions of signature and signature morphism, while
many-sorted equations of hidden sort are an instance of the abstract notion of equation.

Example 5.3.6. The constructors used in Example 5.1.1 to specify stack objects define a signature
of constructors over the many-sorted signature consisting of sorts 1 and Nat, and operation symbols
x:— 1, 0:— Nat and s : Nat — Nat.

Definition 5.3.7. Let I' denote a signature of constructors over ¥. A one-step ['-computation
of sort s € V.U H is an s-sorted I'-term containing at most one I' \ W-symbol.

In the following, signatures of constructors and cosignatures of observers are used to specify the
functionality of objects and respectively their structural properties, while suitably-restricted sets of
constraints are used to specify the relationship between the two.

Definition 5.3.8. An object signature is a tuple (H,A,T', E) with (H,A) a cosignature of ob-
servers, (H,T') a signature of constructors, and E a set of (I, A)-constraints additionally satisfying:

1. All the constraints in E are of form:
[Zl, ey Zn](S")/(Xl, e ,Xm) =7t ifCl.le = Zi.Yl, e ,Ck.Xjk = Z],ng

withy € Us, 5,0 0 € Ap g o, h € H, 1 € Tr({Y1,...,Y)}) a one-step I'-computation,
and with ¢; € TAUAd[Ci] and Zl( eC; fori=1,...,k.

®Consequently, a Ap-behaviour for a sort v € V is given by an element d € D,, which, in turn, induces a
E-behaviour for the sort v (given by the image of d under the unique E-coalgebra homomorphism into the final
E-coalgebra). This observation will be used later in the chapter.
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2. Foreachh e H,y €L, 5,1 0 €Ay o and each choice of Ap-behaviours for the sorts
Sly---,Sm, there exists [Z1,...,Z,]0.v(X1,...,Xm) = Z.t if C in E such that C holds for

the chosen Ap-behaviours for X1,..., X,.
32y, ..., Zp)0y( Xy, ..., Xs) = Zy, .ty if C; in E for i = 1,2 are such that both C; and
C> hold for some choice of Ap-behaviours for X1,...,X,,, then Zy, = Zj, and moreover,

if Zy,,Zx, + h with h € H (respectively Zy, ,Zk, : v with v € V), then t; = t5 (D Ey
(VY) t; = £2)'°, with t; and ty having the same denotations as in Definition 5.2.4, and with
Y consisting of the variables appearing in ty,t.

Now let F, G : Set},” — Set}”¥ denote the endofunctors induced by (H,T') and (H,A). (Their
components are given by:

[T X x...xXg) if seH
(FX)S = ’YEFsl...sn,s

Dy if seV
and respectively by:

I Xg+...+X,,) if seH
(GX)S = 5€As,sl...sn

Dy if seV

for X € |Set}V| and s € V U H.) Also, let T denote the monad induced by F, and let U :
Coalg(Seth",G) — SetPUH denote the functor taking (Set},"?, G)-coalgebras to their carrier.
Then, object signatures (H, A, T, E) induce lifted signatures (Set)", G,F, o), with o : TU = GTU
being the natural transformation induced by the natural transformation p : FU = G(U + FU) (see
Section 3.3.6) whose hidden-sorted components are given by:

(L (tp(yr,- - uk))

it t € Tyoma (Y1, Vi)
ms(pan(ty({ar, ... am)))) = waley (E1,0W1s -5 Uk)s - oW1y -, Uk))))
if t =/ (t1,...,4)
\ with t1,...,t € Tiyumw)({Y1,- -, Yk })

(where, by convention, tp(y1,...,yk) = y; if t = Y; 1 h, for t € Tyumw)({Y1,...,Y})), for each
Ap-coalgebra A, h € H, y € I'y, 5, n 0 € Ah,sflmsln and a; € A, for i = 1,...,m, where the
constraint [Z1, ..., Z,)0.y(X1,..., Xm) = Zt if 1. X, = Z1. 11, ..., . X, = Z,.Y}, in E is such
that its conditions hold for ay,. .., am, and where y; = (¢;) 4¢(ay;) fori=1,... k.

Moreover, the algebras of the induced lifted signature are in one-to-one correspondence with the
('p, Ap)-bialgebras (that is, (', A)-bialgebras whose underlying W- and =-structures are given by

%9 the presence of derived observers in C1, C>, the requirements that £ = > and respectively D =g (VYY) t1 = 2
can be weakened by replacing all the derived observers with their definitions before identifying the Y's with similar
definitions in C1 and Ca. (Some further case analysis may be required to expand the definitions of the derived
observers.)
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Dy and respectively D[z) satisfying E. Again, this is a consequence of the definition of p and of
Remark 3.3.26.

Suitable denotations for object signatures are provided by the codomains of the quotients of the
unique homomorphisms from the initial to the final coalgebras of such signatures (see Section 3.3.1).

Example 5.3.9. The cosignature of observers, signature of constructors and set of constraints in
Example 5.3.1 define an object signature. The Stack-component of the carrier of the algebra

* — its elements are in one-to-one

used as denotation for this object signature is isomorphic to (N)
correspondence with finite lists of natural numbers. (The notion of bisimilarity on the initial algebra
of this object signature relates any stack denoted by a term over {empty, push, pop} to a stack

denoted by a term over {empty, push}!l.)

Example 5.3.10. An object signature for bounded stacks of maximum size m, with m € N can be
obtained by extending the object signature of stacks with a hidden sort BStack, observers stack :
BStack — Stack, depth : BStack — Nat, constructors empty : — BStack, push : BStack Nat — BStack,
pop : BStack — BStack, and constraints:

[S]stack.empty = S.empty
[N]depth.empty = N.O

[Slstack.push(b,n) = S.push(s,n)

if [[F,Tl<m]ldepth.b = F.f and [Slstack.b = S.s
[S]stack.push(b,n) = S.s

if [[F,T]<m]depth.b = T.t and [S]stack.b = S.s
[N]depth.push(b,n) = N.s(d)

if [[F,Tl<mldepth.b = F.f and [Dldepth.b = D.d
[N]ldepth.push(b,n) = N.d

if [[F,T]<m]depth.b = T.t and [D]depth.b = D.d
[S]stack.pop(b) = S.pop(s) if [S]lstack.b = S.s
[N]ldepth.pop(b) = N.0 if [[F,Dlpldepth.b = F.f
[N]ldepth.pop(b) = N.d if [[F,D]lpldepth.b = D.d

The above constraints together with the constraints given in Example 5.3.1 satisfy the conditions
in Definition 5.3.8, and therefore define an object signature. The hidden components of the carrier
of the algebra used as denotation for this object signature are isomorphic to (N)* and respectively
the subset of (N)* whose elements are lists of length not exceeding m. (The notion of bisimilarity
on the initial algebra of this object signature relates any bounded stack denoted by a term over
{empty, push, pop} to a bounded stack denoted by a term over {empty, push} containing at most m
occurrences of push.)

Definition 5.3.11. Let (H,A,T',E) and (H',A',T", E') denote object signatures. An object sig-
nature morphism from (H,A,T', E) to (H', A", T, E') is a pair (0, $), with 6 : (H,A) — (H', A")
a cosignature morphism and ¢ : (H,T') — (H',T") a signature morphism, additionally satisfying:

I ply=0lu

11See Example 5.3.21 for a proof of this statement.
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2. the functions ¢|r,: 'y, — F;(h) with h € H are bijections
3. (¢,0)(e) € E' foreache € E.

If, in addition:
4. the functions 0]z, : Ay — Alﬂ(h) with h € H are surjections
then (0, ¢) is called horizontal.

If (Set),"?,G,F,0) and (Set),"' G',F’,o') denote the lifted signatures induced by the object
signatures (H,A,T", E) and respectively (H', A", T E') (with o and ¢ being defined via p and
p'), then (horizontal) object signature morphisms (0,¢) : (H,A,I';E) — (H',A",T", E') induce
(horizontal) lifted signature morphisms (U,7,¢) : (Setp”™,G,F,0) — (Seth™ G/,F',¢"), with
(U,n) : (Seth?.G) — (Seth ™', G) and (U,€) : (Seth,F) — (Seth ™' F') denoting the
abstract cosignature and signature morphism induced by 6 and respectively ¢. The fact that £ is a
natural isomorphism follows from the second requirement in Definition 5.3.11. Also, the fact that
TA!+F' A’ © U,O;l, ol = G[UL’l, UL’Z] OG(IUAI —}—fA/) O PANA (With 7:TU=UT denoting the natural
transformation induced by the natural transformation & : FU = UF’, see Section 3.3.6) for any A',-
coalgebra A’ follows from the definitions of p and p’ using the third requirement in Definition 5.3.11.
Finally, the fourth requirement in Definition 5.3.11 ensures that 7 is a natural monomorphism.

We conclude this section with a few remarks concerning derived A-observers. (The use of such
observers facilitates both the definition of object signatures and the formulation of correctness
properties for the specified behaviours.)

Derived A-observers are defined similarly to derived =-observers (see Section 5.2.2), except that
here the algebraic and coalgebraic structure of D can be used in definitions. Specifically, derived
A-observers 6 : h — sy ...y, are defined using (¥, A U {d})-constraints Ej of form:

(Z1,...,Za)6.X = Ztif C

with C' only containing A-symbols, additionally satisfying:

1. For any choice of a Ap-behaviour for X, Ej contains a constraint whose condition holds for
that A p-behaviour.

2. Whenever [Z1,...,2,]|0.X = Zy, .t; if C; with i = 1,2 in Ej are such that C; and C3 hold for
some choice of a Ap-behaviour for X, it follows that Zy, = Z,, while D |=¢ (VY) #; = to
(with #; and %3 having the same denotations as in Section 5.2, and with Y consisting of the
variables appearing in £y, 12).

12

In particular, constant observers'= can be defined using constraints of form [Z]c.X = Z.t with

tely.

Remark 5.3.12. A consequence of Remark 5.1.6 is that sets of A U {d}-coequations of form:

(Z1, ..., Z5)6 = cif C'

2Constant observers are similar to the constant observations used in [Cor98].
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with covar(c) C {Z1,...,Z,} and with C’ only containing A-symbols, subject to constraints similar
to 1 and 2 above can alternatively be used to specify derived A-observers whose definition does not
involve U-symbols.

Example 5.3.13. Given the object signature in Example 5.3.10, one can define a derived observer
full?: BStack — 1 1 using the coequation:

[T,Fl1full? = [[F,T]<m]depth

Since the definitions of derived A-observers determine unique extensions of Ap-coalgebra struc-
tures to (AU {d})p-coalgebra structures, and since such definitions only involve A- and ¥-symbols
(and hence commute with A p-coalgebra homomorphisms), it follows that derived observers induce
(Set¥VH G)-observers. As a result, derived A-observers can be used both in defining object signa-
tures (namely in the conditional parts of constraints), and in formalising correctness properties by
means of coequations.

In order to use derived observers in the conditions of constraints, one has to define what it means for
a condition containing a derived observer to hold in a Ap-coalgebra. For a Ap-coalgebra A and a
cosignature of derived A-observers AY, the unique (AUAY) p-coalgebra obtained by interpreting the
AY-observers in A according to their definition is denoted A9d. Then, a condition of form ¢.X = Z.Y
with X s, ¢ € TayadlCls, Y 1 8" and Z € covar(c)y is said to hold for a Ap-behaviour f € Fj
for the sort s if and only if cpa(f) € 1z (Fy).

Remark 5.3.14. If EY denotes the set of (U, AUAY)-constraints defining some derived A-observers
A9, then EdA can be used to express arbitrary A U AY-observations in terms of A-observers and
WU-operations only. Specifically, for any ¢ € T ad[Cls, any t € Ty ({X1,...,Xm})s and any
choice of a Ap-behaviour for the sorts of Xi,...,X,,, there exists a (¥, A U A%)-constraint e
of form c.t = Z.t' if C, with C only containing A-observers and holding for the chosen Ap-
behaviours for X1y,...,X,, such that Fy = U EdA F e. This follows by structural induction on
c. First, if ¢ is a covariable, then the conclusion follows immediately by basej. Also, if ¢ is of
form [c1,...,c,]0 with 6 € (AU AY), = E, for some v € V (and hence t € Ty ({X1,..., X))o
and ¢ € T=[C],), then the conclusion follows from the fact that Ey= F ct = Z.t' if C for
some conditions C' which hold for (the Z-behaviours resulting from) the chosen A p-behaviours for
X1,..., Xp,. Finally, if ¢ is of form [c1,...,¢,]0 with 6 € (AU AY), with h € H (and hence
m = 1 and t = X;), then depending on whether § € Ay, or § € AY, basey and respectively
the definition of ¢ yields Ey = U EdA F[Z1,...,2,)0.X1 = Z.t' if C, with C of form ¢;.X; =
Zi Y1, ..., c. X1 = Z}..Y}, holding for the chosen A p-behaviour for X;. Then, substitution; yields
EyzUEF[c1,...,cn)6.X1 = Z4" i€ O, ([..., ¢/ 2}, Jen,- X1 = Z].Y])i=1,..1, where, by the
induction hypothesis, By = U E I ¢;.t' = Z.t" if C" with C' of form ¢|.Yy, = Z.Y{,...,c.Yy, =
Z]'.Y] holding for the Ap-behaviours for Y1,...,Y}, resulting from the chosen A p-behaviour for X
together with the conditions defining Y7,..., Y.

The statement in Remark 5.3.14 does not generalise to the case when equationally-defined algebraic
operations are allowed in W. For, in this case, a (¥, Z)-constraint as required by the proof of this
statement can not, in general, be exhibited.
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Finally, it is worth noting that cosignature morphisms 6 : (H,A) — (H',A’) induce translations
of (U, A U{d})-constraints into (U, A’ U {d})-constraints, and hence of derived A-observers into
derived A’-observers. (Such translations are needed whenever derived observers are present in the
constraints used to define object signatures or in the coequations used to formalise correctness
properties, in order to translate those constraints or coequations along object signature morphisms.)

5.3.2 Correctness Proofs

The notions of satisfaction (of hidden coequations up to reachability and of hidden equations up to
bisimulation) obtained by instantiating the abstract notions of satisfaction given by Definition 3.3.12
(see also Remark 3.3.14) are as follows.

Definition 5.3.15. Let (H,A,T', E) denote an object signature. An (H,A,T', E)-algebra A satis-
fies a hidden A-coequation of form ¢ = ¢ if (¢1,C1),...,(cn,Cy) up to reachability if and only
if, for any t € Tr'3, ca(ta) = ¢4(ta) holds whenever (c;)a(ta) € tz,(As,) for some s; € S and
some Z; € C; 5, fori =1,...,n. Also, A satisfies a hidden I'-equation of form (VV) [ =1 up to
bisimulation if and only if 6% (1) ~4 6% (r) holds for any assignment 0 : V — A, with ~ 4 denoting
Ap-bisimilarity (see Proposition 4.2.10) on Ala.

According to Theorems 3.3.17 and 3.3.19, the notion of object signature morphism yields an insti-
tution w.r.t. the satisfaction of hidden coequations up to reachability, while the notion of horizontal
object signature morphism yields an institution w.r.t. the satisfaction of hidden equations up to bisim-
ulation. Moreover, since Set},“! is regular (see Example 2.1.47), it follows by Proposition 3.3.23
that the algebras used as denotations for object signatures satisfy precisely those hidden coequa-
tions (respectively equations) which are satisfied up to reachability (up to bisimulation) by the final

(initial) algebras.

To facilitate the formulation of correctness properties of object behaviour, one can also define derived
I'-constructors 7y : sy ... 8y, — h, namely using (I' U {7}, E)-constraints E., of form:

Zy(X1,..., Xpm) = Zt if C

with ¢ only containing I-symbols, subject to restrictions similar to those in the definition of derived
A-observers. Moreover, the use of =-observers in such constraints allows for definitions by case
analysis. (Derived I'-constructors y whose definitions do not require case analysis can alternatively be
specified using I' U {7y }-equations of form: (V X) y(X1,...,X;n) =t with t € Tr({X1,..., Xm}).)
Derived I'-constructors induce (Set},”", F)-constructors, and therefore can be used in formalising

correctness properties by means of equations.

Remark 5.3.16. If EZ denotes the set of ([UTY, Z)-constraints defining some derived I'-constructors
'Y, then El‘i can be used to express arbitrary I'UT'Y-computations in terms of I'-constructors and Z-
operations only. Specifically, for any ¢ € T pa(V)s, any ¢ € T=[C]s and any choice of =p-behaviours
for the variables appearing in ¢, there exists a (I' UT9, Z)-constraint e of form c.t = Z.t' if C, with

3The fact that D is given by a quotient of the initial Z-algebra, and therefore is Z-reachable, is used here.
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t' only containing I-symbols and with C' holding for the chosen =p-behaviours for the variables
appearing in t, such Eq,,EUEﬁ F e. This follows by structural induction on ¢. First, if ¢ is a variable,
then the conclusion follows immediately by base,. Also, if t = y(t1,...,ty,) withy € (TUTY), = T,
for some v € V' (and hence t € Ty (V), and ¢ € T=[C],), then the conclusion follows from the fact
that Ey= F ct = Z.t' if C, for some conditions C' which hold for the =-behaviours resulting
from the chosen Zp-behaviours for the variables appearing in ¢. Finally, if ¢ = y(¢1,...,ty) with
v € (T urY), for some h € H (and hence ¢ = Z for some Z € C), then the induction hypothesis
yields Ey = UEl‘i F .ty = Z'.¢ if C' with C" holding for the chosen =p-behaviours for the variables
appearing in t;, for each i € {1,...,m} and each ¢’ € T[C] appropriate for ¢;. Also, the chosen
Ep-behaviours for the variables appearing in 1, ..., ¢, yield a choice of Ep-behaviours for (the sorts
of) t1,...,tm. (If t; is of visible sort, the choice of a Ep-behaviour for ¢; is obtained by applying t;
to the chosen Zp-behaviours for the variables appearing in it, whereas if ¢; is of hidden sort, there
is only one choice of a Zp-behaviour for ¢;.) Then, depending on whether v € 'y, or vy € Fg, base;
and respectively the definition of «y yield By = UF4 F Z.y(X1,...,Xn) = Z.t if C, with C of form
a.Xj, = Z1.Y1,...,c.Xj, = Z};,.Y}, holding for the resulting Zp-behaviours for ¢1,...,t,. Now,
substitution; yields E\p,g U Elq\ F Z.’)’(tl, B ,tm) = Z.t(tll/Yl, BN ,t%/Yk) if Cl, cey Ck, with t;
and C; being given by Ey =z U El‘i bty = Zt if Cyfori=1,... k.

Again, the statement in Remark 5.3.16 does not generalise to the case when equationally-defined
algebraic operations are allowed in ¥ (for the same reason for which Remark 5.3.14 did not gener-
alise).

As in the case of data cosignatures, correctness proofs employ inductive and respectively coinductive
techniques. These techniques build on the remarks in Section 3.3.1, according to which proving the
satisfaction of equations up to bisimulation can be reduced to exhibiting generic bisimulations which
relate the lhs and rhs of the given equations, while proving the satisfaction of coequations up to
reachability can be reduced to exhibiting subalgebras whose states satisfy the given coequations. At
the extremes, this amounts to proving that bisimilarity on the underlying coalgebras relates the lhs
and rhs of the given equations, and respectively that reachable states satisfy the given coequations.
Furthermore, in proving the satisfaction of coequations up to reachability, it is usually sufficient
to consider the reachable subalgebras as candidates for the subalgebras whose states satisfy the
coequations.

A result similar to Proposition 5.2.11, justifying the use of the deduction calculus for constraints in
correctness proofs (namely for rewriting particular observations of given computations to computa-
tions yielding similar results) can be formulated for object signatures.

Proposition 5.3.17. Let (H,A,T, E) denote an object signature, and let EY denote the set of
(U, AUAY)-constraints used to define some derived A-observers AY. Also, let E' = Ey= UEUEdA.
Then, the following hold:

1. For each y € L'y, s, s, €ach ¢ € Taad[Cls and each choice of Ap-behaviours for the sorts
S1,...,Sm, there exist a one-step I'-computation t € Tr({Y1,...,Y%}), Z € covar(c), and
conditions C' for X1 : s1,...,Xm : Sm, such that C holds for the chosen Ap-behaviours for
$1y---,8m, and such that E' - cy(Xy,..., X)) = Zt if C.
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2. Foreacht e Tr({X1,...,Xm})s, each ¢ € Taad[Cls and each choice of Ap-behaviours for
the sorts of X1,...,X,,, there exist t' € Tr({Y1,...,Yx}), Z € covar(c), and conditions C
for X1,..., X, such that C' holds for the chosen A p-behaviours for X1, ..., X,,, and such
that B' -ct = Z1' if C.

That is, any A-observation on any (one-step) [-computation rewrites to a (one-step) I"-computation,
provided that sufficiently-many assumptions are made about the Ap-behaviours of the variables
appearing in the term used to denote the given I'-computation.

Proof. In proving the first statement, we first consider the case when ¢ does not contain any derived
observers. In this case, the proof is by structural induction on c¢. First, if ¢ is a covariable, then
base1 yields E'+ Z.’Y(Xl, e ,Xm) = Z.’)/(Yl, . ,Ym) if Zl.Xl = Zl.Yl, e ,Zm.Xm = ZmYm
for any v € I" appropriate for Z. Next, if ¢ is of form [cy, ..., ¢,]d for some § € A .5, two cases
can be distinguished.

1. § € A, with v € V. It therefore follows that ¢ € T=[C]. The fact that (V, U, E, Ey =) is a data
cosignature then yields, for each v € Wy, =[5, . and each choice of E-behaviours
(and therefore for each choice of Ap-behaviours) for the sorts s1,...,Sm,, a (¥, E)-constraint
e of form c.y(X1,...,X,n) = Z.t if C such that C holds for the chosen Ap-behaviours for

Xi,..., X, and such that Ey = - e. Hence, E' |- e.

2. 0 € Ay with h € H. The fact that (H,A,I', E) is an object signature then yields, for
each v € I'y, ,,,» and each choice of Ap-behaviours for the sorts sq,...,5,, a (I A)-
constraint of form [Z1,...,Z,]0.y(X1,...,Xm) = Z;.t if C in E, with C of form ¢;.X;, =
Z Y, .00 X, = Z3.Yy, and with t € Tr({Y1,...,Y;}) a one-step I'-computation, such

that C' holds for the chosen Ap-behaviours for s1,.. ., s,,. The conditions defining Y1,..., Y}
together with the chosen Ap-behaviours for X1,..., X}, yield a choice of Ap-behaviours for
Y1,...,Y;, and hence for the variables appearing in t. We now distinguish two subcases.

(@) Z; : v with v € V. Hence, ¢ € T=[C], and t € Ty({Y1,...,Ys}). The fact
that (V,V,E, By =) is a data cosignature then yields a (¥, Z)-constraint e of form
ci.t = Zt if .Yy, = Z1.Y],...,c.Yy, = Z].Y] whose conditions hold for (the
E-behaviours induced by) the resulting Ap-behaviours for Yi,...,Yy, and which is
such that Ey = F e (and consequently E' - ¢). Now, substitution; yields E' -
[Cl,. .. ,Cn](s.’)/(Xl,. .. ,Xm) = Z.t, if C, ([ . C;/ZkZ .. ']cki‘Xjki = Z{ il)izl,...,l)-

(b) Z; - h with h € H. First, if t = Y; with j € {1,...,k}, then base yields
E + .Yy = ZY if ¢.Y; = ZY, with ¢.Y; = ZY holding for the resulting
Ap-behaviour for Yj, while substitutiony yields E' - [c1,...,¢,]09(X1,..., Xp) =
Z.Y it C, [...CZ'/Z]'...]C]'.XZ']. = Z.Y. Also, if t = ’)/I(tl,...,tp) with ’7, € I'y, and
t1,...,tp € Ty({Y1,...,Ys}), then the constraints in Eyz together with the re-
sulting Ap-behaviours for Yq,...,Y) yield a choice of Ap-behaviours for (the sorts
of) ti,...,t,'* The induction hypothesis then yields a (T, A)-constraint e of form
¢y (X1,..., X)) = Z.t' if ¢} X, = Z{.Yl’,...,c;.Xr(/] = Z,.Y, whose conditions hold

“Note that all the variables appearing in t1,. .. ,tp are visible-sorted, and therefore their Ap-behaviours are given
by elements of D.
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for the previously-obtained Ap-behaviours for ¢1,...,t,, and which is such that E' - e.
Then, substitution; yields E' - ¢;./(t1,...,t,) = Z.t'(t1 /Y], ..., t3/Y,) if C1,...,Cy,
with ¢, and C; being such that E' + c.t,, = Z.t. if C;, for i = 1,...,q. If
CiU...UCyis of form cl.Yy, = Z{'.Y/,...,¢]. Yy, = Z]'Y/", substitution; yields
E'F ety s endy(Xa,y oo, Xin) = ZA' ()Y, ...t/ Yy) if C,CY, ..., C, with Cf of
form [...c!/Zy, .. Jey, X, = Z' Y] fori=1,...,L

Hence, the first statement holds whenever ¢ does not contain any derived observers. This yields,
for each v € I'y, _s,.,s and each choice of Ap-behaviours for the sorts sq,...,s,,, a Ap-behaviour
for the sort s. The fact that the first statement also holds for an arbitrary ¢ € Tz jad¢[C] now
follows by Remark 5.3.14, which yields, for each ¢ € Thad[C]s, a (¥, A U Ap)-constraint e of
form ¢ X = Zt if 0. X = Z1.Y1,...,¢c. X = Zi.Yy whose conditions hold for the previously-
obtained Ap-behaviour for the sort s, and which is such that Ey = U EdA F e. Then, if B/ -
ciy( X1y, Xm) = Zit; if C; with C; holding for the given Ap-behaviours for sq,...,sy,, for
1=1,...,k, substitution; yields E'+ C.’)/(Xl, BN ,Xm) = Z.t(tl/Yl, BN ,tk/Yk) if Cl, cey Cy.

The proof of the second statement is by structural induction on t. First, if ¢ is a variable, basej
yields E' - ¢.X = Z.Y if ¢.X = Z.Y, with ¢. X = Z.Y holding for the chosen A p-behaviour for
(the sort of) X. Next, if ¢ is of form «y(t1,...,tx) withy € 'y, s, 5, two cases can be distinguished.

1. s € V. It therefore follows that v € W, ¢q,...,tx € Ty ({X1,...,Xm}) and ¢ € Tz[C]. The
conclusion then follows by (V, ¥, =, Ey =) being a data cosignature.

2. s € H. In this case, the induction hypothesis yields, for each i € {1,...,k} and each
¢ € TaIC] appropriate for t;, a (I',A)-constraint e of form .t; = Z.t' if C, with C
holding for the chosen Ap-behaviours for Xi,...,X,,, and with E' - e. These con-
straints uniquely determine a choice of Ap-behaviours for the sorts si,...,s;. It then
follows by (H,A,T',E) being an object signature that E contains a (I', A)-constraint of
form C.’)’(Xl,...,Xk) = Zt if Cl.le = Zl.Yl,...,Cl.le = ZZY'Z whose conditions hold

for the resulting Ap-behaviours for si,...,s;. Then, substitution; yields £’ + c.t =
Z.t’(t’l/Yl, e 7t;c/Yk) if Cl, ey Ck, with t; and Cz being given by E'+ Ci-tji = Zzt; if Cz
fori=1,...,k.

|

Remark 5.3.18. In the presence of derived I'-constructors I'Y defined using some (I' U I'Y, Z)-
constraints EY, the second statement generalises to terms ¢ also containing I'Y-symbols. (In this
case, deduction from E' is replaced by deduction from E’' U EZ.) This follows by substitutiony
together with the observation in Remark 5.3.16.

Remark 5.3.19. Proposition 5.3.17 does not generalise to the case when equationally-defined al-
gebraic operations are present in W. The reason for this is that the results of =-observations on
the results yielded by such operations can not, in general, be expressed using a (¥, Z)-constraint.
Nevertheless, the availability of such operations substantially increases the expressiveness of the for-
malism, while the proof techniques are, in most cases, as straightforward as in the case when such
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operations do not appear in constraints!®.

In addition to inductive and coinductive techniques, coequational and respectively equational deduc-
tion can also be used in proving the satisfaction of coequations up to reachability and respectively
of equations up to bisimulation by algebras of object signatures.

Theorem 5.3.20 (Soundness).

1. The deduction calculus in Section 4.2.5 is sound for the satisfaction of coequations up to
reachability by algebras of object signatures.

2. The deduction calculus in Section 2.3.1 is sound for the satisfaction of equations up to bisim-
ulation by algebras of object signatures.

Proof (sketch). Soundness of the two closure rules follows from the preservation of reachability by
observers and respectively of bisimilarity by constructors in algebras of object signatures. Soundness
of the remaining rules follows by standard properties of equality. O

The remaining of this section gives some examples of correctness proofs.

Example 5.3.21. Consider the object signature of stacks given in Example 5.3.1 (denoted STACK in
what follows). The coinductive technique for proving the satisfaction of equations up to bisimulation
described in Section 3.3.1 can be used to show that the equations:

pop(empty) = empty
pop(push(s,n)) = s

with s of type Stack hold, up to bisimulation, in all STACK-algebras. Specifically, the satisfaction of
the above equations can be inferred by exhibiting a generic bisimulation on the coalgebras underlying
STACK-algebras, which, in addition, relates the lhs and rhs of each of these equations.

For a STACK-algebra A, let R4 denote the binary relation on the carrier of A whose visible components
are given by the equality relations, and whose Stack component is the least binary relation on Asacx
satisfying:

¢ Ragstack ¢, for each ¢ € Agpack
pop4(empty ) A stack emptyy

pop 4 (pushy(c,d)) Rastack ¢, for each ¢ € Agiack and each d € Apay

Then, the relations R4 with A € Alg(STACK) define a generic bisimulation on the coalgebras un-
derlying STACK-algebras. For, the following can be inferred from the STACK-constraints using the
deduction calculus given in Section 5.1:

[Z,N]top.pop(empty) = Z.*

The only exception appears to be caused by the use of equationally-defined operations in specifying derived
observers. In this case, the formalism introduced here is not sufficiently expressive to support the proofs of certain
correctness properties (see the concluding remarks in Example 5.3.22).
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[Z,N]top.empty = Z.*
[Z,S]rest.pop(empty) = Z.*
[Z,S]lrest.empty = Z.*

[Z,N]top.pop(push(s,n)) = Z.z if [Z,N]top.s = Z.z
[Z,N]top.s = Z.z if [Z,N]top.s = Z.z
[Z,N]top.pop(push(s,n)) = N.n’ if [Z,N]top.s = N.n’
[Z,N]top.s = N.n’ if [Z,N]top.s = N.n’
[Z,S]rest.pop(push(s,n)) = Z.z if [Z,S]rest.s = Z.z
[Z,S]rest.s = Z.z if [Z,S]lrest.s = Z.z
[Z,S]lrest.pop(push(s,n)) = S.s’ if [Z,S]lrest.s = S.s’
[Z,S]rest.s = S.s’ if [Z,S]lrest.s = S.s’

Moreover, for A € Alg(STACK), R, relates the interpretations in A of the Ihs and rhs of the two
equations. It therefore follows by the remarks in Section 3.3.1 that A =" pop (empty) = empty and
A =P pop(push(s,n)) = s hold for any STACK-algebra A.

A state invariant for stacks is captured by the coequations:

[Z,S]lrest = [Z,S’]rest if ([Z,N]top,Z)
[Z,N]top = [Z,N’]top if ([Z,S]lrest,Z)

Proving that the above coequations hold, up to reachability, in all STACK-algebras requires further
insights into the notion of reachability under empty, push and pop. For, the fact that these coequa-
tions hold in a state s does not guarantee that they hold in pop(s), and therefore straightforward
induction can not be used to show that the coequations hold in all reachable states. However, the
observation that the equations:

pop(empty) = empty
pop(push(s,n)) = s

hold, up to bisimulation, in STACK-algebras allows one to reduce proving that the stack invariant
holds up to reachability under empty, push and pop to proving that the stack invariant holds up
to reachability under empty and push only. For, from the satisfaction of the above equations, one
can infer that any Stack-state reachable under empty, push and pop is bisimilar to a Stack-state
reachable under empty and push only. Then, the satisfaction of the stack invariant follows from
this invariant holding in empty and being preserved by push, together with the observation that the
coequations defining the invariant hold in a state s whenever they hold in a state bisimilar to s.

An alternative way to prove that the stack invariant holds, up to reachability, in STACK-algebras is to
use the technique described in Section 3.3.1, according to which it suffices to show that the invariant
holds in the states of certain subalgebras. Here, the subalgebras can be taken to consist of those
states which are bisimilar to states reachable under empty and push. (The closure of such sets of
states under the application of empty and push is a consequence of the definition of these sets, while
their closure under the application of pop is a consequence of the fact that the previously-mentioned
equations hold, up to bisimulation, in all STACK-algebras.) Then, the coequations defining the stack
invariant hold in the states of the subalgebras thus defined. (On the one hand, the coequations
hold in states reachable under empty and push, and on the other hand, their satisfaction in a state
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s implies their satisfaction in any state which is bisimilar to s.) As a result, STACK-algebras satisfy,
up to reachability, the coequations defining the stack invariant.

Example 5.3.22. Consider the object signature of bounded stacks given in Example 5.3.10 (denoted
BSTACK in what follows). Since no constructors or observers of type Stack are added to the object
signature of stacks by the object signature of bounded stacks, it follows that the inclusion of the
object signature of stacks into the object signature of bounded stacks defines a horizontal object
signature morphism.

The depth of a bounded stack of size m should not exceed m. This state invariant for bounded stacks
can be formalised using the coequation:

[[T,F1<(m+1)]depth = [T]!
with ! : BStack — 1 denoting the constant observer defined by:
[T1!'.b = T.*

One can then use induction to prove that the above coequation holds, up to reachability, in all
BSTACK-algebras. First, the coequation holds in empty, since the following hold:

[[T,F1<(m+1)]depth.empty = T.*
[T]1!.empty = T.*

Now assume that the coequation holds in b.  This immediately results in the condition
[[T,F1<(m+1)]depth.X = T.t holding for b. The fact that the coequation also holds in push(b,n)
then follows by case analysis from:

[[T,F1<(m+1)]depth.push(b,n) = T.t

if [[T,Fl<mldepth.b = T.t and [Dldepth.b = D.d
and:
[[T,F]1<(m+1)]depth.push(b,n) = T.t
if [[T,Fl<m]ldepth.b = F.f and [D]depth.b = D.d

and [[T,F]<(m+1)]depth.b = T.t
together with:
[T]!.push(b,n) = T.x
For, the first constraint defining [Nldepth.push(b,n) together with:
[T,Fl1<(m+1).s(d) = T.t if [T,Fl<m.d = T.t
yield, by substitution;:

[[T,F]1<(m+1)]depth.push(b,n) = T.t
if [[T,F]l<m]depth.b = T.t and [D]depth.b = D.d
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while the second constraint defining [Nldepth.push(b,n) together with:
[T,Fl<(m+1).d = T.t if [T,Fl<m+1.d = T.t
yield, again by substitution;:
[[T,F]1<(m+1)]depth.push(b,n) = T.t
if [[T,Fl<m]depth.b = F.f and [D]depth.b = D.d
and [[T,Fl<m+1]depth.b = T.t
Also, the definition of ! yields, by substitution;:

[T1!.push(b,n) = T.*

The fact that the coequation holds in push(b,n) now follows by noting that the equation t = *
with t:1 holds in the underlying data coalgebra, and that the conditions:

[[T,Fl<m]ldepth.b = T.t and [D]ldepth.b = D.d
and:

[[T,Fl<m]ldepth.b = F.f and [D]ldepth.b
and [[T,F]l<(m+1)]depth.b = T.t

1]
o
o}

cover all possible behaviours for b, provided that the condition [[T,F]1<(m+1)ldepth.X = T.t holds
in b.

The fact that the coequation holds in pop(b) whenever it holds in b follows, again, by case analysis.
On the one hand, the first constraint defining [N]depth.pop(b) together with:

[T,F1<(m+1).0 = T.*

yield, by substitution;:
[[T,F1<(m+1)1depth.pop(b) = T.* if [[F,Dlpldepth.b = F.f

On the other hand, the second constraint defining [N]depth.pop(b) together with:
[T,Fl<(m+1).d = T.t if [T,Fl<(m+1).d = T.t

yield, again by substitution;:

[[T,Fl1<(m+1)]ldepth.pop(b) = T.t
if [[T,D]lpldepth.b = D.d and [[T,[T,F]1<(m+1)]pldepth.b = T.t

That is:

[[T,F]l<(m+1)]depth.pop(b) = T.t
if [[T,D]lpldepth.b = D.d and [[T,F]l<(m+2)]depth.b = T.t

This, together with:

[[T,F1<(m+2)]depth.b = T.t if [[T,Fl<(m+1)]ldepth.b = T.t
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(following from the fact that the coequation:
[T,FI<(m+2) = [T,FI<(m+1) if ([T,FI<(m+1),T)

holds in the underlying data coalgebra, see Example 5.2.13, and therefore by closure, see Proposi-
tion 5.3.20, the coequation:

[[T,F1<(m+2)]depth = [[T,Fl<(m+1)]ldepth if ([[T,F]l<(m+1)]depth,T)
holds in any BSTACK-algebra) yield:

[[T,Fl1<(m+1)]ldepth.pop(b) = T.t
if [[T,Dlpldepth.b = D.d and [[T,F]1<(m+1)]ldepth.b = T.t

Finally, the definition of ! yields, by substitution;:
[T]1!.pop(b) = T.x*

The fact that the coequation holds in pop(b) whenever it holds in b now follows by noting that the
equation t = * with t:1 holds in the underlying data coalgebra, and that the conditions:

[[F,Dlpldepth.b = F.f
and:

[[T,Dlpldepth.b

D.d and [[T,Fl<(m+1)]depth.b = T.t

cover all possible behaviours for b, provided that the condition [[T,F]1<(m+1)Idepth.X = T.t holds
in b.

We conclude this example with a remark on the definition of the derived observer full?. An
alternative approach to specifying bounded stacks would have been to define a derived observer
full : BStack — Bool using the following constraint:

[Blfull.b = B.not(d<m) if [D]ldepth.b = D.d

and use conditions of form [[T,F1?]1full.b = T.t and respectively [[T,F]?]full.b = F.f in the
definition of push. In this case, the invariant for bounded stacks could have been formulated using
a derived observer inv : BStack — Bool defined by the constraint:

[Blinv.b = B.d<=m if [D]ldepth.b = D.d

with the algebraic operations < : Nat Nat — Bool and <= : Nat Nat — Bool being defined similarly
to the operation == : Nat Nat — Bool of Example 5.2.14. However, in this case the equational
definitions of not and < would have prevented a constraint of form:

[Blinv.push(b,n) = B.true

if [[T,F]17?]full.b = F.f and [D]depth.b = D.d
from being derived from:
[Blinv.push(b,n) = B.s(d)<=m
if [[T,F]1?]full.b = F.f and [Dldepth.b = D.d
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(see also Remark 5.3.19). A possible explanation of this fact is that the above specification of
bounded stacks attempts to use algebraic operations in order to perform case analysis (namely in
the definition of push).

Example 5.3.23. Recall from Example 4.2.40 that lists having the property that any two adjacent
elements are different from each other could not be specified in a purely coalgebraic setting. This
property of lists can, however, be formalised provided that the underlying data is allowed to carry
algebraic structure. This is illustrated here using an object signature which consists of a hidden
sort List, observers first : List — 1 Nat, rest : List — 1 List, constructors empty : — List,
next : List — List (with 1 and Nat denoting visible sorts), and constraints:

[Z,N]first.empty = Z.*
[Z,L]lrest.empty = Z.*

[Z,N]first.next(1) = N.0 if [Z,N]first.l = Z.z
[Z,N]first.next(1l) = N.s(n) if [Z,N]first.l = N.n
[Z,Llrest.next(1l) = L.1

That is, the constructor next appends a value in front of its argument, with the value appended
being given either by the successor of the first element of the list representing the argument (if this
list is not empty) or by 0 (otherwise).

In order to specify the above-mentioned property of lists, we introduce a derived observer inv :
List — Bool, defined using the constraints:

[Blinv.1l = B.true
if [Z,[Z,N]firstlrest.l = Z.z
[Blinv.1l = B.not(f==s)

if [Z,N]first.l = N.f and [Z,[Z,N]firstlrest.l = N.s
[Blinv.1l = B.false
if [Z,N]first.l = Z.z and [Z,[Z,N]first]rest.l = N.s

(The presence of the last of the above constraints is required by the definition of object signatures,
since the list invariant, as given e.g. in Example 4.1.29, can not be assumed to hold in an arbitrary
List-state!®.)

Now, if true : List — Bool denotes the constant observer defined by:
[Bltrue.l = B.true

then the above-mentioned property of lists is captured by the coequation:
[Blinv = [Bltrue

(Since the coequation is required to hold in all reachable List-states, and since observers preserve
reachability, it suffices to require that the first and second element of any list are different from each
other.)

The proof of the above invariant is by induction on List. First, the invariant holds in empty, since:

[Z,[Z,N]first]rest.empty = Z.*

80One can, however, show that the invariant holds in all reachable states.
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can be inferred, and therefore:
[Blinv.empty = B.true

holds. Now assume that the invariant holds in 1. The fact that it also holds in next (1) follows
from:

[Blinv.next (1) B.true if [Z,Nlfirst.l = Z.z
and:

[Bl]inv.next (1)

B.not(s(n)==n) if [Z,N]first.l = N.n

(with each of the above two constraints following by substitution; and substitutiony from the
definitions of inv and next), together with the equation:

not (s(x)==x) = true

holding in the underlying data coalgebra (see Example 5.2.14).

5.3.3 Specifying Inheritance

The r6le of inheritance in object-oriented programming is twofold. On the one hand, inheritance is
a mechanism for classifying objects according to their structure and functionality, with each class
inheriting the structure and functionality of its ancestors, and possibly adding new structure and/or
functionality!”. On the other hand, inheritance is a mechanism for the reuse of class implementations,
with the implementation of a class being made available to its descendants. A realistic approach to
specifying inheritance should therefore account both for its classification aspect and for its reusability
aspect.

To a certain extent, the reusability aspect of inheritance can be captured within an algebraic frame-
work (see e.g. [Cir98]). However, capturing the classification aspect of inheritance within such a
framework turns out to be more difficult, as algebraic operations are not sufficiently general to for-
malise observational features such as the classification of instances of a class according to their least
type (with the ordering on types being determined by the inheritance relationship). In this respect,
a combined algebraic-coalgebraic framework appears to be more promising. This section briefly
illustrates how the previously-introduced formalism can be used to specify classes in the presence of
inheritance.

In the following, it is assumed that class declarations only contain declarations of constructors, di-
rect attributes (corresponding to instance variables), indirect attributes (corresponding to instance
methods with no arguments which return a value but do not result in a change of state) and
methods (corresponding to instance methods which do not return any value but which result in a
change of state). The reason for not allowing side-effects (i.e. instance methods which return a
value and at the same time result in a change of state) or parameterised attributes (i.e. instance
methods with arguments which at the same time return a value) is the need for a complete separa-
tion between the computational aspect and the observational aspect of object states. (Under this

7 This results in inheritance hierarchies.
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restriction, side-effects can still be encoded by using both a method and an indirect attribute, and
possibly some additional direct attributes, while parameterised attributes can be captured by several
unparameterised attributes, namely one for each possible combination of values for the parameters.)

We now consider an arbitrary collection of classes related to each other by inheritance relationships,
and illustrate how such a collection can be specified in our formalism. Only single inheritance is
allowed, that is, each class can only have one direct ancestor (or superclass).

Each class c is captured by two hidden sorts, ¢ and ¢, whose intended denotations are the collection
of instances of ¢, excluding and respectively including instances of its subclasses. The use of two
different sorts will later result in the notion of a least class (i.e. most specific class) of an object
being captured in the formalism.

We begin by specifying the behaviour associated to hidden sorts c. First, the observers associated
to such a sort are as follows:

1. an observer § : ¢ — ¢ ... ¢, for each class ¢ and each direct attribute §, having result type
c1...cp, declared by ¢

2. an observer 1.: ¢ — ¢’ (capturing the inheritance of the structure of ¢’ by c), for each class ¢
with direct superclass ¢/

3. a derived observer § : ¢ — €1 ... ¢y, defined by the coequation:

for each class c with direct superclass ¢’ and each direct attribute §, having result type ¢y ... cp,
declared by ¢ or by one of its superclasses and not overridden by ¢ (If § is last declared by a
superclass of ¢/, then a derived observer § : ¢ — ;... ¢, is also being defined.)

4. a derived observer § : ¢ — ¢€;1...¢, for each class ¢ and each indirect attribute 4, having
result type ci ... c,, either declared by c or inherited from a superclass and not overridden by
¢ (Since the values of indirect attributes depend solely on the values of direct attributes, it
follows that indirect attributes can be captured by derived observers.)

Next, the constructors associated to a sort c¢ are as follows:

1. a (derived) constructor 7, : €1...¢y, — c¢ for each class ¢ and each constructor, having
argument types ¢y, ..., cnp, declared by ¢

2. a(derived) constructor o, : ¢ € ... Gy — ¢ for each class ¢ and each method, having argument
types ci,..., Cnp, either declared by ¢ or inherited from a superclass and not overridden by c.

The resulting constructor is derived or not, depending on whether the implementation of the con-
structor/method in question uses calls to other constructors/methods of the same object or defines
the effect of the constructor/method on the instance variables.

The derived observers induced by indirect attributes and the (derived) constructors induced by
constructors and methods are subject to constraints determined by the desired behaviour for the
class c. In writing these constraints, a useful observation is that the specifications of the superclass
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versions of inherited operations are available via the observers 1; this provides support for the reuse
of specifications. (Nevertheless, the behaviour of inherited operations on objects of the subclass must
be specified through constraints, even when these operations are not overridden in the subclass.)

We now specify the behaviour associated to hidden sorts ¢. The observers associated to such sorts
are of form ?; : ¢ — ¢ 51 ... 3,, where c is a class with direct subclasses s1, ..., s,. Such an observer
captures the classification of instances of ¢ according to their least class: the least class of an object
of type ¢ is either ¢ or (a subclass of) one of s1,...,s,, in which case destructors of form 75 must
also be used in order to determine the least class of the given object. In addition, derived observers
d:C— ¢ ...Cyp with § an attribute of ¢ (either declared by ¢ or inherited from a superclass and not
overridden by c) are specified using coequations:

(Z)0 =[1[2]8, [[Z10]) ts,-- J250 oo, (([Z10) 1,y 175, 176
if § denotes a direct attribute'®, and respectively:
[Z]6 = [[Z)6,]Z]9, . ..,[Z]6]7z

if § denotes an indirect attribute. These definitions account for the fact that a call to an attribute
results in the least specific, and respectively the most specific version of that attribute being selected,
depending on whether the attribute is implemented by an instance variable or by an instance method.

The constructors associated to a sort ¢ are as follows:

1. a constructor !, : ¢ — ¢ for each class ¢
2. a constructor 's : § — ¢ for each class ¢ and each direct subclass s of ¢

3. a (derived) constructor 0z : €€y ... ¢y — C for each method o (either declared by c or inherited
from a superclass and not overridden by ¢) with argument types c1,...,cp,

(Again, the constructor associated to a method o is derived precisely when the implementation of o
in ¢ uses calls to other methods of the same object.) These constructors and observers are subject
to the following constraints:

L [Zo, 21, .., Zn]%e-te(C) = Zo.C

[Z0y Z1s - vy Zn)?et5,(S) = Z;.S, i=1,...,n
2. 20,21, ..., Zn)%6.0:(C,C) = Zy.o.(Y,C) if [Zo, Z1,. .., Zn)7:.C = Zp.Y
[Zo, Z1, ..., Zn)?2.06(C,C) = Z;.05,(Y,C) if [Zo, Z1,...,Z,)?7%e.C =2;.Y, i=1,...,n

provided that o; is not derived. (If o; is derived, then the constraints defining it are determined
by the desired behaviour for the corresponding method.)

(If ¢ is an abstract class, i.e. a class with no instances which is only used for classification purposes,
then an observer ?; : ¢ — §1...5, and constructors !5, : 5; — ¢ with ¢ € {1,...,n}, subject to
similar constraints, should be used instead.)

8 This definition uses successive applications of operations of form ?, followed by successive applications of opera-
tions of form 1, to access the least specific version of § on a given object, depending on its least class.
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It follows immediately that the equations:

e(0e(C, C)) = a4(1(C), C)
t5,(05,(C,C)) = 0:(15,(C),C), fori=1,...,n

with ¢ having s1,..., s, as its direct subclasses, hold, up to bisimulation, in all algebras of an object
signature defined using the above constraints.

The approach to specifying inheritance outlined above exploits the observation that, from a structural
point of view, inheritance can be captured by aggregation. However, this view is not extended to
the computational aspect of inheritance, thus allowing concepts such as "least class” and " dynamic
binding” to be accounted for.

If, for a collection of classes, the result types of all the attributes and the argument types of all the
constructors and methods are types that have been previously defined, then one can separate the
specification of this collection of classes into the specification of hidden sorts ¢, and respectively the
specification of hidden sorts ¢. (In this case, as far as the hidden sorts ¢ are concerned, the adding
of subclasses can be captured via horizontal object signature morphisms.) On the other hand, if
the above is not true, then the hidden sorts ¢ and ¢ associated to classes in the collection must be
specified all at once. In both cases, the adding of a subclass s to a class ¢ results in a change of
the constructors and observers associated to ¢, and consequently the hidden sorts ¢ associated to
classes belonging to the same hierarchy must be specified all at once.

Correctness properties of object behaviour are captured by equations quantified over variables of
type ¢, and respectively by coequations of type ¢. Consequently, proving such properties requires a
case analysis on the least type of variables of type ¢, and respectively on the result yielded by the
observer 7;.

Example 5.3.24. The specification of bounded stacks in Example 5.3.10 only accounts for the
reusability aspect of inheritance. A specification which also accounts for its classification aspect
would, instead, consist of hidden sorts Stack, Stacks, BStack, BStacks, observers:

top: Stack — 1 Nat
rest : Stack & 1 Stacks

depth : BStack — Nat
stack : BStack — Stack

Pstacks - Stacks — Stack BStacks

7Bstacks . BOStacks — BStack

(where 1gstack has been renamed to stack), derived observers:

full?:BStack— 11
top : BStack — 1 Nat
rest : BStack — 1 Stacks

top : Stacks — 1 Nat
rest : Stacks — 1 Stacks

full? :BStacks =+ 11
top : BStacks — 1 Nat
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rest : BStacks — 1 Stacks

depth:
constructors:

empty :

BStacks — Nat

— Stack

push : Stack Nat — Stack
pop : Stack — Stack

empty :

— BStack

push : BStack Nat — BStack
pop : BStack — BStack

'stack - Stack — Stacks
!Bstacks : BStacks — Stacks
push : Stacks Nat — Stacks
pop : Stacks — Stacks

'Bstack : BStack — BStacks
push : BStacks Nat — BStacks
pop : BStacks — BStacks

and derived constructors!®:

push2:
push2:
push2:
push2:

subject to the following coequations and constraints:

Stack Nat Nat — Stack
BStack Nat Nat — BStack
Stacks Nat Nat — Stacks

BStacks Nat Nat — BStacks

[Z,N]top.empty = Z.*
[Z,S]rest.empty = Z.*
[Z,N]top.push(s,n) = N.n

[Z,S]rest.push(s,n) = S.!stack(s)

[Z,N]top.pop(s) = Z.*

if [Z,[Z,N]toplrest.s

[Z,N]top.pop(s) = N.n

if [Z,[Z,N]toplrest.s

[Z,S]rest.pop(s) = Z.*

if [Z,[Z,S]lrest]lrest.s

[Z,S]rest.pop(s) = S.s’

S.push2(s,n,n’) = S.push(push(s,n),n’)

if [Z,[Z,S]rest]rest.s =

for the sort Stack,

[T,F]full? = [[F,T]<m]depth
[Z,N]top = [[Z,N]toplstack
[Z,S]lrest = [[Z,S]lrest]lstack

[S]stack.empty = S.empty

[N]depth.empty

N.O

1]
N

I
=
=

S.s?
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9 A method for adding two elements to a stack is introduced here in order to illustrate the use of derived constructors.
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[S]stack.push(b,n) = S.push(s,n)

if [T,F]1full?.b = F.f and [Slstack.b = S.s
[S]stack.push(b,n) = S.s

if [T,F]full?.b = T.t and [S]stack.b = S.s
[N]depth.push(b,n) = N.s(d)

if [T,F]1full?.b = F.f and [D]depth.b = D.d
[Nldepth.push(b,n) = N.d

if [T,F]full?.b = T.t and [D]depth.b = D.d

[S]stack.pop(b) = S.pop(s)
if [S]stack.b = S.s
[N]depth.pop(b) = N.O

if [[F,Dlpldepth.b = F.f
[N]depth.pop(b) = N.d
if [[F,Dlpldepth.b = D.d

B.push2(b,n,n’) = B.push(push(b,n),n’)
for the sort BStack,

[Z,N]top = [[Z,N]top, [[[Z,N]toplstack] Pgstacks] Pstacks
[Z,S]rest = [[Z,S]rest,[[[Z,S]rest]stack] ?gstacks] Tstacks

[S,B] ?stacks- !stacks(8) = S.s

[S,B] ?stacks- !Bstack(b) = B.b

[S,B] ?stacks -push(s,n) = S.push(s’,n)
if [S,B]?stacks-S = S.s8’

[S,B] ?stacks-push(s,n) = B.push(b,n)
if [S,B]l%?stacks-S = B.b

[S,B] ?stacks-pop(s) = S.pop(s’)
if [S,B]?stacks-S = S.s8’

[S,B] ?stacks-pop(s) = B.pop(b)
if [S,B]l%?stacks-S = B.b

S.push2(s,n,n’) = S.push(push(s,n),n’)

for the sort Stacks, and:

[T,F1full? = [[T,F]1full?] ?rstacks
[Z,N]top = [[Z,N]top]?pstacks
[Z,S]rest = [[Z,S]lrest] ?sstacks
[Nldepth = [[Nldepth]?gstacks

[B] ?Bstacks - !Bstack (b) = B.b
[B] ?Bsvacks - push(b,n) = B.push(b’,n)
if [B]7gstacks-b = B.Db’
[B] ?Bstacks - POp (b) = B.pop(b’)
if [B]7sstacks-b = B.b’
B.push2(b,n,n’) = B.push(push(b,n),n’)

for the sort BStacks.
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5.3.4 Related Work

This section briefly compares the approach to specifying objects presented here with the ones in
[GM97, GMOO, Jac96¢, Jac96a, Jac97, RoB00, Jac00]. A specification of stacks is used to emphasise
the differences between our approach and the above-mentioned ones.

The following hidden algebraic specification of stacks of natural numbers is taken from [GMOO].

th STACK is
sort Stack .
pr DATA .
op empty : -> Stack .
op push : Nat Stack -> Stack .
op top : Stack -> Nat .
op pop : Stack -> Stack .
var S : Stack .
var I : Nat .
eq top(push(I,S)) =1 .
eq pop(empty) = empty .
eq pop(push(I,S)) =S .
endth

The models of this specification are algebras of the hidden signature consisting of a sort Stack
and operation symbols empty, push, top and pop, which, in addition, behaviourally satisfy the
given equations. A first difference between the above specification and the specification given in
Example 5.3.1 stands in the way of specifying empty stacks. The algebraic nature of the approach
in [GMOO] prevents operations with structured result type, such as top : Stack — 1 Nat, to be
accommodated by hidden signatures. As a result, the undefinedness of the operation denoted by top
on empty stacks is captured in [GMO00] by the absence of an equation defining a value for top (empty).
But this underspecification results in models being able to use any value (rather than no value) as
an interpretation for top(empty). Another difference between the approach in [GM00] and the one
here is that, in [GMO00], the contexts used for observation are defined in terms of the entire signature,
whereas here, only the observers are used in this sense. As a result, underspecification is possible in
[GMOO] (this resulting in a more complex notion of behavioural equivalence), whereas here, all the
constructors must be fully specified (in order to guarantee their well-behavedness w.r.t. bisimilarity).
Nevertheless, the notion of behavioural equivalence induced by a hidden specification is typically
given by indistinguishability by contexts over a subsignature?®, with the well-behavedness of the
remaining operations having to be inferred from the equations in the specification.

As far as coalgebraic approaches to specification are concerned, their main drawback stands in
their inability to specify arbitrary constructors. This becomes increasingly important as structured
specifications are considered, since the functionality of objects may include methods taking other
objects as arguments. Also, the resulting notion of observational indistinguishability is usually
unnecessarily complex, as no distinction is made between structural and computational features.
For instance, the notion of bisimilarity associated to the stack specification given in Example 3.1.46

2| the above example, this subsignature is given by top and pop.
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is similar to the notion of behavioural equivalence associated to the above hidden specification of
stacks.

Using the approach in [R6B00], a specification of stacks of natural numbers involves modal operators
<push(n)>, <popF>, <popS> <topF> and <topS>. (This particular choice of modal operators is
obtained by considering coalgebras of the endofunctor G : Set — Set given by GX = X" x (1 +
X) x (1+N).) The following modal formula is then used to specify the effect of adding an element
to a stack:

<push(n)><topS>n

with n € N. (That is, the resulting stack has a top element, and moreover, this element is precisely
the element that was previously added to the stack.) However, in order to specify the property of
stacks stating that extracting an element from the stack immediately after adding an element to
the stack yields a stack which is observationally the same as the original stack, one has to allow
quantification over formulae. Specifically, the previously-mentioned property can be specified by:

<push(n)><popS>p « ¢

with ¢ denoting an arbitrary formula. (A similar approach is used in [Jac00] for specifying bounded
stacks.) In addition, no account can be given by such an approach to even basic object constructors
such as the stack constructor yielding an empty stack. This appears to suggest that, while modal
logic is suitable for specifying structural/observational properties of systems (see Section 4.2.7 for
examples of such properties), correctness properties regarding the behaviour of systems, including
the equivalence of certain computations are better captured within equational logic. An integration
of modal and equational approaches to specification constitutes the subject of future work. The
main ideas underlying such an integration are briefly outlined in Section 6.2.



6 Conclusions

This chapter summarises the approach presented in Chapters 3, 4 and 5, and briefly outlines possible
directions for future research.

6.1 Summary of Results

The underlying idea of this work was to combine the complementary contributions of algebra and
coalgebra to specification, in order to increase the expressiveness of unilateral (either purely algebraic
or purely coalgebraic) approaches to the specification of state-based, dynamical systems on the one
hand, and to provide simpler and more natural formalisations of the relevant concepts on the other.
Our approach was to distinguish between computational and observational features in such systems,
and to use algebra and respectively coalgebra for the formalisation of these features and of the
concepts deriving from them. In particular, such an approach yielded an algebraically-defined notion
of reachability under computations, as well as a coalgebraically-defined notion of indistinguishability
by observations. This, in turn, resulted in the availability of inductive and coinductive techniques
for proving properties about reachable and respectively observable behaviours.

The compatibility between observational and computational features in structures having both an
observational and a computational component has been shown to arise naturally from a layered
approach to the specification of such structures. While allowing for a smooth integration of the two
categories of features, the use of liftings of monads/comonads to categories of coalgebras/algebras
also amounts to fully specifying the behaviour of the system being considered. One can argue
that such an approach is somewhat restrictive, as it does not support underspecification. However,
similar (but less natural) restrictions need to be imposed, either on models [Dia98, HB99] or on
specifications [RG00], in any non-layered approach to system specification which accommodates
non-trivial constructors, in order to ensure the preservation of observational equivalence relations by
the constructors (and therefore the soundness of the associated proof techniques).

Equational sentences have been used to formalise correctness properties of the specified behaviours.
The choice of an equational approach was motivated, on the algebraic side, by the existence of
characterisability results as well as of a complete deduction calculus for equational logic, and on the
coalgebraic side, by an attempt to unify some of the existing equational coalgebraic approaches to
system specification, as well as to investigate the suitability of equational specification in a coalge-
braic setting. This investigation resulted in an abstract coalgebraic framework for the specification
of structures involving observation, as well as in a concrete formalism for the specification of obser-
vational structures allowing for a choice in the result type of observations, for which a sound and
complete deduction calculus has been formulated.

Although not sufficiently expressive to characterise arbitrary covarieties, many-sorted coequations
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have been shown capable of capturing in a concise manner observational properties quantified over
state spaces. In particular, structural properties of state-based systems, including various dependen-
cies between their components have been successfully formalised using coequations.

A suitable instantiation of the abstract specification framework has yielded a formalism for the
specification of objects, with variants of many-sorted algebra and many-sorted coalgebra being
used to specify object functionality and respectively object structure. The presence of both an
algebraic and a coalgebraic component has resulted in an increased expressiveness compared to
unilateral approaches, both w.r.t. the kinds of behaviours that can be specified, and w.r.t. the kinds
of correctness properties that can be formulated. In particular, systems whose structure is variable
have been shown to be specifiable in the resulting formalism, and state invariants involving the
undefinedness of certain system components have been shown to be supported by this formalism.

6.2 Directions for Future Research

The abstract equational framework introduced in Chapter 3 has only been instantiated to (extended)
polynomial endofunctors. Other possible instantiations, including the use of certain powerset func-
tors for the coalgebraic component (as in [TP97] or [CHM99]) should also be considered. Such
functors are not w®P-continuous, and therefore do not give rise to abstract cosignatures. However,
the approach presented in Section 3.1 can easily be generalised to include functors which are not
necessarily w°P-continuous, but for which final/cofree coalgebras exist (with endofunctors of form
Pu(L x ), Pe()* : Set — Set with k an arbitrary cardinal being instances of such functors!).
The requirement regarding the existence of cofree coalgebras results in such endofunctors inducing
comonads. As a consequence, many of the results in Section 3.1 generalise to the new setting.
The only results that do not immediately generalise are the existence of largest subcoalgebras sat-
isfying an enumerable set of coequations (Proposition 3.1.33)? and the compositionality results in
Section 3.1.3 (Theorems 3.1.58 and 3.1.60)3. However, it is not yet clear whether coequations over
cosignatures involving powerset functors are able to express the kinds of properties one expects to
formulate about transition systems, or whether other kinds of formulae (such as modal formulae)
should be considered in this case.

Another issue which deserves some study is the use of an alternative notion of sentence in formalising
properties of observational structures. Possible candidates in this sense are the laws of [Fok96] (see
Section 3.3.8) and the formulae of a multi-modal logic in the style of [RoB00] or [Jac00] (see
Section 4.2.7). In particular, an approach based on modal logic would benefit from the existence of
Birkhoff-style characterisability results, not only at an abstract level but also in concrete formalisms.
In addition, since a distinction would still be made between observational and computational features,
and since the modal operators of such a logic would only be induced by the observational features, we

'The endofunctor Py(_) : Set — Set takes a set X to the set of all subsets of X of cardinality smaller than k.

?Note however, that a weaker version of Proposition 3.1.33, stating the existence of largest subcoalgebras satisfying
single coequations, can be formulated. The proof of this result uses the fact that abstract cosignatures induce
comonads, and is similar to the proof of Proposition 3.2.27.

$More specific constraints than simply the existence of cofree coalgebras for the endofunctors defining abstract
cosignatures are likely to be necessary in order to guarantee the existence of finite colimits in the category of abstract
cosignatures and strong abstract cosignature morphisms.
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expect the resulting notion of sentence to be less complex than the sentences typically used in [R6800]
or [Jac00] (as observational features do not give rise to as many cyclic structures as a combination
of observational and computational features does). For instance, (the strong versions of) the modal
operators associated to the type of stacks would be: <topF>, <topS>, <restF>, <restS>. These
modal operators are determined by the endofunctor G : Set — Set, (GX) = (1 + N) x (1 + X)
using the approach in [R6B00] (see also Section 4.2.7). As already noted in Section 4.2.7, the stack
invariant would in this case be formalised by the modal formula:

<restF>* <> <topF>x*

Finally, the formalism developed in Chapter 5 could constitute the basis of a specification language
for objects. However, more elaborate examples of object specifications should be considered, as part
of a case study aimed at further justifying the suitability of this formalism for object specification
as well as at comparing it with existing formalisms. In particular, the specification of certain Java
class libraries would provide a suitable setting for comparing our approach with the one in [Jac98].
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